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GLOBALITY IN SEMISIMPLE
LIE GROUPS

by Karl-Hermann NEEB (*)

0. Introduction.

One of the most essential facts in the theory of Lie groups is that,
given a Lie group C?, there is a one-to-one correspondence between the
analytic subgroups of G and the Lie subalgebra of L((7), the Lie algebra
of G. We are interested in the corresponding situation in the Lie theory of
semigroups.

Semigroups in connection with Lie groups became increasingly impor-
tant in recent years in such contexts as representation theory (OPshanskil
[01], [02], Howe [Fo]), harmonic analysis (Faraut [Fal], [Fa2]) and system
theory (Kupka [HiLPy]). For further references see [HiHoL] and [HLP89].

Firstly one has to look for a suitable class of subsemigroups of Lie
groups generalizing the analytic subgroups. These are the subsemigroups
S of a Lie group G for which the group G(S) ^ (S U 6'"1) generated by S
is an analytic subgroup of G. We call this subsemigroups preanalytic. As
is described in detail in [HiHoL] V, it is possible to define a tangent wedge
for such semigroups S of G by

L(5) = {x € L(G) : exp^rr) C cl^)5}

where the closure has to be understood with respect to the Lie group
topology of G(S). This generalizes the notion of a tangent algebra of an

(*) The author thanks Prof. Dr. Karl H. Hofmann for his support.
Key-words ; Semisimple Lie algebras - Lie semigroups - Semisimple Lie groups - Control
theory - Controllability.
A.M.S. Classification : 17B20 - 20M99 - 22E46 - 93B05.
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analytic subgroup. Let us call a closed convex cone W in a finite dimensional
vector space L a wedge and H{W)d^{W D (-W) the edge of the wedge,
i.e., the largest vector space contained in W. The suitable generalization
of the Lie subalgebras of L((7) are the Lie wedges. These are the wedges
W C L((7) with the additional property that

e&dhW=W for all h C H(W).

Notice that the Lie wedges which are vector spaces are exactly the sub-
algebras of L(C?). This definition is justified by the fact that for every
preanalytic subsemigroup S of a Lie group G the set L(5) is a Lie wedge
([HiHoL] V.1.6). It is also true that, given a Lie wedge W C L(G), we
find a local subsemigroup U C G having W as its tangent wedge in some
local sense, but the circle is a simple example of a Lie group such that
L(G') •==- R contains a Lie wedge iy = IR+ which is not the tangent wedge
of a subsemigroup of G. This shows that the correspondence between the
subsemigroups of the Lie group G and the Lie wedges in L(G) is far from
being surjective as is true in the group case where every subalgebra is the
tangent object of a subgroup. We call the Lie wedges W C L(G) which
occur as tangent wedges of subsemigroups of G global in G. If W -^ L(G')
is global in G, we clearly have S = (exp W) ^ G. These Lie wedges are
said to be not controllable in G. This definition has a control theoretic
interpretation : if W is interpreted as the set of controls, then S == (exp W)
is the set of points in the state space G attainable by the system whose
trajectories are obtained by piecewise constant steering functions.

To avoid technical difficulties in our formulations and proofs we often
restrict our attention to subsemigroups S C G for which G{S) = G and
Lie wedges W C L(G) which are Lie generating in L((7), i.e., L(G) is the
smallest subalgebra containing W. One knows from [HiHoL] that this is no
loss in generality but it guarantees that all semigroups S = (exp TV) have
dense interior and the same interior as S ([HiHoL] V.I. 16).

We trivialize the tangent bundle of G with the mapping

^ : L x G - > r(G), (x,g) ̂  d\g(l)x.

If V is a finite dimensional vector space and / : G —> V a differentiable
function we define f'.G—> Hom(L, V) by

(ff{g)^}=(df(g)^d\g(l)x) for all x € L.

For a wedge W of a finite dimensional vector space L we define the dual
TV* ^ {a; € L : {uj,x} ^ 0 for all x C W}. This set is always a wedge in
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L. We also set algint W = miw-w^V' According to [HiHoL] 1.2.2, we find
that

algint W* = {uj e L : {uj, x) > 0 for all x e W \ H(W)}.

Our main tool will be the concept of W-positive functions. These are the
real functions / on G which are contained in the set

Pos (W) ̂ {f e C°°(G) : f'{x) C IV* for all x C G}.

A principal resul in [Nl] 11.12, states that W is global in G if and only if
Pos(lV) contains a function / with

f(g)e algint TV* for all g C G.

Furthermore it is shown in [Nl] 11.13, that Pos(W) contains a non-constant
function if and only if W is not controllable in G.

Using these results, we give a characterization of those Lie wedges
W in L = s ,̂!?^ which are invariant under the maximal torus of the
adjoint group and which are controllable in the associated simply connected
Lie group G = SI.IR)^ (Theorem 1.3). The rest of Section 1 is dedicated
to a more detailed analysis of this situation. In Section 2 we develop
some algebraic tools concerning real root decompositions with respect to
compactly embedded Cartan algebras and invariant cones in semisimple
Lie algebras. To every invariant cone W in the semisimple Lie algebra L
we associate the bigger Lie wedge V ^ W + K^ where KH is a maximal
compactly embedded subalgebra of L. An inspection of the orthogonal
projection along K^ yields some useful information about the intersections
of V with sl(2, H)"1 subalgebras of L (Lemma 2.23). In Section 3 this allows
us to reduce the controllability problem for invariant cones in semisimple
Lie groups to the controllability problem for Lie wedges in sl(2, IR)772 which
are invariant under a maximal torus of the adjoint group. Combined with
the results from Section 1, we get a characterization of the invariant cones in
a semisimple Lie algebra L which are controllable in the associated simply
connected Lie group G (Theorem 3.5). If L is simple, much more is known.
We even get a characterization of those e^ KH -invariant wedges W C L
with H(W) = K^ which are global in G (Theorem 3.7). We conclude with
a criterion for globality in the non-simply connected case.
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1. Globality in S1(2,R)^.

In this section we consider the simply connected group G = Sl(2, R)^
and its Lie algebra L = L(C?) = sl(2,R)n. We use the following notations
for the elements of sl(2,R) :

. (\ 0\ - /O 1 \ , -, / 0 1 \
A =^ -lj5 B=[l o j - and u=[-l o j -

These matrices satisfy the relations

(1) [U, B] = 2A, [£/, A] = -25, and [A, B] = 2(7.

We denote the elements of the ideal L, = {0}'~1 x sl(2,R) x {O}71"' with
a subscript i and write T ^ span {Uz -\- Ai^Bz : z = 1,..., n} for the Borel
subalgebra of L, N ^ span {Ui -\- Ai : i = 1,.. . , n} for its commutator
algebra, K ^ span {Ui: i = 1,..., n} for the maximal compactly embedded
subalgebra and P =^ span {A^, Bi : i = 1,... , n}. Then L = K + T is an
Iwasawa decomposition and L = P + K a Cartan decomposition of L. We
identify L with its dual L using the non-degenerate symmetric bilinear form
—k, where k is the normalized Cartan Killing form with

n n

k(X)d^k(X,X)=^a]+b2-x] for X == ^a,A, + &A + ̂ .
1=1 Z=l

LEMMA 1.1. — Le^ g(z) == ^(1 - e"^)""1 for z e C \ (2ml \ {0}) and
a € R. Then the linear operator g(a,daA) on sl(2,R) is well defined (adA
has only real eigenvalues) and may be expressed as

/ I 0 0 \
0 -(——0 -G- a

^(ad aA) = tanha

0 a\ tanh a /

wi^A respect to the base (A,B,U) ofsl(2,R).

Proof. — From (1) we get

[A, B + U] = 2(B + (7), [A, B - U] = -2(B - U) and [A, A] = 0.
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Another simple computation shows that

_(g(2a)+g(-2a))=-a— and ^ (g(2a) - g(-2a)) = a.
2. tanha 2

We conclude that <y(adaA)A = A,

^(adaA)B = ̂ (adaA)(B + £7) -h p(adaA)(B - (7))

= , (g{2a)(B + (7) + ̂ (-2a)(B - U)) == —a— B + aU,
^ tanh a

and

^(adaA)(7 = _(^(adaA)(B -h U) 4- ^(adaA)(J3 - (7))

= ^ (^(2a)(B + £7) + g(-2a)(B - U)) = aB + —a— (7.
^ tanh a

For later reference we record the following simple fact :

LEMMA 1.2. — If the Lie generating wedge W in the Lie algebra
L(G) of the Lie group G is invariant under the differential d^(l) of the
automorphism 7 of G, then the Lie wedge V^L^expW)) is invariant
under d^(l).

Proof. — For v € V we have

exp(R+d7(l)v) = 7(exp(R+^;)) C ̂ ((expW})

C 7((expW}) = (expd7(l)W) = (expW).

This shows that d^(l)v e V and that V is invariant under ^7(1). n

THEOREM 1.3. — Let W C L be a Lie wedge with non-empty interior
which is invariant under e^ K. Then Wis not controllable in G if and only if

TV* n N / {0}.

Proof. — "=^5 : We assume that W is not controllable in G. Then
r d e f ,V=L({expW}) = L((expT^}) ^ L

is a global Lie generating Lie wedge which contains W ([Nel] 11.13).
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Therefore V has inner points. We see with Lemma 1.2 that e^KV = V
so it suffices to prove that V* n N ^ {0} because V* C W\ According
to Theorem 11.12 and Proposition III.4 in [Nel] we find / € Pos(V) with
f(g) C algint V* for all g e G and / o /expfc = / for all k e K. We define
f : L - ^ R b y f ^ f o expc.. Using the formula for the differential of the
exponential function from [He] p. 105, we see that

/'(expp) = ^/(expp)dAexpp(l) == df(expp)dexp(p)g(8idp)

= df(p)g(aidp) e algint V* for all p c P.

The operator g(a.dp) is well defined for every p ^P because adp has only
real eigenvalues for p e P. Furthermore we have /oe^ = /for all A; C ̂ .

n

^ a^A^ with ai
i=l

For p = ̂ a,A, with a, ^ 0, this leads to

0 = ̂  Ae^'^p) = df(p) [ - J U^] = df(p)B^ = 0.

Hence we may represent df(p) with a = (a^..., an) C IR" as
n

^7(P) = ̂  a,(a)A, + A(a)^.
1=1

With (2) we get
n

^(^^/(^(adp) = ̂ a,(a)A,
2=1

+A(a)(-a^+-^(3) +A(a) ( - a,B, + -^- ^) e algint V*v tanha, /v tanh ai

for all a C R71. The averaging operator p '. L -^ K == L^ of the
action of the torus group e^^ on L agrees with the orthogonal projection
onto K along P. Using the assumption that int W == 0, we find that

n

0 + 7r(int W) C int W D ̂  contains an element £/o d^ ̂  Wi with ^ ^ 0

for all i = 1, . . . , n. Now (3) leads to

-A:(^(a), £/o) = V ̂ A(a) -^- > 0
^ tanh a^

for all a e R71. Hence the element ^(a) ̂  ——1-——- ̂ (a) is contained
-k(uj(a),Uo)
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in the compact base C^{uj e W* : uj(Uo} = 1} of the pointed cone
V*. Setting dm J^ (m,?n,. . . ,m) we find a cluster point of the sequence
^(^m) ^ C, i.e., c<;o = lim o;(a^,). We claim that {ujQ^Ui — Bi} = 0 for

A—coo
z = 1,.. . , n. If /3i(amk) = 0 for almost all k G N, this is clear. Therefore we
may assume that /^(a^.) / 0 for all k C N. Now we have

(u;(am,,),Bi) __ {^(a^,),Bi) , , .
^(a^.^^-Ma^,),^)-^1111^^

which tends to 1 for k —>• oo. Combining both cases completes the proof of
n

our claim. Using this information, we represent c<;o as ^ ^ aiAi-^-f3i(Ui—Bi).
2=1

Application of a suitable element 7 € e^6 K leads to
n ______

7(^o) = ̂  sgn (A)^/a?+/3?A, + A^z € C C V*
1=1

71

because (7o and therefore (7 is invariant under e a ' d K . The element V^ ̂ (A^+
1=1

n

(7^) lies on the line segment between 7(0^0) and 7r(7(ci;o)) = 5 .A^5 hence
i==i

is contained i n C ' n A ^ c y * n A ^ \ {0}.
n

"<=" : Let LJ = ^A(Az + ̂ ) € W* n A^ \ {0}. We know from
1=1

[He] p.270, that G == (expr)exp(T^) is a product decomposition in the
sense of [Nl] IV.7. This means that the mapping (expT) x exp(K) —^ G,
(x,y) i-̂  xy is a diffeomorphism. We know, in addition, that uj € N =
[T.r]-1 = ([r,T] C [^^])-L which allows us to apply Proposition IV. 11
in [Nl] to find a function / C C°°(G) such that /'(I) = uj ^ 0 and
/'(^) € Ad(expAT^ = (e&dK)^ C W*. Using again Corollary 11.13 in
[Nl] we have proved that W is not controllable in G. a

Remark 1.4. — One should notice that for n > 1 there are Lie
generating e^ ̂ -invariant wedges in L without inner points. To see this,
let

n
^def 'C' d ^{^a ,A,+&A:a?+^ ^1 for z = l , . . . , n }

1=1
,defand W^R-^t/i+C).



500 KARL-HERMANN NEEB

Then e&dKC = (7. Hence W is e^^-invariant, pointed, and contained in
the hyperplane U^. Every subalgebra containing W must contain L\ and
therefore C. Then it contains also P{ 4- [Pi, Pi} = Li and agrees with L.
Consequently W is Lie generating, n

COROLLARY 1.5. — Let n = 1, G = Sl(2,Rf, L = sl(2,R) and
Ws^{aA + bB + xU : x ^ 0,a2 + b2 ^ 52^2}. Then the e"^'invariant
wedge Ws is global in G if and only ifs ^ 1.

Proof. — We have N = T = R(A -h U) and TV; = Wi. Therefore
H^* n N ^ {0} if and only if U + A € W^*, which is equivalent to 5 ^ 1.
Using Theorem 1.3, we see that Ws is controllable in G if and only if s > 1.
If Ws is global, then it is not controllable and if Ws is not controllable, then
it is contained in a global W'g (Lemma 1.2) which shows that s ^ s ' ^ 1. n

Remark 1.6. — If we compare the proof of Theorem 1.3 with the
proof of Proposition 11.7 in [N2], it is remarkable that we did not use any
explicit parametrization of G to prove Theorem 1.3. The difficulties arise
from the great variety of e^ ̂ -invariant cones for n > 1. For n = 1 the
proof is much easier. From W = Ws and u(o) e Wg = Wi. for all a C IR,
we may conclude that

a(a)2 -^(a)^2 ^ \ /3(a)2 ————— + 0.
s tanh (a)

This shows that s2 < ——, ' ) , . for all a € R, hence 5^1. atanh (a)

LEMMA 1.7. — Let F C L be a subalgebra with [F,K\ C F and
I^ii-.FnPi^W}. Then

F=(FnK)+^Li.
id

Proof. — The Lie algebra L is a J^-module under the adjoint action
n

and L = K © ^^Pi ls tne decomposition into isotypical components.
1=1

Consequently F decomposes as
n

F = (F n K) e (j) Pz n F = (F n K) ® ̂  P, n F.
»=i iei
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The K-mod\i\es P, are simple, hence P, C F for i e J. But F is also a
subalgebra which leads to L, = [P,, P,] + P, C F for i e J. n

COROLLARY 1.8. — Let W C L = ̂ (2^ be an e^ K-invariant Lie
wedge containing W^. Then W is not controllable in G = S1(2,R)7^ iff
there exist numbers f3i € R~^~ such that

n

(4) ^ f^A(A/+;70cTV*\{0}.
i=l

If (4) is fulfilled, we have

H(L({exp W})) C ̂  n K C ̂  L,.
/3,=0

Proof. — Let W be controllable in G. Then, using Theorem 1.3, we
n

find an element cj = ^A(A^ + Uz) e TV* \ {0}. But (7, e Wf C W and
^=i

therefore
^,^}=-fc(A^^z)=A^o.

The other implication is trivial from Theorem 1.3. Let us assume that (4)
is fulfilled. Then V^L^expW)) is an e^ K -in variant global Lie wedge
in L (Lemma 1.2) with W C V and H(V) is a subalgebra of L with
[K,H(V)\ C H(V). The function / e Pos(V) C Pos(W) constructed in
the proof of Theorem 1.3 satisfies /'(I) = uj and therefore uj C V* C W*.
Especially we find that H(V) C uj1-. Let I = [i : H(V) HP, ^ {0}}. It
follows from Lemma 1.7 that i ̂  I for /?, / 0. Hence

H{V) C (H(V) n ̂ ) C ^L, C ( K n ^ ) ( B ̂  L,.
^=0 ^=0

PROPOSITION 1.9. — Let W C L = sl(2, R)^1 be an e^ K-invariant Lie
n

wedge containing W^ with H(W) = ̂ -L n K for uj = V A,(C7, + A,) and

\i > 0. Then W is global in G = Sl(2,R)^ifai2d only'Tfu; e W\

Proof. — "=^" : Let W be global in G. Then W is not controllable in G
n

and Corollary 1.8 provides /?, e R^ with ̂ ^^^(^ + A,) C TV* \ {0}.
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Then S vanishes on H(W) = uj1- 0 K. Hence S \K is a positive scalar
multiple of ci; |^. Consequently /^ = /^ for i = 1,..., n and p. > 0.

"<=" : Assume that u C TV*. We apply Corollary 1.8 to see that

H(L((expW))) C ^ n ^ ) ® ̂  Z^c^nJ^^Ty).
A,=0

This proves that W is global ([N1] III.l). D

LEMMA 1.10. — Let W C L be a Lie wedge and F C L a subalgebra
with

gad FW =,w and W H F C H(W).

Then V^W 4- F is a Lie wedge with H(V) = H(W) + F and V* =
W^F1.

Proof. — Firstly we observe that W D F = -W n F = ^(W) H F is
a vector space. Then [HiHoL] 1.2.32, implies that V is closed and therefore
a wedge. Clearly H(W) + F is contained in the edge H(V) of V. If for
v = w 4- f with / C F and w € TV the element —i; is also in V, hence
—w — f = w' -h // with w' € H^ and // e F. Consequently w + w' C
F n TV C i:f(TV) which proves that even w C Jf(TV) because ^(TV) is the
unit group of the additive semigroup W, hence H(V) = H (W) + F. For
/ € F and h € ^(WQ we get [h,f] € Jf(^) because e^-^HQ = ^(T^)
for all < € R. Therefore

gad/y ̂  e^iy+e^F = W+F = V and e^V = e^^T^+e^^F = V.

We conclude that e^^^Y = V and therefore V is a Lie wedge. That
V* = VF* n F1- is clear because a linear functional is non-negative on V if
and only if it is non-negative on W and vanishes on F. D

COROLLARY 1.11. — Let W C L = sl(2,R)71 be a pointed e^1^-
n

invariant Lie wedge containing W^ with uj = ^^ \(Ui -h A^) 6 TV*, A^ > 0
?=i

and ̂ ± n K nW = {0}. Then W is gtobaJ in G.

Proof. — Let E = (J1 C\K. Then V == IV + E is a Lie wedge because
EnW = {0} (Lemma 1.10). It is also invariant under ea'dK because this is
true for W and E separately. It follows from Proposition 1.9 that V is global
in G because uj € F* = W H E ^ . The fact that WnH(V) = WnE = {0}
allows us to apply [Nl] III.l, to complete the proof. D
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We conclude this section with some facts about the subsemigroups
5' = {expW) of G where W is an e^K -invariant wedge in L.

PROPOSITION 1.12. — Let S C G = 81(2,^)^ be a subsemigroup
which is invariant under all inner automorphisms Ik with k e K^ = (exp K}
and q : G = 2^>exp(P) -^ K" the projection onto K " . Then

{q(s)2 : s e S } C S ^ K < > Cq(S).

Proof. — It is clear that S D K^ C q(S) because q fixes the elements
of K " . Let s = fcexp(p) e 6' with p € P and k € K " . Then Ad(A/)p = -p

n

for fc' == exp ^ , ̂  Ui j as can be easily seen from a direct computation
i-=l

using (1). This leads to

q(s2) == kk =• kexp(p)exp(-p)k' = sklk-i (exp(-p))
= sklk-i oj^(exp(p)) = 54-i^(^exp(p)) = s l k - i k ' ( s ) ^ SS = 5,

which completes the proof, n

If the conditions of Corollary 1.11 are not satisfied, we get more
information about the semigroup S :

PROPOSITION 1.13. Let W C L = s ,̂!̂  be an e^K-invariant
n

Lie wedge containing W^ with uj = ^A,(£7, + Ai) ^ W*, A, > 0 and
i=l

uj1- n K n W = {0}. Suppose that z ^ , . . . , Zn-i e ^-L H K is a base of this
vector space. Then

G = exp (Z^i C ... C ~3-Zn-\}S for S = (exp W}

and K" = exp(Z^i C ... C lzn-i)(S H K " ) .

Proof. — To get a contradiction, we assume that G ̂  5d£fexp(Zzl C
... C Z2;n^i)5. The semigroup 5 has dense interior ([HiHoL] V.I.10), and
therefore ~S ^ G ([HiHoL] V.5.14, V.5.16). Then [Nl] 1.5 provides a non-
constant function

/ € Mon(5) = {/ € C°°(G) : f(gs) ̂  f(g) for all g € G, s 6 S} C Pos(lV).

Let Zd^fexp(Z^l © . . . © Z^_i) and Ki d^fexp(^-L H J^)/Z the associated
torus group. The function / is constant on the cosets g Z , hence it factors
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to a function /: G/Z —r R. The group JC0 acts by right multiplication on
G/Z and Z acts trivially. So the torus K\ acts on G / Z . If m is normalized
Haar measure on K\ and TT : G —> G/Z the quotient homorphism, then the
function

h : g ^ I f(7r(g) . k)dm(k) = ( f(gk)dm(k)
JKi JKi

is smooth and satisfies the conditions

1) h(g,) > h(g^) if f(g,) > f(g^

2) h(gs) ^ h(g) for g € G, 5 e 5, and

3) A(^fci) = h(g) for all A; € K^

This shows that /i € Pos(V) for the Lie wedge V = W -{• ̂  Ft K
(Lemma 1.10). The fact that h is not constant implies that V is not
controllable in G ([Nl], 11.13). Now Corollary 1.8 provides real numbers

71

ft € R-^ such that ^ = ]^AW + A,) ,€ V* \ {0}. We conclude that
i=l

n n

^f3iUi C V* n K = R-^^A^y This proves that ^ 6 R4-^ C V* C
1=1 i=i
W*, a contradiction. D

2. Invariant cones in semisimple
Lie algebras.

In this section we denote with L a real semisimple Lie algebra and
n

with L = Q^ Li its decomposition into simple constituents such that Li
i=l

is non-compact for i ^ m and compact for i > m. We assume that L
contains a pointed Lie generating wedge W which is invariant under the
adjoint action, an invariant cone for short. We fix a compactly embedded
Cartan algebra H of L ([HiHoL] III.2.14) and denote the unique maximal
compactly embedded subalgebra containing H with KH and its center

n

with ZK ([HiHoL] A.2.40). Then H = (f)^ where Hid^H n Li is

1=1
n

a compactly embedded Cartan algebra in Li and KH = ^^^^ ^h
z=i

KHi == ^ for i > m because Li is compact for i > m. We need the real
root decomposition of L with respect to H :
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THEOREM 2.1 ([HiHoL] III.6.5). — Let L be a finite dimensional Lie
algebra with compactly embedded Cartan algebra H and A be the set of
roots ofZ/c with respect to H^. These are all purely imaginery on H. We
set

^{-zAI^AcA} and L^ = L-^^L H (L^ C L^) for uj = -i\\n.

Any choice of a closed halfspace E in H whose boundary meets the finite set
fl, only in {0} allows us to represent fl, as Q = n"*" U Q~ where ̂ + = E H Q
and n~ = -^. We shall call ̂ + a set of positive roots. For each choice of a
set of positive roots there is a unique complex structure I : H^ —> H^~ with
I2 = —id^+ and a direct decomposition of L into isotypic H-submodules
under the adjoint action

(5) L = H ( B H + , H+= Q) Z/^
o^a/e^-1-

where the action of H is described by

(6) [h, x\ = UJ(K)IX for all h € H, x € L^.

The complexification ofL^ is L^ 9 L^, where A is the unique complex
extension of iuj. We have

(7) [2^, L^] C L^' + L^~^'

and ifq is any invariant symmetric bilinear form on L x L, then

(8) q(x, I x ) = 0 and q(x) = q{Ix) for all x € L^.

Proof. — In view of [HiHoL] III.6.5/8, it only remains to show (7).
This follows easily :

[L^L"] = [L H (L^ C L^),L H (L^ © L^')}

cLn^eL^.L^L^}
c L n (^+v © ̂ c^^ e ̂ "^ e JL^-A)
= L n (z^+^ e zL^^' e L^-^' © z'L^-^')
= L^^' e L^^' .
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DEFINITION 2.2. — A root ^ e Q is said to he compact if L^ C K H .
The set of compact roots is denoted with Q^. We write Q^ for the set of
non-compact roots and

PH^ Q L-.
^e^

According to [HiHoL] IH.6.38, we get a Cartan decomposition
L = KH C PH of L and

K H = ̂  L^HO (]) L".
^e^ o^o/e^

We get a disjoint decomposition

^=U^")
such that

{^ : ̂  e ̂ (z)}

are the non-compact roots of L, with respect to Hi ([HiHoL] III.9). For
x € H^ we set Q(x) ^ [ I x , x ] and for uj € f^ we choose an element
^ € L^ such that cj(Q(^)) = 1 and for ^ (E 0^ an element ̂  e L^
with o;((3(^)) = -1. The following lemma shows that this is possible.

LEMMA 2.3. — Let L be a semisimple Lie algebra with the compactly
embedded Cartan algebra H , uj e ̂ + andx C L^\{0}, then uj[Q(x^)} / 0.

(i) (x) = Rx © RIx C RQ(a;) ^ sl(2, R) iff^(Q(^)) > 0 iffu; C Q^
and

(ii) (x) = R^ C RJa; C RO(rc) ^ su(2) iff^(Q(x^) < 0 iffo; € ̂ .

Proof. — Using [Hu] p.37 and Theorem 2.1, we see that the complexi-
fication (x)c of (x) is isomorphic to sl(2, C). Consequently {x} is a real form
of sl(2, C) and therefore a simple Lie algebra. An application of [HiHoL]
III.6.12, shows that u[Q(x)} ^ 0 and that (x) ^ sl(2,R) \i uj{Q{x)} > 0
and (re) ^ su(2) otherwise. The rest follows from [HiHoL], III.6.16. D

LEMMA 2.4. — For i = 1,... ,m we have dimZ^ D L, = 1 and the
Ru-module PH H L, is irreducible. We may choose ^+ and z € ZK such
that uj(z) = 1 for all u e fl~p.
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Proof. — It follows from [HiHoL] p.249, that, for i ^ m, the ideal L, is
hermitean, i.e., Z(KH,) / {0}. Consequently it is an irreducible symmetric
Lie algebra ([He] pp. 377, 379) and the KH, -module PH HL, is irreducible.
It follows from ([He], p.382) that dimZ(JQ^) = dimZ^ H L, = 1 and that
ZK^LI acts on PH^LI as scalar multiples of the identity (Schur's Lemma).
Hence \uJ(zz)\ = c ̂  0 for a ^ € ZK H L, and all cj € Q^(z'). Therefore we
may choose ^+ such that uj(zi) = 1 for all uj € n^(z) and z = l , . . . ,m

772

(cf. [HiHoL] HI.6.37). Then z = ̂  z, is the desired element, a
2=1

In the following we denote the Cartan-Killing form of L with B and
set A-^ = {A e A : -z'A|^ C ^-4.

LEMMA 2.5. — For A € A+ we choose t\ e HC such that \(h) =
B(tx,h) for all h € H and define (A.A')^^,^) for A,A ' € A. If
^ = —zA|i-f and u j 1 = —iX'\H we get

(9) h = ~^^'1Y^X') = ̂ l̂̂  ̂ W^ = -B(Q(x.),h).U\^^) £>\X^i )

Proof. — The last formula follows immediately from

cj(/i) • B(x^) = B(x^^(h)x^) = B(x^, [h - Ix^})
= B(^, [Ix^.h]) = B([x^,Ix^h) = -B(Q(x^),h).

Consequently we have the relation

xW=i.(k)=-^B(Q(x^
B(x^)

for A € A+ and h € H. This proves the formula for t\. The scalar product
of two complex roots A, A' can be computed as follows :

(A,V) » B(,̂ ,) » .^)_0^)) . "W^.
B(x^)B(x^) B{x^)

D

LEMMA 2.6. — Let uj,(jj' C ̂ , uj / ± u j ' , uj = -i\\H, ^1 = -i^^H,
h\ = 2t\l\(t\) and h\i = 2^ //A'(^ /)• Suppose that p and q are the
greatest integers such that A + pA' and A — q\' respectively uj + puj' and
uj — quj' are roots. Then

(10) ^0^,))=^=^)=^- for ^ ' e ^


