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VARIATIONS OF COMPLEX STRUCTURES
ON AN OPEN RIEMANN SURFACE

by Mudumbai S. NARASIMHAN (Bombay)

1. Introduction.

The purpose of this paper is to study the local properties
of varations of complex structures on a relatively compact
subdomain of an open Riemann surface.

Let M be an open Riemann surface and M, a relatively com-
pact subdomain of M. Let ¥(t) be a family of complex struc-
tures on M (or on a neighbourhood of M;) which depends
holomorphically on ¢, ¢ being in a neighbourhood U; of ¢,
in C". We suppose that J(t,) is identical with the given struc-
ture on M. Consider the family of complex structures $(t, M;)
induced on M, by Y(t). The family 9(¢, M,) defines a complex
analytic structure on M; X U;; we denote by $(M, X U;) the
complex analytic manifold (or structure) thus defined. The
projection w, : M; X U, — U, defines a family of deformations
of complex structures in the sense of Kodaira-Spencer.

We first prove that for every sufficiently small Stein neigh-
bourhood U of ¢, $(M; X U) is a Stein manifold (Theorem 1).
We then show that the restriction of the family

n:IM; X Uy) - U,

to a sufficiently small neighbourhood U of ¢, is complex ana-
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lytically homeomorphic to the family =: Q — =(Q)<C",
where () is an open Stein submanifold of the product complex
manifold M X €" and =: M X G" — C" is the canonical pro-
jection of M X C" onto C" (Theorem 2). This result may
be viewed as a sort of local triviality (« semi-triviality ») or a
local imbedding theorem.

We prove also an analogue of Theorem 2 for differentiable
variations of complex structures (Theorem 3).

The proofs use the theory of linear elliptic partial diffe-
rential equatlons and some tools from functional analysis.

We now give a rough sketch of the proofs. We show that
there exists a sufficiently small neighbourhood U, of ¢ such
that any functions which is holomorphic (upto the boun-
dary) on any fibre over a point of U, can be extended to a
holomorphic function on the whole fibre system restricted
to U,. From this it follows easily that we can separate points
on the fibre system by holomorphic functions and that there
exist (m + 1) holomorphic functions which form a local coor-
dinate system at a given point. To prove the holomorph-
convexity, we first prove, by considering variations of com-
plex structures on a disc, that the fibre system, restricted to
a small Stein neighbourhood of #,, is « locally holomorphically
convex » Then, by solving a problem analogous to the first
Cousin problem with the help of currents, the holomorph-
convexity is proved.

Once Theorem 1 is proved, Theorem B on Stein manifolds
assures the vanishing of certain cohomology groups; we then
prove theorem 2, adopting a method of Kodaira-Spencer.

Theorem 3 (dlfferentlable case) is proved by solving the
following problem : given Cousin data on 9(¢, M;) which depend
differentiably on the parameter, to find solutions of the
(first) Cousin problem such that the solutions also depend
differentiably on the parameter. The proof is inspired by a
proof (unpublished) by L. Schwartz of some results concer-
ning Cousin problems on a compact Riemann surface with
varying complex structures and by some considerations in
Kodaira-Spencer [2].

The author is thankful to Professor L. Schwartz for sugges-
ting the use of Lemma 1, which simplifies the earlier demons-
tration of the author using power series expansions.
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2. Statement of the theorems.

Let M be an open Riemann surface. Let © be the holo-

morphic tangent bundle of M. Let §(0®0©*) denote the
space of C*(0, 1) forms with coefficients in 6, endowed with

the natural topology [5]. If (1 e80®®6*) and z a local
coordinate system then i is of the form w(z)dz®dfoz. If we
define || = || locally, then || is intrinsically defined as a

function on M. If Le§O®0*) with |i| <1 then locally
the forms dz 4 w(z)dz define a (1, 0) form for a complex
structure and thus (. defines a complex structure on M.

Let t, e C* and U, be an open set in C™ containing t,. ‘¢’
will denote a point in U,.

For our purposes a holomorphic family $(¢) of complex
structures on M will be, by definition, a holomorphic func-
tion {i(t) defined in U, with values in &0 ®8*) such that
|&(t)] < 1 and {(¢,) = 0. We then have on M X U, an almost
complex structure defined locally by the forms dz + w(t, z) dz,
de, ..., dt" where #', ..., t" are the coordinate function in G™.
This almost complex structure is integrable since [((z, ¢) is
holomorphic in ¢t. Hence we have a complex structure on
M X U, (see also proposition 1). We denote M X U, endowed
with this complex structure by $(M X U,). The projection
w: S(M X Ugy) > Uy is holomorphic and we have a holo-
morphic familly of deformations of complex structures in
the sense of Kodaira-Spencer [2].

If M, 1s a subdomain of M and V a neighbourhood of ¢, in
C™ with VcU,, we denote the manifold M, X V with the
complex structure induced from $(M X U,) by $(M; X V). We
denote by J(¢) the complex analytic structure on M defined
by {:(z).

We have

Tueorem 1. — Let § be a holomorphic family of complex
structures on an open Riemann surface M. Let M, be a relatively
compact subdomain of M. Then there exists a neighbourhood V
of ty such that for every Stein neighbourhood U of t, contained
in 'V, JM; X U) is a Stein manifold.
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TaeEOREM 2. — Let 3 be a holomorphic family of complex
structures on an open Riemann surface M and M, a relatively
compact subdomain of M. Then there exist a neighbourhood U
of t,, an open Stein submanifold Q of the product manifold
M X G, a complex analytic homeomorphism ® of $(M; X U)
onto Q and a complex analytic homeomorphism ¢ of U onto
n(Q) (n denoting the projection M X C™ — C™) such that the
following diagram s commutative :

M, x U) -2, @

lﬂl ki
U —r, 'rc(%})
ReMArk. — In Theorems 1 and 2 and as well in Theorem 3,

if the boundary of M, is smooth it is sufficient to assume that
the variation is given only upto the boundary of M,.

Let Uy be an open subset in R™ and ¢ e U,. A differen-
tiable family of complex structures we mean differentiable

function {(t) defined in U, with values in (0 ® ©*) such
that |i(t)] <1 and {@E(t,) = 0. (By differentiable we always
mean « indefinitely differentiable ».) For a subdomain M, of
M we denote by 9(t, M,;), teU,, the surface M, endowed
with the complex structure defined by {(t).

We have then

Taeorem 3. — Let J(t) be a family of complex structures on
M depending differentiably on t, t being in a neighbourhood of
to in R™. Let M; be a relatively compact subdomain of M. Then
there exist a neighbourhood U of t, and a differentiable map O
of M; X U into M which maps each fibre 9(t, M), t e U, biholo-
morphically into M. ‘

3. Some lemmas in functional analysis and potential theory.

Some of the lemmas stated in this section are more or less
well-known. We state them here for convenience of reference.
We denote by U, an open set in C" or R™ according as we
consider holomorphic or differentiable variations. ¢, is a point

of U,.
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Let E and F be two complete barrelled locally convex topolo-
gical vector spaces. We shall say that a family of continuous
linear operators T,: E - F, teU, depends holomorphi-
cally (resp. differentiably) on te U, if ¢ — T, is a holomorphic
(resp. differentiable) function of U, with values in 4 (E, F),
where {(E, F) denotes the space of continuous linear ope-
rators of E into F endowed with the topology simple conver-
gence. We remark that if T, depends holomorphically (resp.
differentiably, differentiably) on ¢ and f(¢) is a holomorphic
(resp. differentiable) function with values in E then ¢t — T f ()

1s a holomorphic (resp. differentiable) function with values
in F.

Lemma 1. — Let E and F be two Banach spaces and T,:
E — F depend holomorphically (resp. differentiably) on t.
Assume that T, is an isomorphism. Then there exists a neigh-
bourhood Uj of ty such that T, is an isomorphism for each t e Uj
and the operators Ty : F — E depend holomorphically (resp. diffe-
rentiably) on t e U,.

This lemma is a special case of implicit function theorem
in Banach spaces and is proved easily.

Lemma 2. — Let E and F be two Banach spaces and T,:
E — F depend holomorphically (resp. differentiably) on t.
Assume that T, admits of a right inverse. Then there exists a
neighbourhood U, of t, such that for te U, T, admits of a
right inverse depending holomorphically (resp. differentiably)
on t.

Proof. — We recall that a right inverse for T, is a conti-
nuous linear map S,: F—E such that T,.S, 1is the
identity map of F. Now we apply Lemma 1 to the operators

T, | S,(F):S,(F) = F

and Lemma 2 follows.

Let D be a relatively compact open subset of G. Let a be
a fixed real number with 0 < a << 1. Let f be a complex
valued function satisfying a Holder condition of order a on

D. Put |
[fllo.e.0 = Sup|f| + Sup [[) =1l
D

2,2, €D Izl—zsla
zy 52y

32
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We denote the space of these functions by H,(D).
If fis a function which is once differentiable such that

its partial derivatives satisfy in D a Holder condition of
order a put
L,a,D

<0 = Sup Ifl + ”l
Let H, o(D) denote the space of such functions.
Let now D be a disc |zl < R, 0 < R < o in the plane.

0 . . .
The operator 3 s a continuous linear operator from the
z

4 [2f

0z

OG.D

Banach space H, ,(D) (with the norm |[|f]], «) to the Banach
space Hy(D) (with the norm ||f],4)-

LemMma 3. — Let D be a disc in the plane. The operator

: H, (D) — H,(D)

o
N||°’

admaits of a right inverse. 1

This lemma is classical. For instance convolution with —
yields a right inverse [1]. Tz
- Let M, be a relatively compact subdomain of an open
Riemann surface M such that M, is bounded by a finite num-
ber of disjoint analytic Jordan curves. We shall say, for bre-
vity, that M, has an analytic boundary. We shall denote by
M, boundary of M, in M.

Let Dy, ..., Dy, Dyyy, ..., D, be a covering of M, by coor-
dinate discs D; in M with D; compact and contained in a
coordinate disc such that the following conditions are satis-
fied :

1) D; 1s contained in M, for t =1, ..., k

11) 1f z; 1s the coordinate functlon n Dj mapping D, onto |z|
< ¢, then zymapsforj =k + 1, ..., n, D;n M, onto the « semi-
disc » {Iz] < ¢ Imz> 0} and Djn bMo onto §—e << Rlz <e}.
Let D; denote the covering of M, formed by D,, ..., D,
D4y n My, ..., D, n M. Let { Di} be ashrinking of the covering

Dit.

{ Lit H; .(M,) denote the Banach space of complex valued
functions in My which are once differentiable in M, and whose
first partial derivatives satisfy a Hélder condition of order «
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in every compact subset contained in a coordinate neigh-

bourhood of M, (e.g. Di) with the norm
lls,a = Sup {Iflls,q,or

0,1
Let H,(M,) denote the space of (0, 1) forms whose coefficients
satisfy a Holder condition of order « in every compact set

contained in a coordinate neighbourhood of M,. If fe OI'-Ila(Mo)
and f= f;dz' in D’ (2 being the coordinate function in D)
define

1lle .9, = Sup il o5

0,1
with this norm H,(M,) becomes a Banach space.

Lemma 4. — Let My be a relatively compact subdomain of M
with analytic boundary. Then the operator

0,1
dz: Hy, o(Mo) = Ha(M,)
admits of a right inverse.

Proof. — We give a sketch of the proof of this lemma.
Let M; be a relatively compact subdomain of M, with analy-
tic boundary, containing U . We first remark that we

i=1,.

can find a continuous hnear mapp H (Mo )—>H (Ml) such

that y o p = identity map of Ha(Mo), where v : H (M) > H «(Mp)
denotes the restriction map. [The question being local at
the boundary, locally the extension is given by reflection at
the z-axis. For details see e.g. [4, Th. 2. 4]]. On M, X M, there
exists (H. Behnke-K. Stein, Math. Ann. 120, p. 436) a mero-
morphic differential K(z, d{), holomorphic for z 5= { such
that in a coordinate disc around z =71 we have,

K(z, df) = -+ regular function {dC.

=1
4r(z — Q)
We may then estimate the potential
. . N . 04
Tf =2 [, K@ d)AQ),  feH(M)

on compact subsets of D; using the estimate on a disc
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for the potential with the kernel _—2— [1]. It { « H(M,) let

Tf denote the restriction of Ty(p(f)) to M,. Then &Tf=f
and

T 1, om0 < Calle(Fllo, 3, << Call 1o, 0,

with positive constants C; and C,. This proves Lemma 4.
The next lemma will be required only for the holomorphic
tangent bundle of M. But we shall prove it for a general holo-
morphic line bundle.
Let L be a holomorphic line bundle on M. Let H, ,(M,, L)
denote the Banach space of sections of L in M, which are once
differentiable in My, and whose first partial derivatives satisfy

a Holder condition of order «. Let ‘ﬁa(Mo, L) denote the
Banach space of Hélder continuous (0, 1) forms in M, with

coeflicients in L (we introduce norms on H, ,(M,, L) and ol'-ia(L)
0,1
as on H, ,(M,) and Hy(M,).

Lemma 5. — Let L be a holomorphic line bundle on M. Let
M, be a relatively compact subdomain with analytic boundary.
Then the operator

d;: Hy o(M,, L) > 0I,_Iia:(Mo’ L)
admits of a right inverse.

Proof. — Since M is an open Riemann surface, every holo-
morphic line bundle on M is holomorphically trivial. This
follows for example from the exact sequence.

HY(M, 0) — H:(M, 0*) — H2(M, Z)

remarking that H'(M, O) = 0, H3(M, Z) = 0. (Here O denotes
the sheaf of germs of holomorphic functions and O* the
sheaf of germs of non-vanishing holomorphic functions.)
Since L is holomorphically trivial on M there exist topolo-
gical isomorphisms

4»‘1 : Hl,a.(MO, L) — H1,¢(Mo)

0,4

do: Hy(My, L) Hy(M)
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such that the following diagram is commutative :

H, (Mo, L)—¥~ H, ,(M,)
ld; le

0,1

’ $a 0"
Ha.(Mo’ L) - a(MO)

Since d; : Hl,a(Mo)—;i,-‘Ia(Mo) admlts of a right inverse it fol-
lows thats d;: H, .(M,, L) ~'H «(My, L) admits of a right

inverse.

4. Variation of complex structures on a disc.

ProposiTioN 1. — Let D be a disc in the plane. Let 1(t) = u(z, t)
be a holomorphw function defined in a neLghbourhood of ty in
C” with values in H,(D) with (ty) = 0. Then there exist a neigh-
bourhood U’ of t, and a C' function {(z, t) defined in D X U’
such that

3z, ¢) 0(z, ) _
dz P-(Z, t) 2z - 07

1) .
Xz _o, j=1,..., m.
ot
11) there exist positive constants K;, and K, such that one has
Kilz — 2| <8z, 8) — (2, 1) <Kol 21—z for 25, 2y € D and
all teU'. 1

i) 1f F() = F(s, 1) = gy A= Dy the func:

tion t — F(t) is a holomorphic function in U’ with values in
D'(D), where D'(D) denotes the space of distributions in Dj;
moreover for each fized t, F(z, t) vs holomorphic outside z, for

the complex structure defined by dz + wu(z, t)dz (|u] < 1).

Proof. — There exists a constant €; > 0 such that for

f, ‘g H,(D) one has [[fgl.o < Callflo,ollglo.e: Hence the ope-
rator of multlphcatlon by w®(z, t) 1s a holomorphic function

of t with values in 4(H,, H,). It follows that the operators

To= 2 (s, L+, (D) - (D)

depend holomorphically on t. Now T, =b—z;- By Lemma 3
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T, admits a right inverse. Hence by lemma 2 there exists
a neighbourhood U” of ¢, and continuous linear operators

S;:Hy — H, ,

depending holomorphically on t € U” such that T, o S,=Identity
map of H,. Now u(t) is a holomorphic function with values
in H,. Hence f(t) = Sy(i(t)) is a holomorphic function with
values in H; ,. Let

Uz, &) = 2+ f(z, 0).

{(z, t) 1s of class C!. Moreover

Z’_C:?f_(_z_’_tlzp(z, t)—£+ w(z, t)

2z oz

— ﬁ
- P‘(Zi t) 2z ’
so that {(z, t) satisfies
Xnt) u(z, t) x_ 0
. 0z Y vz ’
! ol _g ot m
b_ti 2 ’ ’

To prove 11) we remark that there exists a constant & > 0
(depending only on D) such that for each fe H,; , one has

|f zl) (Zz | <k|z1 Zy| Hf”l @) 21,3 eD.

(This is proved easily applying the mean value theorem.)
Since f(t)) =0 we can choose a relatively compact neigh-

bourhood U’ of t, with U’ ¢ U” such that for ¢ & U’, ||f (t)||1, « < —%
given ¢ with 0 <e<<1. It is evident that there exists a
constant K, such that

(21 8) — Uz, )] < Kalzy — 29|, teU’, 1z, z,eD.
On the other hand

IC(Zl, )—sz, I_I{Zl"l_le’ }“‘{Zz‘|‘f( );|
> | — 7| — |f(z1, 1) — f(z, 1)
> (1 — €|z, — 3.

This completes the proof of ii).

’
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To prove 111), we note that for ¢ fixed 1/{(z, t)—{(z, t) 1s
a locally summable function in D (see 11); and since

|F(z, 0] <KiY/|z—2l,

teU’, we see, by Lebesgue’s dominated convergence theo-
rem, that ¢ — F(¢) is a continuous function with values in
9'(D). To prove that F(¢) is a holomorphic function with
values in 9'(D) it is sufficient to prove that A(t) = (F(t), ¢)
1s a holomorphic function of ¢ for each ¢ € (D). [@(D) denotes
the space of C* functions with compact supports in D; (F(¢), ¢)
denotes the scalar product between F(t) and ¢]. As was noted
earlier h(t) is a continuous function. Let t, = (¢}, ..., t!) e U".
We shall show that A&, &, ..., &) i1s differentiable at ¢
as a function of .

Let

Y(t') = {Rt', &, ..., ) —h(t, &, ..., )}/ —1t).
Then

W)= [ o
E[Z(z7 ti) _C(zi)a tl)]—[c(z’ tia tf, ° . ) C(zo, t’ . )

]g dod
(et B -y B) — s By <o B — L0, ) — LG 1Y Y
where K is the support of ¢.

We assert that there exists a constant K3 such that for #
in a sufficiently small neighbourhood of ¢} we have

(A) ,
‘[C(z, thy oy 81) —C(Z0y tly oy 1) ] —[C(2, ', 81, ooy 81)—C(Z0s 'y By ooy B7)]

t'—t

< Ks/|z—2).

In fact, consider the function with values in H; , defined in
a neighbourhood of ¢} :

SC(t:, . .,t:”)t‘—_C(i:, TR PR
gt) =< 4 *
( 3 o,y ..., for ¢! = ¢!

dt' =t
Since {(t) is a holomorphic function with values in H, «,
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g(t') is a continuous function and hence in a neighbourhood of
t1, [18(t)],, « < K,. Using the inequality

If (z1) — f(z)| < Kl2s— 2] [|f]]1, «

we obtain (A). From (A) and the first inequality in ii) we
see that the integrand is majorised by K,/|z — z,| for all #'
in a sufficiently small neighbourhood of t!. By Lebesgue’s
theorem we see that lim {(¢') exists and is equal to

ty>t]

d .. i n
— f ag 0 o W&o <dt‘ ""t‘)(z°)>v=a dz d
X §c<z,t:,...,t:">—<<zo,tu---,tm’ v

Similary we show that the other derivatives exist. This
proves that A(t) 1s holomorphic.

From the first inequality in 11) we see that {(z, t) —{(z,, t) =0
for z =~ z,, t « U’. The second assertion in 1i1) follows immedia-
tely from this fact. This completes the proof of Proposition 1.

Remark 2. — Using 1) and 11) we can show easily that
if U is a polydisc contained in U’ the map (¢, z) — (¢, {(t, 2))
maps $(U X D) (endowed with the complex structure defi-
ned by dz 4 w(z, t) dz, dt', ..., dt", |u(z, t)] < 1), biholomor-
phically onto a bounded domain of holomorphy in C"+'.
Proposition 1 is also valid if we replace the disc by a bounded
plane domain with a smooth boundary. Thus Theorems 1
and 2 are immediate consequences of Proposition 1 in the
case of plane domains.

5. Elementary kernels for elliptic differential operators
depending holomorphically on a parameter.

Let M be an open Riemann surface and let pﬁ‘g(M), pg%M),

{.)’3)3(M), %;}(M)(p =0, 1, ¢g=0, 1) denote the space of C
forms of type (p, ¢) with compact supports, C* forms of type
(p, q), currents of type (p, q) and currents of type (p, ¢) with
compact supports respectively ,each endowed with the usual

topology [5].
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Let J(¢t, M) be a family of complex structures depending
holomorphically on ¢. Define T,: . & (M) - G (M) by

Tf = df — (3(0), &f),  feD(M)

where (i(t), d.f) denotes the current of type (0, 1) obtained
by contractmg g(t) (which is of type (— 1, 1)) and d.f
(which is of type (1, 0)). We remark that a function f is holo-
morphic for the structure (¢, M) if and only if Tf=0. A
function f defined on U, X M 1s holomorphic for the structure

9(Uy X M) if and only if it satisfies the system of differen-
tial equations :

( Tif(z t) =0,
Az o i=1, ..., m
? ot ’ ’
Prorosition 2. — Let M, be a relatively compact subdomain

of M, with analytic boundary. Then there exists a netghbourhood U,
of t, and for t € Uy continuous linear operators S, : S(M )—>§D' M,)
depending holomorphically on t such that for fe & ( M,) one
has TSf = [ (T, = ds— (5 ).

Proof. — Let H; ,(M,) and H (Mo) have the meaning given
1in §3 By Lemma 4, T, : H;, — H has a right inverse. Let

S;: H — H,; , be right inverses defined in a neighbourhood
U3 of ¢, depending holomorphically on ¢ (Lemma 2). S, maps

(Mo) into H,,. We shall show that §;: 81)——> H,, can be
extended to a continuous linear map, still denoted by S, of

& into 9 and S & > depends holomorphically on ¢.
This will prove Proposition 2, as is easy to see.
Now each T, 1s a lmear elhptlc operator By the hypo-ellip-

ticity of T,, S, maps 9 into & and S, D b is contmuous by
Banach’s closed graph theorem. We prove that S;: P8

depends holomorphically on ¢ Let qoel) Then the current
F(z, t) = S;p satisfies the system of differential equations
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Since this system is elliptic, F(z, t) is a C* function in My X Us,.
It follows that ¢ — S,¢ is a holomorphic function with values

0,0
in &.

1,0 1,1

Let T;: 9" — 9’ be the transpose of the differential ope-

rator T, Then T, is a linear elliptic differential operator
1,1 1,0
with C® coefficients. Let S' & — 9" be the transpose of
0,1 0,0

Si: D — & Then S;: & 9 depends holomorphlca]ly on t.

By the hypo ellipticity of S;, S; maps 9 into & and S,: ED‘—>8
is continuous. As we proved for S‘, we prove, using the

t 1,1
hypo-ellipticity of the system 38,, rAl bi—"'g that S,: 9 >8
depends holomorphically on ¢. By taking transposes we obtain

0,1 0,0
S;: 6 —> 9’ depending holomorphically on ¢ and coinciding

0,1
on P with the S, originally given.
This proves Proposition 2.

6. A result on the prolongation
of holomorphic functions.

Prorosition 3. — Let M, be a relatively compact subdomain
of M with analytic boundary. Then there exists a neighbourhood
U, of t, with the following property: if f(z) is a function which
is holomorphic for the structure 9(t;) in M,, t, € U,, then there
exists a function F(z, t) in My X U, which is holomorphic for
the structure (M, X U,) such that F(z, t,) = f(z).

Proof. — Let S;: (Mo) — H, ,(M,) be right inverses for
T, depending holomorphically on teU,. Now feH,,.
Define

F(z, t) = f'—— S‘T‘f, (t € Us)-
We then have

T(f — STf) = Tf — TSTf = Tf— Tf=0;
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since T,f= 0, F(z, t,) = f(z). F(z, t) satisfies the system of
differential equations

TF(z t) = 0,
F_0, i=1, .. m
(o7

Hence F(z, t) is holomorphic for the structure $(M, X Us,).

7. Proof of Theorem 1.

We now proceed to prove Theorem 1. Let M, be a relatively
compact sub-domain of M with analytic boundary such that
M,cM,. Let O, ..., O, ..., O, be a finite number of coor-

dinate discs for the structure ¥(t,) with O, ¢ My and U,0,> M,.
Let z' be the coordinate function in O;. Then . = 1, dz'® biz‘

Let V, i =1, ..., k, be neighbourhoods of ¢, such that func-
tions {(z, t), 2€0,;, teV; can be defined satisfying condi-
tions 1), 11), i) of Proposition 1. (By an obvious abuse of
notation we use the letter z' to denote a point on the Riemann
surface and as well its image by the coordinate function z%.)
Let U; and U, be neighbourhoods of #, given in Proposition 2
and 3. Let V and V' relatively compact neghbourhoods of
tp such that VeV’ and Ve [ | VinUynU,. Let U be

=10k

a Stein neighbourhood of ¢, contained in V.

We first show that holomorphic functions on $M; X U)
separate points. Since (&, ..., t") are holomorphic functions
on (U X M;) we have only to consider the case when the
points are on the same fibre. Let then (z, ¢), (2, ;) be two
points ¢, € U, z, z, € My, z = z,. Now there exists a function
f(z) holomorphic in M, for 4(¢,) with f(z,) 5= f(z). [This is
shown, for example, by taking an open set slightly larger
than M, and using the fact every open Riemann surface is
a Stein manifold.] By Proposition 3 there exists a function
F(z, t) holomorphic for the structure 9(M, X U) such that
F(s, ) = f(2). Hence F(z, ) % F(z, t)

Next let (2, ¢,), z€M;, t; € U be a point in M; X U. We
shall show that there exist (m 4 1) functions in M; X U which
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are holomorphic on $(M; X U) and which form a local coor-
dinate system at (3, ;). Let f(z) be a function holomorphic
for 9(t;) in M, which forms a local coordinate system at z,
in My. Let F(z, t) be an extension of f(z) to My X U as a
function holomorphic for the structure $(M, X U). Suppose
z; € O;. With respect to the coordinate system (z', ¢, ..., ")
the Jacobian of (F,t,..,t") at (2, ¢,) is

2 FG, ”](, (1— (e 1)
L (4 — gz, 1),

d
oz

or

But <§z£‘> - #0; for if it were zero, then :_f: = u.-bgf—i would
be zero so that the Jacobian of f at z would be zero. Thus
the Jacobian of (F,t',..,t") at (z, t;) 1s different from zero.
Finally we show that given infinite discrete set of points
{2, t,}, 2, My, t, e U there exists a holomorphic function ¥’
on 9(M, X U) such that the sequence {¥(z, ¢,)} is not boun-
ded. Now either the sequence {t,{ contains an infinite dis-
crete subset or the sequence {z,! contains an infinite dis-
crete subset. If {t,} contains an infinite discrete subset we
can find, since U 1s Stein, a holomorphic function F(¢) in
U such that {F(¢,)} is not bounded. Then ¥(z, t) =F(¢) is
holomorphic on $(M; X U) and ¥(z,, ¢,) is not bounded. If {z,}
contains an infinite discrete subsequence {z,} let zp e M; ¢ M,
be an adherent point of {z,}, z,¢M,. Suppose z <O,
Consider the currents of degree 0, F(t) = 1/{(z, t) — (i(z, ?)

in O,. Since F(¢) is a holomorphic function with values 90)'(0i)
and T;: S(i)'(Oi) —>§)’(Oi) depends homorphically on ¢, T/[F()

is a holomorphic function ¢ with values in gi,)"(Oi). But the
supports of T,F(t) are at z, and hence T,F(t) is a holomorphic

function with values in O{b’(M ). Let S, be the operators given
by Proposition 2, in U. Let ¥(¢) = S(TF(t)). Then

TYW(t) = (TF(t)),
9?_19 —0, i=1
ot ’ ’
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Since z, ¢ M;, ¥(¢) defines a function in M; X U satisfying in
M, xU

TY¥(z, t)=0,

2 ) =0, i=1, ..., m;

\ ot
that is W(z, ¢) is holomorphic on ¥(M; X U). It remains to
show that {¥(z, t,){ is not bounded. Let O; be a relatively
compact neighbourhood of z, such that O;c O, We may
suppose that all z, belong to O;. On O; X V' the currents
G(z, t) = F,(z) — W¥(z) satisfies the system of differential
equations

T.G(z, t) = 0
LGz t)=0 i=1, .., m
ot

Hence G(z, t) is a C* function in O; X V' and is hence bounded
on O; X U. For zeM, X O, teU

¥(z, t) = F(z, t) — G(z, t).

Hence
W(z,, t,) = F(zt) — G(24, t) =
So

1
C(zxy tx) — (20, i)

[¥ (24, t) + G(z; t)] > Ki'/|2 — 2.

by Proposition 1. Since G(z,, t;) is bounded and z, 1s adherent
to z,, it follows that ¥(z,, t,) is not bounded. This completes
the proof of Theorem 1.

- G(Zln tk)

8. Proof of Theorem 2.

The proof is essentially same as the proof of Theorem 5. 1
in Kodaira-Spencer [2], once we have Theorem 1. Still we give
the complete proof since some changes are required in our
case. It is sufficient to prove the theorem without the requi-
rement that { be Stein. For, once we have a ® with Q an
open subset of M X G® we could restrict ® to ¥(M, x U)
where U 1s a sufficiently small Stein neighbourhood of ¢,
and obtain Theorem 2 (since $(M; X U) is Stein by Theorem 1).
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Thus it is enough to show that there exist a neighbourhood
U’ of t,, an analytic homeomorphism ®: $(M; X U’) - Q
where () is an open submanifold of M X C", and an analytic
homeomorphism ¢ : U’ — =(Q) such that the following dia-
gram is commutative :

SU' X My)—2» ¢
T

| SL— . {0

-

We make the following inductive assumption :

A,_, : If the dimension of U, is (p — 1) and M,, is any rela-
tively compact subdomain of an open Riemann surface M,
then there exists a neighbourhood U of ¢, and a holomorphic
map h: Y(M; X U) into M which maps each fibre biholo-
morphically into M.

Now, assumig A,_; we prove A,

Let M, be a relatively compact subdomain of M such that
M, c M,. Let W be a sufficiently small Stein neighbourhood
of t, in C», with W compact, We U,. Then (M, X W) 1s
a Stein manifold. If & denotes the holomorphic tangent
bundle along the fibres, then by Theorem B on Stein manifolds
H'(Y(M, X W), J) = 0 From the exact sequence

H"(SFMOXW ), II) = H(W, T) - HY($(M, X W), &)

(Il denotes the sheaf of germs of holomorphic vector fields
which are projectable, T denotes the sheaf of germs of holo-
morphic vector fields on W), we see that the vector field

b% can be lifted into a holomorphic vector field X of (M, X W).

We may suppose £, = 0. Let f(z) = exp(—nP(2)X), z e M, X W’
where ©*() is defined as follows : if z = (z, &4, ..., ), wP(z) = ¢t.
By the complex analytic analogue of Proposition 5. 1 in [2],
for a neighbourhood W' e W, f maps $(M; X W’) holomor-
phically into (M, X (¢!, ..., #~*, O)) mapping the fibre at
(¢, ...,#*) biholomorphically into 9((&, Y, 0), Mo). M,
belng a relatively compact subdomaln of M there exists, by
the inductive hypothesis, a holomorphic map g:

M, X (¢, ..., t#7',0) =M
which maps each fibre biholomorphically into M. Taking the
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composite b = go f we get a holomorphic map of (U, x M,)
where U, is a neighbourhood of ¢, in ¢, mapping each fibre
biholomorphically into M. This proves A,.

Once we have proved the assertion A,, consider the map

P: UXM,)->UxXxM

defined by (¢, z) = (¢, A(t, z)). ® is holomorphic and one to
one. By a known theorem on holomorphic functions ® maps
9(U X M,;) biholomorphically onto an open subset Q of
U X M and we have the commutative diagram

S(U x My) Q
ll;’ identity g

This completes the proof of Theorem 2.

9. Differentiable variations of complex structures.
Proof of Theorem 3.

Let 9(¢, M) be a differentiable variation of complex: struc-
tures on an open Riemann surface M, te U, cR™ Let J,
be the almost complex structure tensor corresponding to the
structure 9(¢, M). On M X U, let J denote the tensor along
the fibres composed of {J,{. If X is a projectable vector tield
on M X U, (with respect to the projection M X U, - U,) we
remark that the Lie derivative of J with respect to the vec-
tor field X, denoted by [X, J], 1s defined as a tensor along
the fibres.

Let X be a projectable vector field on M X U, satisfying
the condition [X, J] = 0. Let M’ (resp U;) be a relatively
compact subdomain of M (resp. Ug). If exp (sX) denotes the
one parameter family of transformations associated with X,
exp (sX) is a diffeomorphism of M’ X Uj into M X Uo which
maps 9 (¢, M), te U blholomorphlcally into J(exp (sv)(t), M),
where ¢ denotes the projection of X on U,. Now referrmg
to the proof of Theorem 2, we see that to prove Theorem 3
it 1s sufficient to prove
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Prorosition 4. — Let 9(t) be a differentiable family of
complex structures on an open Riemann surface M. Let M, be
a relatively compact subdomain of M. Then there exists a neigh-
bourhood U, of t, in R™ such that every differentiable vector
field (real) on U, can be lifted into a differentiable vector field
X on M; X U; satisfying the condition [X, J] = 0, J denoting
the tensor along the fibres composed on the almost complex
structure tensors along the fibres.

Proof of Proposition 4. — Let M, be a relatively compact
subdomain (of M) with analytic boundary, with M, c M,.

Let ©, denote the holomorphic tangent bundle of (¢, M).
Let §= U0, be the bundle on M X U, composed of the
holomorphic tangent bundles along the fibres. If U, 1s a spheri-
cal neighbourhood of ¢, with U, ¢ U, then FM X U, is diffe-
rentiably equivalent to the bundle U, X 0, (Homotopy theo-
rem). It follows that there exist isomorphisms

4’1 H1 «( Mo, 9) - H1 a(Mo, Oto)a
4’2 Hy (M,, @) - H (Mo: Oto)

depending differentiably on ¢ such that {,(f,) = identity,
$s(t) = identity. Let

T, = Ga(t) ds(8) §a ()= : Hy,o(My, 0,) = Ho(M,, 0,)

where d;(t) denotes the d; operator with respect to the struc-
ture J(t). T, depends differentiably on t. Since T, = d;(t,)
admits of a right inverse by Lemma 5, there exist a neigh-
bourhood U of ¢, and operators

S, Ha(MO’ (")t.,) -> H1,a(Mo, 9,0), te U,

depending differentiably on t<U, and such that S, is a
right inverse of T, (Lemma 2).

Let M, be a relatively compact subdomain of M with M, c M,
Let U, be a neighbourhood of ¢ such that there exist a finite
open covering O, ..., O, of M, and diffeomorphisms g; of
0; X U; into G X U, which maps (¢, O;), te Uy biholo-
morphically into in G X (). [Such a neighbourhood U, exists.
This follows from the definition of differentiable variation of
complex structures in the sense of Kodaira-Spencer. With our



VARIATIONS OF COMPLEXE STRUCTURES 513

definition this follows from the differentiable analogue of
Proposition 1]. We denote the coordinate function in O; X U,
by (#, ¢).

Let U; be a relatively compact neighbourhood of ¢, in R™

such that U;jcU;nUyn U, Let ¢ = (91(t), ..., valt)) be a
differentiable vector field in U;. In O; X U, consider the
vector field =; defined by (O, ¢(t), ..., v,(f)) with respect

to the coordinate system (z', ¢{). We have [=n;, J] = 0. Put
by =m —m; in (O; X Uy n(0; X U,). Let 0; = 0,; — 1J0;
Then ¢i; are sections of F over (O; X Uy) n (0; X U,) whose
restriction to each fibre is holomorphic. Evidently there
exist differentiable sections f/(z, t) of & over O; X U, such
that f/ —fi =0, in (0, X Uy)n(0; X Uy). If we define
&(t) = dx(t)fi(2', ), ¢(t) is a (0, 1) form on (¢, M,) with values in
0, which depends differentiably on t. Let n(t) = },(2) {4 () | M,/
[$o(2) is the isomorphism defined earher] Then 7(t) 1s a diffe-

rentiable function with values in H «(My, 0,). For te U, let
hy(t) = Sm(t). Then hy(t) depends differentiably on ¢ Let
ho(t) = {1 (8)§ ~2(P(t)). Then hy(t) depends differentiably on ¢
and satisfies d;(t)hy(t) = ¢(t). [It follows easily from diffe-
rentiability theorem for elliptic differential equations that
hy(z, t) is a differentiable vector field on M, X U,. See proposi-
tion 1 in [3]]. Let

h(z, t) = - {ha(z, t) + halz, )}

w»wl;—a

and fiz, t) =
Define

+ §fiz t) + filz 1)},

X=m+h—T in (0O;nM,) X U,.

Then X is globally defined on M; X U,, projects into ¢ and
satisfies the equation [X, J] = 0. This completes the proof
of Proposition 4.
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