Annales de l'institut Fourier

Guido Van Steen
 The Schottky-Jung theorem for Mumford curves

Annales de l'institut Fourier, tome 39, no 1 (1989), p. 1-15
http://www.numdam.org/item?id=AIF_1989__39_1_1_0
© Annales de l'institut Fourier, 1989, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE SCHOTTKY-JUNG THEOREM FOR MUMFORD CURVES

by Guido VAN STEEN

Introduction.

The classical Schottky relations for theta functions are relations which are valid for theta functions on the Jacobian variety of a Riemann surface. These relations are derived from a theorem by Schottky and Jung.

In [6] Mumford gives a purely algebraic geometrical version of this theorem. However, in the case of a complete non-archimedean valued base field there exists a theory of theta functions on analytic tori which is very similar to the complex theory, cf. [3].

In this paper we use these theta functions to prove the Schottky-Jung theorem in the particular case that the torus is the Jacobian variety of a Mumford curve. In Section 2 we prove a slightly weaker version of the theorem. In Section 3 we prove the stronger version in the particular case of hyperelliptic curves. In Section 3 we prove the theorem in the general case using the technique of analytic families of curves.

I would like to thank M. Van der Put for his helpful suggestions.
Notations.
i) k is an algebraically closed complete non-archimedean valued field, $\operatorname{char}(k) \neq 2,3$.
ii) $\mathbf{P}^{\mathbf{1}}$ is the projective line over k.

1. Theta functions and the Riemann Vanishing Theorem.

Let $\Gamma \subset P G L(2, k)$ be a Schottky group of rank $g+1$. Let $X_{\Gamma}=\Omega / \Gamma$ be the corresponding Mumford curve; $\Omega \subset \mathbf{P}^{1}$ the set of ordinary points of Γ. The Jacobian variety J_{Γ} of X_{Γ} can be identified with an analytic torus; cf. [4]. We recall briefly how this is done.

If $a, b \in \Omega$ we define $u_{a, b}(z)=\prod_{\gamma \in \Gamma} \frac{z-\gamma(a)}{z-\gamma(b)} ; z \in \Omega$.
This product defines a meromorphic function on Ω which satisfies a functional equation $c_{a, b}(\gamma) \cdot u_{a, b}(\gamma z)=u_{a, b}(z)$ with $\gamma \in \Gamma$ and $c_{a, b} \in$ $\operatorname{Hom}\left(\Gamma, k^{*}\right)$. If $b \notin \Gamma(a)$ then $u_{a, b}$ has zeroes in the orbit $\Gamma(a)$ and poles in the orbit $\Gamma(b)$. If $b=\gamma(a)$ with $\gamma \in \Gamma$, then $u_{a, b}$ does not depend on a. In this case we denote $u_{\gamma}=u_{a, b}$ and $c_{\gamma}=c_{a, b}$. The function u_{γ} has no zeroes or poles.

Let $G_{\Gamma}=\operatorname{Hom}\left(\Gamma, k^{*}\right)$. This group can be identified with $\left(k^{*}\right)^{g+1}$ and hence has an analytic structure. The subgroup $\Lambda_{\Gamma}=\left\{c_{\gamma} \mid \gamma \in \Gamma\right\}$ is a free abelian group of rank $g+1$ and is discrete in G_{Γ}.

With a divisor $D=\sum_{i=1}^{n}\left(\bar{a}_{i}-\bar{b}_{i}\right)$ on X_{Γ} with $\operatorname{deg}(D)=0$ corresponds a homomorphism $c=\prod_{i=1}^{n} c_{a_{i}, b_{i}} \in G_{\Gamma} ; a_{i}, b_{i} \in \Omega$. This correspondence induces an analytic isomorphism from J_{Γ} onto the quotient $G_{\Gamma} / \Lambda_{\Gamma}$.

Let $p \in \Omega$ be a fixed point. Define $t_{\Gamma}: \Omega \rightarrow G_{\Gamma}$ by $t_{\Gamma}(x)=c_{x, p}$. The induced map $\bar{t}_{\Gamma}: X_{\Gamma} \rightarrow J_{\Gamma}$ is the canonical embedding of X_{Γ} into J_{Γ} with base point \bar{p}. This map is extended to divisors in a canonical way.

The dual variety \widehat{J}_{Γ} of J_{Γ} can also be represented as an analytic torus. One has $\widehat{J}_{\Gamma}=\widehat{G}_{\Gamma} / \widehat{\Lambda}_{\Gamma}$ with $\widehat{G}_{\Gamma}=\operatorname{Hom}\left(\Lambda_{\Gamma}, k^{*}\right)$ and

$$
\widehat{\Lambda}_{\Gamma}=\left\{d \in \widehat{G}_{\Gamma} \mid \exists \alpha \in \Gamma \text { such that } d\left(c_{\gamma}\right)=c_{\alpha}(\gamma) \text { for all } c_{\gamma} \in \Lambda_{\Gamma}\right\}
$$

The group Λ_{Γ} acts on
$\mathbf{O}^{*}\left(G_{\Gamma}\right)=\left\{f \mid f\right.$ holomorphic and nowhere vanishing function on $\left.G_{\Gamma}\right\}$.
For $f \in \mathbf{O}^{*}\left(G_{\Gamma}\right), c_{\gamma} \in \Lambda_{\Gamma}$ and $c \in G_{\Gamma}$ one defines $f^{c_{\gamma}}(c)=f\left(c_{\gamma} c\right)$. If $\xi \in \mathbf{Z}^{1}\left(\Lambda_{\Gamma}, \mathbf{O}^{*}\left(G_{\Gamma}\right)\right)$ is a 1-cocycle then we denote $\mathbf{L}(\xi)=\left\{h \mid h\right.$ holomorphic function on $G_{\Gamma}, h(c)=\xi_{c_{\gamma}}(c) h\left(c_{\gamma} c\right)$ for all $\left.c_{\gamma} \in \Lambda_{\Gamma}\right\}$.

Elements of $\mathbf{L}(\xi)$ are called holomorphic theta functions of type ξ.
Let $\lambda_{\xi}: G_{\Gamma} \rightarrow \widehat{G}_{\Gamma}$ be defined by $\lambda_{\xi}(c)\left(c_{\gamma}\right)=c(\gamma)$. This morphism induces a morphism $\bar{\lambda}_{\xi}: J_{\Gamma} \rightarrow \widehat{J}_{\Gamma}$.

If $\mathbf{L}(\xi) \neq 0$, then $\bar{\lambda}_{\xi}$ is an isogeny and $\operatorname{dim}(\mathbf{L}(\xi))=\left[\operatorname{Ker} \bar{\lambda}_{\xi}: \overline{\operatorname{Ker} \lambda_{\xi}}\right]$ where $\overline{\operatorname{Ker} \lambda_{\xi}}$ is the image in J_{Γ} of $\operatorname{Ker} \lambda_{\xi} \subset G_{\Gamma}$; cf. [3], [11].

A canonical 1-cocycle can be defined in the following way. Let

$$
p_{\Gamma}: \Lambda_{\Gamma} \times \Lambda_{\Gamma} \rightarrow k^{*}
$$

be a symmetric bilinear form such that $p_{\Gamma}^{2}\left(c_{\gamma}, c_{\delta}\right)=c_{\gamma}(\delta)$ for all $\gamma, \delta \in \Gamma$. Define ξ_{ξ} by $\xi_{\Gamma, c_{\gamma}}(c)=p_{\Gamma}\left(c_{\gamma}, c_{\gamma}\right) c(\gamma) ; c_{\gamma} \in \Lambda_{\Gamma}, c \in G_{\Gamma}$. In this case $\bar{\lambda}_{\xi_{\Gamma}}$ is an isomorphism and hence $\operatorname{dim}\left(\mathbf{L}\left(\xi_{\Gamma}\right)\right)=1$. In fact $\mathbf{L}\left(\xi_{\Gamma}\right)$ is generated by the Riemann theta function $\theta_{\Gamma}(c)=\sum_{c_{\gamma} \in \Lambda_{\Gamma}} \xi_{\Gamma, c_{\gamma}}(c)$. The divisor of θ_{Γ} is Λ_{Γ}-invariant and hence induces a divisor on J_{Γ}. This divisor defines a polarization Θ_{Γ} on J_{Γ}.

The isogeny form J_{Γ} onto \widehat{J}_{Γ} which can be associated with a polarization is in this case $\bar{\lambda}_{\xi_{\Gamma}}$. Since this is an isomorphism, Θ_{Γ} is a principal polarization. In fact Θ_{Γ} is the canonical principal polarization which exists on a Jacobian variety. This follows from :

Theorem 1.1 (Riemann Vanishing Theorem).
i) The holomorphic function $\theta_{\Gamma} \circ t_{\Gamma}$ has a Γ-invariant divisor which, regarded as a divisor on X_{Γ}, has degree $g+1$.
ii) If the map $\bar{t}_{\Gamma}: X_{\Gamma} \rightarrow J_{\Gamma}$ is based at the point $p \in \Omega$, and if $K_{\Gamma}=\left(\operatorname{div}\left(\theta \circ t_{\Gamma}\right)-p\right) \bmod \Gamma \in \operatorname{Div}\left(X_{\Gamma}\right)$, then $2 K_{\Gamma}$ is a canonical divisor. Furthermore, the class of K_{Γ} under linear equivalence of divisors does not depend on the choice of p.
iii) If $c \in G_{\Gamma}$ then $\theta_{\Gamma}(c)=0$ if and only if $\bar{c}=\bar{t}_{\Gamma}\left(D-K_{\Gamma}\right)$ for some positive divisor D of degree g. The order of vanishing of θ_{Γ} at c is equal to $i(D)$, the index of speciality of D.

Proof. - The divisor θ_{Γ} is calculated in [4]. The other assertions are easily proved in a similar way as in the complex case; e.g. the proof such as given in [1] can easily be adapted.

2. The Schottky-Jung theorem.

Let X_{Γ} be as in Section 1. Let $\pi: X \rightarrow X_{\Gamma}$ be an analytic covering of $X_{\Gamma} ; X$ a curve of genus $2 g+1$.

The condition of π being analytic is stronger than being just unramified, cf. [8]. In particular this condition implies that X is a Mumford curve corresponding to a Schottky group Δ with Δ a subgroup of Γ with $[\Gamma: \Delta]=2$. Since Δ is normal in Γ, both groups have the same set of ordinary points. So $X=X_{\Delta}=\Omega / \Delta$. Moreover, the map π is given by

$$
\pi(\Delta \text {-orbit of } x)=(\Gamma \text {-orbit of } x) ; x \in \Omega
$$

The Jacobian variety of X_{Δ} is constructed in the same way as J_{Γ}. We keep the same notations as in Section 1 but to indicate that we work with respect to Δ we will denote

$$
\tilde{u}_{a, b}(z)=\prod_{\beta \in \Delta} \frac{z-\beta(a)}{z-\beta(b)} ; \quad \tilde{c}_{a, b}(\delta)=\frac{\tilde{u}_{a, b}(z)}{\tilde{u}_{a, b}(\delta(z))}, \quad \tilde{c}_{\delta}=\tilde{c}_{a, \delta(a)}, \ldots
$$

We take a symmetric bilinear form $p_{\Delta}: \Lambda_{\Delta} \times \Lambda_{\Delta} \rightarrow k^{*}$ such that $p_{\Delta}^{2}\left(\tilde{c}_{\alpha}, \tilde{c}_{\beta}\right)=\tilde{c}_{\alpha}(\beta)$. The canonical 1-cocycle $\xi_{\Delta} \in \mathbf{Z}^{1}\left(\Lambda_{\Delta}, \mathbf{O}^{*}\left(G_{\Delta}\right)\right)$ is defined by $\xi_{\Delta, \tilde{c}_{\delta}}(\tilde{c})=p_{\Delta}\left(\tilde{c}_{\delta}, \tilde{c}_{\delta}\right) \tilde{c}(\delta) ; \tilde{c}_{\delta} \in \Lambda_{\Delta}$ and $\tilde{c} \in G_{\Delta}$. The Riemann theta function on G_{Δ} is defined by

$$
\theta_{\Delta}(\tilde{c})=\sum_{\tilde{c}_{\delta} \in \Lambda_{\Delta}} \xi_{\Delta, \tilde{c}_{6}}(\tilde{c}) ; \tilde{c} \in G_{\Delta}
$$

Let $\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{g}\right)$ be a free basis for the group Γ. We may assume $\gamma_{0} \notin \Delta$ and $\gamma_{i} \in \Delta$ for $i=1, \ldots, g$.

So Δ has a free basis $\delta_{0}, \delta_{1}, \ldots, \delta_{g}, \delta_{-1}, \ldots, \delta_{-g}$ with $\delta_{0}=\gamma_{0}^{2}, \delta_{i}=\gamma_{i}$, $\delta_{-i}=\gamma_{0} \gamma_{i} \gamma_{0}^{-1} ; i=1, \ldots, g$. The bilinear forms can be normalized such that
i) $p_{\Delta}\left(\tilde{c}_{\delta_{0}}, \tilde{c}_{\delta_{0}}\right)=c_{\gamma_{0}}\left(\gamma_{0}\right)$,
ii) $\forall \alpha, \beta \in \Delta: p_{\Delta}\left(c_{\left.\alpha\right|_{\Delta}}, \tilde{c}_{\beta}\right)=p_{\Gamma}\left(c_{\gamma}, c_{\beta}\right)$.
($c_{\left.\alpha\right|_{\Delta}}$ is the restriction of c_{γ} to Δ.)
Let $\pi^{*}: J_{\Gamma} \rightarrow J_{\Delta}$ be the dual map of π. This map is defined by

$$
\pi^{*}\left(c \bmod \left(\Lambda_{\Gamma}\right)\right)=\left.c\right|_{\Delta} \bmod \left(\Lambda_{\Delta}\right)
$$

Since π is unramified $\operatorname{Ker} \pi^{*}$ has order 2. The non-trivial element of $\operatorname{Ker} \pi^{*}$ is \bar{c}_{0} with $c_{0} \in G_{\Gamma}$ defined by $c_{0}\left(\gamma_{0}\right)=-1$ and $c_{0}\left(\gamma_{i}\right)=1$;
$i=1, \ldots, g$. More relations between J_{Γ} and J_{Δ} can be found in [11]. The relation between θ_{Γ} and θ_{Δ} is given by

Theorem 2.1 (Schottky-Jung relation). - There exists a homomorphism $e_{0} \in G_{\Gamma}$ such that $e_{0}^{2}=c_{0}$ and such that

$$
\frac{\theta_{\Delta}\left(\left.c\right|_{\Delta}\right)}{\theta_{\Gamma}\left(e_{0} c\right) \cdot \theta_{\Gamma}\left(e_{0}^{-1} c\right)}
$$

is a constant function in $c \in G_{\Gamma}$.
In this Section we will prove only that e_{0} satisfies $e_{0}^{2} \equiv c_{0} \bmod \left(\Lambda_{\Gamma}\right)$. This weaker version of the theorem is basically the same as the algebraic geometrical result given in [6].

Meromorphic functions on X_{Γ} or X_{Δ} can be lifted to Γ-invariant or Δ-invariant meromorphic functions on Ω.

A similar correspondence holds for divisors on X_{Γ} and X_{Δ}. We make no difference between divisors on X_{Γ} (or X_{Δ}) and their lifts to Ω. If D is a divisor on X_{Γ} then denote
$\mathbf{L}_{\Gamma}(D)=\{f \mid f, \Gamma$-invariant meromorphic function on Ω with $\operatorname{div}(f)+D \geqq 0\}$. (Similar meaning for \mathbf{L}_{Δ}.)

Proposition 2.2. - Let D be a divisor on X_{Γ} with $\operatorname{deg}(D)=$ g and let $\pi^{*}(D)$ be the reciprocal image of D on X_{Δ}. The following sequence is exact :

$$
0 \rightarrow \mathbf{L}_{\Gamma}(D) \xrightarrow{\alpha} \mathbf{L}_{\Delta}\left(\pi^{*}(D)\right) \xrightarrow{\beta} \mathbf{L}_{\Gamma}\left(D-D_{0}\right) \rightarrow 0
$$

with :
i) $D_{0}=\operatorname{div}\left(f_{0}\right)$ and f_{0} a meromorphic function on Ω such that $c_{0}(\gamma) f_{0}(\gamma c)=f_{0}(c)$ for all $\gamma \in \Gamma$
ii) $\alpha(f)=f$ for all $f \in \mathbf{L}_{\Gamma}(D)$
iii) $\beta(g)=\frac{g-g \circ \gamma_{0}}{2} \cdot f_{0}$ for all $g \in \mathbf{L}_{\Delta}\left(\pi^{*}(D)\right)$.

Proof. - It is easy to verify that these maps are well defined. If $g \in \operatorname{Ker} \beta$ then $g=g \circ \gamma_{0}$ and g is Δ-invariant. So g is Γ-invariant and in fact g is an element of $\mathbf{L}_{\Gamma}(D)$. If $f \in \mathbf{L}\left(D-D_{0}\right)$ then $f=\beta\left(f / f_{0}\right)$. So β is surjective.

Let $p \in \Omega$. We have canonical maps $\bar{t}_{\Gamma}: X_{\Gamma} \rightarrow J_{\Gamma}$ and $\bar{t}_{\Delta}: X_{\Delta} \rightarrow J_{\Delta}$ with $\bar{t}_{\Gamma}(\bar{x})=\bar{c}_{x, p}, \bar{t}_{\Delta}(\bar{x})=\overline{\tilde{c}}_{x, p}$. These maps are extended to divisors.

Define K_{Γ} and K_{Δ} as in Section 1. According to the Riemann Vanishing Theorem $2 K_{\Gamma}$ and $2 K_{\Delta}$ are canonical divisors on X_{Γ} and X_{Δ}. Since π is unramified $\pi^{*}\left(2 K_{\Gamma}\right)$ and $2 K_{\Delta}$ are linear equivalent. Hence $\pi^{*}\left(K_{\Gamma}\right)=K_{\Delta}+E$ where E is a divisor of degree 0 such that $2 E$ is principal.

Let $\varepsilon \in G_{\Delta}$ such that $\bar{t}_{\Delta}(E)=\bar{\varepsilon},\left(\varepsilon\right.$ is defined up to periods in $\left.\Lambda_{\Delta}\right)$. We have the following

Lemma 2.3. - $\frac{\theta_{\Delta}\left(\left.c\right|_{\Delta} \cdot \varepsilon\right)}{\theta_{\Gamma}(c) \cdot \theta_{\Gamma}\left(c c_{0}\right)}$ is a nowhere vanishing holomorphic function on G_{Γ}.

Proof. - If $\theta_{\Gamma}(c)=0$ then $\bar{c}=\bar{t}_{\Gamma}\left(D-K_{\Gamma}\right) ; D$ a positive divisor on X_{Γ} with $\operatorname{deg}(D)=g$. Hence $\pi^{*}(\bar{c})=\overline{\left.c\right|_{\Delta}}=\overline{t_{\Delta}}\left(\pi^{*}(D)-\pi^{*}\left(K_{\Gamma}\right)\right)$ and consequently $\pi^{*}(\bar{c}) \cdot \bar{\varepsilon}=\overline{t_{\Delta}}\left(\pi^{*}(D)-K_{\Delta}\right)$. It follows that $\theta_{\Delta}\left(\left.c\right|_{\Delta} \cdot \varepsilon\right)=0$. In a similar way we find that $\theta_{\Delta}\left(\left.c\right|_{\Delta} \cdot \varepsilon\right)=0$ if $\theta_{\Gamma}\left(c c_{0}\right)=0$. Furthermore the vanishing order of $\theta_{\Delta}\left(\left.c\right|_{\Delta} \cdot \varepsilon\right)$ is the sum of the vanishing orders of $\theta_{\Gamma}(c)$ and $\theta_{\Gamma}\left(c c_{0}\right)$. This follows from 2.2 and the Riemann Vanishing Theorem.

Lemma 2.4. - K_{Δ} and $\gamma_{0}\left(K_{\Delta}\right)$ are linear equivalent.

Proof. - It follows from the definition of K_{Δ} that

$$
\gamma_{0}\left(K_{\Delta}\right)=\operatorname{div}\left(\theta_{\Delta} \circ t_{\Delta} \circ \gamma_{0}\right)-\gamma_{0}(p)
$$

If $x \in \Omega$ we have $t_{\Delta}\left(\gamma_{0}(x)\right)=\tilde{c}_{\gamma_{0}(x), p}=\tilde{c}_{\delta_{0}} \cdot \tilde{c}_{\gamma_{0}-1(x), p}=\tilde{c}_{\delta_{0}} \cdot \tilde{c}_{x_{0}, \gamma_{0}(p)}^{\gamma_{0}}$, cf. [10]. (If $\tilde{c} \in G_{\Delta}$, then $\tilde{c}^{\gamma_{0}}$ is defined by $\tilde{c}^{\gamma_{0}}(\delta)=\tilde{c}\left(\gamma_{0} \delta \gamma_{0}^{-1}\right)$.)

Since $\frac{\theta_{\Delta}\left(\tilde{c}_{\delta} \tilde{c}\right)}{\theta_{\Delta}(\tilde{c})} \in \mathbf{O}^{*}\left(G_{\Delta}\right)$ and since $\theta_{\Delta}\left(\tilde{c}^{\gamma_{0}}\right)=\theta_{\Delta}(\tilde{c})$, we find that $\gamma_{0}\left(K_{\Delta}\right)=\operatorname{div}\left(\theta_{\Delta}\left(\tilde{c}_{x, \gamma_{0}(p)}\right)-\overline{\gamma_{0}(p)}\right.$. It follows from 1.1 that $\gamma_{0}\left(K_{\Delta}\right)$ and K_{Δ} are linear equivalent.

As a consequence $\gamma_{0}(E)$ and E are linear equivalent and hence $\varepsilon^{\gamma_{0}} \varepsilon^{-1} \in \Lambda_{\Delta}$. Since $\varepsilon^{\gamma_{0}} \varepsilon^{-1}$ is γ_{0}-anti-invariant, we have $\varepsilon^{\gamma_{0}} \varepsilon^{-1}=\tilde{c}_{\delta}^{\gamma_{0}} \tilde{c}_{\delta}^{-1}$ for some $\delta \in \Delta$, cf. [11]. Hence, after replacing ε by $\varepsilon \tilde{c}_{\delta}^{-1}$, we may assume that ε is invariant under the action of γ_{0}. It follows that $\varepsilon=\pi^{*}\left(e_{0}\right)$ for some $e_{0} \in G_{\Gamma}$.

We have the following weaker version of Theorem 2.1.

Proposition 2.5.

i) $e_{0}^{2} \equiv c_{0} \bmod \Lambda_{\Gamma}$
ii) $\frac{\theta_{\Delta}\left(\pi^{*}(c)\right)}{\theta_{\Gamma}\left(c e_{0}\right) \cdot \theta_{\Gamma}\left(c e_{0}^{-1}\right)}$ is constant in c.

Proof. - Since $\frac{\theta_{\Delta}\left(\pi^{*}(c) \varepsilon\right)}{\theta_{\Gamma}(c) \theta_{\Gamma}\left(c c_{0}\right)} \in \mathbf{O}^{*}\left(G_{\Gamma}\right)$ it has a decomposition of the form $\lambda \cdot v_{\alpha}$ with $\lambda \in k^{*}, \alpha \in \Gamma$ and $v_{\alpha}(c)=c(\alpha), c f$. [4].

But as a quotient of theta functions $\frac{\theta_{\Delta}\left(\pi^{*}(c) \varepsilon\right)}{\theta_{\Gamma}(c) \theta_{\Gamma}\left(c c_{0}\right)}$ itself is a theta function of type $\xi \in \mathbf{Z}^{1}\left(\Lambda_{\Gamma}, \mathbf{O}^{*}\left(G_{\Gamma}\right)\right)$ with $\xi_{c_{\gamma}}(c)=\frac{e_{0}^{2}(\gamma)}{c_{0}(\gamma)}$. On the other hand $\lambda v_{\alpha}\left(c_{\gamma} c\right)=c_{\gamma}(\alpha) \cdot \lambda v_{\alpha}(c)=c_{\alpha}(\gamma) \cdot \lambda v_{\alpha}(c)$. Hence $\frac{e_{0}^{2}}{c_{0}}=c_{\alpha}^{-1} \in \Lambda_{\Gamma}$ and we find that

$$
\begin{aligned}
\frac{\theta_{\Delta}\left(\pi^{*}(c)\right)}{\theta_{\Gamma}\left(c e_{0}^{-1}\right) \theta_{\Gamma}\left(c e_{0}\right)} & =\frac{\theta_{\Delta}\left(\pi^{*}\left(c e_{0}^{-1}\right) \varepsilon\right)}{\theta_{\Gamma}\left(c e_{0}^{-1}\right) \theta_{\Gamma}\left(c e_{0}^{-1} c_{0} c_{\alpha}^{-1}\right)} \\
& =\xi_{\Gamma, c_{\gamma}^{-1}}\left(c e_{0}^{-1} c_{0}\right) \cdot \lambda v_{\alpha}\left(c e_{0}^{-1}\right) .
\end{aligned}
$$

So $\frac{\theta_{\Delta}\left(\pi^{*}(c)\right)}{\theta_{\Gamma}\left(c e_{0}^{-1}\right) \theta_{\Gamma}\left(c e_{0}\right)}=\lambda p_{\Gamma}\left(c_{\alpha}, c_{\alpha}\right) c_{0}(\alpha)^{-1}$. This expression is constant in c.

Remark. - The homomorphism e_{0} is only defined up to periods in Λ_{Γ}. If one replaces e_{0} by $e_{0} c_{\gamma}$ with $\gamma \in \Gamma$, then $e_{0}^{2}=c_{0} c_{\alpha-1} \gamma^{2}$. So α is only defined up to squares in Γ.

In the following sections we will prove that e_{0} can be chosen such that $\alpha=1$.

3. The case of hyperelliptic curves.

We take $\pi: X_{\Delta} \rightarrow X_{\Gamma}$ as in Section 2, but we now assume that X_{Δ} is hyperelliptic. So there exists an element s in the normaliser of Δ in $\operatorname{PGL}(2, k)$ such that $s \delta s^{-1} \equiv \delta^{-1} \bmod [\Delta, \Delta]$ for all $\delta \in \Delta, c f$. [9].

Since $\gamma^{2} \in \Delta$ for all $\gamma \in \Gamma$ and since $\Gamma /[\Gamma, \Gamma]$ is a free abelian group we find that $s \gamma s^{-1} \equiv \gamma^{-1} \bmod [\Gamma, \Gamma]$. Hence X_{Γ} is also hyperelliptic. We may assume that s has order 2 . Furthermore there exists a free basis $\gamma_{0}, \ldots, \gamma_{g}$ for Γ such that $s \gamma_{i} s^{-1}=\gamma_{i}^{-1} ; i=0, \ldots, g ; c f$. [9]. We also may assume that $\gamma_{0} \notin \Delta$. If $\gamma_{i} \notin \Delta(i=1, \ldots, g)$, then $\gamma_{i} \gamma_{0} \in \Delta$ and $\gamma_{0} \gamma_{i} \in \Delta$. But $s\left(\gamma_{i} \gamma_{0}\right) \cdot\left(\gamma_{0} \gamma_{i}\right)^{-1} s^{-1}=\gamma_{i}^{-1} \gamma_{0}^{-1} \gamma_{i} \gamma_{0} \equiv\left(\gamma_{i} \gamma_{0}\right)\left(\gamma_{0} \gamma_{i}\right)^{-1} \bmod [\Delta, \Delta]$. This contradicts the fact that $s \delta s^{-1} \equiv \delta^{-1} \bmod [\Delta, \Delta]$ for all $\delta \in \Delta$. This
means that $\gamma_{0}, \ldots, \gamma_{g}$ satisfy the assumptions of Section 2 and that Δ has a free basis $\delta_{0}, \delta_{1}, \ldots, \delta_{g}, \delta_{-1}, \ldots, \delta_{-g}$ with $\delta_{0}=\gamma_{0}^{2}, \delta_{i}=\gamma_{i}$ and $\delta_{-i}=\gamma_{0} \gamma_{i} \gamma_{0}^{-1} ; i=1, \ldots, g$.

Let $\mu_{-i}=\delta_{-i} \delta_{0}=\gamma_{0} \gamma_{i} \gamma_{0}$. So $\delta_{0}, \delta_{1}, \ldots, \delta_{g}, \mu_{-1}, \ldots, \mu_{-g}$ is a basis for Δ and $s \delta_{0} s^{-1}=\delta_{0}^{-1}, s\left(\delta_{i}\right) s^{-1}=\delta_{i}^{-1}$ and $s \mu_{-i} s^{-1}=\mu_{-i}^{-1}, i=1, \ldots, g$.

Let a and b be the fixpoints of s and let a_{i} and b_{i} be the fixpoints of $s \gamma_{i} ; i=0, \ldots, g$. The fixpoints of $s \delta_{0}$ are then $\gamma_{0}^{-1}(a)$ and $\gamma_{0}^{-1}(b)$ and the fixpoints of $s \mu_{-i}$ are $\gamma_{0}^{-1}\left(a_{i}\right)$ and $\gamma_{0}^{-1}\left(b_{i}\right)$.

All these fixpoints are ordinary points. The double coverings

$$
X_{\Gamma} \rightarrow \mathbf{P}^{\mathbf{1}}(k) \text { and } X_{\Delta} \rightarrow \mathbf{P}^{1}(k)
$$

are ramified in the points $\bar{a}, \bar{b}, \bar{a}_{0}, \bar{b}_{0}, \ldots, \overline{a_{g}}, \overline{b_{g}} \in X_{\Gamma}$ and $\bar{a}, \bar{b}, \bar{a}_{1}, \bar{b}_{1}, \ldots$, $\overline{a_{g}}, \overline{b_{g}}, \overline{\gamma_{0}^{-1}(a)}, \overline{\gamma_{0}^{-1}(b)}, \overline{\gamma_{0}^{-1}\left(a_{1}\right)}, \overline{\gamma_{0}^{-1}\left(b_{1}\right)}, \ldots, \overline{\gamma_{0}^{-1}\left(a_{g}\right)}, \overline{\gamma_{0}^{-1}\left(b_{g}\right)} \in X_{\Delta}$ respectively; cf. [9].

We will now calculate K_{Γ} and K_{Δ}. The linear equivalence classes of these divisors do not depend on the base point of the canonical maps $\bar{t}_{\Gamma}: X_{\Gamma} \rightarrow J_{\Gamma}$ and $\bar{t}_{\Delta}: X_{\Delta} \rightarrow J_{\Delta}$. We may assume that this base point is a 。

The \bar{t}_{Γ}-images of the ramification points of $X_{\Gamma} \rightarrow \mathbf{P}^{1}(k)$ are calculated in [10].

We have

1. $c_{b a}\left(\gamma_{i}\right)=-1 ; \quad i=0, \ldots, g$
2. $c_{a_{i} a}^{2}=c_{b_{i} a}^{2}=c_{\gamma_{i}} ; \quad c_{b_{i} a}=c_{b_{i} a_{i}} \cdot c_{a_{i} a} ; \quad c_{b_{i} a_{i}}\left(\gamma_{i}\right)=-1$ and $c_{b_{i} a_{i}}\left(\gamma_{j}\right)=1$ for all $j \neq i ; i=0, \ldots, g$.

Lemma 3.1. - Let $c \in G_{\Gamma}$ such that $c^{2}=c_{\gamma} \in \Lambda_{\Gamma}$ with $\gamma \notin[\Gamma, \Gamma]$ and such that $c(\gamma)=-p_{\Gamma}\left(c_{\gamma}, c_{\gamma}\right)$. Then $\theta_{\Gamma}(c)=0$.

Proof. - $\theta_{\Gamma}(c)=\theta_{\Gamma}\left(c^{-1} c_{\gamma}\right)=\xi_{\Gamma, c_{\gamma}}^{-1}\left(c^{-1}\right) \theta_{\Gamma}\left(c^{-1}\right)$.
But $\xi_{\Gamma, c_{\gamma}}\left(c^{-1}\right)=p_{\Gamma}\left(c_{\gamma}, c_{\gamma}\right) \cdot c(\gamma)^{-1}=-1$ and since θ_{Γ} is an even function the assertion follows.

Since $c_{b_{i} a}\left(\gamma_{i}\right)=-c_{a_{i} a}\left(\gamma_{i}\right)= \pm p_{\Gamma}\left(c_{\gamma_{i}}, c_{\gamma_{i}}\right)$ we find that $\theta_{\Gamma} \circ t_{\Gamma}$ has a zero in a_{i} or in b_{i} for each $i=0, \ldots, g$.

In a similar way we find that $\theta_{\Delta} \circ t_{\Delta}$ has a zero in $\gamma_{0}^{-1}(a)$ or in $\gamma^{-1}(b)$, in a_{i} or in b_{i} and in $\gamma_{0}^{-1}\left(a_{i}\right)$ or in $\gamma_{0}^{-1}\left(b_{i}\right)$ for each $i=1, \ldots, g$.

An easy calculation shows that $\tilde{c}_{\gamma_{0}^{-1}(a) a}\left(\delta_{0}\right)=p_{\Delta}\left(\tilde{c}_{\delta_{0}}, \tilde{c}_{\delta_{0}}\right)$ and hence $\theta_{\Delta} \circ t_{\Delta}\left(\gamma_{0}^{-1}(b)\right)=0$. After an eventual interchanging of a_{i} and b_{i} we may assume that $\theta_{\Delta}\left(\tilde{c}_{a_{i} a}\right)=0$ for $i=1, \ldots, g$.

PROPOSITION 3.2. - $K_{\Delta}=\overline{\gamma_{0}^{-1}(b)}+\sum_{i=1}^{g} \overline{a_{i}}+\overline{\gamma_{0}^{-1}\left(b_{i}\right)}-\bar{a}$.
Proof. - We only have to show that $\theta_{\Delta}\left(t_{\Delta}\left(\gamma_{0}^{-1}\left(b_{i}\right)\right)\right)=0$ for $i=1, \ldots, g$. Assume that $\gamma_{1}, \ldots, \gamma_{g}$ are numbered such that

$$
\theta_{\Delta}\left(t_{\Delta}\left(\gamma_{0}^{-1}\left(b_{i}\right)\right)\right)=0
$$

for $i=1, \ldots, k$ and $\theta_{\Delta}\left(t_{\Delta}\left(\gamma_{0}^{-1}\left(a_{i}\right)\right)\right)=0$ for $i=k+1, \ldots, g$ with $1 \leqq k<g$. We have

$$
K_{\Delta}=\overline{\gamma_{0}^{-1}(b)}+\sum_{i=1}^{k} \overline{a_{i}}+\overline{\gamma_{0}^{-1}\left(a_{i}\right)}+\sum_{i=k+1}^{g} \overline{a_{i}}+\overline{\gamma_{0}^{-1}\left(b_{i}\right)}-\bar{a}
$$

We find that $\bar{t}_{\Delta}\left(K_{\Delta}-\gamma_{0}\left(K_{\Delta}\right)\right)=\bar{c}$ with $c \in G_{\Delta}$ and

$$
c=\tilde{c}_{\gamma_{0}(b) a} \cdot \tilde{c}_{b a} \cdot \prod_{i=k+1}^{g} \tilde{c}_{\gamma_{0}\left(b_{i}\right) \gamma_{0}\left(a_{i}\right)} \cdot \tilde{c}_{b_{i}, a_{i}}
$$

Hence $c\left(\delta_{i}\right)=c\left(\mu_{-i}\right)=c\left(\delta_{0}\right)=1$ for $i=k+1, \ldots, g$ and

$$
c\left(\delta_{i}\right)=c\left(\mu_{-i}\right)=-1 \text { for } i=1, \ldots, k
$$

It follows that $c^{2}=1$ and $c \neq 1$. So $c \notin \Lambda_{\Gamma}$ and K_{Δ} is not linear equivalent with $\gamma_{0}\left(K_{\Delta}\right)$. This contradicts 2.4.

We can number $\gamma_{1}, \ldots, \gamma_{g}$ and choose a_{0} and b_{0} such that $\theta_{\Gamma}\left(t_{\Gamma}\left(a_{i}\right)\right)=$ 0 for $i=0, \ldots, k$ and $\theta_{\Gamma}\left(t_{\Gamma}\left(b_{i}\right)\right)=0$ for $i=k+1, \ldots, g$ with $k \geqq 0$. We have

$$
K_{\Gamma}=\sum_{i=0}^{k} \overline{a_{i}}+\sum_{i=k+1}^{g} \overline{b_{i}}-\bar{a}
$$

and $\bar{t}_{\Delta}\left(\pi^{*}\left(K_{\Gamma}\right)-K_{\Delta}\right)=\bar{\varepsilon}$ with

$$
\varepsilon=\tilde{c}_{a_{0}, \gamma_{0}^{-1}(a)} \cdot \tilde{c}_{\gamma_{0}^{-1}\left(a_{0}\right), \gamma_{0}^{-1}(b)} \cdot \prod_{i=1}^{k} \tilde{c}_{\gamma_{0}^{-1}\left(a_{i}\right), \gamma_{0}^{-1}\left(b_{i}\right)} \cdot \prod_{i=k+1}^{g} \tilde{c}_{b_{i}, a_{i}}
$$

We find

$$
\varepsilon^{2}=\left(\tilde{c}_{a_{0}, \gamma_{0}^{-1}(a)} \cdot \tilde{c}_{\gamma_{0}^{-1}\left(a_{0}\right), \gamma_{0}^{-1}(b)}\right)^{2}=\left(\frac{\tilde{c}_{a_{0}, a} \cdot \tilde{c}_{\gamma_{0}^{-1}\left(a_{0}\right), \gamma_{0}^{-1}(a)}}{\tilde{c}_{\gamma_{0}^{-1}(a) a} \cdot \tilde{c}_{\gamma_{0}^{-1}(a), \gamma_{0}^{-1}(b)}}\right)^{2}
$$

Since $\left(\tilde{c}_{a_{0}, a} \cdot \tilde{c}_{\gamma_{0}^{-1}\left(a_{0}\right), \gamma_{0}^{-1}(a)}\right)^{2}=c_{\left.a_{0} a\right|_{\Delta}}^{2}=c_{\gamma_{0} \mid \Delta}=\tilde{c}_{\delta_{0}}=\tilde{c}_{\gamma_{0}^{-1}(a), a}^{2}$ we have $\varepsilon^{2}=1$. In Section 2, we found that $\varepsilon=e_{\left.0\right|_{\Delta}}$ with $e_{0}^{2}=c_{0} c_{\alpha^{-1}} ; \quad \alpha \in \Gamma$. Since $\varepsilon^{2}=1$ we have $c_{\alpha^{-1}}=1$. This proves Theorem 2.1 in this special case.

4. Analytic families of Mumford curves.

Let S be a connected analytic space and let $\rho: \mathbf{P}^{1} \times S \rightarrow S$ be the projection on S. Let Aut ${ }_{S}\left(\mathbf{P}^{1} \times S\right)$ be the group of analytic automorphisms u of $\mathbf{P}^{1} \times S$ which satisfy $\rho \circ u=\rho$.

Let Γ be a free group of rank $g+1$ and let $\psi: \Gamma \rightarrow \operatorname{Aut}_{S}\left(\mathbf{P}^{1} \times S\right)$ be a family of Schottky groups.

If $s \in S$ define then $\nu_{S}: \operatorname{Aut}_{S}\left(\mathbf{P}^{1} \times S\right) \rightarrow \operatorname{Aut}\left(\mathbf{P}^{1}\right)$ by $\nu_{s}(u)(x)=y$ if and only $u(x, s)=(y, s) ; \quad u \in \operatorname{Aut}_{S}\left(\mathbf{P}^{\mathbf{1}} \times S\right), \quad x, y \in \mathbf{P}^{\mathbf{1}}$.

The map $\nu_{s} \circ \psi$ is then injective and $\Gamma_{s}=\operatorname{Im}\left(\nu_{s} \circ \psi\right)$ is a Schottky group. If $\gamma \in \Gamma$ and $s \in S$ then denote $\gamma(s)=\nu_{s} \circ \psi(\gamma)$.

There exists an analytic subdomain $\Omega \subset \mathbf{P}^{1} \times S$ such that for all $s \in S$ the set $\Omega_{s}=\left\{x \in \mathbf{P}^{\mathbf{1}} \mid(x, s) \in \Omega\right\}$ is the set of ordinary points of Γ_{s}. This result is proved in [7].

The group Γ acts in a canonical way on Ω. Let $\mathbf{X}_{\Gamma}=\Omega / \Gamma$ be the quotient space and let $\bar{\rho}: \mathbf{X}_{\Gamma} \rightarrow S$ be the map induced by ρ. For all $s \in S$ the fiber $\mathbf{X}_{\Gamma, s}=\bar{\rho}^{-1}(s)$ is then isomorphic to the Mumford curve $X_{\Gamma_{s}}$.

The Jacobians of the curves $X_{\Gamma_{s}}$ can be regarded as fibers of an analytic family over S.

Let $G_{\Gamma}=\operatorname{Hom}\left(\Gamma, k^{*}\right), \quad \mathbf{G}_{\Gamma}=G_{\Gamma} \times S$ and $\tau: \mathbf{G}_{\Gamma} \rightarrow S$ be the projection on S. If $\gamma \in \Gamma$ then define $\lambda_{\gamma}: \mathbf{G}_{\Gamma} \rightarrow \mathbf{G}_{\Gamma}$ by $\lambda_{\gamma}(c, s)=(d, s)$ with $d(\delta)=c(\delta) c_{\gamma(s)}(\delta(s))$.

Proposition.

i) λ_{γ} is an analytic automorphism
ii) λ_{γ} has a fixpoint $\Longleftrightarrow \lambda_{\gamma}$ is the identity $\Longleftrightarrow \gamma \in[\Gamma, \Gamma]$.

Proof.

i) S admits an admissible covering by affinoids $S_{i},(i \in I)$, such that each S_{i} admits analytic sections $x_{0}, x_{1}: S_{i} \rightarrow \Omega$ such that $x_{0}(s) \neq x_{1}(s)$ for all $s \in S_{i}, c f$. [2]. If $s \in S_{i}$ then

$$
c_{\gamma(s)}(\delta(s))=\frac{u_{\delta, x_{1}}\left(x_{0}(s), s\right)}{u_{\delta, x_{1}}\left(\gamma\left(x_{0}(s), s\right)\right)}
$$

with $u_{\delta, x_{1}}(z, s)=\prod_{\gamma \in \Gamma} \frac{z-\sigma \circ \gamma\left(x_{1}(s)\right)}{z-\sigma \circ \gamma \delta\left(x_{1}(s)\right)}$ where $\sigma: \mathbf{P}^{\mathbf{1}} \times S \rightarrow \mathbf{P}^{\mathbf{1}}$ is the projection on $\mathbf{P}^{\mathbf{1}}$. The function $u_{\delta, x_{1}}$ is analytic on $\Omega \cap\left(\mathbf{P}^{1} \times S_{i}\right)$. It follows
that the restriction of λ_{γ} to $G_{\Gamma} \times S_{i}$ is analytic. Hence λ_{γ} is everywhere analytic.
ii) $\lambda_{\gamma}(c, s)=(c, s)$ if and only if $c_{\gamma(s)}(\delta(s))=1$ for all $\delta \in \Gamma$. This means that $\gamma(s) \in\left[\Gamma_{s}, \Gamma_{s}\right]$.

Let $\Lambda=\left\{\lambda_{\gamma} \mid \gamma \in \Gamma\right\}$. We can make the quotients space $\mathbf{J}_{\Gamma}=\mathbf{G}_{\Gamma} / \Lambda$. Let $\bar{\tau}: \mathbf{J}_{\Gamma} \rightarrow S$ be induced by $\tau: \mathbf{G}_{\Gamma} \rightarrow S$.

Proposition 4.2. - For all $s \in S$ the fiber $\mathbf{J}_{\Gamma, s}=\bar{\tau}^{-1}(s)$ is isomorphic to the Jacobian variety $J_{\Gamma_{s}}$ of X.

Proof. - Define $\alpha: \mathbf{J}_{\Gamma, s} \rightarrow J_{\Gamma_{s}}=\operatorname{Hom}\left(\Gamma_{s}, k^{*}\right) / \Lambda_{\Gamma_{s}}$ by $\alpha(\overline{c, s})=\overline{c_{s}}$ with $c_{s}(\gamma(s))=c(\gamma)$. This map is an isomorphism.

Let $\Delta \subset \Gamma$ be a subgroup of index 2 . We can find a basis $\gamma_{0}, \ldots, \gamma_{g}$ for Γ such that $\gamma_{0} \notin \Delta$ and $\gamma_{1}, \ldots, \gamma_{g} \in \Delta$. The group Δ has a basis $\delta_{0}, \delta_{1}, \ldots, \delta_{g}, \delta_{-1}, \ldots, \delta_{-g}$ with $\delta_{0}=\gamma_{0}^{2}, \delta_{i}=\gamma_{i}$ and $\delta_{-i}=\gamma_{0} \gamma_{i} \gamma_{0}^{-1} ;$ $i=1, \ldots, g$. For $s \in S$ we denote $\Delta_{s}=\left\{\delta(s) \in \Gamma_{s} \mid \delta \in \Delta\right\}$. So Δ_{s} is a Schottky group and Γ_{s} and Δ_{s} satisfy the conditions of Section 2. For data which refer to these groups we keep the same notations as in Section 2.

We have an analytic family of Mumford curves $\bar{\rho}: \mathbf{X}_{\Delta}=\Omega / \Delta \rightarrow S$ and for each $s \in S$ the fiber $\mathbf{X}_{\Delta, s}$ is isomorphic to the Mumford curve $X_{\Delta s}$.

Let $\pi: \mathbf{X}_{\Delta} \rightarrow \mathbf{X}_{\Gamma}$ the canonical map induced by the identity on Ω.
Define \mathbf{J}_{Δ} in a similar way as \mathbf{J}_{Γ}. We have a dual map $\pi^{*}: \mathbf{J}_{\Gamma} \rightarrow \mathbf{J}_{\Delta}$ with $\pi^{*}(\overline{c, s})=\left(\overline{c_{\mid \Delta}, s}\right)$.

The analytic space S locally admits analytic sections x_{0} and x_{1} with values in Ω such that $x_{0}(s) \neq x_{1}(s)$ for all $s,(c f$. Prop. 4.2). We now assume that x_{0} and x_{1} exist on S itself.

Let $t_{\Gamma}: \Omega \rightarrow \mathbf{G}_{\Gamma}$ and $t_{\Delta}: \Omega \rightarrow \mathbf{G}_{\Delta}$ be defined by

$$
\begin{array}{lll}
t_{\Gamma}(x, s)=(c, s) & \text { with } c(\gamma)=c_{x, \sigma\left(x_{0}(s)\right)}(\gamma), & (\gamma \in \Gamma) \\
t_{\Delta}(x, s)=(\tilde{c}, s) & \text { with } \tilde{c}(\delta)=\tilde{c}_{x, \sigma\left(x_{0}(s)\right)}(\delta), & (\delta \in \Delta)
\end{array}
$$

($\sigma: \mathbf{P}^{\mathbf{1}} \times S \rightarrow \mathbf{P}^{\mathbf{1}}$ the projection on $\mathbf{P}^{\mathbf{1}}$).
These maps are analytic and induce maps $\bar{t}_{\Gamma}: \mathbf{X}_{\Gamma} \rightarrow \mathbf{J}_{\Gamma}$ and $\bar{t}_{\Delta}: \mathbf{X}_{\Delta} \rightarrow \mathbf{J}_{\Delta}$. For each $s \in S$ the restrictions of \bar{t}_{Γ} and \bar{t}_{Δ} to the fibers over s are the canonical maps $\bar{t}_{\Gamma_{s}}: X_{\Gamma_{s}} \rightarrow J_{\Gamma_{s}}$ and $\bar{t}_{\Delta_{s}}: X_{\Delta_{s}} \rightarrow J_{\Delta_{s}}$ based at $\sigma\left(x_{0}(s)\right)$.

Let $p_{\Gamma_{s}}: \Lambda_{\Gamma_{s}} \times \Lambda_{\Gamma_{s}} \rightarrow k^{*}$ and $p_{\Delta_{s}}: \Lambda_{\Delta_{s}} \times \Lambda_{\Delta_{s}} \rightarrow k^{*}$ be symmetric bilinear forms such as in Section 2 and assume that they are normalized as before. So we have theta functions $\theta_{\Gamma_{s}}, \theta_{\Delta_{s}}$ and divisors $K_{\Gamma_{s}}, K_{\Delta_{s}}$ and $E_{s}=\pi^{*}\left(K_{\Gamma_{s}}\right)-K_{\Delta_{s}}$. Let $\varepsilon_{s} \in G_{\Delta_{s}}$ such that $\bar{t}_{\Delta_{s}}\left(E_{s}\right)=\bar{\varepsilon}_{s}$ and such that $\varepsilon_{s}^{\gamma_{0}(s)}=\varepsilon_{s}$. So $\varepsilon_{s}=\pi^{*}\left(e_{0, s}\right)$ with $e_{0, s} \in G_{\Gamma_{s}}$.

Define $e_{0}: S \rightarrow \mathbf{G}_{\Gamma}$ and $\varepsilon: S \rightarrow \mathbf{G}_{\Delta}$ by

$$
e_{0}(s)=(a, s) \text { with } a(\gamma)=e_{0, s}(\gamma(s))
$$

and

$$
\varepsilon(s)=(\tilde{a}, s) \text { with } \tilde{a}(\delta)=\varepsilon_{s}(\delta(s))
$$

So $\varepsilon=\pi^{*} \circ e_{0}$.
The sections e_{0} and ε need not to be analytic. However, if one defines multiplication of sections in an obvious way, we can prove the following.

Lemma 4.3. - S admits an admissible covering $\left(S_{i}\right)_{i \in I}$ with the following properties :

For each $i \in I$ one can choose the homomorphisms $e_{0, s}$ in such a way that the restriction $e_{0, i}$ of e_{0} to S_{i} satisfies that $e_{0, i}^{2}$ is analytic. Furthermore, for each $i, j \in I$ there exists a $\beta_{i j} \in \Gamma$ such that for all $s \in S_{i} \cap S_{j}$, $e_{0, i} e_{0, j}^{-1}(s)=(a, s)$ with $a(\gamma)=c_{\beta_{i j}(s)}(\gamma(s))$.

Proof. - For each $s \in S$ define $d_{\Gamma_{s}} \in G_{\Gamma_{s}}$ and $d_{\Delta_{s}} \in G_{\Delta_{s}}$ by

$$
d_{\Gamma_{s}}\left(\gamma_{i}\right)=p_{\Gamma_{s}}\left(c_{\gamma_{i}(s)}, c_{\gamma_{i}(s)}\right) ; \quad i=0, \ldots, g
$$

and

$$
d_{\Delta_{s}}\left(\delta_{i}\right)=p_{\Delta_{s}}\left(\tilde{c}_{\delta_{i}(s)}, \tilde{c}_{\delta_{i}(s)}\right) ; \quad i=0, \ldots, g,-1, \ldots,-g
$$

Define functions η_{Γ} and η_{Δ} on \mathbf{G}_{Γ} and \mathbf{G}_{Δ} respectively by

$$
\eta_{\Gamma}(c, s)=\theta_{\Gamma_{s}}\left(d_{\Gamma_{s}} \cdot c_{s}\right) \text { with } c_{s}(\gamma(s))=c(\gamma)
$$

and

$$
\eta_{\Delta}(\tilde{c}, s)=\theta_{\Delta_{s}}\left(d_{\Delta_{s}} \cdot \tilde{c}_{s}\right) \text { with } \tilde{c}_{s}(\delta(s))=\tilde{c}(\delta)
$$

These functions are holomorphic, (cf. [2]).
The divisors $L_{\Gamma}=\operatorname{div}\left(\eta_{\Gamma} \circ t_{\Gamma}\right)$ and $L_{\Delta}=\operatorname{div}\left(\eta_{\Delta} \circ t_{\Delta}\right)$ are invariant under the actions of Γ and Δ respectively. So they can be regarded as divisors on \mathbf{X}_{Γ} and \mathbf{X}_{Δ}.

Let $E^{\prime}=\pi^{*}\left(L_{\Gamma}\right)-L_{\Delta}$. For each $s \in S$ the restriction E_{s}^{\prime} of E^{\prime} to the fiber $\mathbf{X}_{\Delta, s}$ has degree 0 . One has a corresponding homomorphism $\varepsilon_{s}^{\prime} \in G_{\Delta_{s}}$, (defined up to periods in $\Lambda_{\Delta_{s}}$), such that $\bar{t}_{\Delta_{s}}\left(E_{s}^{\prime}\right)=\overline{\varepsilon_{s}^{\prime}}$.

The section $\overline{\varepsilon^{\prime}}: S \rightarrow \mathbf{J}_{\Delta}$ with $\overline{\varepsilon^{\prime}}(s)=(\overline{\tilde{a}, s})$ and $\overline{\tilde{a}}(\delta)=\varepsilon_{s}^{\prime}(\delta(s))$ is then analytic. Let $D_{\Gamma_{s}}$ and $D_{\Delta_{s}}$ be divisors on $X_{\Gamma_{s}}$ and $X_{\Delta_{s}}$ such that ${\overline{\Gamma_{s}}}\left(D_{\Gamma_{s}}\right)=\bar{d}_{\Gamma_{s}}$ and $\left.\bar{t}_{\Delta_{s}}\left(D_{\Delta_{s}}\right)=\bar{d}_{\Delta_{s}} . \operatorname{So} \operatorname{div}\left(\theta_{\Gamma_{s}} \cdot t_{\Gamma_{s}}\right)\right)$ is linear equivalent with $\operatorname{div}\left(\theta_{\Gamma_{s}} \circ t_{r_{s}}\right)+D_{\Gamma_{s}}$ and $\operatorname{div}\left(\theta_{\Delta_{s}}\left(d_{\Delta_{s}} \cdot t_{\Delta_{s}}\right)\right)$ is linear equivalent with $\operatorname{div}\left(\theta_{\Delta_{s}} \circ t_{\Delta_{s}}\right)+D_{\Delta_{s}}$, cf. [4]. It follows that E_{s}^{\prime} is linear equivalent with $E_{s}+\gamma_{0}(s)\left(D_{\Delta_{s}}\right)$ and hence $\varepsilon_{s}^{\prime} \equiv \varepsilon_{s} \cdot \tilde{g}_{s} \bmod \Lambda_{\Delta_{s}}$ with $\tilde{g}_{s}\left(\delta_{i}(s)\right)=p_{\Delta s}\left(\tilde{c}_{\delta_{i}(s)}, \tilde{c}_{\delta_{i}(s)}^{(s)}\right) ; i=0, \ldots, g,-1, \ldots,-g$. Since ε_{s}^{\prime} is only defined up to periods we may assume that this congruence is an equality. Since $\tilde{\boldsymbol{g}}_{s}^{\gamma_{0}(s)}=\tilde{g}_{s}$ we have $\varepsilon_{s}^{\prime \gamma_{0}(s)}=\varepsilon_{s}^{\prime}$. So there exist $g_{s}, e_{s} \in G_{\Gamma_{s}}$ with $g_{s \mid \Delta_{s}}=\tilde{g}_{s}$ and $e_{s}{\mid \Delta_{s}}=\varepsilon_{s}^{\prime}$.

Define sections $g: S \rightarrow \mathbf{G}_{\Gamma}$ with $g(s)=(a, s)$ with $a(\gamma)=g_{s}(\gamma(s))$ and $\bar{e}: S \rightarrow \mathbf{J}_{\Gamma}$ with $\bar{e}(s)=(\overline{b, s})$ with $b(\gamma)=e_{s}(\gamma(s))$. So $\bar{\varepsilon}^{\prime}=\pi^{*} \circ \bar{e}$ and \bar{e} is analytic. It follows that \bar{e} can locally be lifted to an analytic section with values in \mathbf{G}_{Γ}. There exists an analytic covering $\left(S_{i}\right)_{i \in I}$ of S and analytic sections $e_{i}: S_{i} \rightarrow \mathbf{G}_{\Gamma}$ such that for each $s \in S_{i}, \overline{e_{i}(s)}=e(\bar{s})$.

If $s \in S_{i} \cap S_{j}$ then $e_{i}(x) \equiv e_{j}(s) \bmod \Lambda$ and since $e_{i} e_{j}^{-1}$ is analytic there exists a $\beta_{i j} \in \Gamma$ such that $\lambda_{\beta_{i j}}\left(e_{i}(s)\right)=e_{j}(s)$ for all $s \subset S_{i} \cap S_{j}$.

Define $e_{0, i}: S_{i} \rightarrow \mathbf{G}_{\Gamma}$ by $e_{0, i}=e_{i} \cdot g$. For each $s \in S_{i}$ we have $\overline{e_{0, i}(s)}=\overline{e_{0}(s)}$ in \mathbf{J}_{Γ}. Moreover, it is easy to verify that g^{2} is analytic. Hence $e_{0, i}^{2}$ is analytic and the sections $\left(e_{0, i}\right)_{i \in I}$ satisfy the required conditions.

We proved in Section 2 that $e_{0, s}^{2} \equiv c_{0, s} \bmod \left(\Lambda_{\Gamma_{s}}\right)$ with $c_{0, s}\left(\gamma_{0}(s)\right)=$ -1 and $c_{0, s}(\delta(s))=1$ for all $\delta(s) \in \Delta_{s}$. Define $c_{0} \in G_{\Gamma}$ by $c_{0}\left(\gamma_{0}\right)=-1$ and $c_{0}(\delta)=1$ for all $\delta \in \Delta$. The section $c: S \rightarrow \mathbf{G}_{\Gamma}$ which maps s onto ($\left.c_{0}, s\right)$ is then analytic and for all $s \in S_{i}$ we have $e_{0, i}^{2}(s) \equiv c(s) \bmod \Lambda$. Since both sections are analytic there exists a $\alpha_{i} \in \Gamma$ such that $e_{0, i}^{2}=\lambda_{\alpha_{i}}(c(s))$ for all $s \in S_{i}$. We can sum up as follows.

Proposition 4.4. - The analytic space S admits an admissible covering $\left(S_{i}\right)_{i \in I}$ with the following properties :
i) for each $i \in I$ one can choose the homomorphisms $e_{0, s}, s \in S_{i}$, in such a way there exists a $\alpha_{i} \in \Gamma$ with

$$
e_{0, s}^{2}(\gamma(s))=c_{\alpha_{i_{i}}(s)}(\gamma(s)) \text { for all } \gamma \in \Gamma ;
$$

ii) for all $i, j \in I$ there exists a $\beta_{i j} \in \Gamma$ such that $\alpha_{i} \alpha_{j}^{-1}=\beta_{i j}^{2}$.

Remark. - The homomorphism $c_{\alpha_{i}(s)}$ depends only on the class of α_{i} in $\Gamma /[\Gamma, \Gamma]$. Furthermore, since $e_{0, s}$ is only defined up to periods, α_{i} is only defined up to squares in Γ.

Corollary 4.5. - If $\mathbf{X}_{\Delta, s}$ is hyperelliptic for some $s \in S$, then one can take $\alpha_{i}=1$ for all $i \in I$.

Proof. - Assume $s \in S_{j}$. We proved in Section 3 that $e_{0, s}$ can be chosen such that $e_{0, s}^{2}=c_{0, s}$. Hence we can take $\alpha_{j}=1$.

For all k such that $S_{k} \cap S_{j} \neq \emptyset$ we have $\alpha_{k}=\beta_{k j}^{2}$. Since α_{k} is only defined up to squares we can take $\alpha_{k}=1$. This argument can be repeated. Since S is connected any S_{i} is reached in this way.

We can now finish the
Proof of Theorem 2.4. - Let S be the Teichmuller space T_{g+1}. A point in T_{g+1} can be identified with an ordered set $\nu=\left(\nu_{0}, \ldots, \nu_{g}\right)$ with $\nu_{i} \in P G L(2, k)$ and such that :
i) ν_{0}, \ldots, ν_{g} is a basis for a Schottky group of rank $g+1$.
ii) ν_{0} has 0 and ∞ as attractive and repulsive fixpoints respectively.
iii) ν_{1} has 1 as attractive fixpoint.

The space T_{g+1} has a connected analytic structure, cf. [5].
Now take Γ, Δ and $\gamma_{0}, \ldots, \gamma_{g}$ as in the previous part of the section and define $\psi: \Gamma \rightarrow \mathrm{Aut}_{s}\left(\mathbf{P}^{1} \times S\right)$ by

$$
\psi\left(\gamma_{i}\right)(x, \nu)=\left(\nu_{i}(x), \nu\right) ; \quad i=0, \ldots, g
$$

For each $\nu \in S$, the Schottky group Γ_{ν} is then generated by ν_{0}, \ldots, ν_{g}. Furthermore, any situation as in Section 2 can be realized by taking the fibers $\mathbf{X}_{\Gamma, \nu}$ and $\mathbf{X}_{\Delta, \nu}$. In particular $\mathbf{X}_{\Delta, \nu}$ is hyperelliptic for at least one $\nu \in T_{g+1}$. So we can always choose $e_{0, \nu}$ such that $e_{0, \nu}^{2}=c_{0, \nu} . \square$

BIBLIOGRAPHY

[1] H.M. Farkas, I. Kra, Riemann surfaces, Graduate Texts in Mathematics, 71, Berlin, Heidelberg, New York, Springer-Verlag, 1980.
[2] L. Gerritzen, Periods and Gauss-Manin Connection for Families of p-adic Schottky Groups, Math. Ann., 275 (1986), 425-453.
[3] L. Gerritzen, On Non-Archimedean Representations of Abelian Varieties, Math. Ann., 196, (1972) 323-346.
[4] L. Gerritzen, M. Van Der Put, Schottky Groups and Mumford Curves, Lecture Notes in Math., 817, Berlin, Heidelberg, New York, Springer-Verlag, 1980.
[5] F. Herrlich, Nichtarchimedische Teichmüllerräume, Habitationsschrift, Bochum, Rühr Universität Bochum, 1975.
[6] D. MUMFORD, Prym varieties I. Contribution to Analysis, New York, Academic Press, 1974.
[7] M. Piwek, Familien von Schottky-Gruppen, Thesis, Bochum, Rühr Universität, 1986.
[8] M. Van Der Put, Etale Coverings of a Mumford Curve, Ann. Inst. Fourier, 33 1 (1983) 29-52.
[9] G. Van Steen, Non-Archimedean Schottky Groups and Hyperelliptic Curves, Indag. Math., 45-1 (1983), 97-109.
[10] G. Van Steen, Note on Coverings of the Projective Line by Mumford Curves, Bull. Belg. Wisk. Gen., Vol. 38, Fasc. 1, Series B, (1984), 31-38..
[11] G. Van Steen, Prym Varieties for Mumford Curves, Proc. of the Conference on p-adic Analysis, Hengelhoef 1986, 197-207, Vrije Universiteit Brussel, 1987.

Manuscrit reçu le 16 mai 1988.

Guido VAN STEEN,
Rijksuniversitair Centrum Antwerpen
Leerstoel Algebra
Groenenborgerlaan 171
2020 Antwerpen (Belgium).

