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NOTES ON INTERPOLATION OF HARDY SPACES

by Quanhua XU

1. Introduction and the main result.

Let D denote the unit disc of the complex plane and T the unit circle,
the boundary of D. T is equipped with its normalized Lebesgue measure
m. Let Hp (0 < p ^ oo) denote the usual classical Hardy space of analytic
functions in D. Functions in Hp are identified with their radial limits on
T so that Hp is a closed subspace of Lp = Lp(T). Thus for 1 ̂  p <^ oo,
Hp = {f e Lp : f{n) = = 0 , n < 0}, where {/(n)}ncz is the sequence of
Fourier coefficients of / (see [6] for more information).

Let / be a measurable function on T. We denote by /* the non-
increasing rearrangement of |/|. The main result of this note is the following

THEOREM. — Let 1 <, p < oo. Let f and g be functions in
Hp (= Hp + Hoc) such that

f {g^s^ds < ( {r^ds , V 0 < t < 1 .
J o J o

Then there exists a linear operator T defined on Lp (= Lp + Loo) such that
T(f) = g , which maps Lp into Hp and Loo into Hoo ^nd whose norms on
these spaces are dominated by a constant depending only on p.

In particular, for any f C Hp there exists such an operator T such

that T{f) = f.

Key words : Hardy space - Interpolation functor - Calderon-Mitjagin couple.
A.M.S. Classification : 46E15 - 46M35 - 42B30.
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This result is closely related to the interpolation theory of Hardy
spaces. Before giving its consequences, let us first recall the following similar
theorem due to P.W. Jones [9].

THEOREM J. — Let f and g be two functions in H\ (= H\ + Hoc)
such that

I g*{s)ds < I r(s)ds , V 0 < t < 1 .
Jo Jo

Then there exists a linear operator T defined on H\ such that T(f) = g,
which maps boundedly H\ into H\ and Hoc into Hoc.

The essential new point in our theorem, as compared with Jones'
theorem, is that the required operator T such that T{f) = g is defined on
Lp with values in Hp^ instead of being defined on Hp as in Jones5 theorem.
This advantage will allow us to deduce very easily at the same time all
interpolation results for J^p-spaces from the corresponding known Lp-space
results. For instance, this theorem gives immediately the real and complex
interpolation results on Hardy spaces of Jones [8]. It includes, of course,
Theorem J above, which says that (Jfi, Hoo) is a Calderon-Mitjagin couple
(see the discussions below).

The particular case of the preceding theorem where two functions
coincide is of special interest. In this case the operator T given by the
theorem for / leaves / invariant. For simplicity, we shall say that a linear
operator T is a "one-point projection" at / if it maps measurable functions
to analytic functions such that T(f) = /. Thus our theorem says that for
any / e Hp there exists a one-point projection at / which is bounded
simultaneously from Lp to Hp and from Z/oo to H^o. In fact, together with
known results about Lp-spaces, the existence of simultaneously bounded
one-point projections already ensures the theorem in its full generality (see
Section 4 below).

For stating consequences of our theorem, we shall need some basic
notions from the interpolation theory. We now recall them very briefly.
The reader is refered to [2] for more information.

We shall always denote by F an interpolation functor for Banach
spaces, that is, F is a functor on the category of interpolation couples of
Banach spaces into the category of Banach spaces such that for any two
interpolation couples (Ao,Ai) and (Bo,Bi), F(Ao,Ai) and F(Bo,Bi) are
interpolation spaces with respect to (Ao,Ai), {BQ^B\) and such that for
any bounded operator T from Aj into Bj (j = 0,1) we have F(T) = T.
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The most useful interpolation functors are those constructed from
the real and complex interpolation methods. Let 0 < 0 < l , l < g < o o .
We shall denote by ( • , • ) 6 > g , ( • , -)e real and complex interpolation spaces
constructed respectively by the real and complex interpolation methods.
By interpolation theorem, they are interpolation functors.

Let (Ao,Ai) be an interpolation couple of Banach spaces. Let t > 0
and x C Ao + Ai, we define

K{t,x',Ao,A^) = i n f ^ l ^ o l l A o + ^ l l ^ i l l A i : x = XQ +a;i Xj <E Aj , j = 0,1} .

This is the so-called Peetre's K- functional. (Ao,Ai) is called a Calderon-
Mitjagin couple if for any rr, y € Ao + Ai such that

K(t, y, Ao, Ai) <, K{t, x', Ao, Ai) , Vt > 0 ,

there exists a linear operator T from Ao+Ai to itself which maps boundedly
Aj into Aj {j = 0,1) such that Tx = y.

Let us also recall the following well-known results (cf. [2], [5], [14],
[17]). Let 0 < 0 < 1, 1 < po,Pi < oo. Then

{^po -> ^pi }op == Lp and (Lpp, Lp^ )e == Lp ,
1 _ n n -i

where ——— = — + —. Furthermore, ( L p ^ ^ L p ^ ) is a Calderon-Mitjagin
P Po Pi

couple. Finally, we have for 1 < p < oo
(ttp

(i) ^,/;^,L^(/ (r^))^^)1^,
Jo

where the equivalence constants depend on p only.

We can now state the first consequence of the main theorem. For a
Banach space X of integrable functions on T we denote by H(X) the closed
subspace of X defined by

H(X) = {f e X : f(n) = 0, V n < 0}.

COROLLARY 1. — Let F be an interpolation functor and 1 < p <
oo. Then F(H^H^) = H{F{Lp^L^)).

Proof. — It is evident that F{Hp,H^) C H(F(Lp,L^c)). For the
reverse inclusion, we take a function / in H(F{Lp, Loo))- Then / e H\
and thus by our theorem there is a one-point projection T at / which is
bounded from Lp to Hp and from Loo to Hoc. Therefore T is also bounded
from F(Lp,Loo) to F(Hp,H^); so that / = T{f) e F{Hp,H^) and

\\f\\F{Hp,H^) = ll7^/)!!^^,,^) < G I I / l l ^ (Lp ,Loo) •>
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where C is a constant depending only on F and p. This concludes the proof.

Corollary 1 simply says that F commutes with H. Applying it to
the real and complex functors ( • , -)eq and ( • , -)^ we recover the two
interpolation theorems of Jones on Hardy spaces, as we have already noted :

(H^H^)eq=Hq and (H^H^)e = Hq ,
1 1 _ n

where - = ——— (cf. [81).
q p v L J /

The existence of bounded one-point projections also yields immedia-
tely the following more precise result on ^-functional, which is also due to
Jones [8], and reformulated by Sharpley (cf. [1]) as follows :

(2) K ( t J ^ H ^ H ^ ) < C K ( t J ; L ^ L ^ ) ^ \/f e H^ W > 0 ,

where C is a constant depending on p only.

Combining (1) and (2), we get for any / e Hp (1 < p < oo) and any
t>0

K ^ f ' ^ H ^ H ^ ) ̂  (/*' (r^ds)^ .

Therefore, Theorem J says that (H^H^) is a Calderon-Mil j agin couple.
Our main theorem shows that the same is true for (Hp, H^) (1 < p < oo).
We shall see more general results of this nature.

The paper is organized as follows. In Section 2, using techniques
recently developed by S.V. Kisliakov, we prove a technical lemma, which
is of interest in itself and will be crucial in the proof of our theorem. The
proof of the theorem is presented in Section 3. It is very elementary and
only involves the boundedness of the Hilbert transform. Section 4 contains
some further consequences of the theorem. Here, we prove that if (EQ, E^)
is an interpolation couple of rearrangement invariant Banach spaces on T,
then F(H(Eo),H(E^)) = H(F(EQ,E^) for any interpolation functor F \
Moreover, if (Eo,E^) is a Calderon-Mitjagin couple, so is (H(Eo),H(E^)).

We shall denote by C a constant which is independent of functions in
consideration and may vary from lines to lines.

2. Lemma.

The following lemma is a strengthened form of a lemma of Kisliakov
[10]. A variant of it may be obtained by adapting a construction of
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Bourgain[3], as was pointed out to us by Kisliakov. The only improvement
of the following lemma on those of Bourgain and Kisliakov is the property
(ii) below, which will be crucial later. The constructions of this type also
have applications in the other contexts (cf. [3], [10]-[12]).

LEMMA. — Let a be a function on T such that

(3) 2^° < a < 2^ a.e. on T

for two integers ko, k\ in Z. Then there exist a function b on T and a
sequence {^/J^L/co+i m ^°° ^^fy^g tne following properties :

(i) b > a a.e. on T;

(ii) for any 0 < t < 1

^ [ t

( b\s)ds<C ( a ' { s ) d s ' ,
Jo Jo

^(s)ds<C \ i
/o Jo

(iii) Vk\\oo<C ( k o + l < k < k ^ ;

(iv) l^l1/8^ < C^ a.e. (ko + 1 ̂  k < k^);

(v) E W^^Cba.e.;
fe=/co+l

ki
(vi) £ ^k = 1 ̂ .e.,

fc=fco+l

where C is an absolute constant.

Proof. — We define by induction three sequences {Ek}j^^ i ^ of
measurable subsets of T, {Gk}^^ C Hoc and {&/c}^^ C Loo as follows.
Let first

Ek, = 0, Gk, = 1, bk, = a .

Then for ko + 1 < k < k\ — 1, we define inductively

Ek = {bw > (2k}
r /6/c+lx 1/4-1^=max{l,(-^) }

r _____1_____ ^ -I /i r32\16rk = —r~a77—^' G k = ^ - ^ - - ^ k )Ok -\-zn(ak)
^=^+l+(^+l-C^| l /82 / c+ l ,

where "H stands for the Hilbert transform and where ^ ( 0 < ^ < l ) i s a
constant to be determined later.
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It is easy to check inductively that for ko + 1 < k < A-i 6z, G L F.
-̂y j-j- , — — -L 7 ft- ^- 00 5 -*- K ?Crfc e ^oo and

(4) |̂ | ̂ -^l a.e.;
^k

(5) 1^1 ̂ IF,!32^ a.e..

Now let

^feo+i =G/,o+i, ^ = Gk - Gk-i for A;o + 2 < /c < A;i ;
^.o+l+^o+ll1^^1.

Then for these functions b, ̂  we clearly have (i), (iii) and (vi). It is also
clear that b > 6, ^ 6^ > a for ^ + 1 < k < k, - 1 so that ̂  D £;,+i
(ko + 1 ̂  A; < A:i - 1). Let additionally

^o-^o+^S^0}.
From (3), ̂  == T. Let

e/, = Ek \ E^, ko < k < k^ - 1 .

Then {e/J^ is a sequence of disjoint measurable subsets of T such that
/ci-l

T= U ̂
fc=/co

By the definitions of bj, and b we get for A;o + 1 <: k < A-i
k ^

(6) 6=^+<^ ^ |^.|i/^^^ ^ l^l17^,
J^^o+l J=/co+l

which, together with (5), gives for ko + 1 < k < k^

i^b ̂  |G,|1/8^ + IG^il1/^ + ̂
< C^ .

This is (iv). (6) will also yield (v) (with C = 6-1) after appropriately
choosing 6 in order that (ii) is verified. Therefore it remains to check (ii)
for an appropriate 6. For this we first claim that

(7) (2k<b<C2konek (ko < k < k, - 1) .

Indeed, for a fixed ko < k < k^ - 1, the first inequality in (7) is evident
since by (6)

b ^ ^+1 > 2^ on Ek .

For the second inequality, by (6) and the definition of Ek

b < bk+i + C^ < C^ on T \ Ek ;
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whence

b < C^ on ek-i for ko + 1 < k < h - 1 ,

which proves the second inequality of (7).

Now define
/ci-i

^E2'^
k=ko

where \e denotes the characteristic function of a subset e. Then by (7)

(8) d < b < Cd, a.e. on T .

Therefore for proving (ii), we may consider d instead of b. Put t^ = 0,

tk = E ^j) for k o < k < k ^ - l . Then 4i = 0 < 4i-i < • • • ^ 4o = 1
j=/c

and
A;i-l

(9) ^ = E 2^((^,^]) •
fc=fco

Now fix A:o < k < A:i - 1. We are going to estimate J^ d*(s)ds. We have

/•ffc ^i-1

/ d"{s)ds= E 2M^)
70 J=A;

=- I d< I b.
J E k J E k

It follows by (6) that

( k d ^ s ) d s ^ ( a+C62km(Ek)+6 ^ 2j I l^-l178

^0 J E k j=fc+l J£;fe

^ fka^s)+C6 f k d ^ s ) d s + 6 ̂  2^ ' / > |^-|1/8 .
JO JO ^+1 JT

Next we majorize

I |^|1/8 f o r A ; + l ^ ^ < A ; i .
JT
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By the definitions of (^ Gy and (4) and the T^-boundedness of U, we have

I \^< / l l -^ l 1 / 8 ^ / l-G,_i|1/8

^T JT 7T

<C(^|I-F,|^/JI-^P)

<c(/Ja,-l|^^|^-lp)

< C(2-^/2 / b1^ + 2-^-1)/2 / &1/2)
J E , JE,^ 3

^C^-3/2 I 61/2+2-^- l)/2 / b1/2}
- I E , JE,., I '

Combining the preceding inequalities with (7), we obtain :
J^ p fci fci-i

2 '̂E 2J / i^-i178 < ̂ E2'72 E 2'/2m(^)=^+i JT j=k i=j
kl~l r^

^C^<2lm(el)=C d^s)d
1-k ^0

j=^+i v i j=k i=j
fci-i ' t k

i=k ^
S)ds

Therefore

/ d^s)ds< I a^s)ds + C6 f k d^s)ds
^o Jo Jo

Choosing 6 = .—, we then deduce that
zu

/ d^s)ds < 2 / k a^(s)ds, ko < k < k^ - 1 .
J o Jo

Now the function ^ d^s)ds is linear for t e [4+i, 4] and the function
Jo a^s)ds is concave for t e [0,1]. Hence, by the last inequalities we get

rt ^t

(10) / d'(s)ds ^ 2 / a"(s)ds, V 0 < t < 1 .
Jo Jo

This proves (ii) in virtue of (8) and completes the proof of the lemma.

3. Proof of the theorem.

We shall prove the theorem in this section. Let 1 < p < oo. Let f,g
be two functions as in the theorem. We shall show the existence of the
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required operator T only in the case where g is in Hoc and \g\ is bounded
away from zero so that the lemma in the previous section can be applied
to a = \g\. The general case will easily follow from this special one by a
standard limit argument.

Let a = \g\ and ko, A;i C Z such that (3) is satisfied. Applying the
lemma in Section 2 to a we get b and {^/J^L/co+i c ^°° ^ich satisfy
the properties (i) - (vi). We retain all the notations in that lemma and its
proof. Recall the function d is defined by

fci-i
d = E 2k^ .

By (10) and a well-known theorem of Hardy-Littlewood-Polya
(cf. [7]), we have

(tv ( t p
\ (d^s))Pds < 2^ / {a^s))Pds, V 0 < t^ 1 .

J o Jo
Then by the assumption on / and g in the theorem

[iv (tv
\ {d^s))Pds <,2P {f^s))Pds, V 0 < t <, 1 .
Jo Jo

Replacing / by 2/, we may assume
^p ^p

/ {d^s))Pds< / (f^(s))Pds, V O < ^ < 1 .
Jo Jo

Then it follows from Lemma 1 of [4] that there exist a finite sequence
{A^}^LQ °f positive numbers and a sequence {an}^o °f measure preserving
transformations of [0,1] onto itself such that

N

(ii) E^-1
n=0

N

E \n{r^n(s))Y > (d*(^ 0 ^ 5 <, 1 .
n=0

Therefore
N

(12) (d^s))P = ̂  \n(r(an(s))Yw(s)^ 0 < s < 1,

where 0 < w{s) < 1 (0 < s < 1). Set

€k,n =CTn((4+l,4])^0 < ^ < h - 1, 0 < 71 ̂  N,

N
wk(s) = E AnW(^ l(5))^fe^(5), 0 < S < 1 .

n=0
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Then by (11) and (12), we easily check for ko < k < k^ - 1 that

(13) / (r^)rwk(s)ds=2Pkm(ek)J o

r 1
(14) / Wk(s)ds < m(ek)

J o
fci-i

(15) ^wk(s)<i, ,se[(U].
k=ko

Now for each ko + 1 < k < A-i, we let

^-(E 2PM^))1/^
3=k-l

fci-1

Uk(s)= ^ 2^-/c+l)w,(5) , ^[0,1].
J=A;-1

By (13) we find a positive function gj, on [0,1] such that

(16) ^ r(s)gk(s)u,(s)ds = ( ̂  2^-/c+l) . 2^m(6,))l^ ,
j=k-\

(17) / (^(s))^^^)^ ^ 1 , (1/g + 1/p == l).
"0

From [4] Lemma 2 we deduce that there exists a linear operator 5' from
Lp(T) to Lp(0,1) and from Loo(T) to L^(0,1) whose norms on these spaces
are bounded by 1, such that Sf = /*.

Then we define for every h e Lp

T,(/z)=l / Sh(s)gk(s)uk(s)ds .
^k JQ

By (16)

^^-^(E12^-^-^^.))17^!^
J=/C—1

Let ak = T k ( n ' Then 0 < a^ < 1 for ^o + 1 ̂  A; < A;i. The required
operator T is then defined by

ki

T(h)= ^ akW)^ h e L p .
k=ko-\-l
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Clearly, T(/) == g and T takes values in Hp. Given h e Loo, we have by the
Holder inequality and (17) and (14)

^(^[^^^(^^-^M^^^
vk J=k-l

^ r ) - fe+ lN7 i j
-^ z ll^lloo •

Then by (i), (iii)-(v)

ki

||r(/i)||oo<|| ^ a^-^1!^!1/2^!^!1/2^^^
fc=/co+l

ki

<c\\h\u\ ^ l^l1^-1'!^!174^^
/c=/co+l

<C\\h\\^.

Therefore T maps Loo into Hyo boundedly. To prove that T maps Lp into
Hp boundedly, we first claim that for ko-\-l<k<k-^

(18) / ^k\p/2<C2-^.
JT

Indeed, by the definition of ^ki we have

I W2 <. C( f |1 - Gfc|P/2 + / 1 - Gfc_i|P/2)
JT 'JT JT /

<c( f ii-^i4^ ( i i -F^- i^) .
VJT JT /

Then by the L4p-boundedness of 7i and by (7)

f M'2 < C ( [ \ak - 11^ + f |afc_i - lM
JT 'JT JT /

ki-1 .

^^-^ ^ / ^

j=k-lJ^

fci-1

< 02-^ ^ 2^(6^) = 072-^^ ,
j=fc-i

thus proving (18). From the Holder inequality, (i) and (iii)-(v), we deduce
that

A;i
\T(h)\P^ ^ |Tfc(/z)|^|(^/^a.e.onT.

fe=feo+l
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Combining the preceding inequalities with the Holder inequality and (17),
we obtain for h 6 Lp

\\T(h)\\^C ^ i f \Sh(s)\gk{s)uh{s)dsY
fc=feo+l Jo

^C r / Ws^u^ds
k=ko+l Jo

ki ki-1 „!

=C ^ ^ a^-^) / 1671(5)1^(8)^
A;=A;o+lj=fc-l "0

fci fci-1 «l N

=c E E ̂ -k+l) ^(s^^XnW^^S^Xe^ds
k=ko-^-lj=k-l 0 n=0

AT /ci-1 .1 J+l

^E^E2^'^/ I^^IM^1^)^,.^)^ ^2-^
n=0 j=A;o Jo fc=A;o+l

^ A;i-l .1

^E^E / I^^IM^1^)^,.^)^
n=0 j=fco

N

^C^Xn\\Sh\\^<C\\h^ by (11).
n=0

This proves the boundedness of T from Lp to Tfp and thus completes the
proof of the theorem.

4. Further results.

Let E be a rearrangement invariant (r.i. for short) space on T (cf. [13]
for the definition of r.i. spaces and their basic properties). Then E is an
interpolation space between L\ and Loo. We recall that H(E) is the closed
subspace of E consisting of all those functions whose Fourier coefficients
vanish on negative integers.

COROLLARY 2. — Let (£'o, £'i) be a couple of r.i. spaces on T. Then

(i) for any functor F

F{H{Eo)^H{E,)) = H{F(E^E,)).

In particular, for 0 < 0 < l ^ l < q < o o

{H(EQ),H(E^))e, = H((E^E,)e,)and{H(Eo),H(E,))e = H{{E^E^eY
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(ii) there exists an absolute constant C such that for any f e H{Eo) +
H(Ei) and any t > 0

K(t^ /; H(Eo)^ H(E,)) < CK^ /; E^ E,).

Proof. — It is similar to that of Corollary 1. Let / G H(EQ)-\-H(E^).
By the theorem in Section 1, there exists a one-point projection T at /
which is bounded simultaneously from Li to H^ and from Loo to H^.
Then T is bounded on Ej (cf. [4], [13]). Hence T is also bounded from Ej
to H{Ej) (j = 0,1), so the corollary follows.

Remark. — Let / e H^. Then the one-point projection T at / given
by the theorem is bounded on any r.i. space E (into H(E)). Note that T
depends only on / and its norm from E to H(E) is uniformly bounded.

COROLLARY 3. — Let (Eo.Ei) be a Calderon-Mitjagin couple.
Then for any f,g e H(Eo) + H(E^) such that

K ( t , g ^ H ( E o ) , H ( E ^ ) < K{t, /; H(Eo),H(E^)) , Vt > 0 ,

there exists a linear operator T defined on EQ + E^ which maps boundedly
Ej into H(Ej) (j = 0,1), such that T{f) = g .

Consequently, (H(Eo), H(E^)) is a Calderon-Mitjagin couple.

Proof. — Let f,g € H(Eo) +H(E^ be as above. Then by Corollary
2(ii)

K ( t , g ; E o , E ^ ^ C K ( t J ; E o , E ^ , V^ > 0 .

{EQ,E^) being a Calderon-Mitjagin couple, there exists an operator Ti
bounded from Ej to E, (j = 0,1), such that Ti(/) = g. Now applying our
theorem to g we find a one-point projection T^ at g bounded from Ej to
H(Ej) (j = 0,1). Hence the operator T = T^T\ satisfies the requirement
of Corollary 3.

Remark. — Corollary 3 in particular shows that ( H p ^ . H p ^ ) (1 ^
Po^Pi < oo) is a Calderon-Mitjagin couple. This is the Hp-spsice version of
the well-known Lp-space result cited in Section 1.

Remark. — We have considered Hardy spaces of analytic functions
only in the unit disc. Our results, however, also hold for Hardy spaces of
analytic functions in the upper half-plane. With some minor modifications,
all the above proofs go through to the upper half-plane case.

Remark. — The origin of this note is a preprint from June, 1990
(see Pub. IRMA, LILLE - 1990, Vol. 22, n° III). There we gave elementary
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proofs for the three interpolation theorems of P.W. Jones on Hardy spaces,
which we have already cited previously. These proofs are essentially the
same as that of the main theorem of the present note. Let us also mention
that there exist two other new proofs (independent of ours) for the two first
theorems of Jones concerning the real and complex interpolations, found
respectively by P.F.X. Miiller [15] and G. Pisier [16].

Acknowledgements : We are grateful to S. V. Kisliakov and G. Pisier
for helpful and stimulating discussions on the subjet of this paper.
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