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CHARACTERIZATION OF THE LINEAR PARTIAL DIFFERENTIAL
OPERATORS WITH CONSTANT COEFFICIENTS THAT ADMIT

A CONTINUOUS LINEAR RIGHT INVERSE

by R. MEISE, B.A. TAYLOR & D. VOGT

In the early fifties L. Schwartz posed the problem of determining when
a linear differential operator P(D) has a (continuous linear) right inverse;
that is, when does there exist a continuous linear map R such that

P(D)R(f) = f for all / € <?(0) or all / C V'W .
For example, when fl is IR71 and P(D) is hyperbolic in some direction,
such an operator exists; one can take R(f) to be the unique solution of
the Cauchy-Problem P(D)u = f with zero initial data. Negative results
for important special classes were given by several authors. For n > 2
Grothendieck has shown (see e.g. Treves [Tl]) that no elliptic operator can
have a right inverse on <f(Q). The same holds for hypoelliptic operators, as
Vogt[Vl], [V2] has proved. For parabolic and other operators this had been
shown before by Cohoon [Cl], [C2].

In the present article we give a fairly complete solution of Schwartz's
problem. As one main result we show that for an open set Q in R^ and for
P € C [ z ] _ , . . . . Zn} the differential operator P(D) has a right inverse on <?(Q)
if and only if P(D) has a right inverse on V(fl). This property is further
characterized by several other conditions in Theorem 2.7. In particular it
is equivalent to the fact that Q satisfies a very strong form of P-convexity,
which we call P-convexity with bounds.

Key-words : Continuous linear right inverses - Constant coefficient partial differential
equations - Fundamental solutions with lacunas - Phragmen-Lindelof conditions for
algebraic varieties.
A.M.S. Classification : 35E05 35E10 - 46F05.
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For the evaluation of these conditions we use different methods. If Q is
P-convex with bounds and has a C1 -boundary, then Holmgren's uniqueness
theorem can be used to show that P is hyperbolic with respect to each non-
characteristic normal vector to 9^1. In particular, a bounded set Q with
C1 -boundary is P-convex with bounds if and only if P is hyperbolic with
respect to each non-characteristic direction, and this happens if and only
if every open convex set is P-convex with bounds (see Thm. 3.8).

For convex open sets 0, Fourier analysis can be used to reformulate P-
convexity with bounds as a Phragmen-Lindelof condition for the algebraic
variety V(P) = [z C C71 : P(-z) = 0} (see Thm. 4.5). This Phragmen-
Lindelof condition is related to a different but similar one introduced by
Hormander [H02]. The evaluation of the condition shows that for n > 3
there exist non-hyperbolic operators P(D) on ^(R^) which do have a
right inverse. The case n = 2 is exceptional, since a consequence of the
Phragmen-Lindelof condition implies that P(D) has a right inverse on
<?(R2) if and only if P(D) is hyperbolic.

Parts of the results of the present paper were announced in [MTV1]
and [MTV2]. Recently, Palamodov [P] has shown that the splitting of
differential complexes with constant coefficients over convex open sets in
R71 is also characterized by the Phragmen-Lindelof condition for the set of
algebraic varieties associated with the complex.

The authors thank A. Kaneko for pointing out to them that one
equivalence in Theorem 3.8 had been obtained already by de Christoforis
[CR]. They also wish to thank L. Ehrenpreis for informing them that the
problem of existence of right inverses was posed by L. Schwartz.

1. Preliminaries.

In this preliminary section we introduce most of the notation which
will be used in the article. For undefined notation we refer to Hormander
[HOI], [H03], and Schwartz [S].

1.1. Spaces of functions and distributions. — Let Q be an open
subset of R77'. For e > 0 we define

Q^ := [x C n : |.r| < - and dist(:r,<9n) > e} .

(1) For k e No we denote by (7^(0) the space of complex-valued
functions on fl, which are continuously differentiable up to the order
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k. (7^(0) is a Frechet space under the semi-norms

||/||^:= sup sup \f\(a)(x)\,€>0 .
a-C^ |a|<fc

(2) By <?(Q) or C^Q) we denote the space of all C°° -functions on
n endowed with the Frechet spac6 topology induced by the semi-norms
|| • ||<^, c > 0, k e N. Note that the topology of f(Q) is also induced by
the semi-norms

l/k^=(E / l/I^MI^A^^^oo^eN,
H^'7"6

where A denotes the Lebesgue measure on R71.

(3) For a compact set K C 0 we let

T>(K):= { f e £ W : SuppfcK}

and endow V(K) with the Frechet-space topology induced by f(Q). Then

vW=\Jv(^)
€>0

is endowed with its usual inductive limit topology.

(4) For k € No we define the Sobolev space

W1'^)= {f e I/2(^) : / is weakly differentiable up to the

order k and \f\k := ( ̂  [ ^(x^d^x))^2 < 00} .
iQl^fc1 7

By Tyo^0) we denote the closure of P(n) in 1^(0).

(5) If X(Q) denotes any of the spaces definied in (1) - (4) then X'(Q)
or X(Q)' denotes the strong dual of X(Q). Moreover, for an open subset
U of n we let

x(^u):={fexw : / | t /=o}.
This notation will be used also for P'(n,(7) and E'^l.U).

1.2. Polynomials and partial differential operators.

(1) By C[^i,...,^n] we denote the ring of all complex polynomials in
n variables, which will be also regarded as functions on C71. For P e
C[^i,...,2^], P(^) = y^ ^Q^ with V^ |a^| ̂  0 we call

|oi|<7n |Qi|=m

Pm •' z ̂  ̂  a^z0
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the principal part of P. Note that Pm is a homogeneous polynomial of
degree m.

(2) For P as above and for an open set Q in R71 we define the linear
partial differential operator

P{D) : V\fl) ̂  VW , P(D}f : ^ a^-^^ .
lck|<m

By this definition P(D) acts on all subspaces of P'(Q). In particular
P(D) : X(fl) -^ O'(n) is defined for all spaces X(0) defined in 1.1(1) -
(5).

Note that P(D) is a continuous endomorphism on P^Q) and £(fl).
1.3. Null spaces. — For P as in 1.2 and an open set 0 in R71 we

define
^(n) :={/e^(0) : P(D)f=o}
N(fl) :=M(fl)n£(fl).

1.4. Right inverses. — For locally convex spaces E and F we denote

L(E, F) := {A : E —^ F : A is continuous and linear} .

A map A € L(EyF} is said to admit a right inverse, if there exists
R € L(F, E) so that A o R = idp.
Note that a topological epimorphism A € £(£, F) admits a right inverse if
and only if there exists P € L(E, E) with P2 = P and imP = ker A, i.e. iff
ker A is a complemented subspace of E.
Obviously, the surjectivity of A is necessary for the existence of a right
inverse for A.

The existence of a continuous non-linear right inverse for continuous
linear surjective maps between Frechet spaces is guaranteed by a result of
Michael [M].

2. Right inverses on V\Sl) and £(fl).

For an open set 0 in R71 we characterize in this section the partial
differential operators P(D) that admit a right inverse on V{ft} (resp. on
£(ft)). In particular we show that P(D) has a right inverse on P'(n) if and
only if P(D) has a right inverse on f(Q). The results of the present section
will be evaluated further in the subsequent sections.
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Some parts of the following lemma are essentially due to Grothendieck
(seeTreves [Tl]).

2.1. LEMMA. — Let n be an open set in R71 and let P be a
complex polynomial in n variables. Then we have (1)^(2)=^ (3)=^ (4) for
the following assertions:

(1) P(D) : P'Cn) -» Z>'(n) admits a right inverse

(2) for each e > 0 tAere exists 0 < 6 < e so that for each f € D'(n, fig)
there exists g e V{^ n,) with P(D)g = /

(3) for each e > 0 there exists 0 < 6 < e so that for each /A C Af^s)
there exists v C Af(fl} with v |n^== ̂  [^

(4) for eacA e > 0 tAere exists 0 < 6o < e so that for all 0 < a < r] <
6 < <$o and eacA $ € ^rj\^s there exists E^ e P'(R71) so tAat

(1)SuppE^c(HnW-(i
(ii) P(D)E^ = 6 -h T^ where SuppT^ C (n^W - $ .

Proof. — (1)==^(2) : Let R : P'(Q) --> P'(n) denote a right inverse
for P(D) and let c > 0 be given. Since 2>(n<:) is a separable Frechet space,
we can choose a bounded subset B of T>(fl.e) which is total. Since B is
bounded in P(n),

QB : V'W ^ R , qBW := sup |/^)|
y€B

is a continuous semi-norm on T^n). By the continuity of the right inverse
R there exist a bounded set C in P(n) and L > 0 so that

qB(Rp') < LqcW for all p, € P'^) .
By Schwartz [S], III, Thm. IV, we may assume that there exist a sequence
(Cm)meN of positive numbers and a compact set Q D Q( so that

C = {^ € V(Q) : sup sup |Z (̂.r)| < Cm for all m € N} .
a-eQ \a\<m

Now fix 0 < 6 < e so that Q C ̂  and let / € P'(n,n^) be given. Then
g :== fi(/) € P'(n) satisfies

gB(^) = ̂ W/)) < Lqc(f) = 0 .

Since B is total in T>(^), this shows ^ € P'(n,n<:). Hence (2) holds,
because of

P(D)g=P(D)R(f)=f.

(2)=>-(3) : For a given number e > 0 choose 0 < 60 < e according
to (2) and fix 0 < 6 < So. If (i € Af^s) is given, choose y? € P(n^) with
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^ |̂  = 1. Then P(D)(w) is in P'(n, 0^). Hence (2) implies the existence
of / € P'(n,ne) with P(D)f = P(D)(w). Then v := ̂  - / is in Af(fl)
and satisfies v |^^= /A |n^.

(3)=»(4) : For a given number c > 0 choose 0 < So < e according to
(3) and note that the conclusion of (3) holds for all 0 < 6 < SQ. Now fix
0<a<ri<6<6o^e ^\f^ and F^ € P^R") satisfying P(D)F^ = 6^.
Then F^ |n^ is in ^(0^). Hence (3) implies the existence of ^ 6 .V(n) so
that ^ |o^= F^ |n^. Now choose ^ e 2^(0^) so that ^(x) = 1 for all x in
some neighbourhood of f2^ and define G^ e P^R71) by G^ := F^ — ^z/^.
Then we have:

SuppG^cR^ne

P(D)G^=6^-P(D)(^)

supp(?(D)^) c supp^\n^ c ̂ \n^.
Now define ̂  € P^R") by

^ : <^(G^(—0), ^e^R7 1) ,
and note that E^ has all the desired properties.

An easy modification of the arguments used in the proof of Lemma
2.1 shows that the following holds.

2.2. LEMMA. — Let Q be an open set in R71 and let P be a complex
polynomial inn variables. Then we have (1) => (2) =^ (3) for the following
assertions:

(1) P(D): £(n) -> £(fl) admits a right inverse

(2) for each c > 0 there exists 0 < 6 < e so that for each f € f(0, fig)
there exists g € <f(n, n,) with P(D)g = / .

(3) for each c > 0 there exists 0 < 6 < e so that for each f € N(f}s)
there exists g € jV(Q) with / |o^= g |n^ .

2.3. LEMMA. — Let n be an open set in R71 and let P be a complex
polynomial in n variables. It the following condition (*) holds :
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There exists a sequence (O^fceN of open subsets offl, satisfying
00

f1.k CC Ufc+i for all k € N and 0 = M OA; so that for each
_ k=l

$ € njfc+2\nfc-n there exist E^ and T^ in P^R") with

(^Supp^C^R71^,)-^
(b) P(P)^ == <? + ̂  where Supply C (^+4\"fc+3) - $ ,

then P(Z^) admits a continuous linear right inverse on V(fl) and on £(S1).

Proof. — For k € N define €k > 0 by ci := dist(n3, ̂ ^4) and

€k == min(dist(nfc-i,n\nfc) , dist(nfc+2,"\"fc+3))

for k > 2. Next fix k € N and $ € ^+2^+1 and let u, C P'(R71) with

Sl lpp /AC^+^CR 7 1 : \X\ <€fc}=:$+Bc, (0)

be given. Then (*) and the choice of €k imply (Qo •'= 0)

P(JO)/A * E^ = /A * (tf 4- T^) = /A + /A * 2^

Supp^ * ̂  c $ + ̂ .(o) + (R'^fc) - ̂  c R'vnfc-i
Supp/z * T(, c $ + Be jo) + (0^+4^+3) - ̂  c n\n^2.

By the compactness of f^+aY^fc+i we can find m € N, $i , . . . ,$m ^
Ofc+2\nA;+i and < ^ i , . . . , ^prn € P(n) so that

Supp ̂  C ̂  + B^ (0) for 1 < j < m ,
m

and y^ ̂ (a;) = 1 f01' ̂ 1 -z'ln some neighbourhood of Q^-^^fc-n- Next we
j=i

define fo r /€P ' (n ,Qfc+i )
m TTI

W) :=S l"i(^/) * £'?,, Fk(f) := -f + ̂ \m(^f) * (^ +r^).
jf=l J=l

Then (*) implies

P(D)Rk(f) =f+ Fk(f) for each / € O'(n, flk+i) •

Moreover, the preceding considerations imply that
. Supp^(/)cR"\nk-i

SuppW)cn\nfc+2
for each / € V(fl, ftk+i)- Hence we have continuous linear maps

Rk : V'(fl,Slk+i}-V'(fl,flk-i), Fk : P'(n,Ofe+i)^P'(n,0^2)
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which satisfiy

(**) P(D) o Rk = idp/(o,ft,^) + Ffe .

Now we want to use these properties to construct a continuous linear map
R : P'(n) -. ?'(«) with P(D) o R = idp/(ft). To do this, we choose
^ e 2^3) with ^|^ = 1. Next we fix a fundamental solution E of P(D)
and we define

Ro : p'(n) -. p'(n), ĵ ) := E * (^p) |o
and

Fo : ̂ (n)^?^,^), Fo0?):=(i-^.
Then we have

Supp Fk-i o ... o Fo(g) C n\nfc+i for all g € ^(H), fc € N ,

and therefore

Supp/^ o Fk-i o ... o Fo(g) C n^-i for all g € P'(n) .

Hence the series
00

R(g) := Re(g) + ̂  = (-l/:+lfifc o F î o ... o Fo(g), g € O'(n)
fc=i

has locally finite supports. Consequently it defines a continuous linear map
R: -D'W -^ -Z^n). From (**) we get

P(D}R(g) =ipg + Fo(g} + Fi o Fo(g)
00

+ ̂ (-l)^1^-! o ... o Fo(g) + Fk o . . . o Fo(<?)) = g .
fc=2

Hence fi : P'(n) -^ P'(n) is a right inverse for P{D). An inspection of the
proof shows that R maps £(fl) continuously and linearly into f(n). Hence
R also gives a right inverse for P(D) on £(!}].

Before we combine Lemma 2.1 and 2.3 we investigate conditions for
the existence of a right inverse for P(D) on ^(0). To do this, we introduce
the following notation.

Notation. — For an open set Q in R71, c > 0 and m e No we put

B^m := {^ C S'W : Snppfi C a, |/i(/)| < H/||^ for all / e £(Q)} .

Obviously, B^m is a relatively compact subset of^'(n). Moreover, for each
compact set K in £'(fl) there exist e > 0 and m € N with K C mB^rn'
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2.4. LEMMA. — Let Q, be an open set in R71 and let P be a complex
polynomial in n variables. If P(D) : £(fl) -* £(fl) admits a right inverse
then the following condition (*) holds:

For each e > 0 there exists 0 < 6 < e so that for each 0 < f] < 6
and each m € No there exist A; € No and C > 0 so that for each
p€£f(ne) with (p, -+- im P{D}i) fl B^m ̂  9 there exists A € ̂ (^)
so that p, -h P(Dy\ € CBs,k •

Proof. — Choose a right inverse R € L(£(fl)) for P(D) and note
that

TT := (RoPiD))1' = P(DY o ̂

is a projection on £'(^1) with im TT = im P(D)1. Hence Q := id^(n) — TT is a
projection on £'(fl) and satisfies

ke rQ=im7r= im P{D)t = im P(-D) ,
Now let c > 0 be given. Then (£{Sl)/£(fl, ̂ c))' can be identified canonically
with ^(n,nc)1. Since £{fl) is a Frechet-Schwartz space, the set A :=
[6j; : x € Oc} is total in ^'(n,^)"1 and relatively compact in £'(Sl). Hence
Q(A) is relatively compact in £f(Sl). Consequently, there exists 0 < SQ < e
so that

|j{SuppQ(^) :a;€njcn^ .
Since ^(n,n^)-1 is closed in ^'(Q), this implies
(2) ^(Wn.^cwn^)1.
Now fix 0 < 6 < So and let 0 < rf < 6 and m € No be given. By the
continuity of Q there exist 0 < < < ?y, A; € No and C > 0 with

(3) Q(B^m) C CB^k .
Next fix /A € £f(fte) and assume that for some v € ^'(0) we have
^ -h P(DYi/ € B^m' Then (1) implies

Q(/A 4- P(D)^) = Q/z -h Q{P{D)iv) = Q^
and therefore (3) gives Q^L € CB^^. Moreover, Supp^ C He and (2) imply
Qii e f(n, n^ )±• This g^8

SuppQ/icn^ c n ^ .
Hence we can find C depending only on So, 6, k and C so that Q/A € CBe.k'
Now define A := —jR^) and note that
(5) /A + PCZ^A = IL — P(D)tRt^) = fji - 7r(/A) = 0^ 6 GB^ .



628 R. MEISE, B.A. TAYLOR & D. VOGT

Hence (4) implies

(6) SvippP(-D)\=S\lppP(D)t\ = Supp(Q/A -p, ) c fls .
Now note that the surjectivity of P(D) on f(Q) implies that 0 is P - convex
in the sense of Hormander [HOI], Def. 3.5.1. Hence (6) and Hormander
[HOI], Thm. 3.5.2, imply Supp A C ̂ .

2.5. LEMMA. — Let n be an open set in R71 and let P be a complex
polynomial in n variables. Jf(*) is satisfied

For each c > 0 there exists 0 < 6 < e so that for each 0 < rj < 6
there exist m € No, k € No and C > 0 so that for each p. € £'(^le}
with (/^ -h imP(D)t) H B^,m. / 0 there exist \ € <?'(^) so that
^+P(D)^eGB^

then the following assertions hold:

(*)

(1) n is P - convex.

(2) For each e > 0 tAere exists 0 < 6 < e so that for each 0 < rf < 6 there
exists I e N so that for each f C C^(n, Fig) there exists g e Z>'(0^, 0,) so
that P(D)g= f \^ holds in V'^r)).

Proof. — (1) To show that Q is P - convex in the sense of Hormander
[HOI], Def. 3.5.1, let K be a given compact subset of n. Then there exists
c > 0 with K C n^. Choose 0 < 6 < e according to (*), fix 0 < rf < 6 and
choose m, k 6 No and C > 0 according to (*). Next fix (p e P(0) with

SuppP(-jD)(^C^

and let /A :=-P(-D)^ =-P(Z))^ € ^'(0). Then

/, + P(DY^ = ̂  + P(-D)^ = 0 C B^

implies that for each s €]0,1] we have

-(^-hP^^eB^m .
5

Hence (*) implies the existence of As e f(f^) so that

P{DY \- \ + \\ = 1̂  + P^A. C CB^k .
L 5 J 5

Now note that P(P) is surjective on ^(R71) (see Hormander [HOI], Thm.
3.54), Hence P(J9)t = P(-D) : ̂ '(R71) -> ^'(R71) is an injective topological
homomorphism. Therefore, there exist / € N, D > 0 and a bounded open
set uj so that

Pi-Dr^CB^CDB^
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where

^,< = {v € f^) : Suppi/ C ̂ , K/)| < 11/11^ for all / e f(R71)} .
This implies

- -^ -+- \s € DB^ for all 5 e]0,1]
5

and consequently ^ = Hm^ in ^'(R71).Since Supp A,, C ^ for each
5 €]0,1], this proves Supp (^ C U$.

(2) For a given number e > 0 choose 0 < 6 < e according to (*) and
fix 0 < rj < 6. Then choose m,k € No and C > 1 according to (*) and
note that without loss of generality we can assume m < k. Since 0 is P-
convex by (1), P{-D) = P(DY : f'(n) -> S ' ^ t ) is an inject! ve topological
homomorphism. Hence there exist / € N, L > 0 and 0 < C < r] so that

P^Dr^B^CLB^.

For a given v e <?'(») with P{-D)v € B^^ we therefore have

^^-Dr^-D^eL^.
Since 0 is P-convex, this together with Hormander [HOI], Thm. 3.5.2 and
Lemma 3.4.3, implies Supp v C f^. Hence we get

(3) ^P(-P)-I(B^) c B := B^ 0 {^ € ^'(Q) : Supp/, C f^} .

Now let

X := span{(P(-D)f'(n)) nB^,,f'(nj} c <?'(«)

and fix / e C^^g)' Note that for i/ e £ ' ( ^ } satisfying P{-D)v e B^^,
we have v € LB because of (3). Therefore {i/,f) is defined for such
v € £'(fl). Now we define F : X -> C by

F : P(-D)^^^i° ifSupp(P(-D)^^)c^
I (^/} otherwise

for P(-D)v C span ((P(-D)f'(n)) H B^^) and /z € <?'(nj. To show that
F is well-defined, assume that

P(-D)i/i + /zi = P(-D>2 + ^2

for ^1,^2 € f'(QJ and P(-D)^, P{-D)^ e spanB^fe. Then we have

SuppP(-D)(i/i -1/2) C Supp(/^2 - /Ai) c Q, .
Since 0 is P-convex, this implies

Supp (1/1 -1/2) C 0,
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and consequently

F(P(-D)^i + ̂ i) = F(P(-D)^ + ^2) .

Using the P-convexity of fig and discussing several cases one shows that F
is a linear functional on X.
Next we denote by EQ the normed space which is generated by the
bounded absolutely convex subset B^m of^(n). We claim that F[xnEo is
continuous. To show this, fix P(-D)u + ^ € X H B^m. Then (*) implies
the existence of A € f'(n^) satisfying

(4) P(-D)A+/i€C^.

From this we get (assuming C > 1)

P(-^)(i.-A)=(P(-D^+^)-(P(-^)A+^)
i0;

C B^ -h CB^k C 2CB^k .
Since P(-D}v is in spanB^^, this implies P(-D)X € spanB^^, so that
P(-D)X + p, € X. (3) and (5) imply

^ - A € 2CLB .

From this, (4) and (5) we get by the definition of F

F(P{-D)v + fz) =F(P(-D)X + ̂ ) 4- F(P(-D)(i. - A))
=F(P(-D)(i.-A))=(^-A,/)

and hence
\F(P(-D}v+^\<2CL\\f\\^.

Since P(-D)i/ + ̂  was an arbitrary element of X H By,^, this proves that
F is bounded on X H B^yyi. Hence the theorem of Hahn - Banach implies
the existence of F € EQ satisfying F \xnEo= F.
Next let $: P(f^) —> f(n^) denote the canonical injection, defined by

$((^) : h^ { <p(x)h(x)dx, ^ € P(^),/i e f(^).
^

It is easily seen that $ maps P(f^) continuously into £'0. Therefore
g := Fo^ = ̂ (F) is in P^n^). Since fis is P-convex and since / vanishes
on n<$, the definition of F and F gives for each (p € ^(n^)

(P(D)^, (j>) = {g, P(-D)^) = F($(P(-D)^)) = F(P(-D)$(^))

=($(^),/)=(/,^.

Furthermore, (p € 'D(ne) implies ^(<^) € ^(nc) so that

^,^}=F(^))=F(^))=0.
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Hence g is in P^n^nj and satisfies P(D)g = / |̂  .

2.6. LEMMA. — Let n be an open set in R71 and let P be a complex
polynomial. If condition 2.5(2) holds then condition 2.1(4) holds, too.

Proof. — For a given number e > 0 choose 0 < SQ < e according to
2.5(2). Then fix 0 < < < r] < 6 < SQ and choose I e N so large that 2.5(2)
holds with f] replaced by <. Next fix ^ e 0^\^ and choose M € N so large
that the equation A^F^ = ̂  has a solution F^ € C^(R71) (see Hormander
[HOI], Thm. 3.2.1). Also choose ̂  c P(n^\^) so that ^(x) = 1 for all
x in a neighbourhood of $. Then

h ••= ̂  € <^(n,^) c ̂ (n,n,j
and

A^^^, ^eC00^,^).

Therefore condition 2.5(2) with 77 replaced by C implies the existence of
g^Hf, e P^n^Qe) satisfying

^(^ = A be and P(D)H^ = ̂  |̂  .

Now choose an open set uj with ̂  C c<; C c«J C 0^, fix ^ C 2>(f^) with
^|^= 1 and let

G^^^A^-^).

Then we have
SuppG^ c n^\ne

P(D)G^ ),= P(D)(AM^ - ff^ ),= A^ |, -^ 1,= ̂

and hence

P(D)G^ = ̂  + 5^, where Supp 5^ C nc\^ .

As in the proof of 2.1(4), this implies condition 2.1(4).

2.7. THEOREM. — For an open set Q in R71 and for a complex
polynomial P in n variables the following assertions are equivalent :

(1) P(D): P'(n) -> Z>'(n) admits a right inverse

(2) P(P): £(0) -> ^(Q) admî  a rig-At inverse

(3) for each compact set K C 0 tAere exists a compact set L with
K C L C ft so tAat for eacA open set cj CC fi wirih L C ̂  there exist s € No
and D > 0 so that for each v € £'(0;) satisfying P{-D)v |^\^€ B° we have
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v U^e DB-^^L), where B° denotes the closed unit ball ofL2(Rn),
while B-^^L) denotes the closed unit ball ofW-^^L) = W^(uj\L)'.

Moreover, (1), (2) and (3) are also equivalent to each of the following
conditions: 2.1(2), 2.1(3), 2.1(4), 2.3(*), 2.4(*), 2.5(*) and 2.5(2).

Proof. — We first note that 2.1(4) implies 2.3(*). To show this, fix
€1 > 0 so that Ofi ^ 0. Then choose (c^jkeN inductively so that

0 < Cfc+i < min^,,6o(€k)\

where ^o(^) denotes the number 0 < <^o < €k which exists by 2.1(4) if
we choose c = <^. Next define ̂  := 17̂  and note that f^ CC O^i and
^ = U ̂  ^y ̂  c^oice °^ tne sequence (c^^N. Choosing a = 6^+4,

fceN
yy = Cfc-(-3 and 6 = 6^4.2 in 2.1(4), we get that all the other requirements of
condition 2.3(*) are fulfilled, too.

Therefore, Lemma 2.1 and 2.3 (resp. Lemma 2.4, 2.5 and 2,6) show
that the following implications hold :
(1) ^ 2.1(2) ̂  2.1(3) ^ 2.1(4) ^2.3(*) ̂  (2) and (1);
(2) =» 2.4(*) ̂  2.5(*) => 2.5(2) => 2.1(4) ̂  2.3(*) =^ (1) and (2).

To prove the equivalence of (2) and (3) we claim that Lemma 2.4 and
Lemma 2.5 remain true if the sets B^^rn are defined as

B^m = {/i e W) : Supp/^ C Q,, |/i(/)| < |/|,,^ for all / € £W]

for 6 > 0 and m € No. This can be checked by going through the
corresponding proofs again. Therefore (2) is equivalent to 2.4(*) and also
to 2.5(*) with the new meaning of B^m- Consequently, (2) is equivalent to

for each c > 0 there exists 0 < 6 < e so that for each 0 < rj < 6
there exist k € No and C > 0 so that for each/A € £'(^te) with

(4) (/A+imPC^HB^o/e

there exists A € f'(^) so that p, -h P(Dy\ e CB^k '
Hence the proof is complete if we show (4) <=» (3)*

(4) =^ (3) : If K is a given compact subset of Q, we choose c > 0 so
that K C rie- Then we choose 0 < 6 < e according to (4) and let L := n<$.
Next we fix an open set ^ CC 0 with L C uj and we choose 0 < rf < 6 with
u) C ^rj- Then we choose k € No and C > 0 according to (4) and we fix
v C £'(uj) so that P(-D)v |^\^ is in B°. To show that the conclusion of
(3) holds for suitable s € No and D > 0 (not depending on i/), we choose
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ip € P(0e) so that (p = 1 in a neighbourhood of K, Then p. := -yP(-D)t/
is in ^'(Oc) and we have

^ + P(-D)i^ = (1 - ̂ p)P(-D)y e f'(^) H B° = ̂ ,o .

Therefore, (4) implies the existence of A C ^'(n^) so that

T := /x + P(-P)A € CB^ .

Hence P(~jD)A = T - p, is in f'^). By the Z^-version of Lemma 2.5,
(4) implies that Q is P-convex. Therefore, Hormander [HOI], Thm. 3.5.2,
implies A € ^'(f^). Consequently we have

(5) . (^-^)L\L=(^—A)H^=^L\L .

Next note that

P(-D){y - A) = (^ + P(-W - (^ + P(-^)A) € f(^) H (1 + (7)5^ .

Since we have seen already that 0 is P-convex, it follows as in the first part
of the proof of 2.5(2), that there exist D > 0 and s €. No, s > k, so that
y — A is in DBrj,s- Because of (5), this implies (3).

(3) =^ (4) : Let us first show that (3) implies P-convexity of 0. If K is
a given compact set in 0, choose L according to (3). Next let ip € T^O) be
given, so that SuppP(—-D)(^ C K. Then choose an open set uj CC H with
Suppy? C uj and note that for each t > 0 we have P(—D)(ty) |^\A:= 0 € B°.
Hence (3) implies tip \^\L^. DB~8 for all t > 0, which proves Supp<^ C L.

To show that (4) holds, let c > 0 be given and let K := Qe- Next
choose L according to (3) and find 0 < 6\ < e with L C 0^. Then choose
0 < 6 < <?i, let 0 < r] < 6 be given and assume that for some p, C £ ' ( ^ e )
and some v € f(^) we have

^ + P ( - D ) l / ^ p , + P { D ) t y e B ^ o .

This implies SuppP(—D)i/ C 0^. Since Q is P-convex, 0^ is P-convex,
too. Therefore, Supp v C ̂  and we have

P(-D)^ |^\^= (/. + P(-D)v) ̂ € B° .

Now (3) with L(; = 0^ implies

^l^ePB-^VL).
Next choose ^ € P(^) so that (p = 1 in a neighbourhood of L and we let
A := <^. Then A is in f(^) and satisfies

/^ + P(-D)\ = ̂  + P(-D)v - P(-P)(1 - <^)^ .
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This shows that for suitable E > 0 and m = degP we have

fi + P(-D)\ C B° 4- EDB-8^^} and Supp^x + P(-D)\) C ̂  .

Since E depends only on P and y?, but not on /A, this implies (4).

2.8. DEFINITION. — Let n be an open set in R" and Jet P be a
complex polynomial in n variables, fl is called P-convex with bounds if one
of the equivalent conditions in Theorem 2.7 holds.

2.9. Remark. — (a) Lemma 2.1 and 2.3 hold - mutatis mutandis -
also for differential operators (even for ultradifferential operators admitting
a fundamental solution) on the spaces P!Jn) and 2 X y ( Q ) of ultradistri-
butions. In particular they hold for all non-quasianalytic Gevrey-classes.
For more details we refer to our forthcoming paper [MTV5] (see also Meise
and Vogt [MV] for the case of one variable).

(b) From Theorem 2.7 and the proof of Lemma 2.3 it follows that
a differential operator that admits a right inverse on P'(n) also admits a
right inverse on any non-quasianalytic class £^ of functions on 0 which has
partitions of unity, which is an algebra with continuous multiplication and
on which distributions act continuously by convolution. Moreover, P(D)
has also a right inverse on 2^(n), the associated class of ultradistributions
on n. In particular, P(D) has a right inverse on all non-quasianalytic
Gevrey-classes (and Gevrey ultradistributions) whenever P(D) has a right
inverse on the distributions.
(c) The conditions 2.2(2) and 2.2(3) are equivalent to Q being P-convex
with bounds. This is shown in [MTV6].

2.10. COROLLARY. — Let P bea complex polynomial in n variables
and let (n^ei be a family of open sets in R71 for which Q := O^/Q^ -^ 0
is open. If fli is P-convex with bounds for each i 6 I then Q is P-convex
with bounds.

Proof. — To show that condition 2.5(2) holds, let c > 0 be given.
Then f^e is compact in f^ for each i € I . Hence there exists c^ > 0 so that
Qe C (n^e, for i € I . Since f^ is P-convex with bounds, we get from 2.7
the existence of 0 < 6i < €1 so that 2.1(2) holds for Q^. Now note that
0 (^i)^ is contained in ^. Hence there exists 0 < 6 < e so that
i€l

(n,)jc^.W
«€/
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Next fix 0 < r] < 6 and let / € C(n,f^) be given. Then (n\(n^.)^j is
an open cover of the compact set n^\n^. Therefore we can find m € N and
^ € I for 1 < j < m as well as f^ € (7(0, (0^ )^ ), 1 < j < m, so that

/ k -E^k-j=i
By 2J(2) there exist p^ e V(fl^, (0^),, ) so that

P(D)gi, = ̂  in 2V(n,,) for 1 < j < m .
m

Consequently g := y ^ j I0*/ ls m ^(^T?) an^ vanishes on
j=i

771

"nn(n^)^ Dn,.
7=1

Hence p € P'(n^, ne) and
m 77i

P(D)g = ̂  P(2?)ft, |n,= ̂  /., |n, = / |n
•J »-"^ / ^ «f *J »"»? ^ I16!?

From Theorem 2.7 we can derive the following result of Vogt [VI],
[V2], which extends a theorem of Grothendieck.

2.11. COROLLARY. — Let P be a hypoelliptic polynomial in n
(n > 2) variables. Then each open set n in Rn is not P-convex with bounds.

Proof. — To argue by contradiction, we may assume that there exists
an open set 0 in R71 which is P-convex with bounds. Then Theorem 2.7
implies that condition 2.1(3) holds. Next we fix 6 > 0 with He ^ 0 and
choose 0 < 6 < e according to 2.1(3). Then we note that the hypoellipticity
of P implies by Hormander [HOI], 4.1.3, that for each open set fl, in R71 the
space A/"(n) is a nuclear Freehet space which is contained in ^(Q). Therefore
we can define

J\fB(fls) ;= {/ € M^) : / is bounded on fig} -
endowed with the supremum norm. Moreover, we let

MB(fi6^e) :=A/'B(n<?)n^(^,nj and A^(n,nj = ATW nf(o,n,).
Now it is easy to check that because of 2.1(3) the restriction map p:
M(fl) —>• J\/'B(flg) induces an isomorphism

p : W)/W^)-.AfBW/^B(^^,).
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Hence the nuclear Frechet space Af(0)/J\f(0,0^) is a Banach space and
consequently finite dimensional. However, this is a contradiction, since all
exponential solutions

/, : x^exp(-i(x,n)), z € C71, P(z) = 0
are linearly independent in Af(0)/^(0,0^).

3. Right inverses and hyperbolicity.

In this section we investigate how properties of the boundary of an
open set 0 in R71 are related with the conditions for P-convexity with
bounds which were derived in Theorem 2.7. In doing this we assume
throughout the entire section that P always denotes a non-constant poly-
nomial in n variables.

From Hormander [HOI], 5.4.1, we recall that a complex polynomial
P on C71 is called hyperbolic with respect to N e R^O} if N is non-
characteristic, i.e. Pm(AO / 0 and if there exists TO C R so that for each
^ C R71 and each r < TO we have P($ 4- irN) / 0. P is called hyperbolic if
P is hyperbolic with respect to some N e R71.

3.1. LEMMA. — Let 0 C R71 be P-convex with bounds and let
N € R71 be non-characteristic for P. If there exists XQ C 90, so that 90 is
continuously differen tiable in a neighbourhood of XQ and ifN is normal to
90, at XQ then P is hyperbolic with respect to N .

Proof. — After an appropriate change of variables we can assume
XQ = 0 and N == (0,.. . ,0,1). Further, we can assume that for a suitable
zero-neighbourhood V in R7^1 and for some a > 0 there exists a C1

function g: V —>\ — a, a[ so that
nn(yx]-a,a[)={(^ ,^)eVx]-a,a[ : xn<g(x')}

90n(Vx}-a,a[)={(x\g(xf)) : x' € V} . -

Since N is not characteristic for P, there exists 0 < a < Tr/4 so that for
the closed cone

Fa(N) ^ { L e R 7 1 : |L|cosa< {L,N)}
every non-zero vector in Fa(N) is not characteristic for P. Since g is a
C^-function with a vanishing derivative at zero, we can use the mean-value
theorem to find 0 < R < 1 so that

(1) U := {x € R71 : .IMloo < R} C Vx} - a,a[
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(2) \g{x')\ < ^sma for all x ' e R71-1 with ||:r'||oo < R .

Then
K := {(x'.xn) C U : -R < Xn < g ( x ' ) - R sin a}

is a compact subset of Q, hence there exists e > 0 with K C fle. Since fl is
P-convex with bounds, condition 2.1(2) holds. Hence there exists 0 < 6 < e
so that for each / € Z)'(n,f^) there exists h € P'^,^) with P(D)h = f.

D

Now choose 0 < rf < , sin a so that

(3) U H ̂  C {(^', Xn) € U : -R < Xn < g ( x ) - 2rf}

and choose 0 < r < rf so that

{(^,-^eR7 1 : [x^^^C^x^x^eU : g ( x f ) - 2 r i < x n < g ( x t ) } .

Next denote by F the open cone

r^LeR- : |L|cos(|-a)<-(L,AQ}

and note that every characteristic hyperplane through the origin intersects
r not only at the origin, because of our choice of a. Now let a := rj-{-r sin Q,
define ^ := (0, ...,0, -a) and note that $ € ^\n<$ because of (3). Therefore
there exists T € 'P'(^, He) with P(D)T = <^.

Next fix a:' € R71"1 with |a;'[ = rcosa, put y := (x1, —rj) and look at
the open cone y -h F. Then we get from (2)

(Suppr)n£7c£/\^C{(.r',^)e[/ : Xn> g^-^sma}
4

D

C {(x'.Xn) € (7 :̂ n > ——sina} .

By the construction we have

{ ^ C R 7 1 : Xn=-Rsma}^(yTr)cU

Therefore we can define Ty C V(y -(- F) by
T(/l((/+^)n(/ = /^l(l/+^)n[/ and T^[(^^r)\A: = 0 .

Since P(D)T = 0, it follows from Hormander [HOI], Cor. 5.3.3, that
Ty =0. Since this holds for all y = ( x ' , —r]), \x'\ = rcosa we get

(SuppT) H {(x',Xn) C R71 : \Xn + o-l > r sin a, |a''| > rcosa} '
(4) C { ( x , Xn) € R71 : -a > Xn > -a 4- r sin Q!, |a;'| > (a-^ + a)tan a}

= Fi .
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TNow choose \ € 0(^ -h t^(0))i where t = . sin a and

Ui(0) = {x € R" : M<Q

which satisfies X^+U^^Q) = 1- Then To := :̂T satisfies

P{D)To =6^-So

where Supp5o C ri\((7^2(0)+^). After a suitable translation which moves
^ into the origin, we obtain from this a distribution T\ which satisfies
P(P)Ti = 6 — Si and has support in a closed convex cone Fa satisfying

F2 H {x C R71 : Xn < 0} = {0} .

Moreover
Supple r2\(7i/2(o).

Now define Sf :== 6 and <5f := 5i *... * 5i (j-times) and note that the series
00

5f converges in ^(R71) since it is locally finite. From Supp (V^ 5fJ C
j=o j=o
Fa it follows that we can define

E

E:=T^(f^Si).
j=0

Then

P(D)E = (P(P)Ti) * (f; ̂ ) =:(^ - 5i) * ̂  5f = <?
j=o j^o

shows that E is a fundamental solution for P(D). Since Supp E is contained
in Fs, it follows from Hormander [HOI], Thm. 5.6.2, that P is hyperbolic
with respect to N.

To give a first application of Lemma 3.1 we denote by H^.(N) (resp.
H-(N)) the positive (resp. negative) open half space determined by a
vector N € R^O}, i.e.

H±(N) := {a: € R71 : ±{x,N) > 0} .

3.2. PROPOSITION.. — Let N € R71 be non-characteristic for P.
Then H^(N) is P-convex with bounds if and only ifP is hyperbolic with
respect to N.

Proof. — =^ : Lemma 3.1.
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<== : For j e No define Uj by

[7o :={^€R 7 1 : {x,N}>^}

U, := {x € R" : -^ < (;r,AT} < 1} , J E N .

Then ((7j)jeNo is an open cover of H^,(N). Hence we can choose a
C°° -partition of unity (^)^N, subordinate to ((7j)jeNo. Since P is also
hyperbolic with respect to -N (see Hormander [HOI], Thm. 5.5.1) there
exist fundamental solutions E^. resp. £L with supports in closed cones
which are contained in H^.(N) resp. H-(N) except for the origin. Then for
each / e £(H+(N)) the series

00

fl(/):=^*(^o/)+^E-*(^/)
j=l

is locally finite and converges in £(H^.(N)). Moreover, it is easily checked
that R : £(H^.(N)) -^ £(H^(N)) is a right inverse for P(D). Therefore,
H^.(N) is P-convex with bounds by Theorem 2.7.

3.3. COROLLARY. — Let n be an open convex polyhedron in R71

with faces whose normal vectors are non-characteristic for P. Then Q is
P-convex with bounds if and only if P is hyperbolic with respect to all
vectors which are normal to some face ofQ.

Proof. — =^ : Lemma 3.1

^= : Since n is a finite intersection of translations of open half spaces,
this follows from Proposition 3.2 and Corollary 2.10.

3.4. LEMMA. — Let fl be an open convex polyhedron in R71 with
faces whose normal vectors are non-characteristic for P. If Q is P-convex
with bounds then the following condition holds :

for each e > 0 there exists 0 < 6 < e so that for each
(*) / € P^R", n^) there exists g € P^R", HJ with

P{D)g=f.

Proof. — Without loss of generality we can assume 0 € 0. Then
{tfl, : 0 < t < l } i s a fundamental system of compact subsets of n. Hence
for e > 0 there exists 0 < t < 1 so that n<: C tfl. Next choose 0 < 6 < e
with tTi C ^6 and let / e P^R", Q^) be given. If we denote by M,.. • , Nm
the outer normals to the faces of Q, then we have

771

R"Vn = (J HJ
j=l
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where for suitable bj eR
Hj={x^Rn : (x,Nj)>b,}, Kj<m.

Using a suitable partition of unity, we therefore have
772

/ = ̂  fj with Suppfj CH^ 1 < j < m .
j=i

By Corollary 3.3 and Hormander [HOI], Thm. 5.6.1, the hypothesis implies
the existence of fundamental solutions Ej for P(D) where Supp£'j is
contained in a closed cone which is contained in H^.(Nj), except for the
origin. Therefore,

m

9''=^E^f^
j=i

has all the required properties.

3.5. LEMMA. — Let (f^)^N be an increasing sequence of open
subsets of R71. Jf f}j satisfies condition 3.4(*) for each j € N then
n := ( l O j i s P-convex with bounds.

JCN

Proof. — To show that condition 2.5(2) holds, let e > 0 be given.
Then there exists A: € N with Hg C QA;- Hence there exists €' > 0 with
H- C ( ^ k ) e ' - Now choose 0 < 6 ' < e' so that condition 3.4(*) holds for ̂
and choose 0 < 6 < e so that (Q^)^/ C f2<$. Then fix 0 < r] < 6 and choose
(p € P(^) with (^ |̂  =1. Next let / € T>'(^^) be given. Since ̂ f is in
P^R71,^)^), 3.4(*() implies the existence ofge /P'(Rn ,(^fc)6 /) with

P(D)g=^f .
By our choices g [f^ is in 'P'(f^,f^) and satisfies

P(D)(g\^)=f\^ .

3.6. PROPOSITION. — Let N € ^S'71"1 be characteristic for P. If
N = Hindoo M;? where P is hyperbolic with respect to Nk C R71 for all
k € N then H^.(N) is P-convex with bounds.

Proof. — For a non-characteristic vector M of P let r(P, M) denote
the component of the set

{Oe^-1 : P^(0)^0}
which contains M. Using this notation, the hypothesis implies the existence
of M € •S'71"1 so that P is hyperbolic with respect to M and so that
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O W — l

N e r(P,M) . Note that r(P,M) is an open subset of S'71-1 and
that by Hormander [H03], 12.4.5, P is hyperbolic with respect to each
vector K e S71--1 with ±K € r(P,M). Therefore we can find an increasing
sequence (^tj)j^ of parallelepipeds so that P is hyperbolic with respect
to each normal vector to every face of f^ and so that

H ^ ( N ) = \ J ^ .
j€N

Hence the result follows from 3.3, 3.4 and 3.5.

The following examples show that for characteristic vectors N in
general H^. (N) is not P-convex with bounds.

3.7 Example. — Let P e C[z^,z^[ be defined by

P(Z1^2) =^ -iZ2 .

Obviously N = (0,1) is a characteristic vector for P. Since P is hypoelliptic,
P(D) does not have a right inverse on £(H^(N)) by Vogt [VI], [V2] (see
also 2.11). Another example is Q(z^z^ z^) = {z{ + zj - zj)(^2 + zj + zj).
Since Q has an elliptic factor, it follows from 2.11 that Q does not have a
right inverse o n £ ( H ^ { N ) ) , where N = (1,0,1).

For a further evaluation of Lemma 3.1 we recall the following notation:
Let f^ be an open subset of R71 with C1 -boundary. Then the Gauss-map
G: 9fl —^ S71'1 is defined by G(x) := A^., where N^ denotes the outer unit
normal to 9S} at a*.

3.8. THEOREM. — For a non-constant polynomial P on C72 the
following conditions are equivalent :

(1) there exists an open bounded subset 0 ̂  0 ofR71 with ̂ -boundary
which is P-convex with bounds

(2) there exists an open subset 0 ^ 0 of R71 with ^-boundary and
surjective Gauss-map which is P-convex with bounds

(3) P is hyperbolic with respect to every non-characteristic direction

(4) P and its principle part Pm are equally strong and Pm is propor-
tional to a product ofm linear functions with real coefficients

(5) each open convex subset ofR71 is P-convex with bounds.

Proof. — (1)=^(2) : This is obvious. (2)=^(3) : Lemma 3.1. (3)^(4)
: This holds by Lanza de Christoforis [CR] Thm. 1. (3)=^(5) : Let Q be
an open convex subset of R71. Then the present hypothesis implies the
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existence of an increasing sequence (flj)j^ of open convex polyhedra with
non-characteristic faces so that each flj is P-convex with bounds and so
that

" = U ̂  •
j€N

Therefore (5) follows from 3.3, 3.4 and 3.5. (5)=^(1) : This is obvious.

There are many open sets 0 in R71 for which no differential operator
has a right inverse on f(Q). To show this, we introduce the following
definition.

3.9. DEFINITION. — Let 0 be an open set in R71 and let N e
R^^O} be given. A point XQ 6 90. is called a point of inner support for N
if there exists a compact neighbourhood U of XQ so that for 7 := {xo^N)
we have

(7n{;r€R": (:r,AQ <7}cn and

QU^{x^Rn : (:r,7v) <7}cn .

3.10. LEMMA. — Let fl be an open set in R71, let P be a non-
constant polynomial on C71 and let XQ e 9fl be a point of inner support for
N € R71. IfP(D) : £((l) —> f(H) is surjective then N is not characteristic
for P.

Proof. — Assume that N € 5'71"1 is characteristic for P and choose
0

U and 7 according to 3.9. Next choose y? € 'D(U) so that (p(x) == 1 for all
a; in a neighbourhood of the set

ann^eR71 : ( x , N ) = ^ } .
Then denote by K the closure of the set

{x C R" : y\x) ̂  ^(x) and {x,N} < 7}

and note that K is a compact subset of Q by the properties of U and (p.

Since N is characteristic for P it follows from Hormander [HOI], 5.2.2,
that for each 6 < 7 we can find fs € f(R71) which satisfies P(—D)fs = 0,
XQ - (7 - 6}N e Supp (fg) and

Supp/^C^CR 7 1 : {x,N)<6} .

Now define gs := (pfs and note that

Supp^ C { x e U : {x,N} <6}
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so it is compact in fl. Furthermore we have SuppP(—D)<^ C K and

dist(a:o, Supp^) = 7 - 6

for 6 sufficiently close to 7. This shows that 0 is not P(D)-convex. By
Hormander [HOI], Def. 3.5.1 and Cor. 3.5.2, this contradicts the hypothesis
that P{D) is surjective on f(ft).

3.11. PROPOSITION. — Let n be an open subset ofR71 for which
R^n has a compact component. Then 0 is not P-convex with bounds for
each non-constant polynomial P on C71.

Proof. — Let P be a non-constant polynomial on C71. Since the
surjectivity ofP(P) on £(fl) is necessary for the existence of a right inverse,
assume that P(D) is surjective. Let K denote a compact component of
R^n and let N € R^O} be given. Then there exists to so that

J^n^eR71 : { x , N } < t o } ^ 9 .
Define

7:=sup{t<4 : Arn^eR7 1 : {x,N}<t}=9]
and pick

xo e an n {a; e R71 : (a-,JV} < 7} / 0 .
Then it is easily checked that XQ is a point of inner support for N. Hence
Lemma 3.10 implies that N is not characteristic for P. Since N € R^^O}
was arbitrarily chosen, the polynomial P is elliptic. However, then P(D)
does not admit a right inverse on any open set, as Grothendieck has shown
(cf. 2.11).

3.12. Examples.— (1) Let n be an open set in R71 with G2-
boundary. Then, for XQ € 9^1 there exists a neighbourhood V of XQ and
y € C2^) so that

vnfl={x^v : <^r)<o} , v nan = {xev : y(x)=o}
and grad y(x) -^ 0 for all x € V H 90. If

'̂'(aS^OL
is negative definite then XQ is a point of inner support for N := grad^(rco)-

(2) For t > 0 define
n-i

fl(t) := {x C R71 : ̂  > 0 and ̂  ̂  + (a-n - -)2 > ^2} .
î 2
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Then (1) implies that each N € iS'71"1 with N^ > 0 admits a point of inner
support in 9^1(t). Hence Lemma 3.10 implies that only elliptic operators
P(D) are surjective on £(fl(t)). Therefore f}[t) is riot P-convex with bounds
for each non-constant polynomial P on C71.

4. The Phragmen-Lindelof condition.

In this section we use Fourier analysis in order to characterize when
a convex open subset Q of R71 is P-convex with bounds in terms of a
Phragmen-Lindelof condition on the zero variety of P.

Notation. — Let n be an open convex subset of R71 which is not
empty. For sufficiently small c > 0 then Qe is convex and not empty, too.
By he: R71 —> R we denote the support functional of n^, i.e.

n

h^{x) = sup{x,y) = sup ̂ Xjyj .
y^c y€^f. j=i .

4.1. DEFINITION.. — Let P be a non-constant polynomial on C71,
let Q / 0 be a convex open subset ofR^ and let

V = V(P) :={z EC71 : P(-z) = 0} .

We say that P (resp. V(P)) satisfies the Phragmen-Lindelof condition
PL(n), if for each e > 0 there exists 0 < 6 < e so that for each 0 < rj < 6
there exists B > 0 so that for each plurisubharmonic (psh.) function u on
C71 the following two conditions :

(a) u(z) < k,(Im)z+ 0(log(l 4- \z\2)) for all z e C71

(b) u{z} < h^lmz) forallzeV(P)
imply
(c) u(z) < h,(lmz) + B(log(l + \z\2)) 4- B for all z C Y(P) .

We say that P (resp V(P)) satisfies the analytic Phragmen-Lindelof
condition APL(Sl) if the above holds for all u = log|/|, where f is an
entire function on C71.

For a comprehensive study of the Phragmen-Lindelof condition we
refer to our paper [MTV4], the results of which we are going to use in this
section. Before we explain how APL(n) and PL(n) are related with the
existence of a right inverse for P(D), we first note :
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4.2. LEMMA. — Let P = Pi... Pk, where Pi,... , Pk are polynomi-
als on C71andlet fl be an open subset ofR71. Then P(D) has a right inverse
on <?(Q) if and only if each Pj(D) has a right inverse on f(^).

Proof. — If R is a right inverse for P(D) then P^D) o... o Pk{D) o R
is alright inverse for Pi(D). Obviously, Rk o ... o R^ is a right inverse for
P(D), whenever Rj is a right inverse for Pj(D).

4.3 Some Fourier analysis. — Let P = Pi • • • P^, where Pi... PA; are
irreducible polynomials on C71 so that J^ is not proportional to PA; for
j ^ k. Furthermore/let n be an open convex subset of R71. We denote by
A(V) the space of holomorphic functions on V = {z C C71 : P(—z) = 0}
and we define
A^(V) = {f eA(V) : there exist e > 0 and k € N so that

1/1̂  := sup \f(z)\exp(-h,(lmz) - Hog(l + \z\2)) < 00}
z€V

and we endow A^(Y) with its natural inductive limit topology. Then it is
easy to check that A^(V) is a (DFS)-space and that for each bounded set
B in A^(V) there exist A > 0, 0 < c < 1 and k 6 N with B C \L^k, where

L^={feA^V) : ||/||^<1}.

From the fundamental work of Ehrenpreis and Palamodov (see e.g. Hansen
[H]) it is well-known that the Fourier-Laplace transform

F : NW -. A^(V) , FW : z ̂  ̂ (e-^) , z 6 V

is a linear topological isomorphism.

If we let

U^k := {X € NW : \\x\\e,k <1} 0 < 6 < 1, k C N

then each bounded set of N(fl)' is contained in a multiple of some set U^.
Hence we have

for each 0 < n < 1 there exist < 0 < 6 r < l , m € N
(1) /

and E > 0 so that Z^,o C ̂ (EU^ .

A sharper version of (1) can be derived from Hansen [H], Thm. 2.3, if we
let

v^k := {x e NW : \x\e,k < i}, o < e < i, k e N .
Then we get

for each 0 < 6 < 1 and each q C N there exist
k € N and D > 0 so that L^q C ^(DV^) .
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4.4. LEMMA. — Let P be a non-constant polynomial on C71 and let
n be an open convex set in Rn. If P(D) : £(ft) -» £(S1) admits a right
inverse then P satisfies the condition APL(fl).

Proof. — Let P = Pf11 ... P^ where Pi... P^ are irreducible poly-
k

nomials so that Pj is not proportional to P< for j ̂  I and let Q := TT P^.
i=l

By 4.2, P(D) has a right inverse on £(fl) if and only if Q(D) has one.
Since V(Q) = ^(P) we can therefore assume without loss of generality
that P = Q so that 4.3 applies. Since Q(P) : f(Q) -^ ^(fl) admits a
right inverse, Lemma 2.4 implies that condition 2.4(*) holds. To show that
this implies APL(Q), let c > 0 be given. Then fix 0 < ci < c and choose
0 < 6 < ci according to 2.4(*) with € replaced by 61. Next let 0 < r] < £
be given and choose Q < a < r j , m e N and E > 0 so that 4.3(1) holds.
Furthermore fix 0 < C < a and choose k € N and C > 0 so that 2.4(*)
holds with €i,^,C and m and put B := max(fc,logG£). Now fix / € A(C71)
which satisfies

(a) log\f{z)\<h,(Imz)+0(\og(l+\z\2)) for all z € C71

(b) log|/(^)| < h^lmz) for all z € ^(P) .
Then the theorem ofPaley-Wiener-Schwartz and (a) imply that there exists
p, e^cn^y so that

f(z) = ̂ (e-^^) for all z € C71 .

Moreover, v := ^ IJV(Q) is in NW and (b) implies that F{y} is in Ly^o.
Therefore 4.3(1) shows that y is in EU^. Because of 0 < C < <^ this
and the theorem of Hahn-Banach imply the existence of P € ^'(0) with
v € EB^^rn (using the notion from 2.4). Therefore

v - /A € NW1- = (kerP^))1 = imP^DY

implies
p == ̂  + (P - ̂ ) € (^-h imP )̂ 0 EB<;̂  .

Hence 2.4(*) gives the existence of A € ^(SIs) so that ^ 4- P(D)tA €
CEB^k- Because of P^^A € ^(O)1, this implies

(1) M\<CE\\x\\6.k for all ^ € AT(n) .

Now fix z e V(P) and note that \z '- x ̂  exp(-i(x, z)) is in N(fl) and
that

IIX.II^ = sup sup K-^e-^^l < (l-hMYexp^Im^)) .
a;€^^ |aj<fc
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Hence we get from (1)

log \f(z)\ = log |̂ (^)| < log \\xz\\6.k + \ogCE
< h6(lmz) + B log(l 4- M2) + B

for each z € V(P). This proves that / satisfies condition (c) of APL(fl).

4.5. THEOREM. — Let n ^ 0 be an open convex subset ofR71 and
let P be a non-constant polynomial on C71. Then the following conditions
are equivalent:

(1) n is P-convex with bounds

(2) P satisfies APL(fl)

(3) Psatisfies PL(S}).

Proof. — (1) -<==» (2) : Because of Lemma 4.4 it suffices to show
that (2) implies (1). To do this, note that without loss of generality we can
assume (as in the proof of 4.4) that P = Pi • • • Pk, where Pi,..., Pk are
irreducible polynomials so that Pj is not proportional to Pi for j ^ /. In
order to show that condition 2.5(*) holds, let 0 < e < 1 be given. Then
choose 0 < 6\ < e according to APL(n), fix 0 < T) < 6 < 6^ and choose
B = B(rf) > 0 according to APL(n). Next choose q € ISI with q > B and
apply 4.3(2) to .find k € N, C > 0 so that

(4) I^CJT(Zn^).

Furthermore, choose A > 0 so that (in the notion of 4.3) we have
l^i ,jk C AVs^k. Then let m := 0 and C := eBAD. To show that 2.5(*)
holds with these choices, let /A € ^(f^) be given and assume that for some
v € ^'(O) we have

(5) /i + P(D)^ e B^o .

Then the theorem of Paley-Wiener-Schwartz implies that

fi : h-4 ^(exp(-i{x,z))) , z € C"

is an entire function on C71 which satisfies

(a) log|A(^)| < h^lmz) + 0(log(l 4- H2)) for all z € C" .

Next note again that for z € V(P) the function \z '' x ̂  exp(—i(x, z)) is
in N(Rn} and satisfies

HxJLo = sup \exp(-i{x,z})\ = exp(/^(Imz)) .
xesir,
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Therefore, (5) and the definition of B^^ imply for each z € V

(b) |/^)| = |̂ )| = |(/.4-P(P)^)M < Ikziko < exp(A,(Imz)) .

Hence we conclude from APL(fl) and q > B :

(c) log\fr(z)\<h6,(lmz)+q\og(l^\z\2)+B for all ^ (E V .

Because of (4), this shows

e-^/z |^)) €L^ C F(DV^) .

By the choice of A this implies

^(Q^AD^ .

Now the theorem of Hahn-Banach shows that there exists A C ^'(0) with
u, |^(Q)= A \N(fi} so tnat ^ ^ CBe.k' Since P(-D) is surjective on f(0), we
have

A - / A e ^(O)-1 = (kerP(Z)))-L = imP(P)t .

Hence we have shown that 2.5(*) holds.

(2) <==>- (3) : Obviously (3) implies (2). The converse implication is
shown in [MTV3].

An easy scaling argument proves the following corollary.

4.6. COROLLARY. — For a non-constant complex polynomial P on
C71 the operator P(D) has a right inverse on <?(R71) and/or V^R71) if and
only if the following Phragmen-Lindelof condition (PL) holds:
There exists R > 1 so that for each p > R there exists B > 0 so that for
each psh. function u on ̂  which satisfies

(a) u{z) < |Im^|+0(|log(l+H2)) for all z € C71

(b) u(z) < p\lmz\ forallzeV(P)
we have
(c) u(z) < fi|Im^| -h B log(l 4- M2) + B for all z € V(P) .

Specializing 4.6 to homogeneous polynomials, we get from [MTV4]
(see also [MTV2], 5.6) :

4.7. THEOREM. — Let P € C[^i,...,^n] be homogeneous and non-
constant. Then P(D) has a right inverse in f(R71) and/or P'(R71) if and
only if the following two conditions are satisfied:

(1) dimRV((9) H R71 = n - 1 for each irreducible factor Q of P
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(2) for each $ € V(P) HR71 with |^| = 1 tAere exist 0 < 61 < 62 < €3 and
A > 0 so that for each psh. function u on the set {x € C71 : \x — f\ < 63}
with 0 < u < 1, which satisfies u(Q < 0 for all < 6 V(P) H R71 with
1C - $1 < €2 we Aave u«) < A|ImC| for all < € V(P) w^A |C - $| < 61.

4.8. COROLLARY. — Let P be an irreducible homogeneous polyno-
mial on C72 that has real coefficients and satisfies

(*) gradP(0 ^ 0 for each $ € V(P) H R71, |$| = 1 .
Then P is either elliptic or P(D) admits a right inverse on ^(R71) and
P'(R71).

Proof. — Assume that P is not elliptic. Then there exists ^ €
V(P) H R71 with $ ^ 0. Since P is homogeneous, we can assume |$| = 1.
Therefore, the hypothesis on P implies gradP(—^) = =bgradP($) ^ 0.
Since P has real coefficients the implicit function theorem for R71 implies
dimRV(P) 0 R71 = n — 1, i.e. condition 4.7(1) holds. Hence the proof
is complete if we show that also condition 4.7(2) holds. To do this, fix
$ € V(P) n R71 with |$| = 1. Then (*) implies that we can assume that
V(P) near ^ is the graph of an analytic function g which without loss of
generality depends on the first n — 1 variables. More precisely, there exist
6 > 0 and 6 > 0 so that on U :== {z' € C71-1 : \z' - £,'\ < e} there exists
an analytic function g : U —> C so that

V{p)nux{\ec : |A-^|«^}={(^/,^')) : z ' e u } .
Now choose 63 > 0 so that

B^) := {z € C71 : |^ - $| < 63} C U x {A € C : |A - U < 6} .
Then fix 0 < 62 < 63 and choose 0 < 61 < 62 so that for

W^^'eC^-1 : |^-^|<26i}

wehave(zt,g(zf))eB^){oral\^f eW.

Next fix a function u which is psh. on B^^(^) and has all the properties
stated in the hypothesis of 4.7(2). Then

^ : W -.[0,1], ^^i^',^'))
is a psh. function on W. Since P has real coefficients, g Ipn-i CtW has
values in R, which implies u IvynR^-1^ 0- Now fix ^ = (C'lCn) ^ ^(P) ̂ h
|^—^[ < 61 and assume that Im^' ^ 0 (otherwise there is nothing to prove).
Then define

/_ ., ImC' \v : T^^lItec+riimcT61^
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For r C C with [r| < 1, we have

R< + T[^|cl - ̂ | < |Re(C' - 01 + ci < 2ei .

Hence z; is a subharmonic function in a neighbourhood of the closed unit
disk, which satisfies 0 < v < 1 and v(x) < 0 for all x € R, \x\ < 1. Hence
we get from the proof of Ahlfors [A], Thm. 3.4 :

^(0 = ̂ (0 = ̂ (IImc1) < ̂ -lImCl < -^-lImCI .
\ €1 / TTCi TTCi

This shows that 4.7(2) holds with A = 4(7rci)-1.

4.9. Example. — For n, m € N with n > 2 consider the homogeneous
polynomials of degree m which are of the form

n

P(o-i,... ,Xn) = ̂ (rf, ak € R\{0} for 1 < k < n .
k=l

(a) .R2 is P-convex with bounds for such a polynomial if and only if
m = 1, or m = 2 and signai ^signas.

(b) R71 (n > 3) is P-cbnvex with bounds for such a polynomial if and
only if m is odd or there exist j^l with signaj ^ signai.

To show this, we argue as follows:
(a) : The case m = 1 is obvious. For m > 2 we can assume without loss of
generality that ai = 1. Then we choose w € C with w171 = (—I)771 a^ and
note that

m-l L.

P(a?i,a:2)=^+^2^= T[(xi-wexp(2m-)x2) .
fc=o m

Hence P is a product of m linear factors which are pairwise not propor-
tional. Moreover, P contains an elliptic factor, except for the case m = 2
and sign 02 = —1. Because of our normalization assumption and because
of 2.10 this proves (a).
(b) : From the considerations in (a) and an easy inductive application of
Eisenstein's theorem (see e.g. Van der Waerden [VA], p.27) it follows that
each polynomial P above is irreducible. Obviously we have gradP(^) 7^ 0
for all ^ € R71 with [$[ = 1. Hence Corollary 4.8 shows that R71 is P-convex
with bounds whenever the condition in (b) is satisfied. The complementary
case is that m is even and that signaj = signa; for all 1 < j, I < n. Then
P is elliptic and therefore condition 4.7(1) is violated. Hence R72^ is not
P-convex with bounds in this case.
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As a consequence of (b) we get that for n > 3 there are differential
operators P(D) which admit a right inverse on £{Kn') and which are notf\
hyperbolic. For = 3 and n = 4 we have the examples (9. := -—)

dxj
af+^-h^ and ^-h^j-aj-^2.

To show that the case n = 2 is different from the case n > 3, we recall from
(MTV4J (see also (MTV2], 5.3):

4.10. LEMMA. — Let P be a non-constant polynomial on C71 and
let Pm denote its principal part. If P{D) has a right inverse on £(Rn) then
Pm(D) has a right inverse on ^(tT1) and the following holds :

dist(z, V{Pm)) = 0(1) for \z\ -. oo and z € V(P) .

4.11. THEOREM. — Let P be a non-constant polynomial on C2.
Then the following conditions are equivalent:

(1) P is hyperbolic

(2) P(D) has a right inverse on £(R2) or P'(R2)

(3) each irreducible factor of P is hyperbolic with respect to each non-
characteristic direction

(4) P is hyperbolic with respect to each non-characteristic direction

(5) P(D) has a right inverse on £(S1) and V(Sl) for each open convex
subset HofR 2 .

Proof. — (1)=^(2) : This can be shown as in the proof of Proposition
3.2.

(2)=>(3) : Because of 4.2 we can assume that P is irreducible. If
N € R2 is non-characteristic for P we can assume - after a real linear
change of variables - that N = (1,0). Because of this, we can furthermore
assume that

m-l

(6) P(5, w)=sm^^ €j(w}s3 for all (s, w) € C2 .
j=o

Since Pm is a homogeneous polynomial of degree m in two variables, we
find k C No with 0 < k < m and 0 + a ^ € C for 1 <, j <, k (if k > 0) so
that

A-

(7) Pm(5,w) = s^ JJ(5 - a,w) for all (s,w) € C2 .
i=i
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In the sequel we shall assume 1 < k < m; the cases k = 0 and k = m are
treated in the same way. Since P(D) has a right inverse on f(R2), we get
from 4.10 that this also holds for Pm(D). By 4.7(1) this implies aj C dR
for 1 < j < k. Now put OLQ := 0 and let

Lj:={(ajW,w) : w GC} , 0<j<k

Then (7) implies
k

(8) V(Pm)=[JL,.
, , • ^ : . ' " . J=0 . . . - , . .

Next note that the solutions of P(z) = 0 can be described by a Puiseux
expansion. More precisely: there exists B > 0 so that

v(P)n{(s,w) ec2 : H <B}
is compact and so that for each branch W of

y(P)n{(5,w) cc2 : H > B}
there exists q C N so that

W ={(s(w),w) : \w\ > B}
q • • • ' ' ' • •

where s(w) = V^ a/w^9. Now note that by 4.10 there exist C > 0 and
<==-oo . . , . . • . .

D > B so that

(9) dist((5(w),w),y(P^))<G fo r |w |>P .

From this and (8) it follows easily that for some j with 0 < j < k we have
dq = Oj. Furthermore, (9) and (8) imply that ai = 0 for 1 < I < q — 1.
Hence we have

o
s(w) = OjW 4- V^ diw1^ .

i=-oo • • • •

Since aj is real and since this holds for each branch TV, we get the existence
of M > 0 so that

|Im5| < M(l 4- |Imw|) for all (s,w) € V(P) .

Since the vector (1,0) is not characteristic for P, this implies that P is
hyperbolic with respect to (1,0).

(3)=^(4) : Let N € R2 be non-caracteristic for P. Then N is also non-
characteristic for each irreducible factor Q of P. Because of (3) this implies
that Q is hyperbolic with respect to N for each irreducible factor Q of P.
It is easy to check that this implies that P is hyperbolic with respect to N.
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(4)=^(5)=^(1) : This holds by Theorem 3.8.

The condition PL(n) used above is related to a different Phragmen-
Lindelof condition which was introduced by Hormander [H02] to charac-
terize the surjectivity of operators P(D) on the space A(fl) of real-analytic
functions on a convex open set fl, in R71. In concluding this section we show
that PL(fl) implies Hormander's Phragmen-Lindelof condition. This is an
immediate consequence of Theorem 4.5 and the following proposition.

4.12. PROPOSITION. — Let Q be a convex open subset ofR71 and
let P be a non-constant polynomial in n variables. If P(D) admits a right
inverse on £(d) then the following condition HPL{^1) holds:
For each c > 0 there exist 0 < 6 < e and \ > 0 so that for each psh.
function u on C71 the following two conditions :

(a) u(z) < h,(lmz)+X\z\ for all z C C71

(b) u(^) < 0 for all ^ C R71 with P^($) = 0
imply
(c) u{z) < hs(lmz) for all z € C71 with Pm(z) = 0 .

In particular, P(D) : A(fl) —^ A(fl) is surjective.

Proof. — To prove that HPL(^l) holds, it suffices, by Hormander
[H02], Thm. 1.1, to show the following:

For each convex compact set K C fl, and for each / € A(H)
there exists a complex neighbourhood K of K so that
for each open set uj with K C uj CC ^ there is u C C{uj) with
P(D)u = f so that u \K can be extended analytically to K .

To prove this, we first recall from 2.2(2) that the hypothesis implies
For each e > 0 there exists 0 < 6 < e so that for each / C ^(0,0<$)
there exists g € <f(0, f^) with P(D)g = f .

Now fix K C 0 compact and convex. Then there exists 6 > 0 with K C ^le-
Choose 0 < 6 < e according to (2) and let / € A(^l) be given. Next let

K := { z e C " : dist(^,^) <a}

where a > 0 is so small that K D IR71 CC ^ and that / can be extended
analytically to a holomorphic function F on K. Now observe that by a result
of Malgrange (see e.g. Treves [2], Thm. 9.4) there exists a holomorphic
function H on V which satisfies

p { 1 9 1 9 ^ H - F
^ ^ • • " ^ ' 0 ^ '
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Let h := H |^p, and choose ^ e V(K H R71) with ^ |Q,= 1. Then

/o := / - PWW

is in C00^,^)' Hence (2) implies the existence of go C C00^,^) with
P(D)go = /o. Consequently,

u := (ph -{- go

is in (7°°(n) and satisfies P(D)u = / as well as

^ |j<= h \K= H \K '

Obviously, this implies (1). By Hormander [H02], Thm. 1.3, condition (1)
implies that P(D) : A(fl) —> A(n) is surjective.
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