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ON FUNCTIONS WITH BOUNDED REMAINDER

by P. HELLEKALEK & G. LARCHER

0. Introduction.

Let A denote normalized Haar measure on the one-dimensional torus
R/Z . The following two classes of A-preserving measurable transformations
on R/Z are important in ergodic theory as well as in the theory of uniform
distribution modulo one.

Let a be an irrational number and T : R/Z -> R/Z , Tx := {x -+- a} ,
{•} the fractional part. T is called an "irrational rotation" on R/Z .

Let q > 2 be an integer and T : R/Z -^ R/Z , Tx := x - (1 - g-^) +
q-(k+i) ^ whenever x € [1 - g-^, 1 - g-(fc+l)[ , k = 0,1,... . T is called a
"g-adic von Neumann-Kakutani adding machine transformation" on R/Z .
In the following, T will be called a "g-adic transformation ".

Let (p : [0,1] —»• R be a Riemann-integrable function with f^ ip(t) dt =
0 and let T be either an irrational rotation or a g-adic transformation on
R/Z . Define

<^):=]T>(r^),
fc=0

where x € R/Z and n € N (we shall always identify R/Z with [0,1[).

Key-words ; Skew products - Adding machine transformation - Ergodicity.
A.M.S. Classification : 28D05, 11K38.
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The following two questions are of importance in ergodic theory - for
the study of skew products - as well as for the study of irregularities in the
distribution of sequences in R/Z :

1. Under which conditions (on (p and x) one has sup |<^n(a;)| < 4-oo?
n

2. What can be said about limit points of (^n(^))n>i ?

The classical example. — Let y(x) = l[o^[(x) - /3 , 0 < /3 < 1 .
In this now "classical" example, the first question leads to the study of
irregularities in the distribution of the sequence (T^A^O ? ^n(^) being the
so-called discrepancy function. For x = 0 one gets well-known sequences : in
the first case ({ka})k>^o , in the second case the Van-der-Corput-sequence
to the base q .

For this example, the first question has been solved completely by
elementary and by ergodic methods (for the first type of T see Kesten [8]
and Petersen [II], for the second type Faure [2] and Hellekaiek [4]). The
numbers 0 with sup[<^,(0)[ < +00 , respectively sup\(pn(x)\ < 4-oo , are

n n
all known.

The second question is closely related to ergodicity of the skew
product (cylinder flow) Ty : Ty(x,y) = (Tx,y + (p(x)) on the cylinder
R/Z x R (see Oren [10] and Hellekaiek [5]). In exactly this context Oren
has solved the problem.

In this paper we shall be interested in question 1,2 and ergodicity of
the cylinder flow Ty on R/Z x R in the case of a ^-adic transformation T
and^eC^O,!]) .

1. Results.

Throughout this paper we shall assume q > 2 to be an integer and T
to be a g-adic transformation on R/Z .

THEOREM 1. — Let (p € ^([0,1]) , Jet f^ y(t) dt = 0 and <^(1) +
(p(0) . Then every number c such that |c| <: \(p(l) - <^(0)|/2 is a limit point
of the sequence (^qk(x))k>^o for almost all a? € R/Z , in particular for any
x normal to base q .

THEOREM 2. — Let(p € ^([0,1]) , let f^ ^p(t) dt = 0 and let ^ be
Lipschitz continuous on [0,1] . Then
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(1) (p(0) = (p(l) =^ sup |̂ n(a;)| < oo for all x € R/Z;
n

(2) sup |<^n(^)| < oo for some a: € R/Z =» <^(0) = <^(1) ;
n

f3^ <^(1) < y?(0) =» -oo < liminfy^(O) and limsupy?n(0) = +00;
y^oo n-»-oo

(4) (p(l) > <p(0) =^ -oo = liminf^n(O) and limsup^n(O) < +00;
n-^oQ n-»-oo

fifo;(^) := sup^Ci:)-^'^)! : |a:-y| < 5 , 0 < a ; , 2 / < l } , < ? > 0 , denotes
the modulus of continuity of <p' , then ^ called Lipschitz-continuous if
u;(6) < L ' 6 , > r f 6 > 0 , L a positive constant).

The reader might want to compare theorem 2 (1) with theorem 7.8 in
[7], and theorem 2 (3) and f4/with results on the one-sided boundedness
of the discrepancy function (see [1]).

THEOREM 3. — Let (p C ^([O,!]) and let f^(t) dt = 0 . Tien
<^(1) ̂  (p(Q) =» Va; € R/Z normal to base q : (<^n(a0)n>i is dense in R .

In particular, if <^(1) ^ <^(0) and if x is normal to base q , then
liminf^(a;) = —oo and limsup^(^) = +00 •
n-^oo n-^oo

The reader might want to compare theorem 3 with corollary C in [10].

THEOREM 4. — Let (p be as in theorem 3 and let Ty : R/Z x R —^
R/Z x R , Ty(x,y) = (Tx,y + y(x)) . Then

(1) ^(1) + y?(0) =» Ty ergodic;
(2) let ( p ' be Lipschitz-continuous on [0,1] . Then Ty is ergodic if

and only ify(l) i=- (p{0) .

2. The proofs.

00

Let A(g) = {^^q1 : Zi € {0,1,..., g - 1}\ denote the compact
1=0

Abelian group of g-adic integers with the metric

p(z,zf):=q'mm{i:zi^
00 00

for z = V^ Ziq1 / z' = ̂ > z^q1 and p(z, z) := 0 .
»=o i=o
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The homeomorphism S : A(g) -> f\(q) , Sz = z + 1 (;? € A(g) ,
1 := 1 • g° 4- 0 • q1 4- 0 • q2 4- • • •) has a unique invariant Borel probability
measure on F\(q) : the normalized Haar measure. The dynamical system
(f\(q),S) is minimal (see [4]).

00 00^The map $ : f\(q) ̂  R/Z , $(^^) := ̂  ̂ "(i+l) mod 1 , is
1=0 i=o

measure preserving, continuous and surjective.
00

The g-adic representation of an element x of R/Z , x = Y^ a^g"^"1"1^
1=0

with digits xi € {0,1,..., g—1} , is unique under the condition Xi ̂  q—1 for
infinitely many i . From now on we shall assume this uniqueness condition
to hold for all x . Numbers x with Xi -^ 0 for infinitely many i will be called
non-q-adic. In the following z = z(x) will denote the element

00

z == z(x) := ̂  Xiqt

»=0

of A(g) associated with x . One has
Ta; = %(z + 1)

and it is elementary to see :
• To $(z) = ̂  o S(z) , V^ e A(g)

• x € [ag-^ , (a + l)^ , 0 < a < ^ , k = 1,2,... =^ T^a; €
[ag"^, (a + l)^'"^! and therefore [T^x - x\ < q^ .

• T permutes the open elementary g-adic intervals }a,c^k'^ (a +1)^""^!»
0 <, a < ̂  , of length q^ , k = 1,2,... .

PROPOSITION 1. — Let (p be continuously differentiable on the
closed interval [0,1] and let f^ (p(t) dt = 0 . If u denotes the modulus
of continuity ot^ , then for all k € N and for all x € R/Z

^.(rc) = (^(1) - ̂ (0))(pjk + Ok - 1/2) + (^(g^))
(1) + 0(pfc . u;(c(q) . (^ - ̂ (fc))-1 log^ - ̂ (fc))))

+0(^.a;(c(g).^)-llog^(A:))),
where

00

a^=^^-E^-^
1=0

00

z=z(x):=^Xiqi

i=0
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k-1

^W:=^^ A; =1,2,...

Pk:= (^ - z(k)) . ̂ (z - z(k))
crh.:=z(k)^(z-z(k)+qk)

and c(q) is a constant that depends only on q . The 0-constants that appear
in identity (1) are all bounded from above by a constant that depends only
on q and (p .

Proof. — It is easy to prove
^'-i ^'-i

^W = S ̂ ^-fe) + ̂  ̂ (cnq-^x - cnq-^) 4- O^q-^) ,
z==0 i=Q

where 0.1 is the uniquely determined integer with 0 <, a, < ^ and
T^a: € [aiq~k, (a^ 4-1)^"^! . From proposition 1 in [6] it follows that

^-1
]C ̂ ^"^ = -(^(1) - <^(0))/2 + 0(a;(^)) .
1=0

Further

Tx - a-o-^ = ^ ̂ {z ~ z(k)) ° ̂  { < qk ~ ^W
f ^(z - ̂ (fe) + q^ qk - ̂ (Jk) < i < qk .

By theorem 5.4, chapter 2 of [9]
qk-^(k)-l

(^ - ̂ (A))-1 ^ ^(a^-^) = ^(1) - ̂ (0) 4- 0(a;(Z)^_,(^)) ,
1=0

where Dqk_^) denotes the discrepancy of (a^'^^o2^"1 • As a^9~A; =
^(z(k) + t) , this is a string in the Van-der-Corput-sequence to base q ,
and therefore the following discrepancy estimate holds (see [9] chapter 2,
theorem 3.5 for the idea of the proof) :

D,.^k) < c(g)(^ - z(k))-1 log(qk - z(k)) , k = 1,2,. . . ,
c(q) a constant that depends only on q .

With the same arguments one proves
^-1

z(k)~l ^ ^(^g-^) = ^(1) - ̂ (0) 4- 0(o;(c(g)z(fc)-1 logz(fc))) .
i=qk-z(k)

D
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s

COROLLARY 1. — Let n € N , n = ]̂  mq1 , with r^ e {0,1,...,
i=o

Jb-l

9- 1} , 0 <: i < s , ris + 0 , andletn(k) := ]^n^ iffc=l,...,5+l ,
1=0

n(0) := 0 .
s s

If y^' denotes V^ then
fc=0 fc=o

fc:n^.^0

(̂a;) = E'"E E1^"^9'̂ ) •
fc=0 ^=0 j=0

Let
ynW-K^ ̂  ^; ̂ ,< ^ Y^^,^-(i+l)

t=0

^:=f^v
1=0
m-l

^(m):=^^V (m=l,2,...)
1=0

Pfc,< := (<?* - ̂ ^(A;)) • $(^fc•< - ̂ W)
(7fc,< := ^^-^A;) • ̂ (zk'l - z^k) + g*) .

Then proposition 1 implies :

Vn(x) = (y(l) - y»(0)) ̂ ' ̂  (pfc,< + (TA,< - 1/2)

fc=0 <=0

(2) +o(E'n*^-fc))
fc=0

s nfc—1+ ̂ (E' E (^^ ̂ (^(^ - ̂ w)-1 log^ - z^^fc)))
A;=0 ^=0

+<7^a;(c(g)^(fc)-llog^(fc)))).

The 0-constants in identity (2) are bounded from above by a constant
that depends only on q and (p .

Proof of theorem 1. — Let x be normal to base q and let d =
0,do^i^2 • • • be an arbitrary number in [0,1[ . For any index k such that
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Xk < q — 1 we have

Pk +^ = (^ - ̂ ))][>^-1-1 + ̂ 0(^>,<r1-1 +(T^1)
»>fc i>fc /

=^>,g-l^l-l.

t>0

Let e > 0 be arbitrary. Choose m such that q^ < e . As x is normal there
are infinitely many k such that Xk < q - 1

\Pk + ̂  - d| = |0, XkXk+iXw • • - + 0, Oa:fc-ia:fc_2 • • • a;o - d\ < g-771

(this imposes a condition on the digits ̂ ,^±1,... ,Xk±m-i)

Xk-m = q - 1 , Xk-m-l = 0 .

Then
zW^q^ , ^-z(Jfc)>^——i

and, if we choose k sufficiently large,

^(q~k)<e and a;(c(g)g-fc+m+l logg^) < e .

If we put c := (^(1) - y?(0))(d - 1/2) , then it follows directly that
\^(x)-c\=0{e) . Q

Proof of theorem 2. — ^ : Let y?(l) = <^(0) . It is ̂ (z-z(k)) < q^
and $(z - ^(fc) + q^ < q^ , k = 1,2,... . Hence for the third term in
identity (2) we get the estimate

s nk-1 oo

(3) E' E(^-+-log^W))^ ̂ qLcW^q^^ < +00.
A;=0 ^=0 k=0

Thus the first part of the theorem is proved.

( 2 ) : Let sup \ipn(x)\ < +00 for some x € R/Z and let z := z(x) . The
map </?o$ : A(g) -> R is continuous and (A(g), 5) is a minimal (topological)
dynamical system. We have

n-l

SUp \ipn(x)\ = SUp | V (̂  0 $(5^)| < +00 .
71 k=0

By theorem 14.11 of [3] there is a continuous function g : A(^) -> R such
that ^ o ̂ (z) = ^(^) - ̂ (5^) , y^ € A(^) . Hence

^•-1
-(^(1) - <^(0))/2 = lim ^k(0) = lim V <^ o $(^0)

k—^oo ^—^oo ^
i=0

=lim(^(0)-^))=0;
?—+00
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(here we use proposition 1 in [6] to prove the first equality).

(3) : We shall prove -oo < liminf^(O) , then part (2) will imply
the remaining statement. Because of identity (2) and inequality (3) it is
enough to show, for x = 0,

5 Ufc—1

En := S' S (Pk,e+(rk,t - 1/2) < K , Vn 6 N
fc=0 <=0

with some constant K . If x = 0 then z^ = n^+tq1' and ̂ (Jb) = n(fc) .
Hence pk,t = (g* - n(k))eq-(k+l) and a^t = n(k)(t + l̂ -C^) . Thus

S

Sn = E 'njb((nfc - l)/(2g) + n^-^^ - 1/2) .
fc=o

The statement then follows because (rik - l)/(2g) -hn^)^-^1) -1/2 < 0 .
(4): The idea of the proof is the same as in (3). n

Remark. — In theorem 2 fi^), (3) and f^) one can weaken the
condition on the modulus of continuity of y/ to uj(6) = Odiog^l""1"^
with some e > 0 .

Proof of theorem 3. — The idea of the proof is as follows. Let
(km.)m>i be a strictly increasing sequence of positive integers. If n =
q^ + ' • • + q^ then

s s

^(x) = (^(1) - <^(0)) ̂  (pĵ  + crk^ - 1/2) + 0( ̂  ̂ (g-^))
m=l 771=1

s

+ °( E P^^X^"1 - ̂ -(fcrn))-1 log -̂ - ̂ -(fc^)))
m=l /

+ ̂ ^(g)^"1^))-1 ^^-(A;^)))
oo

with x = 0, a;o îa:2 • • • , z = z(x) = ̂  a;̂ 1 , ̂ m = ^ + g î + ... + q^-i
, , 1=0

and, if x^, <: q - 2 ,

P^+(T^=O, a;^^»4-r--+0, Oa:^-ia:^-2---a:o .

Now, let d e R , e > 0 and x e [0,1[ normal to base q be given.
We shall prove that there is a positive integer mo and a strictly increasing
sequence (km)m>:mo such that

\^n(x) - d\ < e for all n = q^o 4- • • - + q^ sufficiently large.
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Let TOO be such that ^ q-"1 < e . Let (am)m>ma be a sequence in (0,1[
yyi^TMo

such that
d = (^(1) - ̂ (0)) ^ (a^ - 1/2) .

m>mo

The number a: is normal to base q . Hence there are infinitely many
k = k(m) such that

1. Xk < q - 2

2. Xk-2m=l

^fc-2m-l = ̂ fc+2m = ̂ Jb+2m+l = 0

3. \pk + O-A: - ami < ̂ (^(l) - ̂ (O))-1 , Vm > mo ;
(this condition defines a string of digits ^-2m+i,.. • , ̂ +2m-i). Hence we
may choose a strictly increasing sequence (Jbm)m^mo such that these three
conditions hold for every km and such that

4. km 4- 2m + 1 < km+i
5. ^ ^(g-^1)^

TM^TTlQ

6. ^ ^(c(g)<rfc•"+2TO+l logg*-) < e .
77l̂ 77l()

Then if n = g^o + ... + q^ (s > mo) ,

l^)-d|==0(e),

and therefore the sequence (<^n(^))n^i is dense in R . D

Remark. — Theorem 3 gives an alternative to the proof of theorem
2 (2)y this time without a condition on the modulus of continuity of y/ :

If sup \^pn{x)\ < oo for some x € [0,1[ , then this holds for all x by
the theorem of Gottschalk and Hedlund. Hence <^(1) = y?(0), otherwise a
contradiction to theorem 3 would arise for any x normal to base q .

Proof of theorem 4.

(1) is proved in the very same way as the theorem of [6].

(2) : Let La stand for L^R/1,\) . Then (p(l) = y?(0) implies
snpll^nllLa < +00 . By Lemma 2.2 in [4] there exists an element g
of £2 such that y? = g - g o T (mod A) . This implies that (x,y) ^
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(Tx, y + (p(x) mod 1) is not ergodic on R/Z x R/Z and therefore Ty cannot
be ergodic on R/Z x R (see [5], part. I : remarks). D
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