Annales de l'institut Fourier

P. Hellekalek
 Gerhard Larcher
 On functions with bounded remainder

Annales de l'institut Fourier, tome 39, n 1 (1989), p. 17-26
http://www.numdam.org/item?id=AIF_1989__39_1_17_0
© Annales de l'institut Fourier, 1989, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

ON FUNCTIONS WITH BOUNDED REMAINDER

by P. HELLEKALEK \& G. LARCHER

0. Introduction.

Let λ denote normalized Haar measure on the one-dimensional torus \mathbf{R} / \mathbf{Z}. The following two classes of λ-preserving measurable transformations on \mathbb{R} / \mathbb{Z} are important in ergodic theory as well as in the theory of uniform distribution modulo one.

Let α be an irrational number and $T: \mathbf{R} / \mathbf{Z} \rightarrow \mathbf{R} / \mathbf{Z}, T x:=\{x+\alpha\}$, $\{\cdot\}$ the fractional part. T is called an "irrational rotation" on \mathbf{R} / \mathbf{Z}.

Let $q \geq 2$ be an integer and $T: \mathbf{R} / \mathbf{Z} \rightarrow \mathbf{R} / \mathbf{Z}, T x:=x-\left(1-q^{-k}\right)+$ $q^{-(k+1)}$, whenever $x \in\left[1-q^{-k}, 1-q^{-(k+1)}[, k=0,1, \ldots T\right.$ is called a " q-adic von Neumann-Kakutani adding machine transformation" on \mathbb{R} / \mathbb{Z}. In the following, T will be called a " q-adic transformation".

Let $\varphi:[0,1] \rightarrow \mathbf{R}$ be a Riemann-integrable function with $\int_{0}^{1} \varphi(t) d t=$ 0 and let T be either an irrational rotation or a q-adic transformation on \mathbf{R} / \mathbf{Z}. Define

$$
\varphi_{n}(x):=\sum_{k=0}^{n-1} \varphi\left(T^{k} x\right)
$$

where $x \in \mathbb{R} / \mathbb{Z}$ and $n \in \mathbb{N}$ (we shall always identify \mathbf{R} / \mathbf{Z} with $[0,1[)$.

The following two questions are of importance in ergodic theory - for the study of skew products - as well as for the study of irregularities in the distribution of sequences in \mathbf{R} / \mathbf{Z} :

1. Under which conditions (on φ and x) one has $\sup _{n}\left|\varphi_{n}(x)\right|<+\infty$?
2. What can be said about limit points of $\left(\varphi_{n}(x)\right)_{n \geq 1}$?

The classical example. - Let $\varphi(x)=1_{[0, \beta[}(x)-\beta, 0<\beta \leq 1$. In this now "classical" example, the first question leads to the study of irregularities in the distribution of the sequence $\left(T^{k} x\right)_{k \geq 0}, \varphi_{n}(x)$ being the so-called discrepancy function. For $x=0$ one gets well-known sequences : in the first case $(\{k \alpha\})_{k \geq 0}$, in the second case the Van-der-Corput-sequence to the base q.

For this example, the first question has been solved completely by elementary and by ergodic methods (for the first type of T see Kesten [8] and Petersen [11], for the second type Faure [2] and Hellekalek [4]). The numbers β with $\sup _{n}\left|\varphi_{n}(0)\right|<+\infty$, respectively $\sup _{n}\left|\varphi_{n}(x)\right|<+\infty$, are all known.

The second question is closely related to ergodicity of the skew product (cylinder flow) $T_{\varphi}: T_{\varphi}(x, y)=(T x, y+\varphi(x))$ on the cylinder $\mathbf{R} / \mathbf{Z} \times \mathbf{R}$ (see Oren [10] and Hellekalek [5]). In exactly this context Oren has solved the problem.

In this paper we shall be interested in question 1,2 and ergodicity of the cylinder flow T_{φ} on $\mathbf{R} / \mathbf{Z} \times \mathbf{R}$ in the case of a q-adic transformation T and $\varphi \in C^{1}([0,1])$.

1. Results.

Throughout this paper we shall assume $q \geq 2$ to be an integer and T to be a q-adic transformation on \mathbf{R} / \mathbf{Z}.

Theorem 1. - Let $\varphi \in C^{1}([0,1])$, let $\int_{0}^{1} \varphi(t) d t=0$ and $\varphi(1) \neq$ $\varphi(0)$. Then every number c such that $|c| \leq|\varphi(1)-\varphi(0)| / 2$ is a limit point of the sequence $\left(\varphi_{q^{k}}(x)\right)_{k \geq 0}$ for almost all $x \in \mathbf{R} / \mathbf{Z}$, in particular for any x normal to base q.

Theorem 2. - Let $\varphi \in C^{1}([0,1])$, let $\int_{0}^{1} \varphi(t) d t=0$ and let φ^{\prime} be Lipschitz continuous on [0, 1]. Then
(1) $\varphi(0)=\varphi(1) \Rightarrow \sup _{n}\left|\varphi_{n}(x)\right|<\infty$ for all $x \in \mathbf{R} / \mathbf{Z}$;
(2) $\sup _{n}\left|\varphi_{n}(x)\right|<\infty$ for some $x \in \mathbf{R} / \mathbf{Z} \Rightarrow \varphi(0)=\varphi(1)$;
(3) $\varphi(1)<\varphi(0) \Rightarrow-\infty<\liminf _{n \rightarrow \infty} \varphi_{n}(0)$ and $\limsup _{n \rightarrow \infty} \varphi_{n}(0)=+\infty$;
(4) $\varphi(1)>\varphi(0) \Rightarrow-\infty=\liminf _{n \rightarrow \infty} \varphi_{n}(0)$ and $\limsup _{n \rightarrow \infty} \varphi_{n}(0)<+\infty$;
(if $\omega(\delta):=\sup \left\{\left|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right|:|x-y|<\delta, 0 \leq x, y \leq 1\right\}, \delta>0$, denotes the modulus of continuity of φ^{\prime}, then φ^{\prime} called Lipschitz-continuous if $\omega(\delta) \leq L \cdot \delta, \forall \delta>0, L$ a positive constant).

The reader might want to compare theorem 2 (1) with theorem 7.8 in [7], and theorem 2 (3) and (4) with results on the one-sided boundedness of the discrepancy function (see [1]).

Theorem 3. - Let $\varphi \in C^{1}([0,1])$ and let $\int_{0}^{1} \varphi(t) d t=0$. Then $\varphi(1) \neq \varphi(0) \Rightarrow \forall x \in \mathbb{R} / \mathbb{Z}$ normal to base $q:\left(\varphi_{n}(x)\right)_{n \geq 1}$ is dense in \mathbf{R}.

In particular, if $\varphi(1) \neq \varphi(0)$ and if x is normal to base q, then $\liminf _{n \rightarrow \infty} \varphi_{n}(x)=-\infty$ and $\limsup _{n \rightarrow \infty} \varphi_{n}(x)=+\infty$.

The reader might want to compare theorem 3 with corollary C in [10].
Theorem 4. - Let φ be as in theorem 3 and let $T_{\varphi}: \mathbf{R} / \mathbf{Z} \times \mathbf{R} \rightarrow$ $\mathbf{R} / \mathbb{Z} \times \mathbf{R}, T_{\varphi}(x, y)=(T x, y+\varphi(x))$. Then
(1) $\varphi(1) \neq \varphi(0) \Rightarrow T_{\varphi}$ ergodic;
(2) let φ^{\prime} be Lipschitz-continuous on $[0,1]$. Then T_{φ} is ergodic if and only if $\varphi(1) \neq \varphi(0)$.

2. The proofs.

Let $\mathbf{A}(q)=\left\{\sum_{i=0}^{\infty} z_{i} q^{i}: z_{i} \in\{0,1, \ldots, q-1\}\right\}$ denote the compact Abelian group of q-adic integers with the metric

$$
\rho\left(z, z^{\prime}\right):=q^{-\min \left\{i: z_{i} \neq z_{i}^{\prime}\right\}}
$$

for $z=\sum_{i=0}^{\infty} z_{i} q^{i} \neq z^{\prime}=\sum_{i=0}^{\infty} z_{i}^{\prime} q^{i}$ and $\rho(z, z):=0$.

The homeomorphism $S: \mathrm{A}(q) \rightarrow \mathrm{A}(q), S z=z+1(z \in \mathrm{~A}(q)$, $\left.1:=1 \cdot q^{0}+0 \cdot q^{1}+0 \cdot q^{2}+\cdots\right)$ has a unique invariant Borel probability measure on $\mathbf{A}(q)$: the normalized Haar measure. The dynamical system (A $(q), S$) is minimal (see [4]).

The $\operatorname{map} \Phi: \mathbf{A}(q) \rightarrow \mathbf{R} / \mathbf{Z}, \Phi\left(\sum_{i=0}^{\infty} z_{i} q^{i}\right):=\sum_{i=0}^{\infty} z_{i} q^{-(i+1)} \bmod 1$, is measure preserving, continuous and surjective.

The q-adic representation of an element x of $\mathbf{R} / \mathbf{Z}, x=\sum_{i=0}^{\infty} x_{i} q^{-(i+1)}$ with digits $x_{i} \in\{0,1, \ldots, q-1\}$, is unique under the condition $x_{i} \neq q-1$ for infinitely many i. From now on we shall assume this uniqueness condition to hold for all x. Numbers x with $x_{i} \neq 0$ for infinitely many i will be called non- q-adic. In the following $z=z(x)$ will denote the element

$$
z=z(x):=\sum_{i=0}^{\infty} x_{i} q^{i}
$$

of $\mathrm{A}(q)$ associated with x. One has

$$
T x=\Phi(z+1)
$$

and it is elementary to see :

- $T \circ \Phi(z)=$ 榃 $\circ S(z), \forall z \in \mathrm{~A}(q)$
- $x \in\left[a q^{-k},(a+1) q^{-k}\left[, 0 \leq a<q^{k}, k=1,2, \ldots \Rightarrow T^{q^{k}} x \in\right.\right.$ $\left[a q^{-k},(a+1) q^{-k}\left[\right.\right.$ and therefore $\left|T^{q^{k}} x-x\right|<q^{-k}$.
- T permutes the open elementary q-adic intervals $] a q^{-k},(a+1) q^{-k}[$, $0 \leq a<q^{k}$, of length $q^{-k}, k=1,2, \ldots$.

Proposition 1. - Let φ be continuously differentiable on the closed interval $[0,1]$ and let $\int_{0}^{1} \varphi(t) d t=0$. If ω denotes the modulus of continuity of φ^{\prime}, then for all $k \in \mathbf{N}$ and for all $x \in \mathbf{R} / \mathbf{Z}$

$$
\begin{align*}
\varphi_{q^{k}}(x)= & (\varphi(1)-\varphi(0))\left(\rho_{k}+\sigma_{k}-1 / 2\right)+\mathcal{O}\left(\omega\left(q^{-k}\right)\right) \\
& +\mathcal{O}\left(\rho_{k} \cdot \omega\left(c(q) \cdot\left(q^{k}-z(k)\right)^{-1} \log \left(q^{k}-z(k)\right)\right)\right) \tag{1}\\
& +\mathcal{O}\left(\sigma_{k} \cdot \omega\left(c(q) \cdot z(k)^{-1} \log z(k)\right)\right)
\end{align*}
$$

where

$$
\begin{aligned}
& x=\sum_{i=0}^{\infty} x_{i} q^{-(i+1)} \\
& z=z(x):=\sum_{i=0}^{\infty} x_{i} q^{i}
\end{aligned}
$$

$$
\begin{aligned}
z(k) & :=\sum_{i=0}^{k-1} x_{i} q^{i} \quad k=1,2, \ldots \\
\rho_{k} & :=\left(q^{k}-z(k)\right) \cdot \Phi(z-z(k)) \\
\sigma_{k} & :=z(k) \cdot \Phi\left(z-z(k)+q^{k}\right)
\end{aligned}
$$

and $c(q)$ is a constant that depends only on q. The \mathcal{O}-constants that appear in identity (1) are all bounded from above by a constant that depends only on q and φ.

Proof. - It is easy to prove

$$
\varphi_{q^{k}}(x)=\sum_{i=0}^{q^{k}-1} \varphi\left(a_{i} q^{-k}\right)+\sum_{i=0}^{q^{k}-1} \varphi^{\prime}\left(a_{i} q^{-k}\right)\left(T^{i} x-a_{i} q^{-k}\right)+\mathcal{O}\left(\omega\left(q^{-k}\right)\right)
$$

where a_{i} is the uniquely determined integer with $0 \leq a_{i}<q^{k}$ and $T^{i} x \in\left[a_{i} q^{-k},\left(a_{i}+1\right) q^{-k}[\right.$. From proposition 1 in [6] it follows that

$$
\sum_{i=0}^{q^{k}-1} \varphi\left(a_{i} q^{-k}\right)=-(\varphi(1)-\varphi(0)) / 2+\mathcal{O}\left(\omega\left(q^{-k}\right)\right)
$$

Further

$$
T^{i} x-a_{i} q^{-k}= \begin{cases}\Phi(z-z(k)) & 0 \leq i<q^{k}-z(k) \\ \Phi\left(z-z(k)+q^{k}\right) & q^{k}-z(k) \leq i<q^{k}\end{cases}
$$

By theorem 5.4, chapter 2 of [9]

$$
\left(q^{k}-z(k)\right)^{-1} \sum_{i=0}^{q^{k}-z(k)-1} \varphi^{\prime}\left(a_{i} q^{-k}\right)=\varphi(1)-\varphi(0)+\mathcal{O}\left(\omega\left(D_{q^{k}-z(k)}\right)\right)
$$

where $D_{q^{k}-z(k)}$ denotes the discrepancy of $\left(a_{i} q^{-k}\right)_{i=0}^{q^{k}-z(k)-1}$. As $a_{i} q^{-k}=$ $\Phi(z(k)+i)$, this is a string in the Van-der-Corput-sequence to base q, and therefore the following discrepancy estimate holds (see [9] chapter 2, theorem 3.5 for the idea of the proof) :

$$
D_{q^{k}-z(k)} \leq c(q)\left(q^{k}-z(k)\right)^{-1} \log \left(q^{k}-z(k)\right), k=1,2, \ldots
$$

$c(q)$ a constant that depends only on q.
With the same arguments one proves

$$
z(k)^{-1} \sum_{i=q^{k}-z(k)}^{q^{k}-1} \varphi^{\prime}\left(a_{i} q^{-k}\right)=\varphi(1)-\varphi(0)+\mathcal{O}\left(\omega\left(c(q) z(k)^{-1} \log z(k)\right)\right)
$$

Corollary 1.- Let $n \in \mathbb{N}, n=\sum_{i=0}^{s} n_{i} q^{i}$, with $n_{i} \in\{0,1, \ldots$, $q-1\}, 0 \leq i \leq s, n_{s} \neq 0$, and let $n(k):=\sum_{i=0}^{k-1} n_{i} q^{i}$ if $k=1, \ldots, s+1$, $n(0):=0$.

$$
\begin{aligned}
& \text { If } \sum_{k=0}^{s} \text {, denotes } \sum_{\substack{k=0 \\
k: n_{k} \neq 0}}^{s} \text { then } \\
& \varphi_{n}(x)=\sum_{k=0}^{s}, \sum_{\ell=0}^{n_{k}-1} \sum_{j=0}^{q^{k}-1} \varphi\left(T^{n(k)+\ell q^{k}+j} x\right) .
\end{aligned}
$$

Let

$$
\begin{aligned}
T^{n(k)+\ell q^{k}} x & =: x^{k, \ell}=\sum_{i=0}^{\infty} x_{i}^{k, \ell} q^{-(i+1)} \\
z^{k, \ell} & :=\sum_{i=0}^{\infty} x_{i}^{k, \ell} q^{i} \\
z^{k, \ell}(m) & :=\sum_{i=0}^{m-1} x_{i}^{k, \ell} q^{i} \quad(m=1,2, \ldots) \\
\rho_{k, \ell} & :=\left(q^{k}-z^{k, \ell}(k)\right) \cdot \Phi\left(z^{k, \ell}-z^{k, \ell}(k)\right) \\
\sigma_{k, \ell} & :=z^{k, \ell}(k) \cdot \Phi\left(z^{k, \ell}-z^{k, \ell}(k)+q^{k}\right)
\end{aligned}
$$

Then proposition 1 implies:

$$
\begin{align*}
\varphi_{n}(x)= & (\varphi(1)-\varphi(0)) \sum_{k=0}^{s}, \sum_{\ell=0}^{n_{k}-1}\left(\rho_{k, \ell}+\sigma_{k, \ell}-1 / 2\right) \\
& +\mathcal{O}\left(\sum_{k=0}^{s}{ }^{\prime} n_{k} \omega\left(q^{-k}\right)\right) \tag{2}\\
& +\mathcal{O}\left(\sum _ { k = 0 } ^ { s } { } ^ { \prime } \sum _ { \ell = 0 } ^ { n _ { k } - 1 } \left(\rho_{k, \ell} \omega\left(c(q)\left(q^{k}-z^{k, \ell}(k)\right)^{-1} \log \left(q^{k}-z^{k, \ell}(k)\right)\right)\right.\right. \\
& \left.\left.+\sigma_{k, \ell} \omega\left(c(q) z^{k, \ell}(k)^{-1} \log z^{k, \ell}(k)\right)\right)\right)
\end{align*}
$$

The \mathcal{O}-constants in identity (2) are bounded from above by a constant that depends only on q and φ.

Proof of theorem 1. - Let x be normal to base q and let $d=$ $0, d_{0} d_{1} d_{2} \cdots$ be an arbitrary number in $[0,1[$. For any index k such that
$x_{k}<q-1$ we have

$$
\begin{aligned}
\rho_{k}+\sigma_{k} & =\left(q^{k}-z(k)\right) \sum_{i \geq k} x_{i} q^{-i-1}+z(k)\left(\sum_{i \geq k} x_{i} q^{-i-1}+q^{-k-1}\right) \\
& =\sum_{i \geq 0} x_{i} q^{-|i-k|-1}
\end{aligned}
$$

Let $\varepsilon>0$ be arbitrary. Choose m such that $q^{-m}<\varepsilon$. As x is normal there are infinitely many k such that $x_{k}<q-1$

$$
\left|\rho_{k}+\sigma_{k}-d\right|=\left|0, x_{k} x_{k+1} x_{k+2} \cdots+0,0 x_{k-1} x_{k-2} \cdots x_{0}-d\right|<q^{-m}
$$

(this imposes a condition on the digits $x_{k}, x_{k \pm 1}, \ldots, x_{k \pm m-1}$)

$$
x_{k-m}=q-1 \quad, \quad x_{k-m-1}=0
$$

Then

$$
z(k) \geq q^{k-m} \quad, \quad q^{k}-z(k) \geq q^{k-m-1}
$$

and, if we choose k sufficiently large,

$$
\omega\left(q^{-k}\right)<\varepsilon \quad \text { and } \quad \omega\left(c(q) q^{-k+m+1} \log q^{k}\right)<\varepsilon
$$

If we put $c:=(\varphi(1)-\varphi(0))(d-1 / 2)$, then it follows directly that $\left|\varphi_{q^{k}}(x)-c\right|=\mathcal{O}(\varepsilon)$.

Proof of theorem 2. - (1) : Let $\varphi(1)=\varphi(0)$. It is $\Phi(z-z(k))<q^{-k}$ and $\Phi\left(z-z(k)+q^{k}\right)<q^{-k}, k=1,2, \ldots$. Hence for the third term in identity (2) we get the estimate

$$
\begin{equation*}
\left.\sum_{k=0}^{s}{ }^{\prime} \sum_{\ell=0}^{n_{k}-1}\left(\rho_{k, \ell} \cdots+\cdots \log z^{k, \ell}(k)\right)\right) \leq 2 q L c(q) \sum_{k=0}^{\infty} q^{-k} \log q^{k}<+\infty \tag{3}
\end{equation*}
$$

Thus the first part of the theorem is proved.
(2) : Let $\sup \left|\varphi_{n}(x)\right|<+\infty$ for some $x \in \mathbb{R} / \mathbb{Z}$ and let $z:=z(x)$. The $\operatorname{map} \varphi \circ \Phi: \mathbf{A}(q)^{n} \rightarrow \mathbf{R}$ is continuous and $(\mathbf{A}(q), S)$ is a minimal (topological) dynamical system. We have

$$
\sup _{n}\left|\varphi_{n}(x)\right|=\sup _{n}\left|\sum_{k=0}^{n-1} \varphi \circ \Phi\left(S^{k} z\right)\right|<+\infty
$$

By theorem 14.11 of [3] there is a continuous function $g: \mathbf{A}(q) \rightarrow \mathbf{R}$ such that $\varphi \circ \Phi(z)=g(z)-g(S z), \forall z \in \mathrm{~A}(q)$. Hence

$$
\begin{aligned}
-(\varphi(1)-\varphi(0)) / 2 & =\lim _{k \rightarrow \infty} \varphi_{q^{k}}(0)=\lim _{k \rightarrow \infty} \sum_{i=0}^{q^{k}-1} \varphi \circ \Phi\left(S^{i} 0\right) \\
& =\lim _{k \rightarrow \infty}\left(g(0)-g\left(q^{k}\right)\right)=0
\end{aligned}
$$

(here we use proposition 1 in [6] to prove the first equality).
(3) : We shall prove $-\infty<\liminf _{n \rightarrow \infty} \varphi_{n}(0)$, then part (2) will imply the remaining statement. Because of identity (2) and inequality (3) it is enough to show, for $x=0$,

$$
\Sigma_{n}:=\sum_{k=0}^{s},_{\ell=0}^{n_{k}-1}\left(\rho_{k, \ell}+\sigma_{k, \ell}-1 / 2\right) \leq K, \forall n \in \mathbf{N}
$$

with some constant K. If $x=0$ then $z^{k, \ell}=n(k)+\ell q^{k}$ and $z^{k, \ell}(k)=n(k)$. Hence $\rho_{k, \ell}=\left(q^{k}-n(k)\right) \ell q^{-(k+1)}$ and $\sigma_{k, \ell}=n(k)(\ell+1) q^{-(k+1)}$. Thus

$$
\Sigma_{n}=\sum_{k=0}^{s} ' n_{k}\left(\left(n_{k}-1\right) /(2 q)+n(k) q^{-(k+1)}-1 / 2\right)
$$

The statement then follows because $\left(n_{k}-1\right) /(2 q)+n(k) q^{-(k+1)}-1 / 2<0$.
(4): The idea of the proof is the same as in (3).

Remark. - In theorem 2 (1), (3) and (4) one can weaken the condition on the modulus of continuity of φ^{\prime} to $\omega(\delta)=\mathcal{O}\left(|\log \delta|^{-1-\varepsilon}\right)$ with some $\varepsilon>0$.

Proof of theorem 3. - The idea of the proof is as follows. Let $\left(k_{m}\right)_{m \geq 1}$ be a strictly increasing sequence of positive integers. If $n=$ $q^{k_{1}}+\cdots+q^{k_{s}}$ then

$$
\begin{aligned}
\varphi_{n}(x)= & (\varphi(1)-\varphi(0)) \sum_{m=1}^{s}\left(\rho_{k_{m}}+\sigma_{k_{m}}-1 / 2\right)+\mathcal{O}\left(\sum_{m=1}^{s} \omega\left(q^{-k_{m}}\right)\right) \\
& +\mathcal{O}\left(\sum_{m=1}^{s} \rho_{k_{m}} \omega\left(c(q)\left(q^{k_{m}}-z^{k_{m}}\left(k_{m}\right)\right)^{-1} \log \left(q^{k_{m}}-z^{k_{m}}\left(k_{m}\right)\right)\right)\right. \\
& \left.+\sigma_{k_{m}} \omega\left(c(q)\left(z^{k_{m}}\left(k_{m}\right)\right)^{-1} \log z^{k_{m}}\left(k_{m}\right)\right)\right)
\end{aligned}
$$

with $x=0, x_{0} x_{1} x_{2} \cdots, z=z(x)=\sum_{i=0}^{\infty} x_{i} q^{i}, z^{k_{m}}=z+q^{k_{1}}+\cdots+q^{k_{m-1}}$ and, if $x_{k_{m}} \leq q-2$,

$$
\rho_{k_{m}}+\sigma_{k_{m}}=0, x_{k_{m}} x_{k_{m}+1} \cdots+0, \quad 0 x_{k_{m}-1} x_{k_{m}-2} \cdots x_{0}
$$

Now, let $d \in \mathbb{R}, \varepsilon>0$ and $x \in[0,1[$ normal to base q be given. We shall prove that there is a positive integer m_{0} and a strictly increasing sequence $\left(k_{m}\right)_{m \geq m_{0}}$ such that

$$
\left|\varphi_{n}(x)-d\right|<\varepsilon \text { for all } n=q^{k_{m_{0}}}+\cdots+q^{k_{s}} \text { sufficiently large. }
$$

Let m_{0} be such that $\sum_{m \geq m_{0}} q^{-m}<\varepsilon$. Let $\left(a_{m}\right)_{m \geq m_{0}}$ be a sequence in $[0,1[$ such that

$$
d=(\varphi(1)-\varphi(0)) \sum_{m \geq m_{0}}\left(a_{m}-1 / 2\right)
$$

The number x is normal to base q. Hence there are infinitely many $k=k(m)$ such that

1. $x_{k} \leq q-2$
2. $x_{k-2 m}=1$
$x_{k-2 m-1}=x_{k+2 m}=x_{k+2 m+1}=0$
3. $\left|\rho_{k}+\sigma_{k}-a_{m}\right|<q^{-m}(\varphi(1)-\varphi(0))^{-1}, \forall m \geq m_{0}$;
(this condition defines a string of digits $x_{k-2 m+1}, \ldots, x_{k+2 m-1}$). Hence we may choose a strictly increasing sequence $\left(k_{m}\right)_{m \geq m_{0}}$ such that these three conditions hold for every k_{m} and such that
4. $k_{m}+2 m+1<k_{m+1}$
5. $\sum_{m \geq m_{0}} \omega\left(q^{-k_{m}}\right)<\varepsilon$
6. $\sum_{m \geq m_{0}} \omega\left(c(q) q^{-k_{m}+2 m+1} \log q^{k_{m}}\right)<\varepsilon$.

Then if $n=q^{k_{m_{0}}}+\cdots+q^{k_{s}}\left(s \geq m_{0}\right)$,

$$
\left|\varphi_{n}(x)-d\right|=\mathcal{O}(\varepsilon)
$$

and therefore the sequence $\left(\varphi_{n}(x)\right)_{n \geq 1}$ is dense in \mathbb{R}.
Remark. - Theorem 3 gives an alternative to the proof of theorem 2 (2), this time without a condition on the modulus of continuity of φ^{\prime} :

If $\sup _{n}\left|\varphi_{n}(x)\right|<\infty$ for some $x \in[0,1[$, then this holds for all x by the theorem of Gottschalk and Hedlund. Hence $\varphi(1)=\varphi(0)$, otherwise a contradiction to theorem 3 would arise for any x normal to base q.

Proof of theorem 4.
(1) is proved in the very same way as the theorem of [6].
(2) : Let L_{2} stand for $L_{2}(\mathbb{R} / \mathbb{Z}, \lambda)$. Then $\varphi(1)=\varphi(0)$ implies $\sup \left\|\varphi_{n}\right\|_{L_{2}}<+\infty$. By Lemma 2.2 in [4] there exists an element g of L_{2} such that $\varphi=g-g \circ T(\bmod \lambda)$. This implies that $(x, y) \mapsto$
$(T x, y+\varphi(x) \bmod 1)$ is not ergodic on $\mathbf{R} / \mathbf{Z} \times \mathbf{R} / \mathbf{Z}$ and therefore T_{φ} cannot be ergodic on $\mathbf{R} / \mathbf{Z} \times \mathbf{R}$ (see [5], part. I : remarks).

BIBLIOGRAPHIE

[1] Y. DUPAIN and V.T. SÓs, On the one-sided boundedness of discrepancy-function of the sequence $\{n \alpha\}$, Acta Arith., 37 (1980), 363-374.
[2] H. Faure, Etude des restes pour les suites de Van der Corput généralisées, J. Number Th., 16 (1983), 376-394.
[3] W.H. Gottschalk and G.A. Hedlund, Topological Dynamics, AMS Colloq. Publ., 1955.
[4] P. Hellekalek, Regularities in the distribution of special sequences, J. Number Th., 18 (1984), 41-55.
[5] P. HELLEKALEK, Ergodicity of a class of cylinder flows related to irregularities of distribution, Comp. Math., 61 (1987), 129-136.
[6] P. HELLEKALEK and G. Larcher, On the ergodicity of a class of skew products, Israel J. Math., 54 (1986), 301-306.
[7] L.K. HUA and Y. WANG, Applications of number theory to numerical analysis, Springer-Verlag, Berlin, New York, 1981.
[8] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution $\bmod 1$, Acta Arith., 12 (1966), 193-212.
[9] L. KUipers and H. Niederreiter, Uniform distribution of sequences, John Wiley \& Sons, New York, 1974.
[10] I. OREN, Ergodicity of cylinder flows arising from irregularities of distribution, Israel J. Math., 44 (1983), 127-138.
[11] K. Petersen, On a series of cosecants related to a problem in ergodic theory, Comp. Math., 26 (1973), 313-317.

Manuscrit reçu le 17 juillet 1987, révisé le 7 octobre 1988.

P. HELLEKALEK \& G. LARCHER, Institut für Mathematik Universität Salzburg Hellbrunnerstraße 34 A-5020 Salzburg (Austria).

