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LOWER BOUNDS FOR
PSEUDO-DIFFERENTIAL OPERATORS

by N. LERNER/*) and J. NOURRIGAT

Introduction.

In this paper, we wish to start an investigation on lower bounds for
pseudo-differential operators. Our guideline will be one of C. Fefferman and
D.H. Phong's conjecture (see §7 in [6] and [2]) : if a(;r, D^) is a second order
operator, its lower bound will be given by some average of its symbol on
canonical images of the unit cube in the phase space. Namely, we wish to
prove roughly (in some cases) :

a{x,Dx)> inf / / a{x^)dxd^ ,
^ J J x ( Q ^ )

as an operator, where QQ is the unit cube of R271, $ a family of canonical
transformations to be specified. The inequality above gives a connection
between the geometry of the symbol a(x^) and the spectral properties of
its quantization a(x^D^). Many papers were devoted to these questions.
The classical sharp Garding inequality was first proved by Hormander [9] :

a(x,^) first order > 0 implies a(x^Dx) semi-bounded from below. We
refer to ([11] section 18.1 or [1]) for a proof of this inequality, yielding also
the case of systems previously studied by Lax and Nirenberg [12]. Later
on, in his paper on the Weyl calculus, Hormander [10] proved an inequality

^) This author was partially supported by the NSF Grant DMS 8802821.
Key-words : Lower bounds - Pseudo-differential - Schrodinger operators.
A.M.S. Classification : 35P15 - 35S99.
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with a "gain" of 6/5 derivatives. Namely, if a{x, $) is a symbol of order 6/5
such that

^•^ 0 + 7) tracer a > 0 ,

then a(x^ Dj:) is semi-bounded from below. Here tracer a is a positive quan-
tity related to the Hessian of the symbol. On the other hand, C. Fefferman
and D.H. Phong proved a two derivative inequality [3] for non-negative
symbols :

a{x^) second order > 0 implies a(x,Dx) semi-bounded from below
(see also the proof in [11] section 18.6). On the other hand, C. Fefferman and
D.H. Phong [6] discussed the conjecture above for non-negative symbols of
order 2 — < ? , £ > 0.

The present paper is concerned with various cases involving symbols
which can take large negative values. The first section is devoted to
the Schrodinger equation with magnetic potential. In the second section,
we discuss the one-dimensional Schrodinger equation, with very little
assumptions on the potential. The third section, purely technical, is devoted
to miscellaneous properties of the proper class of a symbol. The fourth
section contains a proof of the conjecture for pseudo-differential operators
in one dimension.
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1. THE SCHRODINGER EQUATION
WITH MAGNETIC POTENTIAL

a. Statement of the result.

We are interested in the following operator

(1.1) P^^^-A,^))2^^),
j=i

1 f)
where D^ = - -^—, and A i , . . . , Am V are real polynomials of degree < m.i dxj
(Note that V is not assumed to be non-negative). We set-up

(1.2) p(x^) = ̂ (^ - A,(x))2 + V(x) ,
j=i

the Weyl symbol of the operator P.

We denote by Gm the group of canonical transformations of H^ of
the following type :
(1.3) Q/, rf) —— (xo + \y, A-^ + V(^(2/))
where XQ € R71, A > 0 and y? is a real polynomial of degree < m.

THEOREM 1.1. — For each integer m, there exists 6m > 0 such
that the following property holds. If A\,..., An, V are real polynomials of
degree < m and if the symbol p(x, ̂ ) given by (1.2) satisfies

(1.4) /Y ( p o x ) { y ^ ) d y d r i > 0 ,
././max(H,H)<<^

for any \ of Gm denned in (1.3). Then the operator P, given by (1.1), is
non-negative.

In other words, whenever (1.4) is satisfied, we have

(1.5) f^ ||(2 .̂ - A>||i^,) + / V{x)\u(x^dx > 0 ,
j=i J

for any u^C^^).

Remark 1.2. — The magnetic potential A = (Ai , . . . , An) is a one-
n

form A = ^Ajdxj. Its exterior derivative
j=i

,. v^ /<9A^ <9Ajfc\
dA= E (9--^-)^^^

KA;<j<n ^A; o w 7
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will be called curl A. Note that the quotient norm of A modulo exact
forms is equivalent to the norm of curl A : if E is the space of J-forms
with polynomial coefficients of degree < m, F the subspace of {d^>}, where
$ is a polynomial of degree < m, G = dE, we have |[A||^/^ ~ ||^A||G
where || \\E/F and || \\G are any norm on the finite dimensional spaces
E/F, G.

b. Preliminary lemmas.

The following inequality is proved in a paper by Mohamed and
Nourrigat [13]. (See also Helffer-Nourrigat [8] and Nourrigat [14]). It could
be seen also as a consequence of [6].

LEMMA 1.3 (Local subelliptic estimates with non-negative poten-
tial). — For any m >1, there exists Cm > 0 and Cm > 0 so that, for any
polynomials A i , . . . , A n , V of degree < m with V(x) > 0 on \x\ < 1, we
have

( n

(1.6) A6 ||ii||2 < Cm \ ̂  \\{D, - A,)u\\2 + (Vu,u)u=i
for any u € C'o"(|a;| < 1), with

A2 = sup (|J3(a-)|2 + V{x)) , B = c u r l A .
M<i

LEMMA 1.4. — For any m > 1, there exists Cm > 0, so that (1.4)
implies the following inequality; for any XQ 6 R" and any R > 0 ;

(1.7) 0 <, 6"-2 + C^ sup R^B^ + 1 / V(x)dx ,
•R \x-Xu\<R \S \H J\x-xu\<R

where B = curl A.

Proof. — A consequence of (1.4) is, with 6 = 6m,

H ^ (V(xo + \y) + IA-^ + V^) - A(xo + Xy^dydr) > 0 ,
•'•'M^

for any XQ eR71, \ > 0, ip polynomial of degree <: m. Then, we have

|5"|A-^" / V(x)dx + I I IA-^+V^O/)
J\x-x^\t, •/7!^|^

-Aixo+Xy^dydrfX),



LOWER BOUNDS 661

and thus

0 < \-n6n { V(x)dx + l^-1!^ sup |A-1^ + V^Q/)
J\x-xo\<\6 \v\<^

\^l\</}

-A(xo+\y)\2 ,
so

0 < (A^)-^ / V(x)dx + 2|571-1 I^^A-2 + 2\Sn~l\62n

J\x-xo\<\6

sup ||V^)-A(a:o+Ay)||2 ;
\y\<6

so, with -R = \6, we have

0 < R^ [ V(x)dx + 2\Sn~l\6^R~2 -h 2|Srn-l| sup ||V^)
J\x-xo\<\6 \y\<6

-A(xo+\y)\\2 .

Remark 1.2 gives then

0 < .R-71!^-1!-1 / V(a;)drr + 2^fi-2

J\X-X()\<R

+2CmR2 sup ||(c^A)(.co +Ay)||2 ,
\y\<6

which completes the proof of (1.7).

c. Proof of theorem 1.1.

Let A i , . . . , Ayi, V be polynomials of degree < m, B = curl A. For a
given x C IR71, let's consider the increasing continuous function of -R

^(J?)= sup (R2\B(y)\2+V(y))- inf VQ/) .
|2/-;r|<A \y-x\<R

Assuming that V is not constant, R —^ ^(-R), is continuous increasing
from 0 to +00 with R. Since R —> R~2 is strictly decreasing we can then
define, for A > 1 given, and for x C IR71, -R(.r) to be the unique R € (0, +oo)
sothat ^(jR) =A2^-2 , i.e.

(1.8) sup (R2\B(y)\2+V(y))- mt V(y) = ̂ R-2 .
\y-x\<R \V-x\<R

LEMMA 1.5 (a slowly varying metric on R71). — For x\,x^ € R71,
ki -X2\<, -.R{xi) implies . < R(xi)R(x^)~1 < 2 .

~x ^
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Proof. — Assume \x^ - x^\ < ^R^ R^ = R(x^). The triangle
inequality gives

^ (^) = sup (^\B(y)\2 + VQ/)) - inf V(y)
|2/-^2|<-^- v 4 / \y-X2\<^-

< sup (^iB^p+y^))- inf V(y)
\y-xi\<Ri v 4 / |2/-rci|<7?i ^

<^(^i)=A2^-2.

Consequently, if -̂ - > R^ = R(^), we get A2^-2 > ^^(:R3-) >
^2(^2) = A2^2 so R2 ^ Ri > 2R^ > 0 which is impossible. Thus
we have —3- < R^.

As in [11] (1.4.5)\ |.n -^1 < ^(.n) < ^R(x^ implies J?(^i) <

2^(3:2) and thus [.z-i - 0:2! < ^R{x^ which gives R(x^) < 2R(x^), and the
lemma.

\t\224

The metric g^(t) = is slowly varying in R71 (cf. definition

1.4.7 in [11]) thus the theorem 1.4.10 in [11] implies the existence of
(<^€N C Co^R71), (^)^N e R71 so that •

(a) supp^ C {rr, |.r - Xy\ < Ry = R(xy)} = Q^

(b) S ̂ 2 = 1 identically,
v

W (c) E Î .̂MI2 ^ ̂ (o;)-2!0!^! ,
V

where 7|^( depends only on |o;[ and the dimension n, but is independent of
A.

For v C N, let's define

my = mtV(y) , K(^) = fi^V^ + ̂ ) - m^) > 0''»•»'
if \t\ < 1, A^(() = R^Aj(xy+tR^), and thus curM,, = B^ = R^B^+tR^),
B = curl A.

From (1.8), we have A2 ^ sup (|A,(f)|2 + V^(t)). Consequently, from
l<l$i

(1.6), A^ull2 < C^{ E ll(^-A^)u|[2+(V,u,u)} for any y € (̂la;! < 1)
3

(the constant (7^ depends only on the dimension and on the degree of A,
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V). By translation and dilation we get, for any Uy € C§°(Qv)^

(1.10) A^IM2 < ̂ n{ ̂  \\{D, - A^'K||2 + ((V - m^u^u^)} .
3

Note that Cm does 220^ depend on A, v.

The inequality (1.10) implies, for u C ^(R71),

(1.11) ^A^H^H2 <^^^||(^-A,)^^||2
v i; j=l

+ ̂ ((y "" ̂ ^vU, (pyU) ,
v

with ̂  as in (1.9).

Moreover, from (1.9)(c) and the lemma 1.5, we have

^ ||V )̂||2 < n^R(x)-2 < y^R^^{x)2 ,
v v

where 7^ depends only on n. We then get from (1.11)

f " 1(1.12) A6 ̂ R^uf <2C^\^ 11(2), - A,)u||2 + (Vu,u) }u=i j
+^C'^(272J^„2-m^)||y„u||2 .

V

Then, we choose A so that Xs > 4Cm72'

The parameter A is fixed in the subsequent computations. We have
n

(1.13) ^(A£7^,72+2C^m„)||^u||2 <4C'^(^||(D,-A,)u||2+(y^,u)).
V J=l

The following lemma implies the theorem 1.1 since X6 > 1.

LEMMA 1.6 (Choice of<^ in (1.4) in terms of A). — For any X > 1,
if 6m = S is chosen small enough, (1.4) implies ICm^v + R~v2 > 0 for any
v C N.

Proof. — Let yy be a point in Qy at which V is minimum,
rriv = V{yv) = int V(y) , \yy - Xy\ < Ry .

y^Qr
Let's denote by Sy the ball with center yy and radius /3Rv, /3 € (0,1) to be
chosen later. We have,
(1.14) ^CQ(^,2J^)=Q:

(Q{x,R) is the closed ball with center x, and radius R).
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Moreover, we have, using V is polynomial with degree < m,

(1.15) |^|-1/ V(2/)^<m,+G^{supy-infy} :
Js.„ Q, 0. J

in fact

1^1~1 / ^(2/) - my = |^|-1 / (V(y) - m^dy < sup(V(y) - m^)
v s " •/5'p 5,,

< f3R, sup ||(Vy)(2/)|[ < (3R, sup ||Vy(2/)||
5'i, Q*

< CmftRy sup ||Vy(2/)|| < C^/3sup(V(2/) -m^)
<5. o,

which gives (1.15).

Moreover, we have also, using B polynomial with degree < m,
(1.16) sup \\B(y)\\ < sup ||B(2/)|| < C^ sup \\B(y)\\ .

•9" Q^ Q,,

So the inequality (1.7) with XQ = y^ R = f3R^ gives, together with
(1.15), (1.16),

2^4
(1.17) O^-^+G^^supllB^lp+m.+G^supy-m^

^ ^ 0.' Q,, Or

But A2^-2 =sup {||B(y)||2^2 + V(y) - m,}, thus

A2^-2 > |Q.|-1 / Wy^dyRi + |Q,|-1 [ (V(y) - m^dy
JQ. JQ,,

> C^{ sup ||B(t/)||2^2 + supY - infy}
0. Q. Q.

and consequently C^A2^2 >sup [IB^)!!2^2^- sup V- inf V.
Q. Q. Q.

From (1.17), we thus get,
9/»4 ^"//^2\2 \2o:i^+£^+•B^^•

Since /? € (0,1), we get
264 \2

0<^+^^+^.

Then, we choose f3 so that G^^A2 ^ ——, then 6,26^- ^ -1- and we

get the lemma 1.6. m p 4cm
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2. SCHRODINGER EQUATION IN ONE DIMENSION

a. Statement of the result.

We study here a one-dimensional Schrodinger equation with very little
assumptions on the potential. This result will be useful in the analysis of
pseudo-differential operators.

THEOREM 2.1. — Let V C L^(H) such that, for any interval Q,
with length \Q\, \Q\ < 2,

(2.1) \Q\-1 [ V^(t)dt - 9\Q\-1 { V,(t)dt + \Q\-2 > 0 ,
JQ JQ

with V± =max(±y,0).

Then

(2.2) -^+y^)> 2 -^-1 ,

with

(2.3) fz= inf {|0|-1 f V(t)dt+\Q\-2}.
Q interval JQ

Moreover,

(2.4) ^>^ff^\2+V(x))dxd^

where T is the following family of "symplectic cubes",

y = {Ja,b}a<b real . Ja,b = {{x^),a < X < b, |^| < —————-} .
2(b —a)

We can remark here that a minimal regularity (L^) is required for the
potential and that, on the other hand, no derivative is lost in the inequality,
which appears as a Garding inequality with gain of 2 full derivatives (see
[6]) when V behaves like a symbol. As a matter of fact, if V is a C°°
function such that |y^(rr)| < C^M2, where M is a fixed constant, the non-
negativity condition (2.1) ensures the non-negativity of the second order

d2

operator ——^-^-V(x)+l. Moreover the non-negativity condition in (2.1) is
a very weak one and yields potential taking negative values, even singular
ones. Note also that the condition is local (\Q\ < 2) (see also remark 2.2
below).
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b. Proof.

Replacing V by V -h 1, we have, for

Q = Q(xo,6) = [x,XQ < x < XQ -h<^},

(2.5) 6-1 { V(x)dx+6-2>^ < ? < 2 ,
JQ

as a consequence of (2.1). So we get from (2.5),

6 / V(x)dx -hi > 62 , and thus
JQ

(2.6) ^ / V(x)dx > 1 , if 4 > 62 > 3 .
•^Q

On the other hand, with V e L|̂ ,

(2.7) Hm 6 [ V(x)dx = 0 ,
6^0 JQ(x^6)

and, for XQ fixed, ^ —^ ^ fQ(xo,6) ̂ W^x is a continuous function. So we can
pick-up (using (2.6), (2.7) and the continuity) the largest 6(xo) = So such
that

(2.8) 6(xo) { V(x)dx = 1 .
^Q(xo,6(xo))=Qo

Consequently, we get, with fi defined in (2.3)

(2.9) ^-1 ( V(x)dx = 6^ > 2-1/, .
^Oo

We have now, for u C C°°(R) (without assumption on the support of u),

(2.10) (VU^U)Q,= ( V(x)\u(x)\2dx=6,l f V^x)dx6o\u(x^)\2
^Qo JQ^

-6,1 [ V,(x)dx6o\u(x.)\2 ,
JQ()

for some x^.,x- in QQ .

Thus, from (2.10), we obtain

(2.11) (Vu,u)Q,={6Q1 I V(x)dx)6o\u(x+)\2
JQo

+^1 / V,(x)dx{6o\u(x^\2-6o\u(x,)\2} .
J Qo
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From (2.1), (2.9), we get

(2.12) 8(?o~1 I V-(x)dx < 6o1 ( V(x)dx+6Q2 < 2^~2 .
JQo JQo

So, from (2.11), (2.9) and (2.12) we obtain (using \u(x+)\2 - \u{x-)\2 =
I + meut(s)u(s)ds),

Jx-

(2.13) (v^)oo > ̂ K^)!2 -^-Viloo IHloo,
where \\V\\Q^ = \\v\\mQ^ '

{ x
On the other hand, we know (using u(x) = u(x^) 4- / u'(t)dt)

Jx+

(2.14) Nl^o ^^ol^^)!^ 2^11^11^.

So, from (2.14), (2.13) we get,

^o-'IHI'Qo < ̂ o"^^)!2 + jll^ll^ < ̂ o-1!^^)!2 + JMFoo
(2.15) < (y^^)^ + ̂ h'lUl̂ lloo + jll^ll^

< (^^)Qo + \\WQ, + |̂|̂ ||2^ + ̂ iKo •

Consequently, we have from (2.15), (2.9),

(2.16) (Vu^ + ll̂ ii2^ > ^o-2!!̂ !̂  > ̂ IH|2^ .
Let's consider now a compact interval K of R, a;o = infJ^. Let's define
(cf. (2.6), (2.7), (2.8))

r y^^*? .
^o = <$(;ro) = sup [6,6 V(x)dx = l} ,

Jxo . )

Sk-^-i = 6(xo + SQ + • • • + 6k) , A; > 0 .

In order to prove that (2.16) implies (2.2) (for u C C§°(H)) we need only
to prove XQ -h Ti6j > sup K.

Let's remark that for 6 > 0 and [re, .r + ^] c K

6 I V(t)dt < 6 r \V(t)\dt < 6 f \V(t)\dt .
Jx Jx J K

rx^-6 ^

So 6 \ V(t)dt < l i { 8 < 6 K = . iv^i^.-, and [x^ + 6] C K.Jx jf^ Iv \t)\dt + l
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So, from the definition of 6(x), we get 6{x) > SK if [x, x -\- 6(x)] C K ,
which completes the proof.

Remark 2.2. — Note that, if (2.1) is satisfied for all intervals Q,
\Q\ < 2 so that Q C [a,b + 2] we get (2.16) for any u € Cg°(a,b) and
Q = (xk,Xk-{-i), XQ = a, Xk-i = Xk +6(xk) as long as Xk 6 (a, b).

In particular, we get (Vu,u) + \\u'\\2 > -\\u\\2 whenever (2.1) is
satisfied for intervals Q, \Q\ < 2, Q C [a, b + 2] and u € C§°(a, b).

3. MISCELLANEOUS PROPERTIES OF THE PROPER CLASS

a. Preliminary remarks.

The main goal of this section is to prove that a very mild non-
negativity condition for a symbol still ensures that the Calderon-Zygmund
procedure used by C. Fefferman and D.H. Phong ([3] - [7]) leads to the same
trilogy. More precisely, we intend to show that non-negativity of averages
on special "boxes" of volume 1 implies that, in a conformal class of pseudo-
differential operators, the symbol is either elliptic positive, or bounded, or
non-degenerate i.e. can be written after a canonical transformation

^+y(^,^'),
where V is a pseudo-differential potential.

Let's begin with a simple algebraic lemma.

LEMMA 3.1. — Let A be a real commutative algebra. For any
integer k >1, there exists an integer N(k) and real numbers (A^) K , < A

1 < j< N ( k )

{^j)i<j<N(k) ^ith max(|A^, |/^|) < A(k) such that for any T i , . . . ,7^ e A

(3.1) T i . . . r , = ^ ^( ^ A^)\
l<j<N(k) Ki<k

Proof. — Induction on k. While 4T^ = (Ti + T^)2 - (Ti - T^)2 we
have to check

(3.2) Ti... n TU: = ̂  ̂  ( ̂  AyT<)k Tfc+i .
Ki<k
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It is then enough to write -S^T as a sum of {k + 1) th power of linear forms
in S, T :

^^S+jT)^= ^ C^S^^V
Kj<k ()<^<A--n

i<^<^

(3.3) =( ̂  ^s^+^+l)^ ̂  j^T
l<j<A; 1<J<A-

+ E ̂ i( E j^)^1-^
2<f<k ^<j<k

+ ( E ̂ +l)^+l.i<j<A;
Let's solve the non singular k x k linear system with unknowns f3j :

^^l<j<k

E //?, = o , 2 < e < k .
Kj<k

Then (3.3) gives

^T= ^ ^.(5+JT)^1-( ̂  ^+l)^fc+l-(^^)^l,
\<,]<k i<3<k J=l

which gives the result.

Remark 3.2. — An immediate consequence of this lemma is that
for any integer k, there exists a(k) > 0, so that for any A;—multilinear
symmetric form A on R71, and any norm || • || on IR71

(3.5) K sup |A(r i , . . . ,7fc) | [ sup |A(T,... ,r)]~1 < a{k) .
T €R7 ' T€R"
||r,||=i \\T\\=I

b. The proper class of a symbol.

Let's now recall the definition of an Hormander metric on R271 (see
[11] section 18.5). For each X e R271, Gx is a positive definite quadratic
form on R271 such that the three following properties are satisfied.

(3.6) There exists C > 0 such that for any X,Y,T e R271, Gx(Y - X) <
C~1 implies G-^Gy^) < Gx(T) < CGy(T).



670 N. LERNER & J. NOURRIGAT

(3.7) For any X,T (E R271, (?x(r) < <%(r) where
G^(T) = inf (r(r, E/)2, 0- the symplectic form on R271.

G'x(^)=l

There exists C > 0, N such that, for any X, V, T C R27",

(3.8) Gx(T) < CGy(T){\ 4- G5c(X - V)^ .

Let's also define the reciprocal Planck function

(3.9) AG-(X) = inf ( ( y T}^} ̂  (note that (3.7) implies A > 1).

A function a C (^(IR271) belongs to Sm(G) if for any k, there exists Ck
such that

(3.10) la^X)^! < Ck^X^Gx^2 ,

any^TeIR2 7 1 .

The semi-norms of a are the best constants

(3.11) 7^G(a)= sup la^X^IAGW-7" .
X.T6R2

G^(T)=1

Note that, from (3.5), we have

sup \aW(X)T,...Tk\AG{X)-m < a(k)^G(a) .
X,Ti.....Tfc€R2"'

Gx(Ty)=l

For a given in S^^G) (see 3.10), let's consider

(3.12) gx = AcWXW^Gx ,
with

(3.13) AW = ̂ a^ (1, \\aW(X)\\^AG(Xr^) ,

where ||a(fc)(X)||G^ = sup ^(X^T^.
r,Gx(T)=i

The next proposition summarizes the properties of a Calderon-
Zygmund decomposition of a symbol (see [3], [6]).

PROPOSITION 3.3. — (a) The metric g defined by (3.12) is an
Hormander metric, i.e. satisfies (3.6), (3.7), (3.8). The constants in (3.6)
for g depend only on the constants in (3.6) for G and on (7A;G'(a))o<fc<4•

(b) We have \g(X) = \(X), according to (3.12) and (3.9).

(c) The symbol a e •S'2^) and

7^(0) < 1 i f A : < 3
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W") ^ •JkG(a) ^max^ (1, (7<c(a))^) if k > 4 .

(d) We have \(X) < A(X) max (l,(7fcG(a))^).
0<fc<3

Proof. — The points (b) and (a) (3.7) are obvious from the defini-
tions. Let's prove (c) : if k ^ 3, from (3.13) we get

(3.14) ||aW(X)||^ = ||aW(X)||^A(X)-^A(X)^

^A-lA^A^'^AW2 .
Moreover, if (. > 4, we have

(3.15) ||aW(X)||^ = ||aWW||o,A(X)-h(X)t

<A2-^^-2A27^(a)=A27<G(a)(^)' i4

But, from (3.13), we have

(3.16) AW-^X)2 ^ max (l,7fcG(a)4^) max (A(X)^^-2,!) ,"2^2 ' oS (l'^(a)4'T) 0——3 rAm8^-

so we obtain, from (3.15), (3.16) and ^ > 4,

(3.17) ||a^(X)||^ < A^)2^^^^^ (1,7^(0)^) .

So (3.14) and (3.17) gives (c) in proposition 3.3.

Note also that (3.16) gives

(3•18) ^."st'.^f0)*).
that is (d) in proposition 3.3. Then it suffices to prove (a) (3.6) since the
proposition 18.5.6 in Hormander's book [11] can be applied (g is conformal
to G), to get (a) (3.8). As pointed out in [11] (1.4.5)\ it is enough to prove
the existence of 6, C such that

(3-19) 9x(Y - X) < 6 implies gy < Cgx .

Let us first remark that

(3.20) A^^m^lJIaWWII^).

As a matter of fact, we get

^} o^1 'II^WIU^w,
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from the proposition 3.3 (c) (already proved!) and A > 1. Conversely, if

0^3 (^^WII^^W"4^) > ^ then^ from (3.13), we obtain

>\x)=\\a^\x)\\^A(xr^ ,
for some A;o, 0 < A;o :< 3 (X is fixed). Thus, (3.12) gives

^\X)=\\a^\X)\\^A(X)^^\(xr^^A^^^^ , i.e.

(3-22) A^X^IIa^X)^ .

Now? ^0^3 (II^WIIc^W"4^) < 1. we have, from (3.13),

(3.23) ^(X) = 1 .

So we get (3.20) from (3.21), (3.22), (3.23). Let us assume that G is slowly
varying (i.e. satisfies (3.6)) with a constant Co, and take 6 such that

(3.24) Wo^m^(l,7^(a)^) < 1 .

\(X}If gx(Y - X) < 6, then Gx(Y - X) < ———6, and thus, using proposition
A(A;

3.3 (d) (already proved) we obtain,

Gx(Y-X)<^m^(l^kG(a)^)6<CQ1 by (3.24) .

Consequently C^GX < Gy < CoGx. We need thus only to estimate from
\(X}

above the ratio --—L to get the conclusion of (3.19).A(Y )
From Taylor's formula, 0 < k < 3, we have

11^(X)||^< ^ ————^(Y)\\^gx(Y-X)^
k<£<3 {t K)'

(3.25) + ̂  ̂  \\a^\Z)\\^x(Y - X)^

< E ll^)(^ll^(^)^l^+^74G(a)^A(X)2,
k<£<3 A ^ )

where C^ depends only on Co, since \\a^{Z)\\g^ = \\CL^(Z)\\A(X) ̂  , and
^T^thus

\\^\Z)\\^ = \\^\Z)\\a^^ <.^,G(a)C,A(X)2^ ;
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we have in fact Z = (l-e)X+eY, 0 e [0,1] and consequently Gx(Z-X) <
Gx(Y-X) < Co"1, so that C^Gx <Gz < CoGx, and A(X) is equivalent
to A(Z).

Now, using (3.20), we may assume A^X) = ||a^(X)||^, for some k,

0 < k < 3 (otherwise A(X) = 1 and since \(Y) > 1 we get A^ < 1).
A(V)

We obtain, from (3.20) and (3.25),

(3.26) A2^) < A(V)2 ^ C, ( x w ) ̂ ^ + ^74G(a)G,A(X)2 .
k<£<3 v /

Consequently, if ^ satisfies (3.24) and

(3-27) sup ^74G(a)Ci < ^ ,
0<fc<3 2

we get

l^^^r \" ^WVA^(A(y)J ^^^(^(yyj 6 2 -
A(X)

so the term must be bounded from above by a constant depending

on 6 and d, that is on Co (in (3.6) for G) and (7fcG(a))o<fc<4. The proof
of proposition 3.3 is complete.

c. Fefferman-Phong's classification.

The rest of section 4 is devoted to the proof of the following propo-
sition, ensuring that Fefferman-Phong's classification is still valid under a
positivity assumption on averages.

PROPOSITION 3.4. — Let G be an Hormander metric on R2" (i.e.
satisfying (3.6), (3.7) and (3.8)), a a symbol in ^(G) (see (3.10)) and g
the proper metric of a defined by (3.12) and proposition 3.3.

(3.28) Let us assume that the averages of a on G—balls ofsymplectic volume
1 are non-negative.

Then, there exists positive constants C, p depending only on a finite
number of semi-norms of a such that the proper metric of a is made with
three types of "boxes" : for any XQ in H271 and any X in the gx^ hall of
radius p and center XQ,
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(1) Either \(X) < C,

(2) or a(X)X(X)-2 > C-1

(3) or aW^e^X^X.-^X^+b^X').

Here X^, X' is a set of linear symplectic coordinates, and the functions
X^Xo^eo, A^o)"2^ A^o)"172^ satisfy the estimates ofS°(g) with semi-
norms controlled by those of a and A'^o > C~1 > 0.

Let's give a

DEFINITION 3.5. — Given 6, e positive numbers, a C A{6, e) means
that a is a C°° function on \X\ < 1 so that

(i) |a^)(X)|<l, 0 < A ; < 4

(ii) max |a^)(0)| >6
0<k<3 ' v / 1 -

(iii) The averages of a on balls of radius e (included in the unit ball) are
non-negative.

The proposition 3.4 is a consequence of the following lemma by
rescaling, using (3.20).

LEMMA 3.6. — Let 6 be a positive number. There exist r(6), e(6)
and u;(6) positive so that, if a e A(6,e) with e < e(6), then, on \X\ < r(6),

(1) Either a(X) > ^(<$)

(2) Or, for some choice of euclidean coordinates,

a(X) = a(a(X'), X') + eo(X)(Xi - a(X'))2

with eo(X) > u;(6) and, for all k,

^^(X) + |a^(X)|) < C(W^ |aW(X)|) .
(,<k-\-2

Proof. — Let p.o C]0,l] .

(1) Assume |a(0)| > y^o > 0.

If a(0) < -p.0, a(X) < -fjLo/2 on |X| < /^o/2, which contradicts (iii)
[ie <, /zo/2, ^o <, 1.

Consequently, we have in that case |a(X)| > /Ao/2 on |X| < /^o/2.

(2) Assume |a(0)| < UQ, \a'{Q}\ > ^i > 0.
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Then, for some choice of euclidean coordinates,

^(^')>f on m < ^ < l ,

and thus

o(Xi,0) = a(0,0) +eo(^i)Xi , eo(Xi) ^ /n/2 , if \Xi\ < fii/2 .

Thus

"(^,0)</.o-^-j|, i f - ^<X,<- | - and / .o< j | .

Consequently

a(Xi,X') < a(X,,0)+\X'\ < -j| , if l̂ l < ̂  1, -^- < Xi < -^,

2

which contradicts (iii) if e < ~- , r-3- < 1 .

(3) Assume |a(0)| < /^o, \a\Q}\ < /^i, |a"(0)| > ^ > 0. Then, for
some choice of euclidean coordinates (see lemma 3.1),

|^W|>^on|X|^<l.

If ll̂ l̂ ^ -^2' ̂ W < -^ on \X\ ^ ̂  < 1. Thus

a(^i,0) < /xo +/ii|Xi| - ̂ Xl on ^ ^ X, < fj- < 1 .

Consequently, there, we have

a(X,0)^o+^-|^-j|if^+^<ji

e.g. if
,, < ^1 ^ ^ P-l^ o < ^ , y < ^ .

3 'i

Then, we get a(^i,X') < -IJ- if \X'\ < IJ-, which contradicts (iii) if

u3,
£ < -^ , 1^2 < 1 .

(4) From case (3) above, if |a(0)| < /AQ, |a'(0)| < /ii, |a"(0)| > ̂ , we

must have ^(X,,X') > ̂  on \X\ < ̂ .
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Moreover, ^-(Xi,X') = ̂ (0,X')+eo(X)Xi, with eo(A-) > ̂ ,

if \X\ < ̂ . Thus

r\

|^-(0,A-')| < /ii + |X'[ < 2 î , if |X'| < ̂ i .

Thus

^,r)>-2^>0. iff>2,..

Also

^(-f,A")^,-'a<o.
So for any X', |X'| < inf(/,i,^) ^ 1, there exists a(X') € (-^,^),

9a(a(X'),X')=0.
OAl

By the implicit function theorem, a is a smooth function and its K^
derivatives are controlled by fixed polynomials of the {k + l)^ derivatives

of a and (o-y^-)" • We get then

o(A'i,A-') =a(a(A-'),X')+e(X)(Xi - a(X'))2 , e(X) > ̂  ,

on|X|<mf(^,^)^l.

(5) If |a(0)| < ^o, |a'(0)| < ^i, |a"(0)| < ̂ , \a"'(0)\ > ̂ .

We get, from lemma 3.1, ^(X) > ̂  if |X| ^ ̂  < 1.
c/A^ 2 2

Thenon-^^Xi^-^
^ 4

.W,o) ,̂,̂ ('̂ .̂ ).,.ĵ

•^^H^—'-xj^.-'-^ji^-
Thus, we have,

.w,^-^,.<m^, -^^Y,,-^,
1 1 4

which contradicts (hi) if e < mm ( - - - , ' 3 ) .
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(6) Assume |a(0)| < /^o, |a'(0)| < ̂  |a"(0)| < ̂  |a"/(0)| < ̂ . This
contradicts (ii) if max(/^o, ̂ 1,^2,^3) < ^

Eventually, we have to perform the following successive (and compat-
ible!) choices with 6 > 0 given.

First choose
p.3 , 0 < ^3 < m i n ( . l )

then

/.2, 0<^min(JJj|,j,l)

then

/.i, 0<^<min(J|jJ,j,ji,l)

then

^, 0<^,»,n(|^4,,^.
Then £(^) can be taken as

e(6}-mm(11^ f^ ^ ^\^j-mm^^^,^,^,^-)

and
r(6)=mm(^-^,^) , ^) = ̂  .

The lemma 3.6 is proved.

End of the proof of proposition 3.4.

Let's now consider XQ € IR271. We can assume (see lemma 18.6.4 in[ll])
that

n

(3.29) gx, =g=^\^l(dx2+d^) , with inf \^ = X = \(Xo) .
3=1

We are going to apply lemma 3.6 to

A(^i,... ̂ ,TI, ... ,r,) = A-2a(Xo + Y^t^e, + r.X^e,) ,
j=i

where (e^£j) is the "canonical" basis of H271 in the coordinates correspond-
ing to the diagonalization ofp in (3.29). The case (1) and (2) in proposition
3.4 are easily obtained from (1) of lemma 3.6 or by assuming A <, C. The
case (3) is obtained as follows : we get, assuming XQ = 0,

(rji -^y^e^y^+b^y^ ^a^t^e,;+r,A^,) ,
j=i
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where ( j = 0 ( j , where the 2n x 2n matrix Q is orthogonal.

So, we obtain, setting-up Xj = ̂ A^2, ̂  = ^-A^2,^o =^(^, ̂ )-̂ ,(̂ , ̂ ),,-( ,̂ ̂ )))'
..(»( ,̂̂ ),< ,̂̂ ))^(,( ,̂̂ ),,.( ,̂̂ )).
Through a linear symplectic change of coordinates we have, on the ^-ball
with center 0 and radius r(6)
(3.30) a(x^)=\(rf,-^rJf))2e^rf)+b,(y^)\2 ,
that is the result of proposition 3.4.

d. Sharp Egorov principle.

The problem can be microlocalized. If {x'u(x^)2}y is a partition of
unity related to the metric g (see [11] section 18.5)

aw = Y,^r = ̂ (X.»ali^r +7^ , where rw is L2 bounded.
v v

Moreover, if supp^ C (^(a^-ball), and if a(x^) = a(x^) on Q^ (the
^-ball with same center and double radius), a satisfying the estimates of
^, we have

Xv I! a ji \y = ̂ y (I a (t Xv + ̂  5 Sr^ L2 bounded.
We are consequently reduced to look at
(3.3.1) a = (7?i - a(2/, 77'))2Aeo(2/, rj) + 6(z/, 77')
that can be easily extended to R271 (and still satisfy the estimates).

For the reader's convenience, we state a version of the "Sharp Egorov
Principle", proved by Fefferman and Phong in [6].

THEOREM 3.7. — Let g be a quadratic form on H271 such that
9 = A"1!', where A > 1 and F is a quadratic form such that F = P7 (see
(3.7)).

Let a € S2(g) real valued (i.e. {aW^T^ < ̂ g(a)\2-^) supported
in Q, a g—ball of radius 1. Let \ be a canonical transformation \: IR271 —^
R271 such that ^(cr) = a and
(3.31) Ix^Wlr^OOA^

k'Wlr^^^).
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Then, there exists a Fourier integral operator U, bounded on L2^) and
r e S°(g) so that the operator

(3.32) aw=(7*(ao^)w^+rw .

4. PSEUDO-DIFFERENTIAL OPERATORS
IN ONE DIMENSION

a. Preliminaries.

We wish to prove here a one-dimensional version of Fefferman and
Phong's conjecture |j5 in section 7 of [6]. As a matter of fact, we can prove
here an inequality with gain of two full derivatives (e = 0 with Fefferman-
Phong's notation). Let's set-up our framework. Let G be an Hormander
metric (i.e. (3.6), (3.7), (3.8) are satisfied) such that Gx = A^)-^,
where Tx = F^ (see (3.7)) and A(X) > 1. Note that this is the case for
the classical metric

dx2 + ̂  = WW)dx2 + (^)-1^2) , (H)2 = 1 + |^|2 .

We shall denote gx = A^)-1!^ the proper conformal metric of a symbol
a (A is defined in (3.13)). Our first assumption will be

(4.1) / a(X)dX > 0 for any Y € R271 .
JX^YY{X-Y)<I

Moreover, using propositions 3.4 and 3.5, since (4.1) implies (3.28), we are
reduced to consider ^-balls on which (g = A^F, F = dy2 + drf2)

(4.2) a = (rj - A l/2a(2/))2eo(2/, rj)\ + W(y)\2 ,

with

(4.3) \aW(y)\ + ̂ {y^ + \W^\y)\ < C^A-^2 ,

and

(4.4) eo(2/,77)>Gi-1 > 0 .

Note also that, dividing the symbol a by one of its semi-norm, we can
assume that ^koW < 1 for k < No, with an arbitrary No, to be chosen.

Consequently, all the constants Ck in (4.3) up to fc = 0(No) (<9(AQ —^
oo with N) are "universal constants".
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It is an easy matter to extend the functions a, CQ, W to the whole
R271, keeping their properties :

a(y) = a(y)W1/2) ,

il;eC§°W , ^ E E l o n ( - 2 , + 2 )
0 < ^ < 1 , ^ = 0 outside (-3, +3) .

We define e^y^) = e^y^)^-^} + (l - ̂ (2/-^-rL)) and W(y) =
W(yWy\-1/2) .

We get then that (4.2) is satisfied on y2 -h rf1 < A, but with a right-
hand side so that (4.3) and (4.4) are still satisfied. In what follows we'll
keep using the notation a, eo, W dropping the ~ .

Let's use now the Egorov theorem (th. 3.7). We consider the canonical
transformation \~1 on R2

) T = n — a(y)
(4.5)

t=y .

The estimates (3.31) are satisfied, and we get that

a^r^Ar^o-hA2^) on t2 + r2 < A .

Consequently, from (3.32)

( (ao^)(^oA- l ^o^) 2 ) w =[/*(a(^oA- l ^) 2 ) w £7 modulo £(L2) .

Moreover a(^ o A-^)2 = ̂  o X-^Y^a^ o A-^ + r, rw € C(L2). So in
order to check the non-negativity of a^ we need only to check the one of

[(AT^o+A^^oA-^o^)2]",

and thus eventually, because of the symbolic calculus, the one of Ar^o +
A2^).

b. Statement of the result.

Let's introduce the following family of canonical transformations :
^ C ^ if \ is (7°°, canonical, and satisfies

/4g. f [X^W^^C^W^-^ ,
\ gx(x(X) - X) < So,

where 6y < C~1 in (3.6) for g .
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We'll denote by Q any symplectic unit cube of

^:Q={^T)^m^(\t\,\r\)<\}

for some linear symplectic coordinates.

THEOREM 4.1. — There exists Coo > 0 such that, if (4.1) is
satisfied for a € S^^G) such that

(4.7) / (a o ̂ )dX + Goo inf(a o ^) > 0
JQ ^

for any symplectic cube Q and any \ G <I>, then

(4.8) a^ + C > 0 ,

where C depends only on a fixed finite number of semi-norms of a.

Proof. — Using the preliminaries and a linear rescaling, it is enough
to prove the non-negativity of C^r2 + V(t) on functions supported in
\t\ < 1.

Using theorem 2.1 and remark 2.2 we need to check for Q interval,

| Q | < 2 , QC(0,3): |Q|-1 / Cly^+IQI-^IQI-1 f C,V-(t)dt.
JQ JQ

Since we can assume a o \ = eoT2 + V(t) on \t\ < 4, |r| < A, we have from
(4.7)

6~2 +<T1 /' V(^ > Coomaxy-(^) ,
JQ ^^

and so
Gi<r2 -h^-1 / C'lV+(^>C foomaxGly-(() .

JQ <€^
If Coo > 9C'i, Ci > 1, we obtain

S-2 4-^-1 /' C'iV^(^ > 9maxdy_((),
JQ ^Q

so (2.1) is satisfied.

Since (4.7) and (4.1) are preserved by multiplication by a positive
QW

number, we get (4.8) for ——- with a universal constant C. In particular
^N W

Coo can be chosen independently of the semi-norms of a.

The proof is complete.
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