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THE SCHOTTKY-JUNG THEOREM
FOR MUMFORD CURVES

by Guido VAN STEEN

Introduction.

The classical Schottky relations for theta functions are relations which
are valid for theta functions on the Jacobian variety of a Riemann surface.
These relations are derived from a theorem by Schottky and Jung.

In [6] Mumford gives a pﬁrely algebraic geometrical version of this
theorem. However, in the case of a complete non-archimedean valued base
field there exists a theory of theta functions on analytic tori which is very
similar to the complex theory, cf. [3].

In this paper we use these theta functions to prove the Schottky-Jung
theorem in the particular case that the torus is the Jacobian variety of a
Mumford curve. In Section 2 we prove a slightly weaker version of the
theorem. In Section 3 we prove the stronger version in the particular case
of hyperelliptic curves. In Section 3 we prove the theorem in the general
case using the technique of analytic families of curves.

I would like to thank M. Van der Put for his helpful suggestions.

Notations.

i) k is an algebraically closed complete non-archimedean valued field,
char(k) # 2,3 .

Key-words : Mumford curves — Theta functions.
A.M.S. Classification : 14K25 — 14G20.
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ii) P! is the projective line over k .

1. Theta functions and the Riemann Vanishing Theorem.

Let I' C PGL(2,k) be a Schottky group of rank g+1 . Let Xpr = Q/T
be the corresponding Mumford curve; @ C P! the set of ordinary points of
I" . The Jacobian variety Jr of Xr can be identified with an analytic torus;
cf. [4]. We recall briefly how this is done.

_171 2=
If a,b € Q we define u, 4(2) 71; PR Q.
This product defines a meromorphic function on Q which satisfies
a functional equation c,5(7) « Ua,5(72) = uep(2) with v € T and cqp €
Hom(T',k*) . If b ¢ I'(a) then u, 4 has zeroes in the orbit I'(a) and poles
in the orbit I'(b) . If b = y(a) with v € ', then u, 5 does not depend on

a . In this case we denote u, = u,p and ¢y = ¢, 5 . The function u, has no
zeroes or poles.

Let Gr = Hom(T', k¥*) . This group can be identified with (k*)9+! and

hence has an analytic structure. The subgroup Ar = {c, | ¥ € '} is a free
abelian group of rank g + 1 and is discrete in Gr .

n
With a divisor D = Z(d,- —b;) on Xt with deg(D) = 0 corresponds

=1
n

a homomorphism ¢ = Hca,.,b,, € Gr ; a;,b; € Q . This correspondence

=1
induces an analytic isomorphism from Jr onto the quotient Gr/Ar .

Let p € Q be a fixed point. Define tr : @ — Gr by tr(z) = ¢z,p . The
induced map #r : Xr — Jr is the canonical embedding of Xt into Jr with
base point p . This map is extended to divisors in a canonical way.

The flu&l Xari(ity fr of 1[‘ can also be represented as an analytic torus.
One has Jr = Gr/Ar with Gr =‘H0m(Ar, k*) and

Ar = {de Gr | 3a € T such that d(c,) = cq(y) for all ¢, € Ar} .
The group Ar acts on
O*(Gr) = {f | f holomorphic and nowhere vanishing function on Gr} .
For f € O*(Gr) , ¢y € Ar and ¢ € Gr one defines f7(c) = f(c ) .
If ¢ € Z!(Ar, 0*(Gr)) is a 1-cocycle then we denote
L(§) = {h | h holomorphic function on Gr , h(c) = &, (c)h(cyc)
for all ¢, € Ar} :
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Elements of L(£) are called holomorphic theta functions of type £ .

Let A¢ : Gr — Gr be defined by A¢(c)(cy) = ¢(7) - This morphism
induces a morphism X¢ : Jr — Jr .

If L(¢) # 0, then )¢ is an isogeny and dim(L(¢)) = [Ker ) : Ker X¢|
where Ker ), is the image in Jr of Ker A¢ C Gr ; cf. [3], [11].

A canonical 1-cocycle can be defined in the following way. Let
pr: Ap X Ar — k*

be a symmetric bilinear form such that p2(c,,c5) = ¢,(6) forall 7,6 €T .
Define & by &r,c. (¢) = pr(cy,cy)e(Y) ; ¢y € Ar , ¢ € Gr . In this case Ag.
is an isomorphism and hence dim(L({r)) = 1 . In fact L(ér) is generated
by the Riemann theta function 0r(c) = Z ér.c, (c) . The divisor of 6p

cyEAr
is Ar-invariant and hence induces a divisor on Jr . This divisor defines a

polarization Or on Jr .

The isogeny form Jr onto Jr which can be associated with a polar-
ization is in this case /_\5r . Since this is an isomorphism, Or is a principal
polarization. In fact Or is the canonical principal polarization which exists
on a Jacobian variety. This follows from :

THEOREM 1.1 (Riemann Vanishing Theorem).

i) The holomorphic function 0r o tr has a I'-invariant divisor which,
regarded as a divisor on Xr , has degree g+ 1 .

ii) If the map tr : Xr — Jr is based at the point p € Q , and if
Kr = (div(f o tr) — p)modI' € Div(Xr) , then 2KT is a canonical divisor.
Furthermore, the class of Kt under linear equivalence of divisors does not
depend on the choice of p .

iii) If ¢ € Gr then 6r(c) = 0 if and only if ¢ = tr(D — Kr) for some
positive divisor D of degree g . The order of vanishing of 6r at c is equal
to i(D) , the index of speciality of D .

Proof. — The divisor r is calculated in [4]. The other assertions are
easily proved in a similar way as in the complex case; e.g. the proof such
as given in [1] can easily be adapted. O
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2. The Schottky-Jung theorem.

Let Xr be as in Section 1. Let 7 : X — Xr be an analytic covering
of Xr ; X acurve of genus 2g + 1 .

The condition of 7 being analytic is stronger than being just un-
ramified, cf. [8]. In particular this condition implies that X is a Mumford
curve corresponding to a Schottky group A with A a subgroup of I with
[[': Al = 2. Since A is normal in I , both groups have the same set of
ordinary points. So X = XA = /A . Moreover, the map 7 is given by

w(A-orbit of ) = (T-orbit of z) ; z€ Q.

The Jacobian variety of XA is constructed in the same way as Jr . We
keep the same notations as in Section 1 but to indicate that we work with
respect to A we will denote

~ — ﬂ ~ ~a., ~ ~
tiap(2) = ﬁl;‘!; %—_—ﬁ—(-(g ; Cap(6) = ;lr_b&—((%_) , €5 =Cab(a);---

We take a symmetric bilinear form pa : Aa X Aa — k* such that
PA(€a,é3) = E(B) . The canonical 1-cocycle o € Z'(Aa,0*(Ga)) is
defined by €a z,(€) = pa(Cs,Cs)E(d) ; és € Aa and é € Ga . The Riemann
theta function on G, is defined by

0a(@) = Y €ag(®); E€Ca.

¢s€AA

Let (0,715 - - -1 7g) be a free basis for the group I' . We may assume v ¢ A
and ;€ Afori=1,...,9.

So A has a free baSi860,61,...,69,6-1,... ,6__9 with 60 = ’)’3 ,51' =%,
6_i =77 ;i=1,...,9 . The bilinear forms can be normalized such
that

i) pa(Esy5C50) = Cxo(70) »
ii) Vo, B € A : pa(can,€s) = pPr(cy,cp) -
(Cal|, is the restriction of ¢, to A .)
Let 7* : Jr — Ja be the dual map of = . This map is defined by
m*(cmod(Ar)) = c|a mod(Aa) -

Since 7 is unramified Ker 7n* has order 2. The non-trivial element
of Kern* is & with cg € Gr defined by co(79) = —1 and co(v:) = 1 ;
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it =1,...,9 . More relations between Jr and Ja can be found in [11]. The
relation between 0r and 04 is given by

THEOREM 2.1 (Schottky-Jung relation). — There exists a homo-
morphism ey € Gr such that e2 = ¢y and such that
0a(cla)
Or(eoc) - 01"(66'10)
is a constant function in ¢ € Gr .

In this Section we will prove only that eo satisfies e3 = co mod(Ar) .
This weaker version of the theorem is basically the same as the algebraic
geometrical result given in [6].

Meromorphic functions on X or Xa can be lifted to I-invariant or
A-invariant meromorphic functions on 2 .

A similar correspondence holds for divisors on Xt and X . We make
no difference between divisors on Xr (or Xa) and their lifts to Q . If D is
a divisor on Xt then denote

Lr(D)={f|f,T-invariant meromorphic function on Q with div(f)+D =0}.

(Similar meaning for La .)

PROPOSITION 2.2. — Let D be a divisor on Xr with deg(D) =
g and let ©*(D) be the reciprocal image of D on XA . The following
sequence is exact :

0— Lp(D) > La(r*(D)) < L(D - Do) =0
with :
i) Dy = div(fy) and fo a meromorphic function on Q2 such that
co(7)fo(ve) = fo(c) for all y €T
ii) a(f) = f for all f € Lr(D)

—go *
i) A(g) = =222 - fy for all g € La(r*(D)) .

Proof. — 1t is easy to verify that these maps are well defined. If
g € Ker 8 then g = gop and g is A-invariant. So g is I'-invariant and in
fact g is an element of Lp(D) . If f € L(D — Dy) then f = 8(f/fo) - So B8
is surjective. O

Let p € Q. We have canonical maps &r : Xr — Jr and tp : Xao — Ja
with {r(Z) = &;,p,ta(Z) = &s,p - These maps are extended to divisors.
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Define Kr and KA as in Section 1. According to the Riemann
Vanishing Theorem 2Kt and 2K are canonical divisors on Xt and X, .
Since 7 is unramified #*(2Kr) and 2K, are linear equivalent. Hence
7 (Kr) = Ka+FE where E is a divisor of degree 0 such that 2F is principal.

Let € € Ga such that tA(E) = £, (¢ is defined up to periods in Ap).
We have the following ‘

Oa(cla-€) . . .
LEMMA 2.3. — —————"— is a nowhere vanishing holomorphic
: 6r(c) - Or(cco) & P
function on Gr .

Proof. — 1If 6r(c) = 0 then ¢ = & (D — Kr) ; D a positive divisor
on Xr with deg(D) = g . Hence 7*(¢) = c|a = ta(n*(D) — 7*(Kr)) and
consequently 7*(C) - £ = Ta(n*(D) — Ka) . It follows that a(c|a -€) =0 .
In a similar way we find that Oa(c|a - €) = 0 if 6r(cco) = 0 . Furthermore
the vanishing order of @a(c|a - €) is the sum of the vanishing orders of

fr(c) and 6r(ccy) . This follows from 2.2 and the Riemann Vanishing
Theorem. O

LEMMA 2.4. — KA and 79(Ka) are linear equivalent.

Proof. — 1t follows from the definition of Ka that
Yo(Ka) = div(fa o ta o 70) — 70(p) -
If z € Q we have ta(10(2)) = Ey(a)p = o * Exzi(a)p = oo -él‘;m(p) ,
cf. [10]. (If ¢ € Ga , then &™ is defined by &% (6) = &(vodv5 ") -)

N (&65)

Since ———— € O*(Ga) and since 05(c") = 0a(E) , we find that
(@)

Yo(Ka) = div(0a(Ez,4(p)) — Y0(p) - It follows from 1.1 that yo(Ka) and
K are linear equivalent. O

As a consequence Yo(E) and E are linear equivalent and hence
€79~ € Aa . Since "¢~ is yp-anti-invariant, we have e™e~! = &°¢;?
for some § € A, cf. [11]. Hence, after replacing ¢ by e¢; ' , we may assume
that ¢ is invariant under the action of 7 . It follows that ¢ = 7*(eg) for
some ey € Gr . :

We have the following weaker version of Theorem 2.1.

PROPOSITION 2.5.

i) e2 = comod Ar
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Oa(m*(c))

i) Or(ceo) - Or(ceg?)

is constant in c .

Proof. — Since G_i%g%((—c_c)—% € O*(Gr) it has a decomposition of

the form A - v, with A € k* , a € I" and vq(c) = ¢(@) , cf. [4].
b (7 (c)e)
6r(c)fr(cco)

2
function of type ¢ € Z'(Ar,0*(Gr)) with & (c) = % . On the other
2

hand Ava(cy€) = cy(@) - Ava(e) = ca(7) - Avg(c) . Hence Z.—? =c;' € Ar
and we find that
Oa(r*(c)) _ _ Oa(m*(ceq)e)

Or(cegt)br(ceo)  Or(ceg!)fr(cegicocs?)
= fr‘,c:;l (Ceo_lco) : A'Uoz(ceo—l) .

But as a quotient of theta functions itself is a theta

fa(7*(c))

0 ————————— = Apr(cq,C a)~! . This expression is constant in
01*(666’1)0[*(660) PI‘( Q) C!)CO( ) xp d

c. |

Remark. — The homomorphism eg is only defined up to periods in

Ar . If one replaces ey by egcy with v € ', then €2 = coca-142 . So @ is
only defined up to squares in I .

In the following sections we will prove that eq can be chosen such that
a=1.

3. The case of hyperelliptic curves.

We take m : Xao — Xr as in Section 2, but we now assume that
X is hyperelliptic. So there exists an element s in the normaliser of A in
PGL(2,k) such that s6s7! = § ' mod[A,A] for all § € A, cf. [9].

Since 42 € A for all ¥ € T and since I'/[[, T] is a free abelian group we
find that sys™! =y~ mod[[, T] . Hence Xr is also hyperelliptic. We may
assume that s has order 2. Furthermore there exists a free basis y,...,7,
for I such that syt =971 ;i=0,...,9; cf. [9]. We also may assume
that o ¢ A . If v, ¢ A (i =1,...,9) , then v;70 € A and y7y; € A .
But 5(7:%) - (Y071:) 71Tt = 77 5 1m0 = (170) (r071:) ! mod[A, A] . This
contradicts the fact that sés™' = §~! mod[A,A] for all § € A . This
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means that 7,...,7, satisfy the assumptions of Section 2 and that A
has a free basis &o,61,...,65,0-1,...,6—_, with § = 72 , 6 = v; and
b—i=r%"% " si=1...,9.

Let p_; = 6_i60 = v0viv0 - S0 80,61,...,84, 41, ..., ph—g is a basis for
A and sbos™' =851, s(6;)s =6 and sp_sT =pT} ,i=1,...,9.

Let a and b be the fixpoints of s and let a; and b; be the fixpoints of
s7i; ©=0,...,9 . The fixpoints of sy are then v5(a) and 5! (b) and the
fixpoints of su_; are 75 (a;) and 51 (b:) .

All these fixpoints are ordinary points. The double coverings

Xr — PY(k) and Xa — Pl(k)

are ramified in the points @,b,do,bo,..-,a5,b, € Xr and &,b,a;,by,...,

@aga’)/o_l(a’)"Y()_l(b)':’)'(-)—l(al)”)'o_l(bl)v se 77{)_1(ag)77(]_1(bg) € XA respec-
tively; cf. [9].

We will now calculate Kt and Ka . The linear equivalence classes
of these divisors do not depend on the base point of the canonical maps
tr : Xr — Jr and A : Xao — Ja . We may assume that this base point is
a.

The tr-images of the ramification points of Xr — P! (k) are calculated
in [10].

We have
l.ca(ri)=-1; 1=0,...,9
2.2, =C. =0Cyn; Cha = Cha; Caia; Cbia;(7) = —1 and

Chiai(7j) =1forall j#i; i=0,...,9.

LEMMA 3.1. — Let ¢ € Gr such that ¢ = ¢, € Ar with v ¢ [, T]
and such that ¢(vy) = —pr(cy,¢y) . Then Or(c) =0 .

Proof. — 6r(c) =0r(c'cy) =&y (¢ H)br(c™?) .

But &rc (c7!) = pr(cy,¢y) - ¢(y)™! = —1 and since fp is an even
function the assertion follows. O

Since ¢pa(7i) = —Caia(7i) = £pr(cyi;¢y;) we find that r o tr has a
zero in a; or in b; for each ¢t =0,...,g .

In a similar way we find that @5 ota has a zeroin v5!(a) orin y71(d) ,
in @; or in b; and in 75!(a;) or in 45} (b;) foreach i =1,...,9 .
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An easy calculation shows that & -1(a)a(60) Pa(@s,,€s,) and hence

0a ota(v52(b)) =0 . After an eventual interchanging of a; and b; we may
assume that Oa(G,,0) =0fori=1,...,9.

g9
PROPOSITION 3.2. — Ka=731(b)+ Y @G+ '(b;)—a.
=1

Proof. — We only have to show that Oa(ta(vg1(b:))) = 0 for
t=1,...,9 . Assume that 7,...,7, are numbered such that
a(talro'(b:)) =0
fort =1,...,kand Oa(ta(v5t(ai))) =0fori = k+1,...,gwith1 Sk <g.
We have

k ‘ g
Ka=7%"0)+Y G+7% (a)+ Y, @+ () —a.
i=1 i=k+1
We find that tA(Ka — y0(Ka)) = ¢ with ¢ € Ga and
g

€ = Cyy(b)a " Cba - H Cryo(bi)vo(as) * Cbiai -
1=k+1
Hence ¢(6;) = c(pu—;) =c(dp) =1fori=k+1,...,g9 and

c(6;) =c(p—;)=-1 for i=1,...,k.
It follows that ¢2 = 1and c # 1. Soc ¢ Ar and K4 is not linear equivalent
with 49(Ka) . This contradicts 2.4. O

We can number 71, . .. ,, and choose ag and bg such that r(tr(a:)) =
Ofori=0,...,k and Or(tr(b;)) =0fori =k +1,...,g with £ 20 . We

have
K[*—-Zal Z i)_‘_—(_l

i=k+1
and ta(r*(Kr) — Ka) =€ w1th
k
€ = Cagvg1(a) " Crgl(ao)rgt(®) * Hc'vol(at)no‘(b) H Chisai -
i=1 i=k+1
We find

Cag.0 * Crtao)ng (@) )
“(a)a l(a) ¥5 1 (b)

Since (Egq,q - 676-1(00)’7()—1(a))2 = cﬁoalA Cropy = C6p = c'yo‘l(a),a we have

€2 =1 . In Section 2, we found that ¢ = €|, With e% =cgCy-1; a €.

Since €2 = 1 we have co—1 = 1 . This proves Theorem 2.1 in this special
case.

2
2 _ (= % -
e = (cao,'vo“(a) 'c'/J‘(ao),’ro"‘(b)) = (c



10 Guido VAN STEEN
4. Analytic families of Mumford curves.

Let S be a connected analytic space and let p : P! x S — S be the

projection on S . Let Autg(P! x S) be the group of analytic automorphisms
u of P! x S which satisfy pou=1p .

Let T" be a free group of rank g + 1 and let ¥ : T' — Autg(P! x S) be
a family of Schottky groups.

If s € S define then vs : Auts(P! x S) — Aut(P!) by us(u)(x)'= y if
and only u(z,s) = (y,8) ; v € Auts(P! x §), z,yeP!.

The map v, o ¢ is then injective and Iy = Im(y; o %) is a Schottky
group. If y € T and s € S then denote (s) = v; o () .

There exists an analytic subdomain Q C P! x § such that forall s € S

the set Q; = {x € P! | (,s) € 0} is the set of ordinary points of Ty . This
result is proved in [7].

The group I' acts in a canonical way on @ . Let Xr = Q/TI" be the
quotient space and let p : Xpr — S be the map induced by p . For all s € S
the fiber Xr ; = p~(s) is then isomorphic to the Mumford curve X, .

The Jacobians of the curves X, can be regarded as fibers of an
analytic family over S .

Let Gr = Hom(I',k*) , Gr = Gr x S'and 7 : Gr — S be the
projection on S . If v € T then define )\, : Gr — Gr by A,(c,s) = (d,s)
with d(8) = c(8)cy(s)(6(s)) -

PROPOSITION.

i) A, is an analytic automorphism

ii) A, has a fixpoint <=> ), is the identity <= v € [[',T] .

Proof.

i) S admits an admissible covering by affinoids S; , (¢ € I) , such that
each S; admits analytic sections zg,z; : ; — Q such that z¢(s) # z1(s)
forall s€ S;, cf. [2]. If s € S; then

sz, (T0(8), )
cy(s)(0(8)) = 1
10D = g 5 @o(s),5))
with sz, (2,8) = H 2 =0 0 7(z(s)) where 0 : P! x S — P! is the
’ LY S EAO)
projection on P! . The function us ., is analytic on QN (P! x S;) . It follows
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that the restriction of A, to Gr x S; is analytic. Hence A, is everywhere
analytic.

ii) Ay(c,8) = (c, ) if and only if c,(5)(6(s)) = 1 for all § € T" . This
means that v(s) € [I,T}] . O

Let A = {Ay | ¥ € I'} . We can make the quotients space Jr = Gr/A .
Let 7:Jr — S beinduced by 7: Gr — S .

PROPOSITION 4.2. — For all s € S the fiber Jr; = 77 1(s) is
isomorphic to the Jacobian variety Jr, of X .

Proof. — Define a : Jr s — Jr, = Hom(I;,k*)/Ar, by a(E,3) = €5
with ¢;(7(s)) = ¢(v) . This map is an isomorphism. O

Let A C T be a subgroup of index 2. We can find a basis 7o, ...,7,
for ' such that 70 ¢ A and v,...,7y € A . The group A has a basis
60,61,...,0g,0_1,...,6_g with 6o = ’)‘g , 00 = v and 6_; = ’YQ’Y,;’YEI ;
i=1,...,9 .For s € S we denote A; = {6(s) €T, |6 € A} .So Asisa
Schottky group and I'; and A; satisfy the conditions of Section 2. For data

which refer to these groups we keep the same notations as in Section 2.

We have an analytic family of Mumford curves p: XA = Q/A - S
and for each s € S the fiber Xp s is isomorphic to the Mumford curve
XA, .

s

Let 7 : XA — Xr the canonical map induced by the identity on .

Define J A in a similar way as Jr . We have a dual map n* : Jpr — Ja
with 7*(5;3) = (Ga,3) -

The analytic space S locally admits analytic sections z¢ and z; with

values in Q such that zo(s) # z1(s) for all s , (cf. Prop. 4.2). We now
assume that zo and z; exist on S itself.

Let tr : @ — Gr and ta : Q — Ga be defined by

t]‘(.’L‘, S) = (C, S) with C(’)’) = ca:,a(zo(s))(7) ) (’7 € r)
ta(z,s) =(Es) with é(8) = Ez,a(z:o(s))((s) , (6€A)
(0 :P* x § — P! the projection on P!).
These maps are analytic and induce maps tr : Xr — Jr and
ta : Xao — Ja . For each s € S the restrictions of {r and fa to the

fibers over s are the canonical maps Ir, : Xr, — Jr, and fa, : XA, — Ja,
based at o(zo(s)) .
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Let pr, : A, x Ar, — k* and pa, : Aa, X Aa, — k* be symmetric
bilinear forms such as in Section 2 and assume that they are normalized
as before. So we have theta functions 6r,, 8, and divisors Kr,, KA, and
E; =7 (Kr,) — Ka, . Let €5 € Ga, such that ts,(E,) = &5 and such that
€1 =¢, . So¢e, = m*(eo,s) with e s € G, .

Defineeg: S — Gr ande: S — Gp by
eo(s) = (a,s) with a(y) = eo,s(7(s))
and
e(s) = (a,s8) with a(6) = es(6(s)) .
Soe=n*oep .

The sections ep and € need not to be analytic. However, if one defines
multiplication of sections in an obvious way, we can prove the following.

LEMMA 4.3. — S admits an admissible covering (S;);c; with the
following properties :

For each i € I one can choose the homomorphisms eg s in such a way
that the restriction eg ; of eg to S; satisfies that eg,i is analytic. Furthermore,
for each i,j € I there exists a B;; € I' such that for all s € S; N S; ,
eo,ieg,3(s) = (a, 8) with a(y) = cg,;(5)(7(8)) -

Proof. — For each s € S define dr, € Gr, and da, € Ga, by
dr, (7i) = Pr.(Cyi(s)1Cyi(s)) 5 1=0,...,9
and
da,(6:) = pa,(Csi(s),Coi(s)) 3 1=10,...,9,—1,...,—g.
Define functions nr and na on Gr and Ga respectively by
nr(c, s) = Or,(dr, - ¢5) with cs(v(s)) = c(7)
and
Na(é,8) =0a,(da, - &) with &,(8(s)) = &) .

These functions are holomorphic, (cf. [2]).

The divisors Ly = div(yr o tr) and LA = div(na o ta) are invariant

under the actions of I' and A respectively. So they can be regarded as
divisors on Xr and XA .

Let E' = n*(Lr) — La . For each s € S the restriction E of E’
to the fiber X ; has degree 0 . One has a corresponding homomorphism
€' € Ga, , (defined up to periods in Aa,), such that £a,(E.) =€/ .
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The section & : S — Ja with €/(s) = (@,s) and a(6) = €,(6(s))
is then analytic. Let Dr, and Da, be divisors on Xr, and Xa, such
that Ir,(Dr,) = dr, and fa,(Da,) = da, . So div(dr, - tr,)) is linear
equivalent with div(fr, o tr,) + Dr, and div(fa,(da, - ta,)) is linear
equivalent with div(a, ota,) + Da, , cf. [4]. It follows that E! is linear
equivalent with E; + vo(s)(Da,) and hence ¢ = ¢, - gsmod As, with
3s(6:(s)) = pA,(éai(s),é’}?((:))) ;8=0,...,9,—1,...,—g . Since €, is only
defined up to periods we may assume that this congruence is an equality.
Since §°(*) = §, we have €%0(9) = ¢/ . So there exist g;,e, € Gr, with
9s|a, = s and es|a, = €5 .

Define sections g : S — Gr with g(s) = (a, s) with a(y) = gs(7(s))
and &: § — Jp with &(s) = (b, s) with b(y) = es(7(s)) . So & = n*oéand &
is analytic. It follows that € can locally be lifted to an analytic section with
values in Gr . There exists an analytic covering (S;);cr of S and analytic
sections e; : §; — Gr such that for each s € S; , e;(s) = e(3) .

If s € ;N S; then e;(z) = e;(s)mod A and since e;ej! is analytic
there exists a B;; € I' such that Ag;;(ei(s)) =e;(s) foralls C S;NS; .

Define eg; : S; = Gr by ep; = e;-g . For each s € S; we have
eo,i(s) = eo(s) in Ir . Moreover, it is easy to verify that g2 is analytic. Hence
e} ; is analytic and the sections (eq,i)icr satisfy the required conditions. I

We proved in Section 2 that 3 , = co,s mod(Ar,) with cos(76(s)) =
—1 and ¢g4(6(s)) = 1 for all §(s) € A, . Define ¢y € Gr by co(y0) = —1 and
co(6) =1 for all § € A . The section ¢ : S — Gr which maps s onto (cp, )
is then analytic and for all s € S; we have e} ;(s) = c(s) mod A . Since both
sections are analytic there exists a o; € T such that e} ; = A, (c(s)) for all
s € S; . We can sum up as follows.

PROPOSITION 4.4. — The analytic space S admits an admissible
covering (S;);er with the following properties :

i) for each i € I one can choose the homomorphisms ey s , s € S; ,
in such a way there exists a o; € I' with

€5,5(1(8)) = Cay(s)(7(s)) forall y € T ;
ii) for all i, j € I there exists a B;; € T such that oo5' = B .
Remark. — The homomorphism c,,(;) depends only on the class of

a; in T'/[',T] . Furthermore, since eg ; is only defined up to periods, a; is
only defined up to squares in I" .
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COROLLARY 4.5. — If Xa , is hyperelliptic for some s € S , then
one can takea; =1 foralli e I .

Proof. — Assume s € S; . We proved in Section 3 that ey s can be
chosen such that e} ; = co,s . Hence we can take a; = 1.

For all k such that Sy N S; # @ we have o = B, . Since ay is only
defined up to squares we can take o = 1 . This argument can be repeated.
Since S is connected any S; is reached in this way. O

We can now finish the

Proof of Theorem 2.4. — Let S be the Teichmuller space Tg4; . A
point in Ty, can be identified with an ordered set v = (v,...,v,) with
v; € PGL(2,k) and such that :

i) vo,...,v, is a basis for a Schottky group of rank g + 1 .

ii) ¥ has 0 and oo as attractive and repulsive fixpoints respectively.
iii) 1, has 1 as attractive fixpoint.
The space Tg; has a connected analytic structure, cf. [5].

Now take I', A and 7,...,7, as in the previous part of the section
and define ¢ : T' — Aut,(P* x S) by

’(ﬁ(’)’,)(it,l/) = (Vi(.'t),ll) ; 1=0,...,9.

For each » € S , the Schottky group T', is then generated by
vo,...,Vy . Furthermore, any situation as in Section 2 can be realized by
taking the fibers Xr , and X4, . In particular X4, is hyperelliptic for at
least one v € Ty41 . So we can always choose e, such that e§ , = co,, .0
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