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INTRODUCTION

The question as to whether every square-summable non-negative
sequence {a^nez could be majorized by the sequence of moduli of
Fourier coefficients of a continuous function / was posed by Sidon in
1932 (see [12]) and was answered in the affirmative only 45 years later
by de Leeuw, Katznelson and Kahane [3] (in fact they proved that, in
addition, the estimate ||/HC(T) ^ const(S|a^ 2)112 CSLH always be ensured).
This result was then refined in the author's paper [7]. It was proved
in [7], among other things, that if a^ == 0 for n < 0 then the function
/ in question can be chosen in such a way that its Fourier coefficients
corresponding to the negative integers vanish. This suggests the following
definition.

Let G be a compact abelian group with dual (discrete) group F.
Suppose that Ais a Banach space of measurable functions on G such
that X c: L2^) (a set theoretic inclusion) and the natural imbedding
of X to L2(G) is continuous. A subset E of F is said to be massive
for X (or A^-massive) if there is a constant K such that for every
numerical family {a^eje m ^(E) there is a function / in X with

|/(Y)|^|a,| for y e E , f(y) = 0 for y ^ E ;
( \112

W^K( S \a,\2 .
\ y e £ /

So, the result of the author [7] mentioned above means that the set
of non-negative integers Z+ is massive for the space C(T) (T is the
group of the circle, T = { z e C : |z|}). In fact, in [7] a stronger result
was established, namely, that this set is massive for a smaller space U
consisting of all functions / such that the two series ^ /(^",

n^o
^ f(n)zn converge uniformly on T. The norm in U is defined as

n<0

follows :

Z fw
k^n^l

11/llt; = sup • k,leZ,k^l^eJ\

It is well-known that every set is massive for L^, 2 ^ p < oo (see
[16], Ch. 5, Theorem 8.6). On the other hand, not every set is massive
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for C(T) (for example, no infinite Sidon set is C(T)-massive; in
particular, the geometric progression {2n}„^o is not C(T)-massive). Thus
it is natural to try to describe the sets massive for C(T) or smaller
spaces (e.g., for U) or at least, to begin with, to give as many examples
of such sets as possible. For the first time I heard of this general
problem several years ago from Prof. J.-P. Kahane.

The starting point for the present work was the following concrete
question: set £'0 = U P2^2^]; is EQ massive?

k ^ l

The contents of [7] suggests that the question of massiveness of a
given set E for C(T) is connected with the behaviour on the space
L^T) of the corresponding multiplier ME,

def
(Msf)(z) = S ;(n)z" or (M^= f^,

n e E

H^ standing for the indicator function of E. For E to be C(T)-massive
it is sufficient, e.g., that ME be of weak type (1,1) i.e. satisfy the
inequality

mes{\MEf\ > M ^ const?i-11|/||^^.

Just this consideration was used in [7] to prove that Z+ is massive.
But for the above set EQ this scheme fails because Mjs is not of weak
type (1,1). Incidentally, the absence of weak type implies that M^
does not act from L1 even to the space of measurable functions with
the topology of convergence in measure (since M^ commute with
translations) — see [9], [11].

Nevertheless EQ is C(T)-massive. The proof is based on the fact
that MEQ is still «L1-regular » to a certain extent, namely, we shall see
that it satisfies the «interpolation inequality »

(1) \\ME,f\\^^C\\f\\^\\ME,f\\^

where 1 < p < 2 and C, a, 0 < a < 1 depend on p only. It is worth
noting that if T is an operator of weak type (1,1) then (1) with T
substitued for M^ is automatically true ; moreover, the same holds if
T acts continuously from L1 to U for some r, 0 < r < 1. But this
continuity property is not necessary for the inequality of type
(1) — besides Af^ , the multiplier M^xz+ m Ihe case of the group
T2 can provide an example. In [7] an interpolation inequality for the

l-a
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last mentioned multiplier was established and then used in the proof
of the fact that Z+ x Z+ is massive for C(T2).

Now the problem arises to investigate multipliers satisfying inequalities
of type (1). This problem proves to be interesting in itself, so it would
be unnatural to restrict ourselves only to multipliers generated by
indicator functions. In the sequel we denote by My the multiplier
generated by a bounded function x on Z :

^def .
(M,/) = xf

(this makes sense at least for feL2^)). The function x is called the
symbol of the multiplier in question. If x = l^ with E c= Z we still
write ME for M^.

The paper is divided into two parts. In the first part we describe
two classes of multipliers satisfying the inequality of type (1) or a
stronger inequality (we shall see that in many cases the Z^-norm of
the function / on the right can be replaced by its norm in a wider
space, e.g. in U*). The second part is devoted to applications of these
results. For example, it is proved there that the set EQ is massive for
U (and not only for C(T), as already claimed). Moreover, if we fix
some points Ufe , nkG[22k,22k+l] then for every sequence {a^} in ^(Eo)
there is a function / in U such that: /(n^) = a^\ |/(n)| ^ |flJ for

I \112

n 6 Eo;f(n)=0 for n^o; ll/llc ^ C( ^ |aJ2 .
\n 6 EQ /

It is also worth mentioning that in the second part of the paper
we give examples of sets massive for C(T) but not for U. One of
them is Z_ u{2k}k^-i, where Z- = Z\Z+. It is easy to see that this
set is not massive even for the space of such functions / in C(T) that
^ /(^Qz" is the Fourier series of a continuous function. There is another

n^O
natural class intermediate between C(T) and £/, namely, the space
^symm °f functions reprcsentable as uniform limits of symmetric partial
sums of their Fourier series. Examples of sets massive for C(T) but
not for U^ymrn m^ be presented as well. Note that the previous results
stating that the class of sequences of Fourier coefficients is « close » to
I2 (beginning with the material cited in the introduction of [7] and
finishing by the result mentioned in the preceding paragraph) essentially
satisfy the principle «all that is true for C(T) can be done for Usymm
also ».
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Now we introduce some more notation (some have already been
introduced in passing): m is the normalized Lebesgue measure on T;
||. ||p is the norm in the space L^w) or Z^A^m), where X is a Banach
space, 0 < p < oo (we do not hesitate to use the term «norm » for

^ vthe functional /^ 1/l^mj if p < 1); C^ is the subspace of C(T)

consisting of the functions / with f(n) = 0 for n < 0; z is the identity
mapping of T.

For a Banach space X, ^(X) denotes the class of X- valued
trigonometric polynomials, i.e. of functions g of the form

(2) g(Q- £ ̂  ^eT ,
n e t

where x^ e X and the set {n : ̂  + 0} is finite. Set 9^(X) = {g e 9(X):
the Xn 's in (2) vanish for neZ-}. y-(X) is defined analogously, with
Z+ subsituted for Z-. (In other words, ^(JT) and ^_(JT) are the sets
of ^-valued analytic and anti-analytic polynomials, respectively.) For
0 < p < oo we denote by /^(X) the closure of ^^W m ^(X^m) and
by HJL(X) the closure of ^,(X) in Z^(A',w). If X = C we write simply
^, ^4, ^-, H^ H^.

The Riesz projections P+ and P- are defined on ^(X) as follows :
if g is given by (2) then

P+^= £ ^n, P-^= £ ^w-
n^O n<0

It is well-known (see, e.g., [4], p. 484) that if X is a Hilbert space then
P+ and P- can be extended, for 1 < p < oo, to continuous projections
of L^X) onto H^X) and IP,(X) respectively, their LP(X)-noTms being
bounded by constp2^—1)~1 . Moreover, P+ and P- are of weak type
(1,1) if X is a Hilbert space :

m{\\P^g\\^>K} < const ^~l\\g\\^ X > 0

for ge^(X), and the same is true for P- (consult the same book [4],
p. 486).

Different constants in estimates for the most part will be denoted
by C (with or without indices); the variations of constants from one
estimate to another are not always reflected in notation.
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PART I. INEQUALITIES

1. Statements.

1.1. Symbols Vanishing on Z_ . We are interested in inequalities of
the type \\MJ\\p ^ CII/irjMJII,1-01 and their refinements (here Kp<q,
0 < a < 1 and x is a bounded function on Z). Note that in the non-
trivial case, when M^ is not of weak type (1,1), estimates of this sort
are the more interesting, the more «intensively » the function x vanishes
(because one should not expect to obtain much information from
the knowledge of \\Mj,f\\q if x vanishes «very intensively »). In support
of this remark we show that the estimate in question trivially
holds if q = 2 (the most important case for applications),
5 d £ : f i n f { | x ( n ) : n e Z } > 0 and M^ is bounded in U (the latter will be
fulfilled in the most of examples considered). Indeed, we have
||/||2 ^S-'IIMJ^ and thus

\\MJ\\, ̂  c\\f\\, ̂  ciLmii/nr" ^ cs-^LmiiMjiir",
where p = a + ( l—a)2~ 1 .

In applications the case when x'^O) => Z- often occurs (this holds
e.g. for x=1^, where EQ is defined in the introduction). We start with
considering this case. First we describe a basic interpolation estimate
involving J^-functions.

A sequence {/jjk^i of subintervals of the half-line (0,oo) C^l^k^k])
is called separated if there is B > 1 such that the intervals (a^B ~1, bj,B)
are mutually disjoint (we also use the term « ^-separated sequence » if
we want to name the constant B explicitely).

Let {I^k^i^k^^k^k]) be a separated sequence of intervals and
suppose that bj, < a^+i for all k. Set Jo = [0,0i) J^ = (^,^+1) for
k ^ 1 and define a function y on Z by setting y(n) = 0 for n < 0,
yW = 4 f01 n e Jk anc! yW = ^ f01* n 6 4 •

THEOREM 1. — Suppose that the above sequences {s^^i and {tjjj^o
are uniformly bounded and \Sk\ < constmin { | ^ - i l , |^|} with a constant
independent of k. Let r ^ l < p < q , p ~ l = Qr~1 + (\-Q)q~1. Then
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forfe^^ we have \\M,f\\, ̂  CII/IÎ IIM./II,1-9 (C depends only on r, p,
q and y).

Note that the estimate of Theorem 1 is true for r > 1 as well, but
this case is not interesting because My acts in U for r > 1 (see the
beginning of the next section). Note also that it is very easy to extend
the estimate to all / in W (in this case Myf should be understood as
the boundary values of the function ^ ^(n)c^z" analytic in the disc

n^o
{ | z | < l } , €„ being the Taylor coefficients of / ; if Myf ^ H5 we agree
that ||My/||,=oo).

Now we can state an interpolation inequality valid for arbitrary (i.e.
not only analytic) functions.

COROLLARY. — Let x be a function on Z with x\Z- = 0. Suppose
that for some r < 1 we have ||MJ1|, < C||/||i for all f in ^. If y is
from Theorem 1 then for 1 < p < q and f e 9

\\M^f\\, < CJ/II^IIM^/II,1-9, p-1 = r-^ + q-^l-Q).

Indeed, if / e ̂  then M^f e ̂  and by Theorem 1

\\MyMJ\\, ^ C\\MJf\\M,MJ\\^ ^ CJ/II^IIM^/II,1-9. D

It is clear that if ||MJ1|, ^ C|||/|||, /e^ for some norm |1 | . | | |
then the inequality of the corollary holds with ||/||i on the right replaced
by I l l / I l l . We shall use this in Part II to prove that certain sets are
massive for some spaces smaller than C(T) (actually a little bit more
refined inequality will be used). Now we note that the function x = H^
does satisfy the hypotheses of Corollary by the classical Kolmogorov
theorem. The latter has been strenghtened considerably in [15], namely,
it was proved there that ||M^/||, < C,||/||^, 0 < r < 1, where

def f f- ]
\\f\\u- = sup^ \fgdm :geU,| |g[|^iy.

Thus we obtain the following refinement of inequality (1) of the
introduction:

11^/llp < const 11/II^HM^/lir9, / e L2.

(To prove this, combine the estimate for M^ from [15] just quoted
with Theorem 1 in which it should be taken
J^P^+l^-lL^O,^!.)
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Now we give a generalization of Theorem 1. Roughly speaking, it
means that on the intervals 7^ we are free to apply again certain
multiplier transforms and, moreover, the process can be iterated. This
will lead to massive sets of more sophisticated structure.

Define by induction a sequence .s/, of classes of functions on Z.
e^o consists of all functions y as in Theorem 1. We say that the
collection of intervals {4} mentioned in this theorem is adjusted to y .
We assume that the end-points of 4's are in Z+\{0}.

Suppose that we have defined the class ̂  and for every function
u in ^/j a collection of intervals {4} adjusted to it, where 4 = E^^kL
a^, ^6Z+\{0} . Fix such u and {4} and suppose that in each 4 a

point Ck and two (finite or empty) systems of intervals {Aj^} and {Aj^}
are chosen. Assume further that the end-points of these intervals are
integers, Aj^ c: (a^,c J, A^ <= (c^b^\ and that for each fixed k each of
the «translated » systems {A^—a^} , { fc j^—A^} is ^-separated with some
B independent of k. Let functions y^ and y'^ be constructed by these
«translated » systems according to the same rule as y from Theorem 1
was constructed by 4 's mentioned there. Of course, the numbers {tj}
and {Sj} used in the construction vary from one system to another.
But we assume that all of them as well as the constants in the
inequalities \Sj\ ^ const min { |^-- i I , \tj\} are bounded uniformly in k.
Define now a function v:

v(n) =

u(n), n ^ U ^
n

u(n)yk(n+ak), n e [a^cj
u(n)yk(bk -n), yie(^,&J.

The collection of all intervals Aj^, A^ is said to be adjusted to v . The
class ^,+1 consists of all functions v so obtained.

THEOREM 1 bis. — If ue^/j and r ^ 1 < p < q then \\M^f\\p ^
CII/II^IIMJII^01 for /e^. Here a, 0 < a < 1 depends on j and C does
not depend on f.

COROLLARY. — If x is as in Corollary to Theorem 1 and u e ^/j then
\\M^f\\, ^ CII/II^IIM.JIir" for alife^. D

The proof of Theorem 1 bis presented in this article gives a = O^
where 9 is from Theorem 1. It is worth noting that, in general, the
estimate \\MJ\\p ^ C\\W\\MJ\\^ is the stronger, the greater P is,
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whatever be a (quasi) norm 1 1 1 . 1 1 1 . This follows immediately from the
fact that to prove this estimate it is sufficient to check it under the
additional assumption \MJ\\q = 1, |||/||| ^ 1 (we shall use this fact in
the sequel several times). Indeed, suppose that under this assumption
we have \\MJ\\p ^ C H I / H p . Then the same is true with no restrictions
on [ | [ / [ [ | , because for H I / H I > 1 we have \\MJ\\^
\\^vf\\q = 1 < I l l / I l l 3 . Now the homogeneity allows us to get rid of
the assumption ||My/||^ = 1 as well.

We shall not need to know the best possible a, though in principle
this might be of some interest. Note in this connection that the estimate
in Corollary to Theorem 1 remains true with 9 defined by
p ~ 1 = Q + (l-Q)q~1. See Sections of Part II for more detail.

1.2. Symbols Bounded away from 0 on Z- . A bounded function x
on Z is said to satisfy the Hormander-Mikhlin condition if

(1) sup2k ^ |x(n+l)-x(n)|2 < oo.
k 2k<|n|^+l

We recall that this condition guarantees that M^ is continuous in Z^
for 1 < p < oo and is of weak type (1,1) (see the next section for
more information). So we can use as « x » in Corollary to Theorem 1
any bounded function satisfying (1) and vanishing on Z- . The function
u = xy (for which this Corollary gives the interpolation inequality) in
interesting cases does not satisfy any longer the Hormander-Mikhlin
condition even if x does. But the Marcinkiewicz condition

(2) sup ^ |u(n+l)-M(n)| < oo
k 2^|n|^2fc+l

is evidently fulfilled if x satisfies (1). Recall (see e.g. [14]) that, for any
bounded function u, (2) implies that M^ acts in Lp, but in general the
weak type (1,1) inequality fails for such multipliers. The interpolation
inequality may fail for them either, as the example of u = ^^k.^>^
shows. Indeed, if for this u we had \\MJ\\p ^ C\\f\\\\\MJ\\^~^
for some 1 < p < q then My would act in L1 (because

/ \1/2

IIAfJIIrX E 1/W for every r, 0 < r < oo).
\k^l 7

In fact a moment reflection shows that the gap between condition (2)
and the condition "u = xy with x satisfying (1) and y e ^ ' Q is rather
big. It turns out, nevertheless, that an interpolation inequality follows
from the Marcinkiewicz condition provided inf \u(n)\ > 0.

n<0
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THEOREM 2. - Suppose that sup {\u(n)\: n e Z} < oo ,
inf{|u(n) | : n < 0} > 0 and u satisfies (2). TTi^i \\MJ\\p ^
^p^ail/ll? ll^u/ll^"01- ^^ 1 < P < (h and a can he any positive number
strictly less than Q defined by p ~ 1 = 9 + (1 - Q)q~1.

As it was with Theorem 1, the construction that leads to Theorem 2
can be iterated. Let ^o be the class of all functions u satisfying the
hypotheses of Theorem 2. Every separated sequence of intervals in Z+
is said to be ajusted to every function in ^o. If for some n the class ̂
has already been defined, takeu in ^ and a sequence {Ii},Ii = [a^fcj
adjusted t O M , and suppose that inf{|u(n)| : n ^ ( J / J > 0. Fix a point

i
Cie[ai,bi] and consider for each? two functions on Z, yi and y [ , such
that

sup|^(n)| < oo, sup ^ I^Oi+l) - yi(n)\ < oo
lfn lfk l^nW^l

and the same with y ' in place of y . Then consider the functions,

u(t), t i { ] l ,
i

v(t) = u(t)y,{t - ^), t^[a,,c,]

u(t)y\(t - bi), re(c,,^].

The class ^+1 consists of all functions u obtained in this way. By a
system of intervals ajusted to v we mean any system € of intervals such
that: (i) for each I e S there exists ( with either / c= \a^ cj or I c: [cj, h;],
and (ii) for each ( the systems {/ - ai: I e S , I c= [a^cj} and {- I + ^ :
7e^, I c= [cj,&j]} are 5-separated with some B independent ofL

THEOREM 2 bis. - Let ue^, 1 < p < q. Then for some C and
P, 0 < P < 1, \ve have the interpolation estimate \\M^f\\p ^
C\\M\\MJ\\^.

1.3. Commentary. The Plan of the Exposition. In proofs of some
theorems stated we repeatedly use the inequality ||.||^ ^ ||.||s for r ^ 5.
Thus it is unlikely to be possible to transfer all these theorems to the
real line in place of T literally. But of course they can be transferred
in some form which is close to literal in simple cases. For example if
EQ = (J p2^2^^ (but this time the intervals are considered in R)

k^l
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def
then for the operator M^,Mj^/= (H^/^ we have the estimate

IIMVIÎ )^cp..ll̂ llll(.)IIMVl̂

for all / in L^R) n L2^) (here 1 < p < q,p~1 == 9 + (1 - Q)q~1).
We do not discuss the case of R any more.

Note also that for the time being the theory considered is essentially
one-dimensional: the most natural questions on interpolation inequalities
for multipliers in the case of multidimensional tori 1" are open. It is
unknown, for example, whether the inequality

IIM^lLP(Tn)<cll/llll(Tn)IIM/lli27^

is true for M = ^(Z+)H ^d n ^ 3. See [8] for a discussion of this
problem. For n = 2 this inequality was proved by the author [7]. See
also [1] for some refinements of this inequality still pertaining to the
case n = 2.

Proofs of Theorems 1 and 1 bis on the one hand and 2 and 2 bis
on the other are based on different ideas and are presented in Sections 4
and 5 respectively. To shorten calculations we prove completely only
Theorems 1 and 2. The other two will be verified under many simplifying
assumptions, but it will be quite clear how one can get rid of them.

In Section 2 more or less standard facts about multipliers are stated
in the form convenient to us. Nothing except these facts is needed to
prove Theorems 2 and 2 bis. To the contrary. Theorems 1 and 1 bis are
finer. To prove them we shall need an extra inequality discussed in
Section 3. The idea of its proof was used (for similar purposes) by the
author in [6] and [7] and then by Bourgain [1].

Note also that Theorems 1 and 1 bis are the most interesting for
applications. Theorems 2 and 2 bis are used rather as sources of
counterexamples and should be considered as certain complements to
the first two.
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2. Information on multipliers.

2.1. The Hormander-Mikhlin Condition and ^-Multipliers. Suppose
that a function x : Z -^ C satisfies | x ( n ) | ^ A , n e Z and also the
Hormander-Mikhlin condition

(1) sup 2k ^ |x(n + 1) - x(n)\2 = C < oo .
k ^^Inl^-H

Then for the function K,K(Q) =^x(n)einQ (assume e.g. that the set
n

[n :x(n) ^ 0} is finite to avoid technical difficulties with the definition
of K) we have

(2) K(t - 9) - K(t)\ dt ^ const,
J2|9| ^ \t\ < K \

the constant depending on C and A only. (The proof of the counterpart
of this fact for R in place of T can be found, e.g., in [4], p. 210-214;
for T essentially the same argument works).

It is the last estimate for K that allows one to prove the properties
of M^ with x satisfying (1) listed in the beginning of subsection 1.2
(consult [4], Section 11.5). We have in addition

IWIIi ^ C|[/lli for feH1

with C depending only on A and « const» in (2) (see e.g. [2], p. 581
or [4]).

Moreover, suppose that {xj is a sequence of functions on Z that
satisfy (1) uniformly in ; and assume sup |^(n)| < oo. Define an

n,l

operator T on L^.m) (this space consists of sequences of functions

{gi} with U^g^dnK oo) by the formula T({^}) = {M,^}. Then,

for 1 < p < oo, Tis continuous: \\Tg\\p ^ Cp\\g\\^ g e L^l^m) (see e.g.
Theorem 3.11 in Section V.3 of [4]).

In [2] it was proved that for a bounded function x satisfying (1)
the operator M^ is a multiplier of If for r > 2/3. To prove Theorems 1
and 1 bis we shall need a result of the same kind for arbitrary r > 0.
If r is small, (1) should be replaced by a condition requiring greater
« smoothness» of the symbol of the multiplier. For us the following
result will suffice.
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PROPOSITION. - Let g be a function in C^O.oo) satisfying
\(dldt^g(t)\ ^ Cpr13 for all non-negative integers^. Define a function x
on Z by x(n) = 0 for n ^ 0, x(n) = g(n) fpr n> 0. Then the multiplier
My maps W to H ' for every r, 0 < r ^ 1, and Lp to L11 for 1 < p < oo.
Moreover, the norm of My for each particular r or p depends only on
constants Cp.

Sketch of the proof. - We prove only the 7-T-part of the proposition
by reducing it to the counterpart for the real line that can be found
in the monograph [4] (Section III.7, Theorem 7.30). Suppose for simplicity
that g has compact support (this is sufficient for our purposes but in
fact leads to no loss of generality) and extend g by 0 to the negative
half-axis. Let F be the inverse Fourier transform of g and f(t) =
^ xW1. Then / is the periodization of F: /(() = ^ F(t -4- 2nl)

net i g Z

(the series converges rapidly).

My is the operator of convolution with /, so it is sufficient to prove
that for every r-atoma on the unit circle the Z/(T)-norm of a */ is
bounded by some constant depending only on a certain number of
Cp's. (Consult the same monograph [4] for characterizations of H1'-
spaces in terms of atoms). (It is probably worth noting that some
specific features of the situation we consider make it particularly simple.
The above uniform Z/-estimate trivially implies the uniform estimate of
functions a*/in the space IT as well, because a * f e H 2 for every r-
atoma in view of the fact that x(n) = 0 for n < 0).

Now we can write

4^11 /̂11^ ^ ] | a(u)F(t-u+2nl)du dt =
leZj-n J-K ir a(u)F(t-u) du\ dt.

RlJ-T i

If we extend a by 0 to the complement of [-71,71] we obtain an
r-atom for the real line and the last expression is nothing but
l|fl*^ll^(R)- This is bounded by a constant depending on a finite number
of Cp's by the result quoted in the beginning of this proof. D

The next lemma easily follows from the Proposition.
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LEMMA 1. - Let A > 1. There exist functions (p,, j ^ 0 on Z m'rfc
^ following properties :

(a) (p,^0, ^cp,= 1^^, ^.(n)=0/or n^'-1,^1].
j

(A) 7f u = ^ 8 .̂, [ £j ^ 1 ^en /or every fixed r the operators M^
are bounded uniformly in all collections {gy} 05 operators from H" to If
for r ^ 1 and from U to U for r > 1.

Proof. - Let a be a function in C^R) such that a(s) = 1 for
5 ^ ^-1/4 a(5) = 0 for 5 ^ ^-1/2 and 0 ^ a ^ 1 everywhere. Define
\|/ by \|/(s) = a(s) for s ^ 1 and ^(s) = 1 - oi(sA~1) for s ^ 1. Clearly
v^eC^) and if we set \)/,(s) = ^(sA -J) then ^ .̂(s) is 1 for 5 ^ 1

j^o
and 0 for 5 ^ 0. If | £̂ . | ̂  1 then the function g = ̂ e/)/, satisfies the
hypotheses of the proposition with some constants Cp independent of
the collection {6^.}. So we can set (py = \|^|Z. D

COROLLARY. - H^ft/i the above functions (p, we have

KEIXP/I^ ^ C,||/||,

/or all f in H' if r < 1 an^ /or all f in U if r > 1.

Proof. - Let r, be the Rademacher functions. We get from Lemma 1
that

|lSr,(OM../||;^C;[|/[|^

uniformly in t e [0,1]. Now integrate this in t over [0,1] and apply the
Khintchine inequality. Q

2.2. The Littlewood-Paley Decomposition. This is the name of the
following statement.

Let { ^ U n e z be a strictly increasing family of integers such that

(3) sup card {n: a, e P^^M-^^, -2^]} = C < oo .

Set /„ = [a^,a^i). Then for 1 < p < oo we have the two-sided estimate

.1/211
(4) |̂|/||, < [(Z|M^/|2) ^e,\\f\\,,feLP(j)

1 \ n /

(Cp and Cp do not depend on /).
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The standard argument leading to this theorem (that can be found
e.g. in [14], Chapter IV, Section 5) after iterations gives the analogous
result for more general decompositions of Z into intervals. (Cf. also
[13] for the case of IR.) We give the precise statement.

Define by induction a class Q) of decompositions of Z into intervals.
First we attribute to 2 all decompositions generated by sequences
satisfying (3), as above. Next, if DeQ> and D = {[a,, 6,)}, we attribute
to Q) all decompositions that can be obtained by further subdivision of
intervals [^s,ft,) by some points a^ = ^1,5 < ^2.s < • • • < a^s <
f ry , < . . . < fc^ = bs such that the sequences {aj^~^s}i^j^u ^d
{bs~bj^}i^j^v satisfy (3) with C independent of 5 (u and v can depend
on s).

Generalized Littlewood-Paley Theorem. Estimate (4) is true for every
decomposition of class Q).

As to the proof we note only that in the argument leading to the
classical Littlewood-Paley decomposition the Hormander-Mikhlin theorem
is ordinarily used. To obtain the generalization just stated by iterating
this argument the variant of this theorem for Lp(l2,m) mentioned in
the preceding subsection should be employed.

2.3. The Marcinkiewicz Multiplier Theorem. This theorem has already
been mentioned in Section 1. The Marcinkiewicz condition (inequality
(2) in Section 1) is weaker than that of Hormander and Mikhlin but
does not guarantee the weak type (1.1) estimate for the multiplier in
question. On H1 we have, however, a substitute for this estimate: if u
is a bounded function satisfying (2) of Section 1 and Wj^ = IL^^1)9

k > 0 then for / e H1 we have

^{(Il^WI2)^2^ < const ^H/lli.

Note that this statement is unlikely to have multidimensional counterparts.

We shall need a similar fact for ^-valued functions as well as a
variant of the Marcinkiewicz theorem for them. Here is the statement.

Complement to the Marcinkiewicz Theorem. Let {v^} be a sequence
of functions on Z satisfying

sup |i;,(n)| < oo, sup ^ |i;,(n+l)-t?,(n)| < oo.
sfk 2^1n|<2^1
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(d) If 1 < p < oo and (Sl/J2)1^ L19 then

\\(L\^W\ ̂  constlKZI/J2)1/2!!,.

(b) Let A > 1, Wfc = ^^+i)(^0). Vf.eH1 for all 5 then

(Y \1/2 -) / M.1/2|
^ El^/sl2 >^const r-1 El/sl2

(Afc,s / J \ s /

Proo/. - We begin with (b) restricting ourselves to the scalar valued
case. (I was not able to find a reference even for this case, though the
proof is standard.) So in place of the sequence {v^} we have only one
function v .

For each k let Xj, be the continuous function on R equal to 1 on
t^,^1), to zero on (-00, ^fc-1) u (^k + 2 ,+00) and linear on each
of the intervals [^k-1,^] and [A^^A^2]. Set ^ = X^\Z. Then the
functions ^e^ with \^ ^ 1 satisfy the Hormander-Mikhlin condition
uniformly in all collections {e^}. Thus we have for f e H 1 :

(5) IKElM^/l2)1/2!, ^const 11/11,.

Set gk = M^f, dk = m i n { n e Z rn^^^} . Then

M^f = ^(^(z^P^z^-z^^P^z0^1^)) +

^ (z^^g^-z^^^z^^g^vW-v^-l)).
f l f c<n^ f l f c+ l

Denote the term written before the summation sign by ^. Since v is
bounded, we obtain by the weak type (1,1) inequality for P+ on
W):

m (Y \112 1 / \112

ElV >^ ^c^-1 ^i^i2
c \ f c / J \ f c /

Thus by (5) all we need will be proved if we establish the estimate

(Y / V2^2 ')(6) m 1 Z Z I^^)-^^-I)IIP^(^)I >^[^
l\ fc \flfc<n^a^+^ / / J

/ M/2

c^-1 Ei^i2\ fc /
and the analogous estimate with P+(z"^) replaced by P+(z^+^) (the
proof of the latter is the same as for (6) and will be omitted).
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Set d^= \v(n)-v(n-\)\1!2, (p^ = d^g^ (for each k the index n
satisfies a^ < n ^ ^k+i) . Then

<1/2!!\1/2 -) / \
ZlP.(p,,j2 >^c5i-1 Ei(p,j2m
.k,n / J \fc,w /

This implies (6) because, on the one hand, for a fixed k we have by
the Holder inequality and the Marcinkiwicz condition for v :

^ Kn)-i;(n-l)||P,(z"^)| =
flfc<n<a^+l

/ M/2

^ l^^-^n-l)!1/2!?^^^)! ^const( ^ IP^^.n)!2 .
o^<n<afc+l \fl^<n<fl^+l /

and on the other hand

^ |(P,,J2 ^ (sup ^ |dJ2) ̂  |̂ |2 < const S |^|2,
k,n \ k a^<n^a^+^ / k k

again by the Marcinkiewicz condition.

The ^-valued case of (b) can be proved by a routine repetition
of essentially the same argument. Hint: Write first

IKSl/J2)^2!!! X llS^(0/Jli^ the r, being the Rademacher functions.
Jo

For almost every t the function ^r^(t}fs is in H1 and so we can apply
to it the multiplier with symbol ^^(r^. This leads to

l̂l II/ V/2!!
^ const |fs |/J2)fS IM^/J2

\s,fc 1 1\ s /

in place of (5). And so on.

To prove (a) one should repeat with minor changes the standard
proof of the Marcinkiewicz theorem (see e.g., [14], Chapter IV, Section 6
for the latter in the case of R instead of T). D

3. Interpolation inequalities for vector-valued spaces Z//ZT.

3.1. The Statement. Commentary. Let A" be a Banach space. Denote
by 1 1 1 . 1 H i , 0 < t < oo the norm in the quotient space Z/(J)/7:r-(J).
(The definition of H^(X) and H\X) was given in the Introduction.
We also recall that ^(X) denotes the space of X- valued trigonometric
polynomials).
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THEOREM 3. - Let 0 < r < p < q < oo, p ~ 1 = Or"1 + (1-9)^~1.
Suppose also that the number s defined by s~1 = p ~ 1 — q~1 is strictly
greater than 1. Then

lll^lllp^C,^|||^|||?|||g|||,1-9

for every g in ^(X).

Remark. — The proof presented below gives Cp,q,r ^
C21/p(r+l)r~153(5-l) - l for some numerical constant C.

COROLLARY. — Suppose in addition that p > 1 (in this case automatically
s > 1) and X is a Hilbert space. Then for g e ̂ (X) we have

iip^iip^ ̂ rii^ii^iir9-
Proof of the Corollary. — If h generates the same class as g in

the quotient space L^OO/W-OQ then P + g = P + h . Thus
|!P+^|lp < Cp2^-!)"1!!^!!^. On the other hand it is evident that
1 1 1 ^ 1 1 1 , ^ \\g\\, and 111^111,^ IIP^II, . . D

Let us comment the Corollary. It has just been used that for t > 1
we have |||^|||, ^ ||P |̂|, ^ C(t)\\\g\\\, for all g , and hence for r > 1 the
estimate reduces (to within the constant) to the trivial estimate
I I P + ^ l l p ^ l |P+gl l? l |P+^l i r 9 - If r = = l . the situation is slightly more
complicated, but still the inequality in question can easily be derived
from the weak type (1,1) estimate for P+ . But for r < 1 no kind of
such argument will work. Thus the conclusion of the Corollary
for r < 1 can be considered as a certain substitute for the L ̂ regularity
of P+ .

The main ingredient of the proof of Theorem 3 given below (a
«trick» with multiplication by an appropriate outer function) has
already been used by the author in [6] (Lemma 1) and [7] (Section 4)
for X = C, but sharp estimates (with the exponent 9) were not presented
there. It [1] (proposition 4.1) the same trick was employed to prove the
counterpart of the Corollary for the Lorentz space L1'00 (again for
X= C):

(i) r^iip^c^ iî iî  np^ii,1-9,
where 1 < p < q, p ~ 1 = Q + (1 - 9)^-1, \\g\\,^ ^ sup ^m{\g\>^}.

\>o
In applications r < 1, p > 1 will always hold.
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We emphasize that in Theorem 3 no hypotheses on ^(JO-regularity
of P+ are involved. We have formulated Theorems and its corollary
for vector-valued functions because this will really be needed in the
sequel. But it should be noted that the vector-valued situation presents
here no complications compared with the scalar case.

Note also that we can do all of this with H1 substituted for H1-
and P- for P+ .

3.2. The Proof of Theorem 3. Recall that ^-{X) is the set of
^-valued antianalytic polynomials. It is clear that for every c>0 there
are g,, g^ in ^{X) such that g - ^e^-(J), g - g^e^-W and
\\gi\\r^ ( l + e ) l l l ^ l l l . , \\g2\\,^ (1+e) 111^111 , . Set f= g, - g^ (so
fe ̂ -W). Define a function a on T by a(Q = ^llgi(011x1 if ll^i(011x > ^
and a(Q = 1 if ||^i(z)||^ < ^. Let T be the outer function for which
|r| = a a.e. : T = exp(loga + iT^(loga)), where H is the harmonic
conjugation operator. It is clear that T/e 7jT_ {X) for all t . We show
that with K appropriately chosen the function g^ + T/ is just the
representative of the class generated by g whose Z^-norm admits the
estimate we want, to within e. We have

11^2+Vllp ^ C(||T(^+/)llp + ll(l-T)^llp) = C(||T^||^+||(l-T)^!lp),

where C = 1 if p ^ 1 and C = 2^ if p < 1. By the definition of T,
|T| ^ 1 and \ft(Qg^Q\\x < ^ a.e. Thus \ftg,\\p ^ (^WrY^ The term
W~x)g2\\p w^ be estimated by using the Holder inequality:

/ r \
W-^g2\\p^\\g2\\,(\ l l-T^mj^.

\J /

Let us estimate the integral on the right. Let e = {^eJ : ||gi(011x > ^}-
Then |I-T| ^ 2 on e and on J\e we have

1 - T| = |1 - exp0'^(loga))| ^ const |77(loga)|.
So

/ r \ r
l-T^m l/s^ C(m(^) + l^floga)!5^)1^^

\J / JT

C(^-r||glll?)l/s+ C/f |log al5 dm}118.
\Je /
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Consider the distribution function y, y(t) = m{\\g^>t}. Clearly
y(0^m^ll; . Now

U ^ //• M/5

llogal^m = (logll^-^y^m =
/ \J\\g^\x>^ /a00 / ^Y~1 dtY15 r°°

^'^V ^Tj ^^"M (loga)5-1^-1^)1^

^s^-^lll;:)175.a \l/s

Thus finally [ l -Tl^ml ^ C^-^g^ and

11^2+T/H, ̂  C^ ̂ 1^ [1^11^ + ̂ -i |[̂  ||̂ |̂

Now it suffices to put X = ll^ill^4"1^"1"^"^ H^ll"''"1^1"4"1^ D

4. Symbols vanishing on Z- .

4.1. The Proof of Theorem 1. Let/e^- Choose a constant A > 1
so close to 1 that each interval [^J-1,-4J+1] (/ ^ 0) meets at most one
of the intervals ^ from the definition of the function y before the
statement of Theorem 1. (Since the sequence {4} is separated, such a
choice is possible.) Let {(p^o be the sequence of functions given by
Lemma 1 (subsection 2.1) for this .4. By the Corollary to that lemma

(1)
\\\j

Consider three sets of values of j:

I / V^llZiXp/i2 ^C||A.
I \ J / llr

(7!! = U ' ' <P/lj^ = <Pj for some k}

GI = {j: (p,^ == 0 for all k}

(?3 = Z,\(G,uG^).

If] e 63 then there is a unique k = k(j) with (p,(a^) 9^ 0 or (p,(b^)) + 0
(it is possible that the both inequalities hold; recall that 4 = [a^b^).
Set M, = 1l(-oo,^)<Pj, ^ = H{^^](P,, w, = l(^4-oo)(p, with fe = k(j).

Fix an integer ^ and a numerical sequence {ay} and consider the
sequence {a/^'M^},,^^. This sequence is an P-valued trigo-
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nometric polynomial. We apply to it the Corollary to Theorem 3. Since
P^^'M^f) = z^^M,/, we get

y/2 ^
^ |a,M,/12 dm]

p / 2 \ l / p

dm} ^
J e G3 / /

)r/2 \ 9/r

S |oc,M /|2 dm
j e G3

)g/2 \(1-9)/^
S |a,M,/|2 dm
e G3 /

where p~1 = Qr~1 + (l-9)g~1. (We have extended the summation to
all j e G'3 because the estimate is uniform in N). In virtue of (1) the
first factor on the right is majorized by C||/||^, provided
sup | o^| < oo. If in addition |o,| ^ const ^-)+i for all j (^/s are from

the statement of Theorem 1) then it is easy to see that the second
factor on the right is majorized by CUMy/l^"9. (Indeed, by Corollary

to Lemma 1, / ^ I ̂ -y/l ̂ ^l i ^ C\\Myf\\q. Using the continuity of
v 3 ^ I II/ V^lM/21

Z î ).î /i2
JeG, / I

P^ in L^l2) we get from this that V I^AJI2 L ^

C 1 1 My/| | ̂ ). So if the o^'s are subjected to the both conditions then
.1/2

' Ei ^
\ f 6 ( ? 3

(2) a^/|2 ^CII/II^M./II,1-6.

If, moreover, |a^| < const t^\ for all j e GT, then we get in the same
way (by using the variant of Corollary to Theorems with P+ replaced
by P_) :

S a.M^I2)! ^e||/||?||M,/||,1-9.(3)
J e 63 / I P

From the Holder inequality and (1) we obtain
,i/2||i-e

Z ^)^<p/i2
^ e 63 /

^ C||/||^ E l^o^/l2
\j e 03

and again the second factor on the right is majorized by HMy/H1"9 , in
virtue of the continuity of the Riesz projection in L^J2) and the
inequality I s^ | ^ const min ( I ̂  1 , 14+11) from the hypotheses of Theorem 1.
Combining this inequality with (2) and (3) in which we put o^ = s^
we find

( I iwvi2) ^a/ii^wiir0.
\J e G3 / I P
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Set now a, = t^ in (3) and a, = r^i in (2). Then (3) and (2)
together with the last inequality give

f yi 2L
\j 6 G3

^<p/2 ^ C\\ff\\M,f\\\

The analogous estimate with Gi or 62 in place of 63 is also true and
is much simpler: if j e G^ u 62 then y is constant on the support of
(p; and so the desired estimate follows from the Holder inequality and
(1). Thus

S IM^/I2)7] ^CII/II^IM^-9.
J^O / Up

Since for every n e Z + the relation q^.(n) ^ 0 can hold for at most two
adjacent values of 7, we can apply the Littlewood-Paley theorem to the
sums over odd and even /s separately to obtain that the term on the
left majorizes \\Myf\\p. Q

4.2. Concerning the Proof of Theorem 1 bis. We restrict ourselves
to symbols of class j^i (the further advance is made by repeating the
same procedure). Let y and {4} be as in Theorem 1 and let intervals
Afcz, ^ki c 4 and functions ^ be such as described in the definition of
e^i (for simplicity we assume that c^ from this definition coincides with
bk for each k and so there are no intervals Aj^ and functions ^). So
we consider the multiplier with symbol a,

a(^)=
yW. n t U 4

^ yWyk(n^ak), neh.
We shall prove the interpolation inequality for functions / in ^
satisfying ||/||, < 1, \\MJ\\q = 1 (see the end of subsection 1.1 for a
reduction of the general case to this).

We keep the notation from the proof of Theorem 1. Some estimates
obtained in the course of that proof will be used. Let £ ' = 1 ) 4 ,
P = y ^ E . Y = y ~ P. We can apply Theorem 1 to y and obtain k

(4) |[(Z \M^fA 1| ^ C[|/||?[[M^-9 ^ CHJZ0,
II \ j / lip

because \\Myf\\q ^ const \\MJ\\^ in view of the Marcinkiewicz theorem.
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(Note that when considering the classes .< with n > 1 one should use
at the same point the L ̂ -continuity of a multiplier whose symbol does
not satisfy the Marcinkiewicz condition. This continuity property can
be derived from Generalized Littlewood-Paley theorem and part (a) of
the Complement to the Marcinkiewicz Theorem stated in Section 2).
Since | sj ^ const min { | (J, 11^ 11}, it follows from (4) that

|( E \^M^/l2)1'] ^ CII/H?.
I^GS / lip

From this and (1) we derive that

Ly'̂ l̂ te^/i2j e &3

|/ \1/2[ \

( Z IW^./I2) ^Cdl/H.+ll/ll^^cjI/ll,9,
I \j 6 G3 / | r/

since [|/||, ^ 1 and 0 < 9 < 1. It follows directly from (1) that
/ \ l /2 j

( E \sku)M^/\2} ^ C\\f\\, (here k(j) denotes the unique number
\J e GI / | r

fe with (p/I^ = (p^.). Together with the preceding estimate this yields

,Zi^/i2 ^cii/ii,9.

Thus we have « extracted » the part of the symbol y which is subject
to changes during the passage from y to a. Now we repeat the proof
of Theorem 1 with small variations. The preceding estimate and the
Khintchine inequality imply

r^M^dmdt^ CW,E
JT \j e G^uGy

where dj is the left end of the unique interval 4 that intersects the
support of (p,. Let {^} be the functions given by Lemma 1 with
parameter A so close to 1 that for every fixed m and k the translated
system of intervals {A^-a,,} contains at most one intersecting the
support of ̂ . (Recall that all these systems of intervals are 5-separated
with the same B). Applying the multiplier with symbol ^ ̂ (i)^ to

the function ^ r,(t)̂ M /̂ we find by Lemma 1, the" counterpart
j"6GiuG3
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of the Khintchine inequality for the system {r,(0r^(r)} and the preceding
estimate that

,1/2

(5) IfZl^/I'VI ^Cll/llr6,
\\j,m / I r

where ^(n) = (pj^^mO1"^/)- This is the counterpart of (1) from the
proof of Theorem 1 and we apply the procedure used there. Namely,
we single out the pairs (j,m) for which at least one of the end-points
of some A^ lies in the support of ^-^. Then we apply appropriately
Corollary of Theorem 3 to the sum over such pairs, and so on. The
result of all this will be

IWiî  cii/ii?2,
where 5 = a1^. (92 appears because, in contradistinction to (1), the
exponent 6 is already present in (5) on the right. It should be noted
that at the end of the argument we use the Generalized Littlewood-
Paley theorem in place of the ordinary one used in the proof of
Theorem 1). Since (4) means that \\M^f\\p ^ C||/||^, and y 4- 8 = a we
finally obtain \\MJ\\p ^ C\\f\\f . D

5. Symbols, bounded away from 0 on Z _ .

5.1. The Proof of Theorem 2. We assume without loss of generality
that | I/I 11 ^ 1, \\M^f\\q = 1. The last equality implies that
1 1 P- /I I q ^ const, since the Marcinkiewicz condition for the function
1lz_u~1 can easily be verified. On the other hand,
m{|P-/|>)i} ^ CX~111/H i , and so for 1 < r < q we have ||P-/||, ^
C,||/||?, where r~1 = a + (l-a)g~1 (note that a -> 1 as r -^ 1). Fix
some r , 1 < r < q. Since u satisfies the Marcinkiewicz condition, the
last estimate gives

(1) 1|P-M,/||, = ||M,P-/||, ^ C||/||^.
Besides,

(2) r^/iii ^ n/iii + np./iii ^ n/iii + iip./ii, ^ c,ii/n?.
Now we apply part (b) of the Complement to the Marcinkiewicz

Theorem (see subsection 2.3) in the scalar case. Let Wj. = H- „ ^+1 (A> 1v ' rc £-r\[A"', A"' 1)
is fixed). The part (V) just mentioned implies that

(Y \112 )
(3) m\(^ M^P^/|2 ^^C^IIP^/II,.

(A k / )
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The Littlewood-Paley theorem directly gives the estimate
/ v^i
El^u^/l2 ^ C||MJ\/||̂  CUMJIÎ  c.

\k / 1 1 «

«Interpolating » between this estimate and (3) we obtain

\Vj^Up^/l2 ^CIIP^/II9!,

where p~1 = 6 4- (1—9)^~ 1 . Another application of the Little-
wood-Paley Theorem gives now \\P+MJ\\p ^ C||P+/||(|. Taking into
account (1) (where we put r=p) and (2) (where we do not specify r
for the moment) we conclude that

\\MJ\\, ̂  \\P^MJ\\, + \\P-MJ\\, ̂  Cdl/ll^+H/ll6!) ^ 2CH/110/7,

since |[/||i ^ 1. Recall now that a is close to 1 if r is close to 1, and
so the exponent 6a can be chosen arbitrarily close to 6. D

5.2. Concerning the Proof of Theorem 2 bis. We restrict ourselves
to symbols of class ^ (as in Theorem 1 bis, to advance further the
procedure should be repeated). Moreover, we consider for the sake of
simplicity only symbols v of the form

u(n\ n i [ j l i
v{n) = i

u(n)yi(n-a^ ne Ii.

Here u satisfies the hypotheses of Theorem 1, {7^} is a separated family

of intervals in Z+ with inf < \u(n)\: n^ [j 7^ > 0 and {yi} is a uniformly
I i )

bounded sequence of functions on Z that satisfy the Marcinkiewicz
condition uniformly in I . Again we assume that \\Myf\\q = 1, ||/||i ^ 1.

Let E = (J I i , (p = MHzve, v|/ = u — (p. The function (p satisfies the
i

hypotheses of Theorem 2, and thus
l|M<p/||p^ C\\f\\\\\M^f\\\-\

The function 1lz\£<P~1 satisfies the Marcinkiewicz condition, so
^z\£/llp ^ C\\M^f\\p. Besides (again by the Marcinkiewicz theorem)
M^/||,< CIIMJII,^ C. So

(4) IIXp/H,, < C||.m and ||M /̂||, < c||/||^.
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(Again, for classes ̂  with n > l the Marcinkiewicz theorem is not
applicable at this point. The Z/-continuity of multipliers required for
n > 1 can be derived from the Generalized Littlewood-Paley Theorem
and part (a) of the Complement to the Marcinkiewicz Theorem stated
in Section 2).

It follows from (4) that

IIWIIi ^ ^ ( 1 1 / 1 1 i+ll/ll'i) ^c, ||/||^.

Choose now a sequence {(pj of functions on Z such that cpj/^ = 1,
(pj 4 = 0 for k + I and all functions ^ 8j(p^, | ej ^ 1 are uniformly

bounded and uniformly satisfy the Hormander-Mikhlin condition. (Such
a sequence exists in view of the fact that the intervals {/j} are separated.
It can be constructed by using the same idea as in the beginning of
the proof of the Complement to the Marcinkiewicz theorem in
subsection 2.3.) Since M^f e H1 we obtain from a result quoted in
subsection 2.1 and the Khintchine inequality that

ZlM,/|2 i ̂  C||M^/||i ^CII/Fi,

Note that nothing will -be changed if we replace Mj f in the leftmost
term by z^Mj f (ai is the left end of /j). We do this and then apply
part (b) of the Complement to the Marcinkiewicz theorem (this time
in the vector-valued case, with the sequence of symbols
{^-^((Q+^(-)}). We get

f / \1/2 1
(5) m\[^\M^M,M^f\1} >^^C^-1

i\k,l } )

where w^(n) = Wfc(n-a^), Wj, = ^nr^A^1) an(^ ^ > 1 is fixed in
advance.

The further manipulations are analogous to those in the proof of
Theorem 2 after estimate (3). Namely, the Z^-norm of the « quadratic
function » in the left-hand term of (5) is majorized by \\M^M^f\\q which
is less than or equal to C\\Myf\\q = C. Then we «interpolate » between
this estimate and (5), and so on. At last we arrive at the inequality
\\M^f\\p ^ CH/lll for some P, 0 < P < 1. Combining this with the first
estimate of (4) we complete the proof. D
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PART II. APPLICATIONS

1. General results.

1.1. The Statement. Our aim is to prove a general theorem connecting
interpolation inequalities and massiveness of some sets. Let X be a
Banach space of functions on the circle continuously embedded into
L°°(T) (in applications X will be continuously embedded even into
C(T)). Denote by X^ the closure of Xin L2^) and by P the orthogonal
projection of I^OO onto X^. If / e L2 we set

f F 1||/||^= sup < \gf dm : g e X , l lglb^l^

We postulate the following « axiom » :

Al. There exist C, a, 0 < a < 1 and p , 1 < p < 2 such that for
all / in X^

\\f\\p^ C\\f\\^\\f\\\-\

An equivalent form of the same condition :

\\Pg\\p < c\\g\w\Pg\\^
for all g in L2^). Indeed, it is evident that \\Pg\\x* = \\g\\x*. g ^ L2.

THEOREM 4. — Suppose that X satisfies A\. Let {(?„} ana {v|/^} be
two orthonormal systems lying in X^ and orthogonal to each other.
Suppose that {(?„} is uniformly bounded in L°° and on the linear span of
{\|/^} the norms of the spaces L1 and L2 are equivalent. Let S|aJ2 ^ 1 ,

r
S bn 1 2 ^ 1. Then there is a function f in X such that /(?„ dm ^

r _ J

\an ^ f^n am = ^n f01' a^ n ana \\f\\x aoes not ^ceed some constant

independent of {a^} and {b^}.

1.2. Another «Axiom ». To prove Theorem 4 we follow more or
less closely the scheme presented in [7]. This scheme should, however,
be modified to give the «exact interpolation» by Fourier coefficients
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with respect to {v[^}, as stated. To make the appropriate modification
it is convenient to introduce another « axiom ».

A2. There exist C, a, 0 < a < 1 and p, 1 < p < 2 such that for
every / in X^ there is a function h in L2 with Ph = / and

Mp ^ cii/ii^ii/ni-01.

It is clear that A2 is implied by Al. In fact A2 is strictly weaker
than Al but we do not dwell on presenting a counterexample.

LEMMA 2. — Suppose that X satisfies A\ and let G be a subspace
of X^ on which the norms ||.||i and \\.\\^ are equivalent. Set

Z = { h e X : ^hgdm=0 for all g e G} = X n G1. (Z is a closed

subspace of X.) Then Z satisfies A2.

Proof. - For every g in L^T) denote by Fg the functional on X

defined by Fg(x) = ^ x g d r n . Note first that for g e G

0) c,\\g\\^ ^ \\Fg\\^ ^cM^

Indeed, the second inequality is valid because X is continuously
embedded into I^OT). To prove the first one write down
Wp ^ C\\Fg\\^\\g\\^ and note that \\g\\^\\g\\^ for g in G.

Thus the subspace { F g : g e G} of X* is norm-closed and reflexive.
Hence it is closed in the topology a(X*,X) as well (because its ball is
weakly compact, thus a(X*,X) compact and thus a(X*,X) closed).
Consequently this space coincides with its bipolar that is nothing but
the annihilator of Z. So we have : every functional F on X vanishing
on Z is of the form Fg for some g e G.

Now let / e Z^. By the Hahn-Banach theorem there is a functional
F on X with F\Z = F^\Z and \\F\\x* = ||/|lz*. F - jF} vanishes on Z
and so F - Ff = Fg for some g e G . S e i h = f - { - g . Then, since X
satisfies Al,

Wp^ 0 1 1 ^ * 1 1 / 1 1 1 1 - " = C\\f\\^\\h\\\-\

To complete the proof note that \\h\\^ ̂  \\f\\^ + \\g\\^ ̂  \\f\\^ + C||^||x*
^11/112 + C(||^||x* + ||FJ|x*) = ||/||2 + C(||J<}||x* + 11/llz*)^
const ||/||2. D
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1.3. The condition Q)^ and the Proof of Theorem 4. Let 0 = { ( ? „ }
be an orthonormal system lying in X^. Let G) be a strictly decreasing
positive function on R+ with lim G)(Q = 0. We say that the pair (X,^>)

t-^OO

satisfies the condition ̂  if for every t , t ^ 0 and every sequence {c^}
with S[c^|2 = 1 there are numbers £ „ , £ „ = ± 1 such that the function
F defined by F = £€„£„(?„ can be represented in the form F = G + H
with Ge X, H e L2 and \\G\\x ^ ^ , 11^112 ^ ®(0-

Theorem on Massiveness (see [7], Section 2). Suppose that (A^O)
satisfies ̂  where co(r) = 0(t~^) as r -> oo, for some positive P. Then
there is a constant ^4 such that for every sequence {c^} with SjcJ2 = 1

there exists a function / in A^ such that /(?„ rfm ^ | €„ | for all n and
\\x ̂ -

LEMMA 3. — Suppose that X satisfies A2 and 0 is an orthogonal
system uniformly bounded in L00 and lying in X^. Then (X^) satisfies
^y, for some CD decreasing near infinity as a power function.

In [7] a similar statement was given (Theorem 3 there), but it
involved an axiom of type Al in place of A2.

Proof. - Let a and p be from A2, ^"^p'^l. If ^|c^ ^l
then the Khintchine inequality implies that for some c^ = ± 1 we have
\\F\\q ^ const for F= Ss^cp^, where the constant depends on d> and
q. only. We show that this F can be represented as F = G + H with
all the properties we need.

The existence of the above decomposition with \\G\\^ ^ t, \\H\\^ ^ 8
is equivalent to the relation F e 2?i + B^ where B^ is the ball of radius
t in X and B^ is the ball of radius 5 in X^ (both centered at 0). The
set 2?i + 2?2 is convex and has nonempty interior in X^. Thus by the
separation theorem applied in this space the relation F e B^ + B^ will
be established if we prove the following claim.

Let / e X^ and suppose that

(2) sup^ \\(b^b^)Jdm : b, e B,, b ^ c B ^ ^ l ' ,

then Ffdm\ ̂  1/2.
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But (2) implies that ||/||̂  ^ r-1 and \\f\\^ ^ 8-1 (to see this take
first the supremum only over the pairs of the form (fci,0) and then
only over the pairs of the form (O,^)). Finding for / the function h

provided by axiom A2 and taking into account that \ Fjdm =
f _ J
\ Fn dm we obtain

^Fjdrn ^ \\F\\^\\h\\p < const 11 /11^11 /11^ ^ const r^-1.

If 8 == dt"^ then Fj dm ^ const d (l-a) < 1/2 for d large enough.

Thus we can take co(^) = dt l-a with such a d . D

Proof of Theorem 4. - Note first that the operator T defined by

Tf = \ \ f ^n dm ̂  maps X onto I2. Indeed, this claim is equivalent to

the estimate ||r*c||^* ^ const ||c||^, c = {c^} e I 2 , or (which is the same)
llZ^Mx* ^ const(^|c^ 2)l/2. The latter has already been proved (see
inequality (1) in the preceding subsection).

Now suppose that {a^} and {&„} with Z|flJ2 ^ 1, S|fc^ 2 ^ 1 are

given. Since T is onto, there is h e X with h^f^ dm = &„ for all n and

f rMy ^ const. Consider the space Z, Z = <x e A": x^ = 0 for all
1 l J

n " > . This space satisfies A2 (by Lemma 2). Hence Lemma 3 and the

Theorem on Massiveness imply that there is g e Z with \\g\\y ^ const

and g^dm\ > I f l n l + h^>^dm\ for all n. The function f = g -^- h
is the one we need. D

Note that in this section we did not aim at full generality. For
example, everything could happen on an abstract measure space in
place of the circle. We could also demand only that the system {(?„}
in Theorem 4 be uniformly Z/-bounded for some s > 2.
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2. Examples and counterexamples.

2.1. Massive Subsets of Z+ . Let Y be a Banach space of measurable
functions on T continuously embedded into C(T) and satisfying the
following conditions:

(i) The set 9^ ls dense in Y (in particular Y lies as a set in the
disc-algebra C^).

(ii) limllz"!!^ 1.
n-»oo

These conditions guarantee that every functional F on Y is uniquely
determined by its Fourier coefficients F(zn), n ^ 0, and, for each F ,
the series ^ F(zn)Cn converges for |^| < 1 and defines an analytic

71>0

function in the disc, denoted by JTF. Consider one more «axiom»,
AO (compare with [5]).

AO. There is r , 0 < r < 1 such that for every F e F* the function
JfF lies in W and satisfies the estimate \\:CF\\, ^ c||F||y* (c being
independent of F ) .

It was proved in Vinogradov's paper [15] that the space 0/4,
defU^ = { /e ^7:/(n)==0 for n<0} satisfies AO with every r , 0 < r < 1.

In his Doctor Thesis Vinogradov constructed many examples of spaces
smaller than U^ and also satisfying AO. For example, consider a finite
collection of operators 7\, . . . , Tn, each Tj being either multiplication
by a function in UA^ or composition with a conformal automorphism
of the disc, or the Toeplitz operator with an antianalytic symbol. Then
the space { / e U^: Tjf € U^ for l^j^n} satisfies AO. We do not go
into further discussion. We only mention that among these spaces there
are some for which AO is fulfilled only with a very small r .

LEMMA 4. - Let E c: Z+ and suppose that H^e^/or some j (the
classes s^j were defined before Theorem 1). Suppose that Y satisfies AO
and set X = [f e F:/(n)=0 for n t E}. Then X satisfies A\.

Proof. - As earlier, let X^ be the closure of X in L^m) and let
/ 6 X^. By the Hahn-Banach theorem there is a functional F on Y

r
such that F(x) == \ xf dm for x e X and ||F||y* = ||/||̂ . By AO the

function <D, 0 = ^F lies in JT and ||<D||, ^ c|[F||y* ^ c||/||^. By
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Theorem 1 bis we have for 1 < p < 2

\\M^\\, ̂  C\\WMM^ ^ C\\f\W\MM~^ • •

Now it suffices to note that F(z") = f(n) for n e E and thus
M^)(z)=/(z). D

COROLLARY. — Under the hypotheses of Lemma 4 the set E is
Y-massive.

This follows directly from Theorem 4. D

In this corollary we used only a part of Theorem 4 that concerned
the system {(?„}. Now an application will be given that involves this
theorem in full generality. Recall that a set F , F a ~3_ is said to be of
type Ap(l<p<oo) if on the linear span of the set { z " } » e F Ae norms
of I^O") and I^CT) are equivalent. A classical example (for all p at
once) is any Hadamard lacunary set, in particular any geometric
progression. Consult [10] for some other examples.

To make the statement more transparent we take 7 = 0 , Y = U^
in Lemma 4.

THEOREM 5. — Let E = Z+\ (J 4, where {Ij,} is a separated sequence
k^l

of intervals in Z+. Suppose that F is a ^-subset of E . Let
^ |aJ2 == 1. Then there is a function g in U^ with g{n) = 0 for

ne E

n t E , \g(n)\ ^ \a^ for ne E and g(n) = a^ for ne F , and, moreover,
whose norm in U^ does not exceed some constant independent of the
sequence {a^}. D

Taking in Lemma 4, j > 0 we obtain massive sets of more
sophisticated structure. For example Theorem 5 remains true if we

enlarge E by (J ( 4\( (J A^ J ) for a certain infinite set K c= {1 ,2 ,3 , . : . } .
k 6 K \ \ I //

Here for each fixed k, {A^j} is a 5-separated sequence appropriately
disposed m 1^, B being independent of k. We refer the reader to Part I,
Subsection 1.1 for precise information on how the intervals Aj^ should
be disposed for the indicator function of E so enlarged to be in sf ̂ .
Then we can repeat the same procedure with some of the A^, etc.
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2.2. Massive sets containing Z- .

LEMMA 5. - If 11 E ^ ^ j for some j then the space CE,
def ^

CE = {/e C(T) •J(n) = 0 /or n ^ £'} satisfies A\.

We refer the reader to Part I, subsection 1.2 for the definition of
.̂. Note that 11 ̂ e^- implies E =) Z- .

Proo/. - Let /e (C^ = Z.J dlf {/e L2 : /(n) = 0 for n t E}. There

is a mesure [i such that x/^w = x rfp- for x e CE and

11^11 = 11/11(C£)*- The spectrum of the measure \x — fm lies in Z\£'
and hence in Z+, so by the F. and M. Riesz theorem (see e.g. [16],
Chapter VII, Theorem 8.1) \JL = hm for some function h. Applying
Theorem Ibis we obtain \\f\\p = ||M^||p ^ C\\h\\\\\MEh\\\~" ^
CII/II^JI/lir" for 1 < p < 2 . D

Instead of the reference to the F. and M. Riesz theorem we could
write the above inequality for the convolution of p, with a Fejer kernel.

The next result is an immediate consequence of Lemma 5 and
Theorem 4.

THEOREM 6. — I f ^ E ^ ^ j ^en E is massive for C(T).

(Here it is also possible to involve Assets, as in Theorem 5.)

One cannot hope to replace C(T) by a much smaller space (as U)
in Theorem 6. We discuss two examples in the cases j = 0 and j = 1.

The relation H ^ e ^ o means that E =) Z_ and E n Z+ is the union
of mutually disjoint intervals (note that a one-point set is also an
interval) so that for each n the number of their end-points in [2",2"~1]
does not exceed some constant independent of n. In particular, the set

Z- u {2"}^i = F satisfies D ^ e ^ o -
Consider the space X, X = { f e C ( J ) : P+/eC(T)}, supplied with

the norm \\f\\x = ||/||oo + II IP+/IL. It is clear thatF is not ^-massive
(because ^[/'(2")| < oo for every function/ in X with f(k) = 0 for
k i F ) . Thus F is not massive for U as well.

There is one more rather « popular » space (besides X) lying between
C(T) and U. It consists of the functions / whose symmetric partial
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Fourier sums S J , SJ 1 ^ /(fe)^ converge to / uniformly. The
|k| < n

author was not able to find out whether or not the above set F was
massive for this space. But sets non-massive for it with the indicator
functions in ^i can easily be found. We state a more general result.
Namely, fix a strictly increasing sequence of integers {njj and set
Y = {f:\\f- s^ /|L -^ 0 as k -^ 00}. The norm in Y is defined by
||/||y= SUP ||5 /L.

k

PROPOSITION. — There is a set E non-massive for Y with H ^ e ^ i .

Proof. - Without loss of generality we can assume that n^i/n^ ^ 2
(for Y becomes wider if we replace {n^} by a subsequence). Define a
set E by the following conditions : E =3 Z- , E ^ [n^j, ^27+1] ^or J ^ 1.
E =) [O.nJ ; E n (^--i.^-) = {^-i+^o^^ where ^ ̂  °° but

n2j-i + 2^ ^ 2n2j-r Clearly H ^ e ^ i . Le t /be a function in V with
spectrum in E. Set ^ = S^.f - S^._^/. Then the spectrum of / lies
in the union of two intervals, [~n^j, ~^2j-i\ and [^27-1? 2^27-1] ? and
its intersection with the second interval is contained in the translated
geometric progression {n^-i+^^o^i^s-- The convolution of g with the
product of an appropriate de la Vallee Poussin kernel by an appropriate
power of z gives the function^ with h(k) = g(k) for k e [^27-1. 2^2.7-1]
and h(k) = 0 for k i [n^-1, 2^--1]. Besides, ||ft|L ^ C||/||y with C
independent of 7. Hence for eachj

^ l/^-i+^I^CH/lly.
O^I^s.

Consequently, E is not massive for V. (It should be noted thas this
statement would still be true even if we had not imposed any restriction
on the norm of / with |/(n)| ^ \a^\ in the definition of massive sets).

D

3. Concluding remarks.

3.1. On the Exponent 9 in the Corollary to Theorem 1. Let Y be
a space satisfying conditions (i) and (ii) from the beginning of Section 2.
If x is a bounded function on Z, x\Z- = 0, we set for F in Y*

M,F(Q = E ̂ FW
n^O
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(this is an analytic function in the disc; for x = H^ we obtain JTF
from Section 2).

As in the proof of Lemma 4 one obtains with the help of Theorem 1 :
if for some r, 0 < r < 1 we have \\M^F\\y ^ const |[F[|y* for all F in
F* then for every y in j^o

(1) \\M^F\\, ̂  CIIFII^IIM^FII,1-9, Fe 7*,

where p ~ 1 = r"^ + q-^l-Q), 1 < p < q.

PROPOSITION. — If the space Y is translation invariant then under the
hypotheses just made the estimate (1) is true mth 9 defined by
p-1 == 9+(1-9)^-1 .

Sketch of the proof. — Let {(py} be the functions from the proof of
Theorem 1. By (1) in Section 4 of Parti we have

/ \1/2

Sl^ccp^l2 < C||M,F||̂  C||F||y*, FeV* .
\J / r

Since Y is translation invariant, this inequality implies the stronger one
(see [9], Lemma 1):

1/2 1'"{(si^/'i2)
^ \ j /

< U < C^-'HFHy*, 5i > 0, Fe V*.

Then one should repeat the argument from the proof of Theorem 1
using this inequality in place of(l) in Section 4 of Parti. (Note also
that one should use estimate (1) from Section 3 of Part 1 in place of
the Corollary to Theorem 3.) D

3.2. Interpolation Inequalities and Z^-Continuity (p>l). All the time
we considered the interpolation inequality \\M^f\\p < CH/H^IM^/H^"01 as
a regularity property of M^ on L^T), and, in particular, as a certain
substitute for the weak type (1, 1) inequality. It should be kept in mind,
however, that this substitute is not always quite good.

Example. — There is a set E, E a Z such that M^ is discontinuous
in L8 for 1 < 5 < 4/3 but the inequality ||M^ ^ C^mM^M'^
a = a(p) is valid for all p, 1 < p < 2.

(Were ME of weak type (1, 1), m^ would be ^/-continuous for
all 5, 1 < s < oo.)
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For E we can take J\F where F is a set of type A4 but not of
type A4+e for any 8 > 0 (cf. [10] for a construction). ME is discontinuous
in Z/ for 5 < 4/3 (for otherwise Mp would be bounded in L3 and hence
F would be of type A,').

As to the interpolation inequality, it is sufficient to check it for
4/3 ^ p < 2. For such p the operator M y , and hence ME , acts in
ZAT), and so \\Msf\\p ^ C\\f\\p ^ C\\f\W\\^ for an appropriate
a = a(j?). Assuming that HM^/I^ = 1, ||/||i ^ 1 we find (by using the
fact that F is of type A4): \\Mrf\\z ^ C\\Mpf\\, < C(||/||i+
IIWV < 2C, whence \\f\\^ ^ 1 + 2C. Thus [|M^ ^ const \\f\\\. D
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