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DECAY OF SOLUTIONS
OF THE WAVE EQUATION

IN THE EXTERIOR
OF SEVERAL CONVEX BODIES

by Mitsuru IKAWA

1. Introduction.

Let 0 be an open bounded set in R3 with smooth boundary F. We
set Q. = R3 - ( 9 . Suppose that Q. is connected. Consider the following
acoustic problem

(1.1)

Du(x,t) = —^ - Au = 0 in 0 x (-00,00)

u(x,t) = 0 on F x (-co,oo)
u(x,0)=fdx)

\ |^,0)=/,(x)

j

where A = ^ S ' ^ - I S x ] . We define the local energy of u in Q(^) at
j= i

time t by
E(^;r)=1 [ {iVi^OI^^E(u^t) = ^ f \\Vu(x,t)\2-^- ̂  (x,Q } dx,

1 Jn(ji)l l7r J•̂  lr»/D\ ( ui
Jfi(R}^

^l(R) = Q n { x ; |x|<^}.

Concerning the uniform decay of local energy, Morawetz, Ralston
and Strauss [MRS] and Melrose [Mel] showed that, when Q is non-
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trapping (1), the exponential decay of the type

(1.2) E(u,R, t) ^ C^-^i E(u,R; 0)

for all
/={/i,/2}e(C^(OW))2

holds, where a is a positive constant independent of R. On the other
hand Ralston [R] proved that the "exponential decay of the type (1.2)
does not hold for trapping obstacles.

On the uniform decay of the local energy for trapping obstacles,
the author considered in [II] an example of trapping obstacles Q which
consists of two disjoint strictly convex bodies, and we showed that the
exponential decay of the form

(1.3) E(u,R; 0 ^ C^-- {ll/ill^+11/211^6 J

for all
/-{/i./^e^^W))2

holds. The purpose of the present paper is to extend the result in [II]
to the case that (9 consists of several disjoint strictly convex bodies,
namely

a)= u^
J = l

where (9^ j = 1, 2, . . . , J, are disjoint bounded open sets in R3 such
that Fj = 80 j are smooth and the Gaussian curvature of F, is strictly
positive at every point ofF,.

As a result of the former studies [LP1, R, Mel, II] we can say that
the behavior of solution to (1.1) is in close connection with the
properties of the broken rays of the geometric optics in Q, and especially
with the periodic rays in the case of trapping obstacles. For a periodic
ray y in Q we denote by dy the length of y, and by ^ and ^ the
eigenvalues of the Poincarc map of y with the absolute values less
than 1. On the configuration of ^ we assume the following :

(H.I) For all {j^j^h}e {1,2, ...,/}3 such that 7,^, i f^F ,
the convex hull of <^ and ̂  has no intersection with 75j .

(1) For the definition, see, for example, [MeS].
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(H.2) There exists a > 0 such that

Z^^ < oo,

where the summation is taken over all the primitive periodic rays y in
Q, and

^ = M 1/2-
The main result is

THEOREM 1. - Suppose that (H.I) and (H.2) are satisfied. Then we
have an exponential decay of local energy of the type

E(u,R;t) ̂  C^-^dlAH^+IIAll^)

for all
{/i,/2}e(C?(Q(R))2,

where a is a positive constant independent of R.

Remark. — Consider the case that all (Pj are balls with radius r .
Then the condition

dis(^.,^) ^ rJ for all j + I
implies (H.2).

In the case of J = 2, since there is only one primitive periodic ray
in Q, not only the exponential decay of local energy but also the
distribution of the scattering matrix is studied well [G, 12,13]. On the
other hand, when J ^ 3 the geometry of Q is more complicated.
Namely, under the hypothesis (H.I) there are infinitely many primitive
periodic rays in Q, which makes difficult to extract the asymptotic
behavior of solutions as t -> oo in a simple form. Therefore we can
only show the non-existence of poles of the scattering matrix in a
certain strip, which implies the exponential decay of solutions (see the
next section).

As for the hypothesis in Theorem 1, we may say that (H.I) is not
essential for the exponential decay of local energy. Probably we can
show the same decay without (H.I) at the prise of certain technical
complications. But (H.2) is used essentially in the proof of Theorem 1.
We do not know at present whether the exponential decay of the type
(1.3) holds without (H.2).
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The author has obtained the result of the present paper during his
stay in ITnstitut Fourier, and the results was announced in [15]. The
author would like to express his sincere gratitude to Prof. Y. Colin de
Verdiere and Prof. L. Guillope for stimulating discussions.

2. Reduction of the problem.

As considered in [LP1], the decay of local energy is closely related
to the spectral property of A in Q. Theorem 1 is derived easily from
the fact that the resolvent of A can be continued holomorphically into
a strip {u;-a<Reu^O}(fl>0) . More precisely, consider the boundary
value problem with parameter ^ e C

(2.1) fa^-A)^ = 0 in Q
[ u = g on r,

where ^6C°°(r). For Reu > 0, (2.1) has a unique solution in H2^).
Write the solution u as

u= U^)g.

Then £/(u) can be regarded as an ^(C^F), C°°(Q))-valued holomorphic
function in Re u > 0. Recall that £/(u) can be extended to a function
holomorphic in Re [JL > 0 and meromorphic in the whole complex
plane C (see, for example, [LP1], [Mi]).

In this case we have

THEOREM 2.1. - Suppose that (H.I) and (H.2) are satisfied. Set

F(a)=£^d^(l-^)-1,

OQ = sup{cx;F(p)<oo, for all P<a}.

Then, for any e > 0, £/(a) is holomorphic in

A = {H;Reu>-(f lo-e) , lHl^CJ
and we have

^p \(U([i)g)(x)\ ^ C (̂llgH )̂ + l̂ ll̂ r)).

for all u e Z)g.

Remark 2.2. - Since there exists P > 0 such that ^ < e~^v for all
y, we have |1-^^|-1 ^ C for all y. Therefore flo is necessarily
positive under the assumption (H.2).
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Remark 2.3. — Note that the relationship between the poles of the
scattering matrix ^(z) and those of U(\i), that is, z is a pole of y if
and only if ^ = iz is that of U ([LP1, Theorem 5.1 of Chapter V]).
Thus, there exists a > 0 such that {z; Im z < a} does not contain pole
of y(z) (cf. the conjecture on the distribution of the poles of the
scattering matrix in [LP1, page 158]).

Since the derivation of Theorem 1 from Theorem 2 is the same as
in Section 2 of [II] we omit the proof. Hereafter we shall use the
notation | • |p((o) as in [II, I2], which stands for the norm of ^(co).

In order to show Theorem 2.1 the following proposition is essential.

PROPOSITION 2.4. — Let m be an oscillatory data on Fj of the form

m(x;k) = e^^x)

satisfying Condition A of Definition 4.2. We fix an positive integer N
arbitrarily. Then there is a function w(x,p;fe) such that

(i) w( ' ,H;k) is C^ip)-valued holomorphic function in
D = {/ i ;Ren>-ao},

(ii) w(.,^) e L\Y) for Re ^ > 0,
(iii) (^-AMx.^fe) = 0 in Q for all [ie D,
(iv) |w(.,H;fe)|/QW)^C^(|v|/|^^(r,)+l)|^|^^(r,) for all

H ^ A ,
(v) |w(.,n;k) - m(.,k)|^r,) < C^(|v|/|^/r,)+ l^l^/r,^-^

for neDg such that \[i-}-ik\ < OQ + 1.

By the same argument as in [13] we can derive Theorem 2.1 from
Proposition 2.4. Therefore the rest of the paper will be devoted to the
proof of Proposition 2.2.

3. On the behavior of phase functions
and broken rays.

N

From now on we suppose that (9 == [j (9j satisfies (H.I). As a
j^ i

fundamental preparation to investigate the behavior of solutions to the
problem (1.1) we consider the behaviors of broken rays in Q and
sequences of phase functions.
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Let p be a positive constant such that

Q <= {x; |x |<p},
and set

dj,i = dis (fi?,, €i), d^ = max d,^, d^ = min ̂ .
j^i j^i

For x e F , n(x) denotes the unit outer normal of F at x , and we
set

E: ^eR^l^l^xKX)},

and ^+^={(x^xe^^e^}.

We denote by ^*(x,^) the broken ray according to the law of
geometric optics starting from x 6 r in the direction ^ e £^ , by X^(x,Q,
A^(x,{;), . . . , the points of reflection of the broken ray and by S^(x,i;)
the direction of ray reflected at Xi(x,Q. More precisely, if

{x+T^;.T>0}nr= 0,

we set Lo(x,^) = {X+T^;T^O}. If {x+T^;T>0}nr ^ 0, we set

To(x,y = inf {T;T>0,x+T^er},

Lo(x,y = {x+T^;O^^To(x,0},
X,(x,Q = x+To(x,^,

3i(^y = ^ - 2(n(^(x,^)),yn(^(x^)).

When {A r l+TEl ;T>0}n^ = 0, Z.i(x,^) = {JTi+T3i;T^O}. Otherwise
we set

Ti(x,y = inf {T;T>0,^+TSi6r},

Li(x,0 = {^+T3i;O^T<Ti},

X^x,Q = ^ +Ti5i,

32(x,S) =Si -2(n(^),^)n(^).

Thus we define successively T^(x,^), J^(x,y, 3;(x,^), L^(x,^) until
{^+TEf;T>0} n r = 0. If there exists lo such that for T((x,y, ^(x,^),
3j(x,^) are defined for J ^ IQ and {^Q+TS^ ;T>O} n r = 0 then we
set 'o

^(x,0 = U ^(x,y,
!=0

^M = ?o.
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Otherwise ^
^(x^ = U A(^),

1=0

^(X,Q = 00.

We denote by Od^(x,^) a sequence (/'̂ T'̂  such that

A^OC,^) e r,^ for all 0 ^ ; < ^(x,^),

and call it the order of reflection of ^(x,^). For an integer q < *SC(x,Q
we set

Od^(x,^) = (JoJiJi, ' • • J<i) •

We denote by X(t,x,Q the representation of ^(x,^) by the length T
of the ray from x to the point X on the broken ray.

From the assumption (H.I) we have

LEMMA 3.1. - There exists 81 > 0 and do > 0 with the following
properties: Let (x^eE^T. If

(3.1) -n(^(x,i;)K<8i,

the reflected ray does not pass the do neighborhood of€, that is, L^(x,Q
is a half line and

L,(x^)^{y;dis^-(P^y)^do} = 0.

Proof. - Let x e Fj?, X^ e F^ . Suppose that

(3.2) n(^K=0,

and that L^ n (Q-Q^ + 0. If A^eF^, evidently j'2 + ] . Note that
(3.2) implies Si = ^. Namely, A\ is on a segment xA^, which means
that

(convex hull of ^ and Z^) n 3^ 9 ̂ i.

This contradicts (H.I). Thus it is shown that L^ n (0-(9^ = 0 holds
provided (3.2). Since X^ and Ei are continuous in x and ^ on condition
that X^ exists, the assertion of Lemma follows from the compactness
ofS^F. Q.E.D.

We set

F .̂) = [ x E T ^ - n ( x ) ' ( x - y ) l \ x - y \ ̂  §1 for all y e Y , } .
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A real valued smooth function defined in an open set in R3 which
satisfies | V(p [ = 1 is called phase function, and a surface

^00 = {y'My)-^)}
is called the wave front of (p passing x. Note that - V(p(}0 is the unit
normal of ^(x) at 3;.

DEFINITION 3.2. - We say that a phase function (p defined in ^
satisfies Condition P on Fj when

(i) the principal curvatures of the wave front with respect to - V(p
are non-negative at every point in ^,

(ii) {^+TV(pOO;00,^6^nr,} ̂  [j^i.
i^j

Let (p be a phase function satisfying Condition P on F,. We define
(pp for p ^ j by the following way: for x = A\(}/,V(p) + T3iCv,V(p)
such that X,(y^)er,, cp^(x) = (p(^,i;)) + T . We set

W<P) = U {^i(^V(p)+T3i(x,Vcp);T^O}.
X^x^eFp^

Concerning the principal curvatures of ^ we havevp

LEMMA 3.3 (Section 4 of [II]). - Let xeVp^. Then all the principal
cuvatures of ^(x) ^ 2K(x), where K(x) denotes the minimum of the
principal curvatures of Tp at x.

Now the following lemma is obvious from the definition of (p

LEMMA 3.4. - It holds that
|V(pp| = 1 in ^,
(pp= (p on r^,).

The above two lemmas imply

LEMMA 3.5. - 7jf(p satisfies Condition P on Fy, then for every p + j
(pp satisfies Condition P on F p .

We denote the correspondance from (p to (p as

(pp = (^(p.
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Since O^cp satisfies Condition P on Fp for p ^ j by Lemma 3.4, we
can repeat this procedure. To express successive applications of ^'s,
we introduce notations. Set

^= {J=OoJi,...Jn);;^{l,...^} for 0 ^ 1 ^n,
j i ^ j i ^ for O^n-1},

^)={j=0ojl,.•.jn)e7<n);^==7},
and

l= Q/co, ^.= Q /y.).
n=0 n=0

For j e / ^ l j l stands for n + 1.

For each j = O'oJi, . . . ,^)e/y we define a phase function (pj
inductively by

^J = ̂ -l^J'5 •»' = OoJl, • • -Jn-l)

and we regard (pj as a function defined in

^j(V(p) = U {^(x,V(p)+TS^(x,V(p);T^O}.
^^^^^On-l)

We use sometimes the notation

Set

0. = dy7" (Ty7""1 (T)71
•J •^-r-^-2 • • • - J o '

-r(V(p)= U ^o(^V(p).
y e wrir,

Define a mapping *F,(V(p) from V(V(p) into Fy by

'̂ '(Vtp) 9 .x = y + TV(p(y) -- ̂ (V^x = >» e F,.

Let j= OoJi^.- .J^e^- Define A-'^Vepj) for x6'r(V(pj) and
0 < ; < |j| by

^-'(x,V(pi) = ̂ _^(V(p^,,.,,^,^) ...^(V(p^,...,^)x.

Now we consider the behavior of broken rays which stay in Q(p).
First note the following apparent fact :

LEMMA 3.6. — Let (p be a smooth phase function defined in an open
set ^. Suppose that the both principal curvatures of ^(xo) are greater



122 MITSURU IKAWA

than x ^ 0 at every point of ^<p(xo). Then for any x , ye^^(xo) and
T ^ 0, we have

dis(x+TV(p(x), y + rV(p(^)) ^ (1+rx) dis(x,^).

Next we consider the reflection on the boundary.

LEMMA 3.7. — Let (p be a phase function sastisfying Condition P on
Fj, and let x and y be points on Fj such that x^ = A\(x,V(p) and
Yi = ^i(^V<P) are together on F^^. Suppose that (p(xi) ^ cp(^i).
Denote by x\ the point on the half line {x+TV(p(x,V(p);T^O} such
that (pCc'i) = (p(^i), and by x\ the point on L^(x,f,) such that
^p^i) = 9(^1) • Then \ve have

(3.3) ^(x^O^disM,^).

Proof. - We set D~ = {z;n(xi)-(z-Xi)^0}. The law of reflection
of the geometric optics means

V(pp(x0 = V(p(x0 - 2(n(xi).V(p(xO)n(xi),

which implies that

(3.4) dis^+TVq)^),^ dis (x^^(x\),z)

for T > 0, z e D ~ .

From the convexity of Op we have

( ^ p ^ D - ,

from which it follows y ^ e D ~ . Thus setting z=^i , T=(p(yi) - (p(xi)
in (3.4) we have (3.3). Q.E.D.

PROPOSITION 3.8. — Let (p be a phase function satisfying Condition P
on V j . Suppose that

(3.5) x,^e{zer,;n(z).V(p(z)^8,}.

If
Od^(x,V(p)=Od^,V(p),

\ve have

(3.6) \x-y\ ^ C^ (0<a<l)

where a and C are independent of q>, j and q.
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Proof. - Set XQ = x , yo = y , and x? = Ap(x,V(p), y? = Ap(^,V(p)
for p = 1,2,,.. . ,^. Let (pj, j e 7, be phase functions defined successively
according to the process mentioned after Lemma 3.5. We set

Od^(x,V(p)= 0'JiJ2,...).
For each 0 < p ^ q we set

w? = ̂  z? = ̂  if (Po•.7l.....^-l)(xp) ^ (Po•.7l....Jp-l)(^)

and Wp = ^p, Zp = Xp if not. In order to apply Lemma 3.7 to a pair
of (p(j,ji,...,j -i) ^d -^p, ^p we denote by Wp and w^ the points
corresponding to x1 and xr in Lemma 3.7. Then the assumption (3.5)
and the positivity of the principal curvatures of the wave front of (p
imply

(3.7) \x-y\ ^a-^o-zol.

Evidently, IcpO^-cpK)! = |q)(z0-cp(zo)| ^ dis(^,,^) ^ rf^. Ap-
plying Lemma 3.6 to (p we have

(3.8) I z i - w ^ l ^ Izo-v^ol .

Then from Lemma 3.7 it follows that

(3.9) \z,-w\\ ̂  I z i - w ^ l .

Since the principal curvatures of <P(^,) are greater than 2K on r . ,^,
the application of Lemma 3.5 gives

(3.10) 1^-^21 ^ (l+2^7Q|Zl-wrJ.

Next applying Lemma 3.7, we have

(3.11) 1^2-^21 > l^-^l-

Thus from (3.7) - (3.11) we have

jz^-H^j ^(l-^2d^K)8\x-y\.

Repeating this argument we have for any p ^ q

\z,-^\ ^(l+2^^-l|zo-wro|.

Obviously \Zp—Wp\ < p, |Wp—w^| < p. Thus it must holds that

(l^^^-1 8|x-^| ^ 2p for all p ^ q,
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from which it follows that

\x-y\ ^ips-^i^id^K)-^-^.
Thus we have (3.6). Q.E.D.

Next we consider the behavior of ^(x,V(p) and ^(^,V(p) for two
different phase functions cp and (p. First we prepare the following :

LEMMA 3.9. — Let (p and (p be phase functions satisfying Condition
P on Fj. Suppose that the principal curvatures of the wave front of (p
are greater than x > 0 on Fj n °U. Then \ve have for all p + j

(3.12) sup |V(p/x)-V(pp(x)| ^o, sup |V(p(x)-V(p(;c)|
xeFp^ x e F j ^

\vhere 0 < o^ < 1 and independent of j and p .

Proof. - Suppose that

(3.13) z = y + TV(p(}Q = w + r|V(p(w)

where z e F p , y , weF, and T, TI are positive numbers. If y = w we
have immediately V(pp(z) = V(pp(z). Suppose that y -^ w . Denote by n
the plane on which z, }/ and w lie. The intersection of K and Fj is a
smooth curve, which we represent as x = y(a) by a the length of
curve from y to x . Suppose that w = ^(s)(s>0). We introduce a
coordinate (3^1,^2) m ^ such that (0,0) corresponds to y and y^xis is
the direction V(p(y) and w lies in y^ > 0. Denote as

y(^) = (^(^^(cO),
and set

i(a) = V(p(^(o)), 7(0) = V$(^(a)).

Note that the strict convexity of Fy implies

-̂ 1 (a) ^ c > 0 for all CT e (0,s).d<7

Indeed, since at the point such that d y ^ / d a = 0 d y / d a is parallel to
f(0), it is impossible to hold (3.13). Denote by fi(a) and ji(a) the
^i-component of f(<7) and7"(<7) respectively. Since the principal curvatures
of wave front of (p is greater than x, we have

-ll (a) ^ x-^ (a) for all 0 ^ o ^ s.do da
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Set
r^ea)^ = /(a), ['^(Oa)^ = V(a).

Jo da Jo da

Then /(a) ^ xV(a). Comparing the ^-component of the both sides of
(3.13) we have

y i ( s )+ r ^ j , ( s ) = ^i(0)+Tfi(0).

Taking account of i\(0) = 0 we have

Yi(s) - ^i(O) == - Ti0\(5)-fi(0))-ri0\(5)-^(5)).

By using the above notation we can write the above relation as

SY(S) = - T|5/(5) + T1(J,(5)-1\(5)),

from which we have

s = - (Y(s)+^s))-^(j\(s)-i,(s)).
Now
7\(5) - fi(0) = A (5) - l\(5) + ;\(5) - f,(0)

= 5/(s) +j\(s) - i,(s) = y(s)(y(s)4-T^7(s))-10\(s)-ll(s)),
i.e.,

A(5) - f,(5) = (i+rir^-V^Oi^-f^o)).
Thus we have

\Ji(s)-h(s)\ > (l+^x)]A(s)-i\(0)|.

By using |j(s)| = |i(s)| = 1 we have

|j(s)-i(5)| ^ (l+d,^)|j(s)-f(0)|,

which is nothing but |V(p^(z)-V(pp(z)| ^ (1+d^pX)~1 |V(p(w)-V(p(w)|.
Since z is arbitrary on Fp^ we have (3.12) from the above
inequality. Q.E.D.

COROLLARY 3.10. — Let (p and (p be phase functions satisfying
Condition P on F j . Set

<Pj = ^j9. 9j = ĵ<P .

There exists a constant 0 < a < 1, \vhich is independent of (p and (p,
such that

lV(p,-V(p,i(r,) ^ a^'-^Vcp-VcpKr,).
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Proof. - By Lemma 3.4 we see that the principal curvatures of the
wave front of (pj and (p, ^ 2K if |j[ ^ 1. Then applying Lemma 3.9 we
have

lv(Payl.....^-V$a.l.....^)l(^^a„-,))^
aKlV<Pa.l,...,^-,)-V^^....^-,)l(^^„o•„_,))<

al~' I V(P^ - Vcp,^ | (r,^, ̂  ̂  ar11 V(p - V(p I (F,). Q.E.D.

By using the argument in Section 5 of [II] we can derive the
convergence of derivatives of Vq> and Vq>.

PROPOSITION 3.11. - It holds that

iv^j-vcpji^r^^c^'-^vcp-vcpi/r,), p= i , 2, ....
With the aid of Proposition 3.11 we can prove the following

proposition by the same procedure as in Section 4 of [13].

PROPOSITION 3.12. - It holds that

^(x.V^-jr-^V^I^r,) ̂  C^i-1.

Now we turn to consideration of the periodic rays in Q. Let y be
a periodic ray in Q. Take one of the reflecting points XQ of y, and
trace the ray starting from Xo. Suppose that we pass the reflecting
points Xi , x^, . . . , x^ one after another, and go back to XQ from ^.
Namely,

<3-12) Y = U ^+1 (^n+l=^o).
z=o

Suppose that Xi e F^, and set j = QoJi , . . . Jn) e 1^ • For a periodic
ray y we set

^(V) = {i = Oo .h, • . • , in) e /(n); 'yi e F^ such that

Y = U ViVi^i (yn+i=yo)}.
(=0

Obviously, if OoJi, . . . ,7n)e^(y), ^j = 0'iJ2, . • • JnJo) e^(y) and
^J = OnJn-i, . • • Jo) e ̂ (y). Thus, if j e ̂ (y), then we have

(3.13) ^(Y)={^J,^W=0,l,. . . ,n}.
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For any finite sequence j = (joJi, • . . Jn) ̂ ^n) such that 70 ^ Jn
there exists a periodic ray y such that je^(y). Indeed, consider

f n 1
™n^El^-^il;^er, ,/=0,l,...,n, and }^i=}^.

U=o j

Evidently it exists because ^ \yi~yi+i\ is continuous in
< = oOwi,...^)er^ x r,^ x . . . x r,^ and r,^ x r,^ x . . . x r,^ is

compact. If (XQ,XI, .. .,^)er^ x r, x . . . x r̂ . is an n-tuple of
points which gives the minimum, for a broken line in 0

Y = U XjXl-^l+l
1=0

it is easy to check that at each x^ y verifies the law of reflection of
the geometric optics. Thus, y is a periodic ray in Q,.

Now we show that

(3.14) J^(y) = ^(y)

implies y = y. From (3.14) there exist sequences of reflection points
(xo,Xi, . . . ,x^) of y and (xo,Xi, . . . ,J^) of y such that x^, x^er^ ,
;=0, 1, . . . , n . Set ^=(xi-Xo)/ |Xi-jCol and ^=(xi-Xo)/ |Xi-Xol .

Choose phase functions q> and $ satisfying Condition P on I - such
that V(p(xo) = ^ and V$(xo) = ^. Since y and yare periodic, we have

^,+i(xo,V(p) = XQ, ^+i(Xo,V$) = Xo,

Sn+i(xo,V(p) = ^, 5^i(xo,V$) = ^.

Therefore it follows that for any integer r ^ 1

^r(n+l)(^V(P) = ^0» ^+1)(^0»V^) == ^O-

Then we can write the above relations as

xo = ̂ -^^Vc^), xo = Z-^^^xo^^j) (5^r).

Then we have

Ixo-xol ^ \X-s(n+l\x^^-X-s(n+l\XQ^)\ +

{y-^^^x^^-x-^^x^^ = /+ / / .
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The application of Proposition 3.8 gives

I / I ^ Ca^-^.

On the other hand, from Proposition 3.12 we have

I II\ ^ Co^-^"-^.

Thus we have for any 1 ̂  5 ^ r

\XO-XQ ^ C^-^+a0'"^^),

which implies XQ = XQ. By the same argument, for other reflecting
points we have Xi = X j . Hence y = y. Thus we have

THEOREM 3.13. - For any j = (jo, . . . Jn) e/^ such that jo ^ ;„
there exists uniquely a periodic ray y in Q such that

je^(y).

4. Asymptotic solutions in the exterior
of one convex body.

In this section we fix 76 {1,2, ...,./} arbitrarily. Let a be an
oscillatory function on Tj x R of the form

(4.1) a(x,t;k) = e^^f^k)

where k^ 1, \|/eC°°(r,) and fe C^r^O.oo)).

DEFINITION 4.1. — We say that a boundary data a of the form (4.1)
satisfies Condition B on I- if

(i) there exists a phase function (p satisfying Condition P in Vj such
that

(p = \|/ on [j supp /(.,t;fe),
t,k

(n) |/(.,. ;^(r,xR)«^ /or a« fe ^ 1, p = 0,1, . . . .

DEFINITION 4.2 - H^ 50^ ^ar a boundary data on Fj of the form

(4.2) m(x;k) = ^^(^fe)

satisfies Condition A on Fj if
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(i) there exists a phase function (p satisfying Condition P in Fj such
that

(p = v|/ on [jsupp g ( ' ; k ) ,
t,k

(ii) \g(.,k)\p(T^Cpfor all k ̂  1, p = 0,1, . . . .

We set
Q , = R 3 - ^ , 7 = 1 , 2 , . . . , J .

First we consider asymptotic solutions of the problem

(4.3)

D u = 0 in Q, x R
u = a on r, x R

supp M c Qy x (0, oo).

For m satisfying Condition B we can construct an asymptotic solution u
of the form

(4.4) u(x^k) = 6?lk((p(JC)-o ^ Vi(x,t,k)(ik)~1'
1=0

Indeed, as is known (see, for example, [KSL], [II]), when
Vi,l = 0,1,2, .. .,A\ satisfy

TV. = 0 in ft, x R
(VQ ==/W;fe) on r, x R,

and for ( > 1
fr^ = D^-i in Q, x R
k=o on F^ x R

where

T== 2— + 2V(p-V + A(p,^r
it holds that

(4.5)

Moreover we have

CDM = ^-^(^D^ in ft, x R
[ u = a on r^ x R.



130 MITSURU IKAWA

LEMMA 4.3. - It holds that
(4.6) supply.,.;fe) c {(}/+TV(p(y),t+T);T^O,(^Oesupp/(.,-;fe)},

(4.7) |I^(Q,CR) x R) ^ C^|V(p|^(WI^(r, x R).

By means of the proof of Lemma 3.3 of [14] we have
LEMMA 4.5. — Let m be an oscillatory boundary data of the form

(4.2) satisfying Condition A on Fy and let h(t) e C°°(0,oo). If \ve set

(4.8) f(x,t;k)=g(x,k)h(t),
a^t^^e^^f^k),

then a satisfies Condition £ on Tj and Vi constructed for a can be
expressed as

21

(4.9) v,(x^k)= ^ g^Mh(q\t-((p(x)-(p(X-l(x^))),
q=0

lg,̂ (Q,(̂ )) ^ cw^r^^r,).
Especially

go.o(^) = A^x^^-^^Vq));^,
\(x) = {G^/G^X-1^^2

v^here G^(x) denotes the Gaussian curvature of ̂ (x) at x.

Take a function b(x,t;k) e C^R3 xR) with the following properties :
b is equal to the right hand side of (4.5) in Q, x R, and

supp b n {G)xR} a {(x,0;dis((x,0,supp/(.,.;^)) < 1/2},

(4.10) |fc|^,R) ^ C^-^^IVepl^^^l/l.^iv^xR).

Let z(x,r;fe) be the solution of
,. ... fDz = - b in R3 x R
( ) [suppz c R3 x [f^ 0}.

Then it follows from (4.10) that
(4.12) |Z|/Q,CR)XR) ^ C.^fe-^^^IVcpl^^^l/l^^^xR).

We set
w = u + z.

Then from the choice of b we have
(4.13) Dw = 0 in Q, x R.
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Suppose that
supp/(-,-;fe)cr, x (r,r+i).

Then we have

supp{w(.,r+l;fe),W((.,r+l;k)} c {x; dis(x,0) < 3/2}.

If we choose p, > 0 as 0, <= {x; \x\ < p,}, the Huygens principle implies

(4.14) suppw(.,.;fc)c:{(;)c,0;t>r-l,t-(r-l)-(p,.+l)<|x|
< t - (T-l) + (p,+l)}.

Let / be a boundary data of the form (4.8). We consider the Laplace
transform in t variable of the asymptotic solution w constructed in the
above, that is,

w(x,u;fc) = I e-^w(x,t;k)A.
J—oo

s(x,n;fc) = w(x,H;fe)//i(n+ffe),
By setting

we have

PROPOSITION 4.4. - For a boundary data

m(x;k) = e^g^k)

satisfying Condition A, there exists a function s(x,^k) such that

(i) for each keR s(.,n;k) is a C^^-valued entire function,
00 s ( ' ^ k ) € L 2 ^ ) if Re H > 0,
(iii) (^2-A)5(^^;fc) = 0 in ft,,

N 21

(iv) s(x^k) = E (E ^pWdk^^dk)-1 x
z = o p=o

where r satisfies
^-(H+ifc)((p(x)-^(Jr-l(jc,V(p)) ^_ y.^ ^

(4.15) |r(.^;fe)|^(Q,W)^

^.^-^^^^^k-^^^ivcpi^^cr,)^^^^,)

/or - a ^ Re H ^ 1, |Im (H+ife)| < 1,

(v) s(x,[i,k) = m(x,k) + r(x,u;k) on F,.

Proof. - The estimate (4.14) of the support of w implies (i), and
(iii) follows immediately from (4.14). (iv) and (v) are evident from the
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properties of u except for the estimate (4.15). If we choose h(t) so that

\fi([i)\ > 1 for |Im [i\ ^ 1, - a < Re n < 1,
then (4.15) follows from (4.12) since

r(x,n;k) = z(x,^k)/fi(ik+[i).

From now on, we shall use the following definition for the brevity
of statement.

DEFINITION 4.5. — Let co be an open set in R3 and let 2 be a
domain in C. We say that a function s(x,[i;k) satisfies Conditions in
(co,^) \vhen

(i) for each keR 5(',n;fc) is a CCO(S)-valued holomorphic function
in ^,

(ii) ^•^eL^co) if Re ^ > 0,

(iii) (n2 - A)s(x,n;fe) = 0 in co for all p, e Q).

We denote the solution s constructed in Proposition 4.4 for m by

s( . ,n;fe)= 5/H)m(.;fe).

Thus Sj may be regarded as a mapping from the set of boundary data
satisfying Condition A on F, into the set of functions satisfying
Condition S in (0^,C).

Let 7eC°°(R) be a function such that

^ fl for ^ - 8,
x v / [0 for t ^ - 8i/2,

where §1 is the constant in Lemma 3.1. As to the asymptotic solution
5 = SjHi we shall use the following notations:

^OOm = ^•(n)mlr^

(̂P;̂  = xf^V'^ E g„,(x;fe)0•/c+^l)^-<-+"[^-^-l<-v^|^,,
V^/ p=o

B^m = fl-xf^))^ ^ ̂ ^;W+^ x

\ \ u n / / p=o

^^ik® V^ ^ /„. y,\/,-7,^ ..^^-(H+ikXcpO^-cpCY"1^

,3n.

^-(^l+ik)^(x)-^(X-l(x,W) ^^

A^MX) = /^^.^^(X-^^Vq));^!^.
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It follows from Proposition 4.5 that the dependency of
2^.(^), 2^.(H; q), B^.q) on [i is holomorphic.

DEFINITION 4.6. — We say that a boundary data

m(x\k) = e^^g^k)

satisfies Condition E on F, when

l i(- ,fe)lp(r,)^Cp for all f e (p=0 , l , . . . )

and
{x + T^(x); T ̂  0, x e (J supp ̂ ( •, fe)} n (do-neighborhood of (P- ̂ ) = 0,

/c

where !,(x) is a vector in R3 such that |^(x)|=l, n(x)-^(x)^0
and

^)-(^(x).n(x))n(x)=gradrv|/.

We have the following Proposition by means of Proposition 7.5 of [II].

PROPOSITION 4.7. — For a boundary data m satisfying Condition E on
Tj we have a function s(x,[i;k) such that

(i) 5^ satisfies Condition S in (Oy, C),

(ii) is^.^i^i^o/^^^c^^-^^^^^^iVcpi^^cr^l^l^^ivCr,),
(iii) |5'(.,H;fe)-m(.,k)|/r,) ^

^^-ReH(^p,.i)fc-N^|^|^^(r,)[^|^^(r,),
(iv)/or l ^ j

|s'(.^;fe)|/r,) ^ C^-^^^^^k-^^IVcpl^^r^l^l.^N^.).

We denote by ^-(n) the mapping from a boundary data m satisfying
Condition E on Tj to s^ a function satisfying Condition S in (F^, C) that
is constructed in Proposition 4.7, that is,

5(.,n;k) = ^•ai)m(.,k).
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5. Construction of asymptotic solutions in H.

In this section we shall construct a first approximation of the solution
to the problem

(5.1) fO^-AX^O in Q
(u = m on r,

where m is a boundary data of the form (4.2) satisfying Condition A
only

Define m, and 5j, ^ for j = Qji, • • -j^ e Ij by

m,(x,H;fe) = £^)m = ^^(H,O).^:^H,O). ... <(n,0)m;

Sj(x,n;fe) = ^OQmj, 5j(x,n;fe) = ^^(n)^(H,0)mj.
^n

Set
(5.2) w^Oc^fe) == ^(-l^-^^x^i^+s^^fe)}.

j e7 ,

In order to investigate the convergence of (5.2), first we shall make
a decomposition of I,. For i = Qo, i'i, • • • ^m) e ̂ m) and j = (/oJi»• • • Jn) e ̂ n)

such that in + Jo we denote by (i,j) an element in ^m+n+l) defined by

OJ) = (Wl, • • • ^mJoJi. • - • Jn)'

Let i = (i'o,ii, • • • ^m)6^ suc!1 ^at to ^ ^m? an(! ^et r e N . We denote
by ri an element in 7<r(w+l)-l) defined by

r
ri = (i,i, ,i)

We say that i = ( i o , i i , ' ' ' ̂ 'J6^ ls primitive when io ^ im and there
are no j = (/oJi» • • • Jn) ^ 7(n) and r > 2 such that i = d- Denote by /(^)
the set of all the primitive elements in/.

Set for i = = Oo,i'i, • • • ,Ue/(^)

P'i = {(ri,fo^'i, • • • , f s ) ;r^ l ,0<s<m-l} ,

Pi = P' iu{i}.
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LEMMA 5.1. - For each 1 ̂ ; < J there exist / ^ and / ' ^ subsets of
W such that Pj, P'\' (ie/^ef^ are disjoint mth one another and

(5.3) 7, = ( U P}] u f U n\
Vje^. / \j 'e^ /

Proof. - It is sufficient to prove for j = 1. Now we prove the following
assertion by the induction in n: for n ̂  1 there are
^i0, ^T ^ / W n A 0 such that

(5.4) Pj, PT, j e ̂ ?, j- e ̂  ? = 1, 2, . . . , n are disjoint

and

(5-5) A^uf fu -PiW U ^)l-
^lt\j^(0 / \^0 /J

It is evident that this assertion implies the statement of Lemma.
We set

j^=(l ,p), l ^ p ^ j .

Evidently j^ e I(^) n /a), and

A1^ U^.
p=2

Thus in the case of n = 1, (5.4) and (5.5) hold by choosing ./(1) =
{(l,p);2^p^7}, ̂ =0.

Suppose that (5.4) and (5.5) hold for n = m. Let j = (lj\,.. •,7^1)
be an element in T^^ such that

"OX^Krf-
If we set j" = (1,;\, . . . JJ we have from (5.5) for n = m

w f / \ / \")
î  U U -PJ ^ U ̂ r) ,1=1 [\^ ) \^ ' )y

namely we can write j' as

(5.7) j' = ( r i , l , i \ , . . . ,y , i = (l,i^i^ .. . , i p ) e ^[p) u ^[p)f

r ^ l , 1 ^ 5 ^ p - l ,
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or
(5.8) r = r i , i=( l , l \ , f2 , . . . , fp)6^ ( l p ) u^ ) ^ r ^ l .

In case of j'^+i = 1, it happens only the case (5.7). Indeed, in case of
(5.8) we have j e F\ c: Pi. This contradicts (5.6). In case of (5.7)
evidently } ' e I ( S P ) and j e F \ ' . Consider the case of 7^+1 7^ I . Now
for the both cases of (5.7) and (5.8) we have j e 1(9). Setting

^+^=={^(1J,J^...J^,); satisfying (5.6) and^^l},
^^{J^Ui^,...^!); satisfying (5.6) and 7^=1}.

We have for j satisfying (5.6)

j e f U ^W U ^VV i^r0 / \ i'^?'^ /
It is evident that the disjointness of (5.4) holds for n = m 4- 1. Thus
the assertion is proved for n = m + 1. Q.E.D.

To show the convergence of (5.2) we have to express Wj and 5j
more explicitely. Let j = (/ji, . . . J^e/^. It is easy to show the
following by the induction :

(5.9) mj(x,^k) = ^^.(^(x^^^^^^-^^-iji^v^))

where we define A^ by

A^)g(x) = ^t,((Pa^....^-i))-At^(Pa^....^-2))1--

A^cpa^-Al1^)^).

Indeed, for j = OJi) fr0111 Ae definition of B^^O)

m^(x^:k) = ^^^^(x;^-^^^^-^"1^^.

By using the fact that

^O-Ji)^ on ^h,U^

(p = \|/ on r,,

we see that (5.9) is valid for n = 1. Suppose that (5.9) is valid for
n = 1. Let j = Q'Ji, . • -Ji+i), ¥ = O'Ji, • • •Jf) . Since (5.9) holds for
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j', we have

m^;k) = ^(^(^(x).-^^^-*^1^-^.

Now from the definition we have

mj(x,^;fe) = By^^m^x^k) =

^y^^ i (^A^)g(x)e~ ̂ ik)^x)-w~ '^^

Note that we have on F^

(PJ = (pj/, x- ̂ '(x, vq),') = ;r '^(x, vcpj).
Evidently

^^+l((p,0^((p)=^((p).

Hence (5.9) holds for any je/^^. Thus we have shown that (5.9) is
valid for any j e I j .

Note that Lemma 3.1 implies

^ U J l _ J n - l ) (x-\x, V(pj)) ^ 5i for any x e ̂ j(V(p).
on

Thus from the definition of A^ we have

(5.10) ^j((p)^(x) = x(^) A^^x^^-^x, V(pj)),

A^(x)=A,^ ,.,^(x)A^ ^_^^-l(x,V(pj))...A,(jr-<n-l)(x,V(p,)).

LEMMA 5.2. - Z^r i = (/',ii, . . . ,!„)£ ̂ , and to y be a periodic
ray in fi. such that ie^(y). Suppose that

n _____

(5.11) Y = U ̂ l+l^ xle^il. ^n+l = ^O-
J=0

T/i^n rh^r^ exist phase functions (p^, ? = 0, 2, . . . , n, SMC/I (to^

(i) (p^ satisfies Condition P on F^,

(ii) (p^(x,)=0,

(iii) 0)̂  ̂ ^ = (p,0^, + d^, 0 <; < n - 1 , ̂ (p,% = <o + ̂ )^,

wter^ d^ = |x,+i-xJ.
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Proof. - Take a phase function <|/ satisfying Condition P on F
such that '

^o) = 0, V<|/(xo) = (xi-xo)/|xi-xol.

For r ^ 0, 0 <£ / < n, we set

^rl,(= <&(,i,()V|/.

Evidently we have for all r ^ 0, 0 < / s$ n

(V^ri,t)(^) = (^l+l-X,)/[X,+i-X,l,

(512) J^"-'̂  = rdY + l^i'^ol + • • • + |X(-x,-i| (M>/^1),
Wr+l)uOC|)= V|/n,l(x,) + d,.

Applying Corollary 3.10 to ^ and 0,\|/, and we have

iv î-vv|/(,+i),,,|p(r.,) < c^',
which implies the existence of a smooth vector T), , such that

(5.13) iv^-Tii.d/r^xc^"'^.
Then from (5.12) and (5.13) it follows that

<Pi°<M = Urn (̂ ,,,00- K+riwo + • • • + ̂ .,))

exists and

I <Pi°i - (̂ ri,( - K + ̂ ).o + • • • + d^)) I ̂ r.-,) ^ C^1.

By using (5.12) we have (ii) from the above estimate.

By Lemma 3.9 we have for 0 < ( < n - 1

l<^+l(<,+r^+^„,+ . . . +d^) - <S^1^ ,(r.,) < C^1,

^lW+rd,+d^+ ... +d^)=^+l^+rd,+d^+ ... +d^.

On the other hand

^+l^i,,-K+^„•o+••• +^).-,)=
^i,i+i - (rd,+d^+ ... +d^) -^ (p,",̂  - d^,.

Thus we have (iii). 0 E D
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LEMMA 5.3. — We have

(5.14) |V(p(,,^,..,,)-Vcp^|/r,) ^ 0,0 .̂

Proof. — Apply Lemma 3.9 to (pj and \|/j = OjV^, and we have

lV(pj-v^i,(r,)^c^1.
On the other hand, since T|̂  in (5.13) is equal to Vcp^j we have

|V^..o,.....)-v(P^lp(^.)^C,anr+f.

Combining the above estimates we have (5.14). Q.E.D.
LEMMA 5.4. — There exists uniquely a point x^° in Fj such that

(5.15) |J^(xr,V(p)-xJ < Co^ for all r ̂  0, 0 ^ ; < |i|,

"where C is a constant independent of i.

Proof. - Set xr1 = x-^x^^..,,)).
Evidently we have
^r^l ^ ^-^^^(X^V^^^,,,,,,)) =

X-^X-^x^ V(P((^^^ ...,,)), V(pH).
Since Ar~r/n(xJ,V(p((,+^^ ^^)er^, an application of Proposition 3.8
gives

]^r+r/)n^_^| ^ ^nr+^

Thus lim x^^1 exists. Denoting the limit point by x,°° we have
r-»oo

(5.16) |xra+'-x,°ol ^ Coi"^'.

Note that
X~'"''(xi,V^i) = x,, for r ' > 0, 0 < ; < n - 1.

Then by using (5.14) we have

IZ-^VCP^ ,̂,,,,))-^ < Ca" '̂.

Since X^'^x,,^^,^...^) = ^„+,(xSr+r')"+',V(p) we have

l^n+i^r^'^'.V^-^l < Ca"^'.
Then letting r ' -> oo we have (5.15). Q.E.D.
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By following the argument in Section 4 of [12] we can derive from
Lemmas 5.3 and 5.4 the following

PROPOSITION 5.5. - Let j = (ri,fo, . . . ,OePi . Then we have for
s ^ l j l / 2

^('W-x-^^^^r^^ c,a'̂ ,

[^-^'-^^(.^cp^-^xr^q))]^) < C,a .̂

With the aid of Proposition 5.5 we have the following as in Section 7
of [12].

PROPOSITION 5.6. - There exists a constant d^, such that

l(pj-(<p^+^+rf<p,i+^o+^i+ • • • +^)lp(rj) < c^i

holds for all j = (ri, io, i\, . . . , Q e Pi, and the set {^ J. 15 bounded
in R. ' ^-^j^j

Now we look for an asymptotic formula for A^pj(x). Set for
0 ^ ; ̂  n

\i = A(p^(xj+i).
Note that

^^O^ = ^-Y

(see, for example [BGR, Section 2]).

By employing the agument of Section 5 of [12] we have

PROPOSITION 5.7. - It holds that for all j £ Pi

(5.17) IA,,j(.)-(^a,,(.)^|,(rj) ^ C,,(W.

Here (i) we denote by (^

(V = ̂ o • • • ^u for j = (ri, to ,i'i, . . . , if),

(ii) a^(x), ; = 0, 1, . . . , n are smooth functions in ^(V(p^) such
that a^i p(^(V(p^)) ^ C p , where Cp is independent of i and I ,

(ill) fc; is a positive constant depending on (p, and we have

\b,\ < C /or all i.
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Set

<,(x,u;fe) = ^'(x)a,,,(;c).

With the aids of Propositions 5.6, 5.7 and (5.16) we have

(5.18) \m, -g(xr; k^e'^-^e'^m^^r,)

<$ C^.feai^'^lglp.i^)

for ] = (n,io,i^,..., i';) where we use a notation

(^-^ = (^-^i.o^-0 • . . ̂ wl •
By setting

Si°,(x,u;fe)= 5,,(uX,,

tj(:c,u;fc) = sj - ̂ (xrife)^'^--^"^,^^;^,

from (5.18) we have

(5.19) Kjl^GR)) <£ C^kl'^e~Rwd^('k,e~Revdiy\g\,^(^,).

Thus

E^-f; E .̂o,,,...,.,)-̂ ,";̂ ^ -̂!:̂ '̂ "" •"^x
j eP i f=0 r= l ! = 0

^ He"^ + E tj = g^r;^^--^-/ + n.
r = 1 i € Pi

For i = O'o,^i , . . . , i p ) , h = (/io,Ai, . . . ,hq) e I , with the notation h ^ i
we signify that q ^ p and hi = ij for all I ^ q. Then 7 is expressed
as

i= ̂ -^(i-^-^)-1 s (^Y^.
i'^i

In order to estimate 7 and 77 we prepare the following

LEMMA 5.8. — Suppose that

P < a o .
Then "we have

sup ^ (^"Y < CF(p),

w/iere t/ie supremum is taken over ie^jU ^'j.
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Proof. - First we admit that an inequality

(5.20) (^^'••••^C^

holds where y is a periodic ray in Q such that Q'o^'i, .. .,^)e^(y) and
C is a constant independent of y and O'o,i'i, . . . ,ii). Obviously the
assertion of Lemma follows from (5.20).

Set
y = U YsYs+i, yi+i = yo, ^ei\

s=0

and (p^, be phase functions in Lemma 5.2 for

? = O'o^'i. . . . ,0e^(y).

Then from Proposition 3.11 we have

iv^-v^J/r^c^5.
Then it follows that

\y,-x, < ^(s,i-s)

Therefore from the above two estimates we have

IW^u-1! ^ Ca"11"^1-^,
\d^Jd^-\\ ^ Coc1"1^^-5).

Substituting these estimates we have (5.20). Q.E.D.
Now from the form of / we have

|7| ^ CF^Pe^^^l-^"^^)-1.

On the other hand from (5.19) we have

|//| < ^ I^I/OGR)) ^ SC^a'^^'^^l^l^^r,) =
j e P i

c^s^"6'^111 Z ̂ ^r^^w ^
r=l i'^i

C^(-Re n-Po)^'116 '" l̂̂ lp.î ),
where Po = - log a/d^.

Set s,i= S (-i)11'-1^^^.
J 6 Pi
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Concerning Spjr - w, note that Sj and 5j are so chosen that the
coefficient of ko of its expansion in k~1 vanishes. Then summing up
the above estimates we have

PROPOSITION 5.9. - Let i e / j U / j , and let y be a periodic ray in
Q, such that ie^(y). Set

D,= {H;Ren>(log^)/^}.

Then a series Sp, converges absolutely in D^ and has an estimate

(5.21) \sp, /OCR)) ^ C^M^^FC-Re ^) x

^"^^(l-^-^^)-1,
}vhere

^=(IVvH^2(r,)+i)i^|,(r,),
and Cp^ is a constant independent o/\|/, g and i. Moreover Sp, satisfies

(i) Condition S in (0,Z>y),
N

(ii) Spjr - m = ^ { ̂  fe-'mj^x^+mjOc^fe)},
j e Pi /»=!

"where

(5.22) '"j,*(x,H;fe)=e'̂ ,,,( ;̂fe),
(5-23) l^j,*lp(rj) ^ C^M^^e-^ ̂

(5.24) ImjI/rjXcpfe-^^M^./V"'"^.

Now we turn to consideration of the convergence of w^ of (5.2).
First we remark that we have from (3.13)

^;Je^(Y)}=2|j|.

On the other hand since |i| s$ d^fd^, we have

(5.25) ^U;J6^(y)}<Cd,.

From Lemma 5.1 we have

Z * = E ( Z * ) + i f z *)=E *= Z ( E * ) + Z, E *
J e '̂ i e ^j j e Pi i e ^. \j e Pe I J ie^. j e P i i e ^ j V j e P ' i /

^: primitive periodic ray^ ^ ( Z * ) + E f z *
^ ^i 6 ̂ ^(Y) \j e Pi / i e ^jr^(y) \j e"?7! ^Y ti 6 ^,^(Y) \j e Pi / i e ^n^(y) \j e P'i
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Thus for nef^y we have from Proposition 5.9
Y

^ |5j+5; ,,(QCR)) ^ Cp^M^^F(-Re ̂  x^ i"j • "j
je j ,

^ {i;i E ̂ (vM^u ;̂)}^6 ̂ (1 - ̂ -Re ^)-1.
Thus we have

PROPOSITION 5.10. - The function w^ defined by (5.2) saris/i^
Condition S in (0,2)), and K 15 represented on the boundary V as

^-m= ^J f fe-^+fe-^l,
jeljih=l )

where m^ and m^ have the properties (5.22)-(5.24).

6. Proof of Proposition 2.2.

In the previous section we have constructed a first approximation
of the solution of (5.1). To arrive Proposition 2.2 it suffices to repeat
the preceding argument.

Since m^ is a boundary data satisfying Condition A we can apply
the construction procedure in Proposition 5.10 to each w,^. Denote the
corresponding function by w^. From Proposition 5.10 we have for each
J = OoJi. ' ' - J s ) ^ Ij and h ̂  1

^-^- Z { Z h^m^^k-^A
/ e 7^1^=1 J

where Wj^j'y and m^j' satisfy

m^^x^k) = ̂ j.j^^^^^x.^fe),

l^j'vlpOV) ^ c^M^^e-^ ̂ (^^-Re ̂ y\
I^.M-l/rjO < C^-^^M^.^.A^'6^^^"^1'/,

for y e P i ' .

By setting
^(i)= - ^fe-^w^,

/»=! J 6 I
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we have that w^ + w^ satisfies Condition S in (ft,D) and

Iw^+w^-m/nGR)) ^ C^M^k-^W-Re^)3.

Repeating this procedure we get

^ = w^ + w^ • • • + w^

which satisfies Condition S in (P,Z>) and

|w-m /r) ^ C^^^'^W-Re H))^2.

Thus we proved Proposition 2.2.
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