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VARIATIONS OF COMPLEX STRUCTURES
ON AN OPEN RIEMANN SURFACE

by Mudumbai S. NARASIMHAN (Bombay)

1. Introduction.

The purpose of this paper is to study the local properties
of variations of complex structures on a relatively compact
subdomain of an open Riemann surface.

Let M be an open Riemann surface and Mi a relatively com-
pact subdomain of M. Let tf(() be a family of complex struc-
tures on M (or on a neighbourhood of Mi) which depends
holomorphically on (, ( being in a neighbourhood Ui of t^
in C"1. We suppose that ^(<o) is identical with the given struc-
ture on M. Consider the family of complex structures tf((, Mi)
induced on Mi by if{t). The family ^(^, Mi) defines a complex
analytic structure on Mi X Ui; we denote by ^(Mi X Ui) the
complex analytic manifold (or structure) thus defined. The
projection iti: Mi X Ui —> Ui defines a family of deformations
of complex structures in the sense of Kodaira-Spencer.

We first prove that for every sufficiently small Stein neigh-
bourhood U of t^ ^(Mi X U) is a Stein manifold (Theorem 1).
We then show that the restriction of the family

7:1: tf(Mi x Ui) -> Ui
to a sufficiently small neighbourhood U of <o ls complex ayia-
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lytically homeomorphic to the family -re: Q ~> -rc(Q) c C7",
where Q is an open Stein submanifold of the product complex
manifold M X C"1 and TC : M X C"1 -> C7" is the canonical pro-
jection of M X C^ onto C" (Theorem 2). This result may
be viewed as a sort of local triviality (« semi-triviality ») or a
local imbedding theorem.

We prove also an analogue of Theorem 2 for differentiable
variations of complex structures (Theorem 3).

The proofs use the theory of linear elliptic partial diffe-
rential equations and some tools from functional analysis.

We now give a rough sketch of the proofs. We show that
there exists a sufficiently small neighbourhood Ug of t^ such
that any functions which is holomorphic (upto the boun-
dary) on any fibre over a point of Ua can be extended to a
holomorphic function on the whole fibre system restricted
to Ug. From this it follows easily that we pan separate points
on the fibre system by holomorphic functions and that there
exist (m + 1) holomorphic functions which form a local coor-
dinate system at a given point. To prove the holomorph-
convexity, we first prove, by considering variations of com-
plex structures on a disc, that the fibre system, restricted to
a small Stein neighbourhood of (o? ls (( locally holomorphically
convex ». Then, by solving a problem analogous to the first
Cousin problem with the help of currents, the holomorph-
convexity is proved.

Once Theorem 1 is proved, Theorem B on Stein manifolds
assures the vanishing of certain cohomology groups; we then
prove theorem 2, adopting a method of Kodaira-Spencer.

Theorem 3 (differentiable case) is proved by solving the
following problem : given Cousin data on ^((, Mi) which depend
differentiably on the parameter, to find solutions of the
(first) Cousin problem such that the solutions also depend
differentiably on the parameter. The proof is inspired by a
proof (unpublished) by L. Schwartz of some results concer-
ning Cousin problems on a compact Riemann surface with
varying complex structures and by some considerations in
Kodaira-Spencer [2].

The author is thankful to Professor L. Schwartz for sugges-
ting the use of Lemma 1, which simplifies the earlier demons-
tration of the author using power series expansions.



VARIATIONS OF COMPLEX STHUCTUBES 495

2. Statement of the theorems.

Let M be an open Riemann surface. Let © be the hole-
morphic tangent bundle of M. Let 8(006*) denote the
space of C°°(0, 1) forms with coefficients in 6, endowed with
the natural topology [5]. If pLe:§(606*) and z a local
coordinate system then p. is of the form (Ji(z) dz 0 O/Oz. If we
define |pl| = |[ji| locally, then |pL| is intrinsically defined as a
function on M. If p. e 8(6 ® 6*) with |p.| << 1 then locally
the forms dz + pi(z) dz define a (1, 0) form for a complex
structure and thus p. defines a complex structure on M.

Let <o e C7" and Uo be an open set in C"1 containing <o* '('
will denote a point in Uo.

For our purposes a holomorphic family if{t) of complex
structures on M will be, by definition, a holomorphic func-
tion pl(() defined in Uo with values in 8(6 ® 6*) such that
|pL(<)| < 1 and pl((o) = 0. We then have on M X Uo an almost
complex structure defined locally by the forms dz + (^(^ z) dz,
dt1, ..., d^ where t1, .. ., f1 are the coordinate function in C^".
This almost complex structure is integrable since pl(z, () is
holomorphic in (. Hence we have a complex structure on
M X Uo (see also proposition 1). We denote M X Uo endowed
with this complex structure by tf(M X Uo). The projection
iii: S(M X Uo) —> Uo is holomorphic and we have a holo-
morphic familly of deformations of complex structures in
the sense of Kodaira-Spencer [2].

If Mi is a subdomain of M and V a neighbourhood of (o in
C^ with V c Uo, we denote the manifold Mi X V with the
complex structure induced from ^(M X Uo) by ^(Mi X V). We
denote by ^(t) the complex analytic structure on M defined
by W.

We have

THEOREM 1. — Let ^ be a holomorphic family of complex
structures on an open Riemann surface M. Let Mi be a relatively
compact subdomain of M. Then there exists a neighbourhood V
of IQ such that for every Stein neighbourhood U of tQ contained
in V, ^f(Mi X U) is a Stein manifold.
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THEOREM 2. — Let if be a holomorphic family of complex
structures on an open JRiemann surface M and Mi a relatively
compact subdomain of M. Then there exist a neighbourhood U
of to, an open Stein submanifold Q of the product manifold
M X C"1, a complex analytic homeomorphism <t> of ^(Mi X U)
onto Q and a complex analytic homeomorphism 9 of U onto
TC(Q) (ir denoting the projection M X C^ -^ C7") 5ucA tAa( ^
following diagram is commutative:

tf(MiXU)-^ Q
1̂  ^
U —^(Q).

REMARK. — In Theorems 1 and 2 and as well in Theorem 3,
if the boundary of Mi is smooth it is sufficient to assume that
the variation is given only upto the boundary of Mi.

Let Uo be an open subset in W and to e Uo. A differen-
tiable family of complex structures we mean differentiable
function y.(t) defined in Uo with values in §(006*) such
that \y.(t)\ < 1 and ^(to) = 0. (By differentiable we always
mean « indefinitely differentiable ».) For a subdomain Mi of
M we denote by ^, Mi), t e Uo, the surface Mi endowed
with the complex structure defined by a(().

We have then

THEOREM 3. — Let ^S{t) be a family of complex structures on
M depending differentiably on t, t being in a neighbourhood of
to in IV". Let Mi be a relatively compact subdomain of M. Then
there exist a neighbourhood U of to and a differentiable map $
ojfMi X U into M which maps each fibre ̂ , Mi), (e U, biholo-
morphically into M.

3. Some lemmas in functional analysis and potential theory.

Some of the lemmas stated in this section are more or less
well-known. We state them here for convenience of reference.

We denote by Uo an open set in C"1 or V according as we
consider holomorphic or differentiable variations, to is a point
of Uo.
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Let E and F be two complete barrelled locally convex topolo-
gical vector spaces. We shall say that a family of continuous
linear operators T( : E -> F, te Uo, depends holomorphi-
cally (resp. differentiably) on (e= Uo if ( —> T( is a holomorphic
(resp. differentiable) function of Uo with values in ^(E, F),
where ^(E, F) denotes the space of continuous linear ope-
rators of E into F endowed with the topology simple conver-
gence. We remark that if T( depends holomorphically (resp.
differentiably, differentiably) on ( and f(t) is a holomorphic
(resp. differentiable) function with values in E then t -> T^(^)
is a holomorphic (resp. differentiable) function with values
in F.

LEMMA 1. — Let E and F be two Banach spaces and T( :
E —> F depend holomorphically (resp. differentiably) on t.
Assume that T^ is an isomorphism. Then there exists a neigh-
bourhood Uo of to such that T< is an isomorphism for each t e Uo
and the operators I;"1: F -^ E depend holomorphically (resp. diffe-
rentiably) on t e Uo.

This lemma is a special case of implicit function theorem
in Banach spaces and is proved easily.

LEMMA 2. — Let E and F be two Banach spaces and T<:
E -> F depend holomorphically (resp. differentiably) on t.
Assume that T^ admits of a right inverse. Then there exists a
neighbourhood Uo of to such that for t e= Uo, T< admits of a
right inverse depending holomorphically (resp. differentiably)
on t.

Proof. — We recall that a right inverse for T\ is a conti-
nuous linear map S^: F —> E such that T\ o S^ is the
identity map of F. Now we apply Lemma 1 to the operators

TJS,(F):S,(F)->F
and Lemma 2 follows.

Let D be a relatively compact open subset of C. Let a be
a fixed real number with 0 -< a < 1. Let f be a complex
valued function satisfying a Holder condition of order a on
D. Put

mio...D= sup 1/1 + supj^-^2)'.» , a . " — ^ _ f II I 1 ^^f !„ ,. |a
D ^2.eD pi—^l

z<9&2,
32
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We denote the space of these functions by Ha(D).
If f is a function which is once differentiable such that

its partial derivatives satisfy in D a Holder condition of
order a put

l l /1La.D=Sup|/1+ ^| + ^| .
D °Z |o,a,D OZ |o,a,D

Let H^a(D) denote the space of such functions.
Let now D be a disc |z| <; R, 0 <; R <; oo in the plane.

The operator —r is a continuous linear operator from the

Banach space H,^(D) (with the norm |]/*[|i,a) to the Banach
space Ha(D) (with the norm [[/'[lo.a)-

LEMMA 3. — Let D he a disc in the plane. The operator

^ : H^(D)->H,(D)^
~bz

admits of a right inverse. ^
This lemma is classical. For instance convolution with —

yields a right inverse [1]. ^z

Let Me be a relatively compact subdomain of an open
Riemann surface M such that Mo is bounded by a finite num-
ber of disjoint analytic Jordan curves. We shall say, for bre-
vity, that Mo has an analytic boundary. We shall denote by
^Mo boundary of Mo in M.

Let DI, . . ., D^, D/c+i, .. ., D^ be a covering ofMo by coor-
dinate discs D; in M with D; compact and contained in a
coordinate disc such that the following conditions are satis-
fied :_

i) D^ is contained in Mo for i == 1, ..., k
ii) if Zj is the coordinate function in Dy mapping Dj onto [z|

<; £, then Zj maps for/ == k + 1, . .., n, Dy n Mo onto the « semi-
disc » ^ \z\ <; e, Im z > 0 \ and Dy n bMo onto | — £ <; Rb <; £ j .
Let Df denote the covering of Mo formed by Di, . . . , D^,
Dfc+i n Mo, ..., D^ n Mo. Let \V[ \ be a shrinking of the coveringm-

Let Hi,a(Mo) denote the Banach space of complex valued
functions in Mo which are once differentiable in Mo and whose
first partial derivatives satisfy a Holder condition of order a
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in every compact subset contained in a coordinate neigh-
bourhood of Mo (e.g. D'i) with the norm

||l.a= Sup H/ILa.D;'.
i=l,...,o

0,1
Let Ha(Mo) denote the space of (0, 1) forms whose coefficients
satisfy a Holder condition of order a in every compact set

__ 0, 1
contained in a coordinate neighbourhood of Mo. If /e Ha(Mo)
and f == fi dz1 in D' (z1 being the coordinate function in Di)
define

ll/llo^M^Supll/illo.a.D;';
i

0, 1
with this norm Ha(Mo) becomes a Banach space.

LEMMA 4. — Let Mo be a relatively compact subdomain of M
with analytic boundary. Then the operator

d^: Hi,.(Mo)->H,(Mo)

admits of a right inverse.

Proof. — We give a sketch of the proof of this lemma.
Let Mi be a relatively compact subdomain of M, with analy-
tic boundary, containing [ J D(. We first remark that we

i=l, ...,n 0, 1 0, 1
can find a continuous linear map p : Ha(Mo) ->• Ha(Mi) such

0, 1 0, 1 0, 1

that •Y o p == identity map of Ha(Mo), where y : Ha(Mi) -> H^(Mo)
denotes the restriction map. [The question being local at
the boundary, locally the extension is given by reflection at
the re-axis. For details see e.g. [4, Th. 2. 4]]. On Mi X Mi there
exists (H. Behnke-K. Stein, Math. Ann. 120, p. 436) a mero-
morphic differential K(z, dQ, holomorphic for z -=f=- ^ such
that in a coordinate disc around z == ^ we have,

( _j[ ^
K(z, dQ =^————— 4- regular function [d(,.

(4-rc(z—(;) }

We may then estimate the potential

TV = 2if^ K (z, rfi:) A m, f e. H.(Mi)

on compact subsets of D; using the estimate on a disc
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1 °'1for the potential with the kernel ————— [I], If f e Ha(Mo) let
Tt[Z —— ^)

Tf denote the restriction of Ti(p(/*)) to Mo. Then d{Tf=f
and

IIT/'lL^M^c.iip^iio.^M^c.iiyiL.M,
with positive constants Ci and Cg. This proves Lemma 4.

The next lemma will be required only for the holomorphic
tangent bundle of M. But we shall prove it for a general holo-
morphic line bundle.

Let L be a holomorphic line bundle on M. Let H^a(Mo, L)
denote the Banach space of sections of L in Mo which are once
differentia ble in Mo and whose first partial derivatives satisfy

0, 1
a Holder condition of order a. Let Ha(Mo, L) denote the
Banach space of Holder continuous (0, 1) forms in Mo with

0, 1
coefficients in L (we introduce norms on H^a(Mo, L) and H^(L)

0.1
as on H^a(Mo) and Ha(Mo).

LEMMA 5. — Let L be a holomorphic line bundle on M. Let
Mo be a relatively compact subdomain with analytic boundary.
Then the operator

^:H,,.(MO,L)-^H,(MO,L)
admits of a right inverse.

Proof. — Since M is an open Riemann surface, every holo-
morphic line bundle on M is holomorphically trivial. This
follows for example from the exact sequence.

Hi(M, 0) -> H^M, 0*) -> H^M, Z)

remarking that H^M, 0) == 0, H^M, Z) = 0. (Here 0 denotes
the sheaf of germs of holomorphic functions and O* the
sheaf of germs of non-vanishing holomorphic functions.)
Since L is holomorphically trivial on M there exist topolo-
gical isomorphisms

^: H^(Mo,L)^H^(Mo)
0,1 0,1

^: H,(M,,L)^H»(M,)
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such that the following diagram is commutative :

Hi,.(M,, I^-^H^Mo)

^ ..^
H.(Mo, L) -^ H,(Mo)

0,1

Since d^: H^a(Mo) -> Ha(Mo) admits of a right inverse it fol-
0,1

lows thats d^: Hia(Mo? L)-> Ha(Mo, L) admits of a right
inverse.

4. Variation of complex structures on a disc.

PROPOSITION 1. — Let D be a disc in the plane. Let pi(() == (Ji(z, ()
be a holomorphic function defined in a neighbourhood of to in
C^ with values in H^(D) with p^o) === 0- Then there exist a neigh-
bourhood U' of to and a C1 function t[z, t) defined in D X U'
such that

i)

,(^)S^=0,.̂̂ , ^

02 OZ

=0, i==1, . . . , m.
^l

ii) there exist positive constants Ki, and Kg ^w/i ^/ia( one has
Ki|zi—^|<i^i, 0—^2, ^KK^Iz i—^l for zi, ^ e D a M r f
^H ^ e U'. .

iii) If F(t) = F(z, t) = —————-——-. zo e D, the func-
Sk2? l) —— ^O? //

'̂on (-> F(() is a holomorphic function in U' with values in
3)'(D), where ®'(D) denotes the space of distributions in D$
moreover for each fixed t^ F(z, () is holomorphic outside ZQ for
the complex structure defined by dz + ^(^ ^^(M < 1)-

Proof. — There exists a constant Ci > 0 such that for
/; geH^(D) one^has \\fg\\o^ < CiH/'jlo.allglka- Hence the ope-
rator of multiplication by p.(z, () is a holomorphic function
of t with values in ^(Hx? Ha). It follows that the operators

T, = -^- p(z, t) ̂ : Hi,.(D) -> H.(D)

depend holomorphically on (. Now T^ ===—• By Lemma 3
^)z
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T^ admits a right inverse. Hence by lemma 2 there exists
a neighbourhood U" of IQ and continuous linear operators

S<: Ha -> Hi^a
depending holomorphically on ( e U" such that T< o S<= Identity
map of Ha. Now a(() is a holomorphic function with values
in Ha. Hence f{t) == S<([Ji(()) is a holomorphic function with
values in Hi a- Let

,̂ () = z + f{z, t).

^{z, t) is of class C1. Moreover

th^^w=^.)(i+^)=^,1)^,
oz

so that ^(J3, () satisfies

i)
^-^)^=0,

bz k v 9 / ^ 9

0, i == 1, . . ., m.
^)(1

To prove ii) we remark that there exists a constant k > 0
(depending only on D) such that for each fe H^a o11^ has

|/^l)-(^)|<^l-^| 11/lll.a, ^ eD.

(This is proved easily applying the mean value theorem.)
Since /*(^o) = 0 we can choose a relatively compact neigh-
bourhood U' of IQ with U7 c U" such that for ( e U', ||/'(()||i, a < ̂k
given £ with 0 <; £ <; 1. It is evident that there exists a
constant Kg such that

K(^, t) — ̂  t)\ < K,|Zi — Z,l, ( e U', Zi, Z, e D.

On the other hand
l̂ i, <) - ̂ , ()1.= It^ + A^i, <)^-^2 + /•(^, <)!!

>|zi-^l-l/'(^()-/'(^<)l
> ( l — — £ ) | Z l — — Z 2 | .

This completes the proof of ii).
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To prove iii), we note that for ( fixed l/C(z, t)—*((zo» t) is
a locally summable function in D (see ii); and since

|F(z, ^KKr1/^-^
( eU^ we see, by Lebesgue's dominated convergence theo-
rem, that (—> F(() is a continuous function with values in
2)'(D). To prove that F(() is a holomorphic function with
values in 3)'(D) it is sufficient to prove that h{t) == (F((), <p)
is a holomorphic function of ( for each y e 3)(D). [®(D) denotes
the space of C00 functions with compact supports in D; (F((), <p)
denotes the scalar product between F(() and <p]. As was noted
earlier h{t) is a continuous function. Let (4 == ((}, . . ., (m) e U'.
We shall show that A((1, (2, . . . , (w) is differentiable at t\
as a function of t1.

Let

m={h{ti, < ? , . . . . ^-^o (L • • . , (m)!/^-^).
Then

W=J,.̂ ,;x
K(z, ̂ -^p, ̂ )]-[^^S ̂  .. ̂ -^p, ̂ ,..., ̂ hdxd^
[W, ̂  . . .,^)-^,t1, . . ., ̂ )]-[^, ti)-^o, ̂ ]i1 y

where K is the support of <p.
We assert that there exists a constant Ks such that for t1

in a sufficiently small neighbourhood of t[ we have

(A)
K(z, t{,..., tT)-^ t\,..., ̂ )]-K(z, f, ̂ ..., ̂ -^(z,, f, ̂ ,..., f?-)]

('—f;
<K3/|z—Zo|.

In fact, consider the function with values in Hi_, defined in
a neighbourhood of (i*:

; w,...,^^,^...^ ̂  ^ ̂  ̂
^)= ^ • )

-(:((', ̂ ... ,(r) fort^t;
I ( Cit ^=t[

Since ^(() is a holomorphic function with values in H^a ,
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g((1) is a continuous function and hence in a neighbourhood of
^ l lgWILa < K4. Using the inequality

i^i)-^2)i<^i-^imii,a
we obtain (A). From (A) and the first inequality in ii) we
see that the integrand is majorised by Kg/|z — Zo\ for all ^
in a sufficiently small neighbourhood of (;. By Lebesgue's
theorem we see thatlim^(^) exists and is equal to

t^t\

r-^w,..., w^^-t^t1,.. .^w}
___ / cu._______________________________\cf/t____________________/t^t\ , ,

JK t^^...,^-^^...,^!2 c ? d x d y '
Similary we show that the other derivatives exist. This
proves that h{t) is holomorphic.

From the first inequality in ii) we see that t{z, t) —^(zo, t)=^0
for z =/= jZo? t e= U'. The second assertion in iii) follows immedia-
tely from this fact. This completes the proof of Proposition 1.

REMARK 2. — Using i) and ii) we can show easily that
if U is a polydisc contained in U' the map (t, z) -> ((, ( ,̂ z))
maps ^(U X D) (endowed with the complex structure defi-
ned by dz + [A(Z, () dz, dt\ . . ., dr, |pi(z, ()| < 1), biholomor-
phically onto a bounded domain of holomorphy in C^4.
Proposition 1 is also valid if we replace the disc by a bounded
plane domain with a smooth boundary. Thus Theorems 1
and 2 are immediate consequences of Proposition 1 in the
case of plane domains.

5. Elementary kernels for elliptic differential operators
depending holomorphically on a parameter.

p ' y pi Q
Let M be an open Riemann surface and let 3)(M), 8(M),

ib''(M), %\M){p=0, 1, ^ = 0 , 1) denote the space of C°°
forms of type (p, q) with compact supports, C°° forms of type
(p, q), currents of type (p, q) and currents of type (p, q) with
compact supports respectively ,each endowed with the usual
topology [5].
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Let if{t, M) be a family of complex structures depending
holomorphically on t. Define T^ID^M) -^'(M) by

T/=d,f-^(t), d^ /^3)°'(M)
where (?.(<), <V) denotes the current of type (0, 1) obtained
by contracting pl(() (which is of type (— 1, 1)) and d^f
(which is of type (1, 0)). We remark that a function fis holo-
morphic for the structure if{t, M) if and only if Tf = 0. A
function f defined on Uo X M is holomorphic for the structure
^(Uo X M) if and only if it satisfies the system of differen-
tial equations :

i Tf(z, t) = 0,

?-^=0, ,= i , . . . , ^ .
( b(1

PROPOSITION 2. — Let MQ be a relatively compact subdomain
of M, with analytic boundary. Then there exists a neighbourhood L^

0, 1 0, 0
of to and for t e L^ continuous linear operators S^: §(Mo) -> 3)'(Mo)

0, 1
depending holomorphically on t such that for /*e8'(Mo) one
has T^f=f ( T < = ^ — < p L , rf,)).

0, 1
Proof. — Let Hi ^(Mo) and H^(Mo) have the meaning given

0 1
in § 3. By Lemma 4, T, : Hi/a -> Ha has a right inverse. Let

0, 1
S<: Ha —> H^a be right inverses defined in a neighbourhood
Us of to depending holomorphically on ( (Lemma 2). S< maps
0,1 0, 10,1 0, 1
6|3)(Mo) into Hi^. We shall show that S<: 3) -> Hi a can be
extended to a continuous linear map, still denoted by S^, of
0,1 0,0 0,1 00
8' into 3)' and S<: §' -> 3)' depends holomorphically on (.
This will prove Proposition 2, as is easy to see.

Now each T\ is a linear elliptic operator. By the hypo-ellip-
0, 1 0,0 0, 1 0,0

ticity of T(, S< maps 3) into 8 and S<: 3) -> £ is continuous by
0, 1 0, 00, 1 0, 0

.< . 3)^8Banach's closed graph theorem. We prove that S^: 3) —> 8
0, 1

depends holomorphically on (. Let 9 e= 3). Then the current
F(js, () == 8(9 satisfies the system of differential equations

T,F = y
OF . . ,
^1=0, i=l, ..., m.
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Since this system is elliptic, F(z, () is a C00 function in Mg X Ug.
It follows that t -> S<y is a holomorphic function with values

0,0
in 8.

1 ,0 1 , 1
Let T { : 3)' -> 3)' be the transpose of the differential ope-

rator T(. Then T< is a linear elliptic differential operator
1, 1 1, 0

with C00 coefficients. Let S{ : §' —> 3)' be the transpose of
0, 1 0, 0 1, 1 1 ,0

S<: S -^ 8. Then S<: S' — ®' depends holomorphically on t.
1 , 1 1 , 1 0,1 1 ,0

By the hypo-ellipticity of Si, S( maps ® into 8 and S<: 2) -> &
is continuous. As we proved for B(, we prove, using the

( ^ ^ ) 1, 1 1,0
hypo-ellipticity of the system ^S^ — ^ • • - -^[ that S<: 2) -^ §

depends holomorphically on t. By taking transposes we obtain
0,1 0,0

S(: §' -> 2)' depending holomorphically on ( and coinciding
0, 1

on 3) with the S^ originally given.
This proves Proposition 2.

6. A result on the prolongation
of holomorphic functions.

PROPOSITION 3. — Let Mo be a relatively compact subdomain
of M with analytic boundary. Then there exists a neighbourhood
Ug of IQ with the following property : if f(z) is a function which
is holomorphic for the structure ^(<i) in Mi, t^ e Ug, then there
exists a function F(z, t) in Mo X Ug which is holomorphic for
the structure if{Mo X Ug) such that F(z, (i) = f(z).

0,1
Proof. — Let S<: Ha(Mo) -> H^a(Mo) be right inverses for

T< depending holomorphically on (eUg. Now /'eH^*
Define

F^^-W, (teU,).

We then have

T^- SJ/) = V- T3W= T^- T/== 0;
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since fT^f= 0, F(z, <i) == f{z). F(z, () satisfies the system of
differential equations

(T,F(z, () = 0,
jl=0, .=1, . . . , m .

Hence F(z, () is holomorphic for the structure tf(Mo X Ug).

7. Proof of Theorem 1.

We now proceed to prove Theorem 1. Let Mo be a relatively
compact sub-domain of M with analytic boundary such that
Mi c Mo. Let Oi, . . . , Oi, ..., Ok be a finite number of coor-
dinate discs for the structure ^((9) with Oi c Mo and Vfli => Mr
Let z1 be the coordinate function in Or Then p. == p4 dz1 ̂  —y

oz
Let Vi, i == 1, . .., /c, be neighbourhoods of (o such that func-
tions 'Ci{z\ t), z1 e Oi, (e V; can be defined satisfying condi-
tions i), ii), iii) of Proposition 1. (By an obvious abuse of
notation we use the letter z1 to denote a point on the Riemann
surface and as well its image by the coordinate function z\)
Let Us and Ug be neighbourhoods of to given in Proposition 2
and 3. Let V and V relatively compact neghbourhoods of
(o such that V c V and V c f̂ | V, n U^ n Us. Let U be

a Stein neighbourhood of (o contained in V.
We first show that holomorphic functions on ^\Mi X U)

separate points. Since ((1, . . . , (m) are holomorphic functions
on ^(U X Mi) we have only to consider the case when the
points are on the same fibre. Let then (zi, ^), (zg? <i) be two
points <i e U, Zi, Zg e Mi, Zi =7^= jSg. Now there exists a function
f{z) holomorphic in Mo for if{t^ with f{z^) -=f=. f{z^). [This is
shown, for example, by taking an open set slightly larger
than Mo and using the fact every open Riemann surface is
a Stein manifold.] By Proposition 3 there exists a function
F(z, () holomorphic tor the structure ^(Mo X U) such that
F(^, ti) = f{z). Hence F(zi, t,} ̂  F(^ <i);

Next let (^i, (i), Zi e Mi, t^ e U be a point in Mi X U. We
shall show that there exist (w -}- 1) functions in Mi X U which
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are holomorphic on ^(Mi X U) and which form a local coor-
dinate system at (z^, <i). Let f{z) be a function holomorphic
for ^i) in Me which forms a local coordinate system at Zi
in Me. Let F(js, t) be an extension of f{z) to Mo X U as a
function holomorphic for the structure ^(Mo X U). Suppose
Zi e= Or With respect to the coordinate system (z\ t1, . . ., (m)
the Jacobian of (F^1,..,^) at (zi, ^) is

[>•"]
or

(1-|^,,)|2)
(^.<l)l^\l-lf^w

-/-) ^0$ for if it were zero, then -L — -. .But =7^0$ for if it were zero, then —/- == P4-4 would
^z1/^^7 5 ? <^1 l l^1

be zero so that the Jacobian of f at Zi would be zero. Thus
the Jacobian of (F,^,..,^) at (^i, (i) is different from zero.

Finally we show that given infinite discrete set of points
{z^ ^5 ^n^Mi , ^ e U there exists a holomorphic function Y
on ^(Mi X U) such that the sequence | T(^, ^) ^ is not boun-
ded. Now either the sequence ^ ^ j contains an infinite dis-
crete subset or the sequence |znj contains an infinite dis-
crete subset. If it^i contains an infinite discrete subset we
can find, since U is Stein, a holomorphic function F(<) in
U such that JF(^ is not bounded. Then ¥(z, t) = ¥(t) is
holomorphic on 0'(Mi X U) and Y(^n, (J is not bounded. If ^z^
contains an infinite discrete subsequence ^z^ let ZQ e Mi c Mo
be an adherent point of |z/^, ZQ ^ Mi. Suppose ZQ e 0;.
Consider the currents of degree 0, F{t) == l/^i(^1, t) —(1(^05 t)

0

in Or Since F(() is a holomorphic function with values 3)'(0i)
and T<: l)'(Oi) -> ̂ '(O^) depends homorphically on (, T^F(^)

0, 1
is a holomorphic function ( with values in 3)'(0t). But the
supports of T(F(() are at ZQ and hence T^F(() is a holomorphic

0, 1

function with values in 8'(Mo). Let S< be the operators given
by Proposition 2, in Us. Let ¥(t) == S<(T,F(t)). Then

T<¥(() = (T,F(()),m=o. .=1, m.
^
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Since Zg < Mi, Y^) defines a function in M^ X U satisfying in
Mi X U

TJ(z,()=0,
^¥(z,()=0, i=l, ..., m;
0[

that is ¥(z, () is holomorphic on ^(Mi X U). It remains to
show that |¥(ZA, ̂  is not bounded. Let 0< be a relatively
compact neighbourhood of ZQ such that 0[ c Or We may
suppose that all ^ belong to 0^. On Oi X V the currents
G(js, () == F^js) — ^(z) satisfies the system of differential
equations

T<G(^)=0
-^G(z, () = 0, i= 1, . . , m.

Hence G(z, ^) is a C00 function in Oi X V and is hence bounded
on 0[ X U. For z e Mi X 0,, (e U

W{z,t)=F(z,t)-G{z,t).
Hence

¥(z,, (,) = F(zA) —G(^ <,) = 1 — G(^, (,)
4^/0 r^—^(^o? ̂

So
l̂ , <.) + G(^ t,)\ > K,-1/]^ — zol.

by Proposition 1. Since G(^, ^) is bounded and ZQ is adherent
to z^ it follows that ^¥(z^ ^) is not bounded. This completes
the proof of Theorem 1.

8. Proof of Theorem 2.

The proof is essentially same as the proof of Theorem 5. 1
in Kodaira-Spencer [2], once we have Theorem 1. Still we give
the complete proof since some changes are required in our
case. It is sufficient to prove the theorem without the requi-
rement that Q be Stein. For, once we have a ^ with Q an
open subset of M X C"1 we could restrict <I> to ^(Mi X U)
where U is a sufficiently small Stein neighbourhood of t^
and obtain Theorem 2 (since tf(Mi X U) is Stein by Theorem 1).
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Thus it is enough to show that there exist a neighbourhood
U' of to, an analytic homeomorphism $: ^(Mi X U') -> Q
where Q is an open submanifold of M X C^ and an analytic
homeomorphism 9 : U' -> T:(Q) such that the following dia-
gram is commutative :

^(U' x Mi) -^ Q("• , iU' -^(Q)
We make the following inductive assumption:
Ap_i : If the dimension of Uo is (p — 1) and Mi, is any rela-

tively compact subdomain of an open Riemann surface M,
then there exists a neighbourhood U of to and a holomorphic
map h: ^(Mi X U) into M which maps each fibre biholo-
morphically into M.

Now, assumig Ap_i we prove Ap.
_Let Mo be a relatively compact subdomain of M such that
Mi c Me. Let W be_a sufficiently small Stein neighbourhood
of to in V, with W compact, WcUo. Then ^(Mo X W) is
a Stein manifold. It 9 denotes the holomorphic tangent
bundle along the fibres, then by Theorem B on Stein manifolds
IT^Mo X W), S) = 0. From the exact sequence

H°(^(Mo X W), II) -^ H°(W, T) -> W^(Mo X W), 9}
(II denotes the sheaf of germs of holomorphic vector fields

which are projectable, T denotes the sheaf of germs of holo-
morphic vector fields on W), we see that the vector field

_ can be lifted into a holomorphic vector field X of ^(Mo X W).

We may suppose to = 0. Let f{x) = exp(—^(^X), x e Mi X W'
where ̂ (x) is defined as follows : if x = {z, t1, . . ., (p), ^{x) == (p.
By the complex analytic analogue of Proposition 5. 1 in [2],
for a neighbourhood W' c W, f maps if{M^ X W') holomor-
phically into ^(Mo X (t\ . . ., (p-1, 0)) mapping the fibre at
(t1, . .., ff) biholomorphically into tf(((1, . . ., ̂ -1, 0), Mo). Mo
being a relatively compact subdomain of M, there exists, by
the inductive hypothesis, a holomorphic map g:

Mo X {t\ . . . , tp- l , 0)->M

which maps each fibre biholomorphically into M. Taking the
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composite h = g o f we get a holomorphic map of ^(U^ X Mi)
where U4 is a neighbourhood of to in C^ mapping each fibre
biholomorphically into M. This proves Ap.

Once we have proved the assertion A^, consider the map

< I > : ^(U X Mi) -> U X M

defined by ((, z) -> ((, h{t, z)). ^ is holomorphic and one to
one. By a known theorem on holomorphic functions <P maps
^(U X Mi) biholomorphically onto an open subset Q of
U X M and we have the commutative diagram

S(U x Mi)—^Q
k 1.

T T identity T

This completes the proof of Theorem 2.

9. Differentiable variations of complex structures.
Proof of Theorem 3.

Let tf((, M) be a differentiable variation of complex struc-
tures on an open Riemann surface M, (e Uo c R"*. Let J^
be the almost complex structure tensor corresponding to the
Structure ^((, M). On M X Uo let J denote the tensor along
the fibres composed of |J^. If X is a projectable vector field
on M X Uo (with respect to the projection M X Uo —> Uo) we
remark that the Lie derivative of J with respect to the vec-
tor field X, denoted by [X, J], is defined as a tensor along
the fibres.

Let X be a projectable vector field on M X Uo satisfying
the condition [X, J] == 0. Let M' (resp Uo) be a relatively
compact subdomain of M (resp. Uo). If exp ($X) denotes the
one parameter family of transformations associated with X,
exp ($X) is a diffeomorphism of M' X Uo into M X Uo which
maps ^(t, M'), ( e U o biholomorphically into ^(exp (^)((), M),
where v denotes the projection of X on Uo. Now referring
to the proof of Theorem 2, we see that to prove Theorem 3
it is sufficient to prove
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PROPOSITION 4. — Let ^(t) be a differentiable family of
complex structures on an open Riemann surface M. Let Mi be
a relatively compact subdomain of M. Then there exists a neigh-
bourhood Ui of tQ in R"1 such that every differentiable vector
field {real) on Ui can be lifted into a differentiable vector field
X on Mi X Ui satisfying the condition [X, J] == 0, J denoting
the tensor along the fibres composed on the almost complex
structure tensors along the fibres.

Proof of Proposition 4. — Let Mo be a relatively compact
subdomain (of M) with analytic boundary, with Mi c Mo.

Let Qt denote the holomorphic tangent bundle of if{t, M).
Let S == Vftt be the bundle on M X Uo composed of the
holomorphic tangent bundles along the fibres. IfUg is a spheri-
cal neighbourhood of to with Ug c Uo then 9\M X Ug is diffe-
rentiably equivalent to the bundle L^ X 6^ (Homotopy theo-
rem). It follows that there exist isomorphisms

^(<): H^,(Mo,e,)-^H^,(Mo,ej,
^{t): H,(MO, e,) -> H,(MO, ej,

depending differentiably on t such that ^1(^0) = identity,
^2(^0) == identity. Let

T< = ^(t)4(^iW-1: H^(Mo, 6,)->H,(Mo, ©J
where d^(t) denotes the d^ operator with respect to the struc-
ture ^(<). T< depends differentiably on (. Since T\ = d^o)
admits of a right inverse by Lemma 5, there exist a neigh-
bourhood IJ3 of to and operators

s,: H,(MO, ej -^ H^(MO, ej, (e Us
depending differentiably on t <= Ug and such that S^ is a
right inverse of T^ (Lemma 2). _

Let Mg be a relatively compact subdomain of M with Mo c Mg
Let IJ4 be a neighbourhood of to such that there exist a finite
open covering Oi, . . ., 0^ of Mg and diffeomorphisms g^ of
Of X U4 into C X IJ4 which maps iS{t, 0;), t e LLi biholo-
morphically into in C X ((). [Such a neighbourhood V^ exists.
This follows from the definition of differentiable variation of
complex structures in the sense of Kodaira-Spencer. With our
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definition this follows from the differentiable analogue of
Proposition 1]. We denote the coordinate function in Oi X €4
by(^).

Let Ui be a relatively compact neighbourhood of <o ln R771

such that Ui c Ug n Us n LLi. Let ^ == (^i(^), . . ., ^m(^)) he a
differentiable vector field in Ui. In Of X U4 consider the
vector field ^ defined by (0, ^i(<), . . . , ^'m^)) with respect
to the coordinate system (z1, (). We have [^ J] == 0. Put
Oy == ^ — ̂  in (Oi X U^ n {Oj X U^. Let 0^ = Oy — iJOy.
Then (^ are sections of 9 over (Oi X ^^4) n {Oj X L^) whose
restriction to each fibre is holomorphic. Evidently there
exist differentiable sections fi{z\ t) of S over Oi X U^ such
that fl—fj = Oy, in (0, X U^ n (0^ X U^. If we define
^(^) = d-^(t}f[{z\ t), 9(() is a (0, 1) form on iS{t, M^) with values in
^t which depends differentiably on (. Let Y](^) = '^(t) | 9 (() | Mo |
['i'2(<) is the isomorphism defined earlier.] Then Yj(<) is a diffe-

0,1
rentiable function with values in Ha(Mo, 6^). For t e Ui, let
^(^) == S(Y]((). Then /ii(() depends differentiably on (. Let
h^(t) ={^(t)}~l{h^{t)). Then h^(t) depends differentiably on (
and satisfies d-^(t)h^(t) = (p((). [It follows easily from diffe-
rentiability theorem for elliptic differential equations that
h^[z, t) is a differentiable vector field on Mi X Ui. See proposi-
tion 1 in [3]]. Let

h(z,t) ==^\h^z,t) +h^z,t}\

and f^t)=-^{f^t)+nz,t)^

Define
X=^+h—f, in ( 0 , n M O x H .

Then X is globally defined on Mi X Ui, projects into ^ and
satisfies the equation [X, J] = 0. This completes the proof
of Proposition 4.
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