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ON RIESZ PRODUCT MEASURES;
MUTUAL ABSOLUTE CONTINUITY

AND SINGULARITY

by S. J. KILMER and S. SAEKI

In his 1973 paper [9], J. Peyriere gives a very simple criterion for
two Riesz product measures to be mutually singular. Although the
result is stated only for the circle group, both it and its proof extend
mutatis mutandis to the case of the general compact abelian group. He
also gives several sufficient conditions for one Riesz product measure
to be absolutely continuous with respect to another. However, all of
these conditions involve some strong lacunarity constraints on the
underlying dissociate set. A little later, in 1974 G. Brown and W. Moran [1]
obtained, among other things, a sufficient condition for absolute
continuity which is independent of the underlying dissociate set.
G. Ritter's 1978 paper [11] contains an improved version of their
condition.

The present paper gives further criteria for determining mutual
absolute continuity and singularity of Riesz product measures. The first
section consists of some basic definitions and results about weak
convergence of measures. For the reader's convenience, we have also
included a proof of Peyriere's theorem on mutual singularity. In the
second section we give some sufficient conditions for one Riesz product
measure to be absolutely continuous with respect to another. One of
our results (Corollary 1.2) contains the Brown-Moran-Ritter theorem
mentioned above as a special case.

In the final section we shall introduce two families (p,J and (y^) of
« random » Riesz product measures, where CD runs through the countably
infinite product of the circle group. We shall establish the dichotomy

Key-words : Riesz Product - Dissociate set - Mutual singularity - Absolute continuity
- Random Riesz product.
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that either v^ is absolutely continuous with respect to ^(v^p-co) almost
surely, or ^ and v^ are mutually singular ((^J-Vo,) almost surely. Our
Theorem 2 gives an explicit criterion for determining which one of these
alternatives occurs. Finally we shall give two applications of this
probabilistic result to Riesz product measures of a certain type on the
circle group.

We are greatly influenced by the well-known paper [6] of S. Kakutani
on infinite product measures and Peyriere's pioneering paper [9] on the
subject. We shall use their ideas freely without any further explicit
references.

1. Basic definitions and results.

Throughout the paper, let G be a nondiscrete LCA group with dual
r, and let M{G) be the convolution algebra of all regular complex
Borel measures on G (cf. C. C. Graham and 0. C. McGehee [2],
E. Hewitt and K. A. Ross [3], W. Rudin [13], and J. L. Taylor [14]). As
usual, we define the Fourier transform of \JL € M(G) by

?(y) = 7 d^ for all y e r.

Let C(G) denote the space of all bounded continuous complex-valued
functions on G.

In order to introduce Riesz product measures which are more general
than the usual Riesz product measures, we need the following result
which is (essentially) well-known in the field of probability theory; see,
e.g., Chap. IV of M. Loeve [7].

PROPOSITION A. — Let (pa) be a norm-bounded net in M(G), and let
(() be a bounded Haar measurable function on Y such that

(i) ^ -> ()) weak-* in L°°(r).
Then (pa) converges to some [i e M(G) in the weak-* topology of M(G),
and p = (() locally (Haar) a.e. o n T . I f , in addition,

(ii) lim||M = [ I H J I ,
then lim p,a = |j, weakly, i.e.,

(iii) lim f/ d^ = f / ̂  for all f 6 C(G).
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Proof. — For \|/ e L1 (F), the «inverse » Fourier transform of \|/ is
defined by

vl^Oc) = (\|/(y)y(x) dy for all x e G,

where rfy denotes Haar measure on r. Thus [L1(^)]V is a uniformly
dense subalgebra of Co(G').

Now v|/ e L r (F) implies

IV ̂ = lim [^(y-1)^)^ fv / 7n = lim n rv^lfr'vW'v = ^v^(1) lim ^d^=lim ^(y-1)^) dy = ^(y-^Cy) dy

by Fubini's theorem and (i). Moreover, the net (nJ is norm-bounded
by the hypotheses, and [L^F)^ is uniformly dense in Co (6'). There-
fore (1) ensures that (p.a) converges weak-* to some n e M{G) and that
H = <|) locally a.e. on F.

Now suppose that (ii) obtains. Then the net (p,J is uniformly tight
in the following sense : given e > 0, there exists a compact subset K
of G such that

(2) max{|Hj(G\70, \^\{G\K)} < e

eventually. In fact, choose geCc(G) so that

(3) \g\ ^ 1 on G and g^> | | ^ | | -£ .

Since ^-> [t weak-*, it follows from (ii) and (3) that

(4) \f§d^ > IIM-si v
eventually. Define K to be the closed support of g . Then

|f
|u|(AO> gdy. > l|u|| -e

I v

by (3), and so \\i\(G\K) < £. Similarly (4) assures that \[i^\(G\K) < £
eventually. These two inequalities establish (2).

Finally, let / e C(G). Given £ > 0, select a compact subset K of G
as in (2). Also select h e C,(G) such that 0 ^ h ̂  1 on G and h = 1
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on A". By (2), we then have

fd(^-[i) (l-h)fd(^Vi) + \\hfd(^-^ ^

||/IL.2e+ \\hfd(^-^

eventually. Since hf e Cc(G) and Ha -> p. weak-*, it follows that

fd(^-^ <(2||/||,+1)8

eventually. Since s > 0 was arbitrary, this establishes (iii).

Remark (I). — The above proposition may be used to remove an
awkward condition in Lemmas 1 and 2 of L. Pigno and S. Saeki [10].
That is, the set (A 4-5') u T there may be replaced by F. This subtle
point is overlooked in the proof of Theorem A.7.1 of Graham and
McGehee [2].

Now let © be a subset of F. We denote by W(@) the set of all
elements y of F of the form

(W) Y==91^ . . . e^ ,

where the 6jk are distinct elements of ©, e^ = 1 or - 1 if 9^ 7^ I , and
£ft == 1 if 9^ = 1. (For n=0, we interpret such a product to be 1.)
Following E. Hewitt and H. S. Zuckerman [5], we call © a dissociate
set if each element of W{@) has a unique representation of the form
(W) except for the order of the factors. Two elements of W(@) will
be said to be nonoverlapping if their representations of the form (W)
have no 6^ in common.

Now let © be a dissociate subset of F, and let a be a complex-
valued function on ©. For each finite subset <S> of ©, define

P(0,a) = n {1 + Re[fl(e)6]: 0 e 0},

so this is a trigonometric polynomial on G. Since © is dissociate, it is
easy to show that there exists a unique function p = p(©,a) on F such
that

(R.I) p == 0 on r\^(©),
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and

(R.2) P(0,a) = ^{p(y)y : y 6 ̂ (0)}

for each finite subset O of ©. If G is compact and a is bounded
by 1, then p is the Fourier transform of a probability measure on G,
called a Riesz product measure [5]. For accounts and applications of
these measures, we refer the reader to Graham and McGehee [2], Hewitt
and Ross [4], and J. M. Lopez and K. A. Ross [8].

PROPOSITION B. — Let (©,a,<J) be a triple consisting of a dissociate
subset © of r, a complex function a on Q bounded by 1, and a
probability measure aeM(G'). Let p = p(©,a) be as above, and let
S(a) = {y e r : a(y)^0}. Suppose that

(a) y^y' i S(a) whenever y, y'e W(Q) are distinct, and that
(b) the family {y5'(o-): ye W(@)} of subsets of T is locally finite.

Then there exists a unique probability measure [i e M(G) such that
(c) H(X)/= ZJ^Y)^"^)^ W(@)}, VxeF .

Moreover, ^ = p on W(Q) and

(d) lim l/..P(0,a)AT = [ f d [ i , V/eC(G),

where the finite subsets of © are directed by set-inclusion.

Proof. — Let ^ e F be given. If y e F and p(y)<7(y-17) 1=- 0, then
y 6 ^(©) and ^ e jS(a) by the definitions of p and S(a). It follows
from (&) and (a) that there are at most finitely many such y. Therefore
the right-hand side of (c) is (essentially) a finite sum. Let <(>(^) denote
this finite sum, so that <() = p on W(@) by (a).

Now let C> be any finite subset of ©. Since a is bounded by 1, the
trigonometric polynomial P^.a) is nonnegative. Moreover, leW(<S>),
p(l) = 1 and a is a probability measure. It follows from the definition
of P(C>,a) and (a) that

(1) ||P(a>,a)cT|| = fp(0,a)da= 1 .

Next suppose that V is an open subset of r such that V meets
only finitely many y5'(o) with y e W{@). Then © contains a finite
subset <I>o such that

(2) y e ^(©) and V n [y5'(CT)] ^ 0 => y e (̂0>o) •
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From (2) and the definition of ()), we infer that

(3) 4>(x) = E{p(yMy-lx): ye (̂<Do)L v^e v.

If 0 is a finite subset of © containing <I>o, then the definition of p
and (2) ensure that

[^(O.^Oc) = KpCyMy-1/): ye ^(0>)} =

Z{p(yMy~lx): ye^o)}
for all % e V. Accordingly we have proved that

(4) [P^a)^ = <)) on V

whenever <S> is a finite set such that C>o <= 0 c= ©.

By (fc), each element of F has a neighborhood V with the above
property. Therefore ^ e C(T) by (1) and (4), and the functions [P{^,a)^
converge weak-* to (t)eL°°(r) again by (1) and (4). It follows from
Proposition A that the probability measures P(^,a)a converge weak-*
to some p, e M(G) and that jl = (j) on F (notice that both (1 and 4)
are continuous). Plainly p is a nonnegative measure. Moreover,
^ = = ( ( ) = p on W(0) by (3) and (a). In particular, n(l) = 1, and so p,
is a probability measure. Therefore (d) follows from Proposition A and
(1). The uniqueness of n is obvious and the proof is complete.

DEFINITIONS. - Let (@,a,o) and [i be as in Proposition B. Then we
call (©,0,0) a dissociate triple and |A the Riesz product measure based
on (©,a,a). Also we write [i = ̂ (©,a,a). If G is a compact group
and CT is its Haar measure of norm 1, we shall merely write p, = R(@,a).

Remark (II). — Our definition of a Riesz product measure is slightly
more general than the corresponding definition in [2; p. 219]. Also note
the resemblance between Proposition B and Lemma 1 of [10].

The following result is essentially due to Peyriere [9].

THE PEYRI^RE THEOREM. - Let [i = R(Q,a,a) and v = .ROF,fc,T) be
t\vo Riesz product measures on G. Suppose that a (9) and b(Q) are real
for all 9 e © n v? \vith 92 = 1, and that

(i) £{|a(9)-fc(9)|2 :9e0n^}= oo .

Then p and v are mutually singular.
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Proof. - We modify Peyriere's proof as follows.

Given s > 0, there exist two trigonometric polynomials /, g on G
such that g - f = 1 identically and such that

(1) max -j( |/|2 d^, fl^dv^ s.
tJ J J

To see this, we use (i) to obtain finitely many distinct elements
n

9i, . . . ,9 ,60n^ such that T,\a(9^-b(Qt)\2 > 4/e. Define
i

a* = a(9k)/2 if 9̂ 2 7" 1 and a» = Re [0(6^] = 0(9^) if 9j? = 1. Similarly

define P» for fe = 1,2, ... , n. Then Sl^-PtI^ ^e and so there
exist C i , . . . , c, e C such that l

ft n

(2) Z l C f c l 2 < e and EC^-P,) = 1 .
i i

Now define
" n

f = E ^(Ofc - afc) and g = ^ c,(9, - (3,).
i i

Then g - f = 1 by (2). Moreover, the definition of ^ ensures that

[l/l2^ = ZE^c, f(9A-e^-a,9,+a,a,)^ =
•/ j k J

E c^(a^-a^-a,-afe+a^) + E l^l2^- l^l2- lafcl^ la^ 2) =
^fc i

0 + Z l c , | 2 ( l - | a , | 2 ) < £ by (2).
Similarly 1

[ l ^ l ' ^V^Z lcJ 2 < 6 ,
J 1

which confirms (1).

It follows that there exist two sequences (/„) and (^) of trigonometric
polynomials on G such that

(3) gn ~ fn = 1 on G for all n ,
and

00

i:^f[/„|2d^+ fl^2^^ oo.(4) E
1
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By (4), fn -> 0 H - a.^. and ^ -^ 0 v - a.e. Therefore p and v are
concentrated on the sets {lim^/^=0} and {lim^=0}, respectively. By
(3), these sets are disjoint. Consequently ^ and v are mutually singular,
as desired.

Remark (III). — Brown and Moran [1] give a « stronger» version
of Peyriere's singularity criterion, namely, the version with © n ^F
replaced by © u V. However, this is false in general; their proof
contains two errors. The following counterexample was sent to Moran
in January 1976 by the second author of the present paper.

Suppose that G is compact and that © = {Qn}'§ is any dissociate set
in r such that 9o has order 2. Then

Q'={9o ,9o9i ,9o92 , . . . }

is a dissociate set, as is easily seen. Choose and fix any sequence (^)
00

in (-1,1) so that ^=00. Let ^ = R(@,a) and p' = R(0',a'),
o

where a(6o) = a'(6o) = OQ and a(9^) = a'(QoQ^) = a^ for all n > 1. We
claim that \i and \\1 are neither mutually singular nor absolutely continuous
mth each other. In particular, Brown and Moran's claim is false.

In order to confirm our claim, first define
n

P, =(l4-ao9o)nU+Re[aA]},
k = l

?„ ==(l+ao9o)n{l+Re[a,9o9J},
k = l

and
Q, =(l+ao9o)nU-Re[aA]}

k = l

for all n = 1, 2, . . . Thus [i = lim P»(J and \\,' = lim P'n<J, where (and
below) a is the normalized Haar measure of G and the limits are taken
with respect to the weak-* topology of M(G). Let v = lim Q^a, which

00

is another Riesz product measure. Since ^1^~ (-fln)l2 = oo by
i

hypothesis, it follows from Peyriere's theorem that [i and v are mutually
singular.

Now notice that 9o = ± 1 on G. Since ^ is a probability measure
and n ( { 9 o = l } ) - n ( { 9 o =-!})= n(9o)=ao e (-1,1), it follows that
^i({9o=fe}) + 0 for k = 1 and - 1. Similarly |^({9o= -1}) is nonzero.



RIESZ PRODUCT 71

In addition we have

(1+W = lim(l+eo)P;o = lim(l+9o)P^ = (l+Oo^.
Hence ^ = \x ^ 0 on the closen subgroup {9o= l} of G. Similarly

(l-9o)^ = lim(l-9o)P;CT = lim(l-9o)&a = (l-9o)v.
Since \JL and v are mutually singular, it follows that ^ and \JL' are
mutually singular (and both nonzero) on the coset {9o=- l} . The
disparate behavior on the two cosets confirms our claim.

Notice also that if we choose do = 1 in the above example, then
U = \JL' throughout G although ^{\a(Q)\2 :9e©\©'} = oo.

2. Criteria for absolute continuity.

Throughout this section, we shall choose and fix two dissociate
triples (©,0,0) and CF,fc,a) such that \a(6)\ < 1 for all 9 e © . Let

H = R(@,a,a) and v = R^.b.a)

be the corresponding Riesz product measures on G. Define a = 0 off
© and b = 0 off ^F. For p > 0, we write v e Z^(n) to mean that v « [i
and d v / d [ i e -L^).

THEOREM 1. - Let 1 < p < oo be given. Suppose that either (i)
p ^ 2 and the series

(*) Dl^-^Y^/a-I^Y)!)^1: yeQu1?}

converges, or (ii) p > 2 and the series in (*) converges for both p and
2 (in place of p ) . Then veZ/OQ/or r = p2/(2p-\). If, in addition,
© == ^F, then veZ^).

To prove this, we need three lemmas. The first two of them are
well-known and have no direct relationship with Riesz products. The
third lemma is essentially a list of notation that we need later.

LEMMA 1.1. - For each real positive number p , there exists a finite
constant Cp such that

(i) (1+y < 1 + pt + ^(l^+t2), V^ - 1.

In case 0 < p ^ 2, such a Cp can be chosen to satisfy
(ii) (1-^tY ^ 1 + pt + CpW, W ^ - 1.
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Proof. - As is well-known, the binomial expansion

(1+0^= l + pt + r2 f W-2

converges absolutely for r e [-1,1]. Define Cp = IP + ̂  |(jf)[. Then (i)
2

is obvious since (1+Q^ ^ W if t ^ 1. To check (ii), it will suffice to
note that 0 < p ^ 2 and \t\ < 1 imply t2 ^ \t\p.

LEMMA 1.2. - Let n' and v' be t\vo measures in M^(G) and let
1 < p ^ oo . If there exists a norm-bounded net (/^) in LP^) such that
f^' -^ V in the weafe-* topology of M(G), then v ' e L P ^ ' ) .

The proof is left to the reader.

LEMMA 1.3. - Suppose that © = ^ and that { 9 e 0 : a(6) ^ b(Q)}
is countably infinite. Let 9i, 62, . . . be any enumeration of the distinct
elements of this countable set, let ©n = © \ { 9 i , . . . ,9^} and
p(n) = R(@^a\@^a) for n ^ 1. Writing ^ = a(9^ an^ ^ ^ fc(9fc),
d^n^

^ = 1 +Re[aAL ^=n^;

^ = l+Re[^AL e.=n^;
anrf

^ , f & ^ ©\©,,
v } [a on ©„a{n) ==

for k, n ^ 1. 77i6?n W6? /iay^ ;
(i) H = P^(n) and

(Qn/Pn)^ = Qn^ri) = ^(©,a(n),a);

(ii) 7/' Cfc, d, e C /or k = 1, 2, . . . , n , then

fn(^+ReK9j)^(n)=n^-^ i ij i i

(in) (6n/^n)H -> v w^afef^ as n -> oo .
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Proof. - We direct the finite subsets of ©„ by set-inclusion. Thus
limP(©,a)cj = \ji(n) weakly by Proposition B. Multiplying both sides by
Pn, we obtain n = P^(n) again by Proposition B. Notice that |a| < 1
on © by one of our basic hypotheses. So P^ > 0 on G and we may
therefore take the quotient QJPn. The remainder of (i) is obvious.

For (ii), it will suffice to note that [i(n) = R(@,a'(n),a), where
a'(n) = 0 on ©\©^ and a'(n) = a on ©„.

For (iii), we have to repeat some arguments used in the proof of
Proposition B. Let V be an open subset of F as there. So there exists
a finite subset C>o °f ® such that

(1) ^OC) = EWY)^-^): y e ^(Oo)L V^ 6 F.

Plainly this set Oo can be chosen independently of v, so (1) holds
withv replaced by the Riesz product measures (QnIP^ = 7?(©,a(n),<7).
Thus

(2) [(Qn/PnW (X) = WQn/PnW (V^Y" ̂  : Y G ^(<Do)} . ^V

for all n ^ 1. Moreover, it is easy to show that

(3) lim [(QJPM' (y) = v(y), Vy e ^(©).
n

Since ^(Oo) is a finite set, it follows from (1)-(3) that
^[(Qn/Pn)^ = v uniformly on V. Therefore, upon repeating argu-

ments similar to those used in the last paragraph of the proof of
Proposition B, we conclude that (Qn/Pn)[i -> v weakly as n -> oo, which
establishes (iii).

Proof of theorem 1. - First suppose that © = ^. Since the series
in (*) converges by hypothesis, { 9 e © : a(Q)^b(Q)} is at most countable.
If this set is finite, Lemma 1.3 (i) and its proof show that v = (Q/P)\i
for some nonnegative trigonometric polynomials P , Q on G with
inf P > 0. So there is no loss of generality in assuming that the set
in question is countably infinite. In what follows, we shall preserve all
the notations in Lemma 1.3.

00

Now suppose that p = 1, so ^ ^ - b^\ < oo by (i). For each
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natural number n, we have
n n n / n \

\Pn - Qn\ = iFK-n^l < \A,-B,\(Y\A,) 4- B,\A,-B,\ fK +
1 1 2 \ 3 /

/n-1

... + rU^n- l̂ ^ 1^ -^1^+—+ K-fcnl^
\ i

where
^ = g^ = (B,.. .^,-0(^^.. .̂ )

for all j === 1 , 2 , . . . , n . It follows from Lemma 1.3 (i) and (ii) that
n

(1) IIH-(0»/̂ )HII = ll(^-e^(»)ll ^ E |a,-fc,|.||̂ (n)|| =
1

f:|fl,-fr,|^f;|a,-fc,|.
1 1

Since ^-(Sn/P^M.-^-v weakly by Lemma 1.3 (iii), we infer from (1)
00

that ||H-v|| ^ ̂  |a^-^|. Moreover, (Qn/Pn)^ i8 Ae Riesz product
i

measure R(@,a(n\a) by Lemma 1.3 (i). So the last inequality applied
00

to (Qn/Pn)^ in place of ^ yields \\(QJP^-v\\ ^ ^ |a,—^.| for
oo n+1

all n. Since ^1^/~'&,1 < oo, we conclude that (Qn/Pn)^ "^v m ^e
i

norm of M(G), and so v « p,.

Next suppose that 1 < p ^ 2. Let ^ = ^ - a^ and
2)k == ^ - Aj, = Re [dfc9k] for all fe . Since Aj, ^ 1 - |aJ > 0 while
2?fc > 0 on G, it follows from Lemma 1.3 and Lemma 1.1 (ii) that

(2) i&wp^n^o^w
k = l

n
^ Y\A,(l+pD^A,+cW/Afi=

k = l

n (^+pZ),+c^|^^lK^ (l+ReK9J+c,|d,|W-|a,ir1),
k = l k = l

where a'^ = ^ + prf^ for all k. Therefore Lemma 1.3 (i) and (ii) ensure
that

(3) fiSn/Wu- [\QJP^P^(n)^ n {l+c.Xl^l-l^ir1}
J J k=l
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for all n ^ 1. Since the series in (*) converges, (3) shows that
(Qn/Pn)? is a norm-bounded sequence in ^(n). Moreover, (Qn/Pn)^-^v
weakly (hence weak-*) by Lemma 1.3 (in). As p > 1, it follows from
Lemma 1.2 that veZ^n).

In case p > 2, we use Lemma 1.1 (i) in place of Lemma 1.1 (ii).
Thus a calculation similar to the one in (2) shows that \QJP ^P is
less than or equal to

«) n(..R.™.̂ ^
hence

<5) Jie./̂ n(-^^)

for all n, again by Lemma 1.3. Via arguments like those at the end
of the preceding paragraph, we conclude that veZ/^n).

In case © + y, define a' == a on © n ̂  and a' = 0 on Q\^¥.
Then the hypotheses of the present theorem are fulfilled with (T,fc)
replaced by (©,a'). Letting p' ^ R{@,a\a), we therefore have ^ e L^)
by the result for the case © = ^. Similarly we have v e L^^) by the
same result. (Notice that 4' = 7?CF,a\a), where a ' = 0 on ^0.)
Finally pick /eL;^) and geL^W so that V = / M ' and ^ = g[ i .
Then v =/gn and/^eZ/Oi) with r = p^p-l), as is easily seen from
Holder's inequality. This completes the proof.

COROLLARY 1.1. - Suppose that \a-b\/(l-\a\) is bounded on 0 u ̂
and that

^ f|a(y)-fc(y)|4 •)
T.[^^^^^^^^^ and a(y) ^ b^ < oo

/or 5ow^ real number q ^ 2. TT^n v e L^/or all real positive numbers p .

Proof. - Choose a finite positive number C so that \a-b\/(l - \a\) ^ C
on © u ̂ . Since ^ ^ 2, p < 2 implies

la-fclW-lal^-1 = (|a-fc|/(l-|a|))^.|a-b|V(l-|^-1 ^

C^-^la-fcj^l-lal)4-1
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whenever a + b. It follows from the hypotheses that the series in
Theorem 1 converges for all real p ^ 2. Therefore veZ/(u) for all
r = p2/^? - 1) with p ^ 2. Since u is a probability measure, this
ensures that veL^u) for all real positive?, as desired.

Remark (IV). - Suppose that ^^(Q) [and |a| < 1 on ©]. Then,
since a = ^(©,0,o), it is a direct consequence of Corollary 1.1 that
a eZ^(u) for all real p > 0. By the same corollary with [i and v = CT
interchanged, we also have ueL^o) for all such p .

The following result for p = 2 was first proved by Brown and
Moran [1] in a slightly weaker form and was later improved by Ritter [11]
to the present form (both for usual Riesz product measures).

COROLLARY 1.2. — If

..) ^^^•.^}<.
for some 1 ̂  p ^ 2, then v « u.

Proof. - After arguing as in the last paragraph of the proof of
Theorem 1, we may and do assume that @ = ^V.

Now let c = (a+fc)/2. Then |c| < 1 on © and

\c-b\11 _ l__\a-b\p^
(l-ld^-1 ~l{l-\a+b\Y-1'

Therefore Theorem 1 combined with (i) ensures that v « u^,, where
u,= ^(©,c,a).

Next let T= {\a-c ^ (l-|c|)/2}, let

, ^ fa on T
\c on ©\T,

and define ^ = R(Q,d,a). Then

l - a = l - \c+(a-c)\ ^ 1 - |c| - \a-c\ ̂  (l-|c|)/2

on T and \d\ < 1 on ©. Thus

\d(Q)-c(Q)\P _ |a(9)-c(e)|^ ^ |a(9)-b(9)|^
^ n — I^AM^P-I ^ (\—\^(C\\\\P-^ ^ 2^ /i _ \^/c\\\\p-i < °°t(i-irf(9)ir1 t(i-i^(9)ir1'" t-(i- c(9)i)^
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by (i); hence ^ « ̂  by Theorem 1. Furthermore, letting U = ©\T,
we have

I>(9)-d(9)| =^ |a(9) -c(9)| ^
© I/

y-^i^^-W^^^Y"1 ^ 2^v ^-^i- <„
t1 v / v "V (1-10(9)1); - z ^(2-|^9)+fc(9)ir1 < oot

Therefore ^ « ^ by Theorem 1 with p = 1. Combining all these, we
conclude that v « |x.

Remark (V). - Suppose that all the elements of © have odd orders,
that these orders are uniformly bounded, and that 0 ^ a ^ 1 on ©.
Then u = u(Q,a) > 0, where

u = inf{l+Re[a(9)9(x)] :9e© and xeG}.

In the proof of Theorem 1 (for the case p > 1), we have used the
estimate A^ ^ 1 - \a^\. In the present case, we may instead use the
better estimate A^ ^ u. Therefore a momentary glance at the proofs of
Theorem 1 and Corollary 1.1 shows that the condition

S{l^(Y)-^(y)12: yeQu^ } < oo

is strong enough to ensure that veL^n) for all real p > 0. (A weaker
version of this result is proved in Brown and Moran [1] by using
Kakutani's theorem [6]; also Ritter [11 : (4.6)] gives a similar but weaker
result than ours.) On the other hand, if the last series diverges with
© u ̂  replaced by © n ^F, then [i and v are mutually singular by
Peyriere's theorem.

This observation indicates that the sufficient conditions in Theorem 1
can be improved in some special cases. However, the above example
might be too special. Most of the results in the next section provide
better information in this direction.

3. Random Riesz product measures.

Throughout this section, we fix two dissociate triples (©,a,a) and
(©,fc,G) on G, where © = {9^ is countably infinite. As before, we
shall assume that \a\ < 1 on ©. Let ft denote the product of countably
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(infinitely) many replicas of the circle group. The space Q will
always be equipped with its Haar measure of norm 1. For each
0) = (^fc)?6^ write a® = (OfcCOfc) and fcco = (b^k)^ where a^ = a(Qk)
and bfc = fc(9fc) for all k ^ 1.

THEOREM 2. - L^ ^ = ^(©,ao), a) and v^ = R(@,bw,a) for all
co e Q. TTi^n we have either

(i) almost surely Vy, « jj^ , or
(ii) aimast sur^ Vc, 1 ̂ .

Moreover (i) holds if and only if
oo r 1I r»r\c'—V l ^ ,2 f COS^Sfc-tit) , ,\ ^jj^-^i ^-la^^i^^r 00 .

where the Sj, and tj, are real numbers such that (0^ + b^) exp (- is^) ^ 0
and (&k-ak) exp (-14) ^ 0 for all k ^ 1.

To prove this, we need three lemmas. The first two of them are
implicit in Kakutani [6]. The inequalities in the proof of the first lemma
are used in Brown and Moran[l] and in Ritter[ll].

LEMMA 2.1. — Let p be a nonnegative measure, and let (fn)f be a
sequence in Z4(p). Suppose that

(a) /„ dp ^ 1 for all n > 1, and
oo r p -jl/2

wsi-a/^i)1^ <°o.

Then (f^ converges in the L'-norm.

Proof. - Schwarz' inequality and two applications of (a) yield

11/.-/J11 < ll/m/2+/,,1^2•ll/./2-/nl% ^ 211/^-^1, <

2.2l/2^l-fcu,)l/2dpT2

00

for all w, n . Hence ^\\fn-fn+i\\i < oo by (fc). Thus the desired
i

conclusion follows from the completeness of ^(p).
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LEMMA 2.2. - Let p , ^ be two nonnegative finite measures on a
measurable space X. Then the following properties are equivalent :

(a) piT.
(b) Given e > 0, there exists a nonnegative measurable function f on

X such that f > 0, T - a.e. and such that

(J/.p)(J/-'*)<s.

Proof. - Suppose that (a) obtains. Then the Hahn decomposition
theorem provides two disjoint measurable sets A, B such that X = A u B,
p is concentrated on A and T is concentrated on B. Given e > 0,
define/ = 8^4 + e~1^, where ^ denotes the characteristic function of
a set. Thus

(ffdpVff^d^^A).^).
\v / \J /

Since p(X) and x(X) are finite, this establishes (b).

Conversely suppose (b) obtains. Let x ' = p A T, i.e., let T' be the
largest measure such that T' ^ p and T' < T. Given e > 0, let / be the
function furnished by (&). Since / > 0, T - a.e., we also have / > 0,
T' — a.e. Therefore Schwarz' inequality yields

r / r v^/ r v^Tw=J/ l/2./- l^T^^/^J ( r1^) ^
/ f \1/2/ r v/2

(J/dpj ( r1^ <s 1 / 2

by (b). Since e > 0 was arbitrary, this proves that T' = 0, i.e., that
PiT.

LEMMA 2.3. - Let a, R e C fee SMC/I ̂  |a| < 1 and |p| ^ 1. H^rte

i r271
^(a,P) = y- {(l+Reta^Xl+Re^1"])}^2^,27C Jo

y = 2-l(P+a) = |y|<?" and 8 = 2-l(P-a) = |8|^,
wn^re 5 and t are real. Then

(i) /(«,»>! - |8|̂ !̂̂ + sin'(,-,)},

®/(.,P) ̂ -^{^l+sin.^-o},
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and
(iii) 7(za,z(3) = J(a,P)/or all zeC mth \z\ = 1.

Pyw/. - If |z| == 1, then

(1) {(l+ReMXI+Retpz])}^
{(1 + Re [yz] - Re [8z])(l + Re [yz] + Re [Sz])}1^ =

^^-(^'P
Since (1-v2)1'2^ 1 - i;2 for all ue[- l , l ] , it follows from (1) that

<2' •^^{^-^S--
|8|2•• ̂  cos^t+u) |8|2 f^cos^O-s+u).^ — ——— i ——————————————— fj^ == Y — —— i ——————————— ^•n
2n Jo 1 + |y| cos (s+u) 27i Jo 1 + |y| cos u

To evaluate the last integral, we first expand the numerator

cos2 (t—s-^-u) = {cos (5—0 cos u + sin (s—t) sin u}2,

and then use the following elementary formulas :

[2K cos u sin M ^M _
( ) Jo 1 + lY l cosu ~ ?

_1_ F271 cos2 u du ^ _____1______
( ) 27i ̂  1 + lyl cosu" (l-lYl2) l /2+ 1 - lyl2 '

and
-If271 sin2 u du ^ 1

( ) 271 Jo 1 + |y| c o s M ~ ( l - | y ] 2 ) l / 2 + I *

These formulas are easily derived using either v = tan (u/2) or Cauchy's
Residue Theorem. From (2)-(5), we infer that

^^-^{.̂ ^^-(i5"^-,}.
•-î {̂ -...2 (-)}.

which establishes (i).
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For (ii), notice that (1-y2)1/2^ 1 - v2/! for all y e [-1,1]. There-
fore (1) yields

{(l+Re[az])(l+Re[pz])}1/2^ 1 + Re[yz] - 2-1 (Re^2 .
1 + Re[yz]

So a similar estimate as above establishes (ii).

Part (iii) is obvious.

Proof of theorem 2. - For © = ((DjOeQ, x e G and fe , n ̂  1, define

^fc(co) = ^k((o,x) = 1 + Re[^c0fc6fe(jc)],
and

nP^(G))= P«((O,X)= n^M-i
Define ^((D) and Q^w) similarly with ^ replaced by ^. Therefore

Hco = ^(©,aco,<j) = lim P^(o))a,
n

and
v^ = ^(©,fco),a) = lim S^(o))a

n

weakly by Proposition B. Write HQ = 1,
n

(1) ^(co) = a,(o))/^((o) = rK^fc^)/^^)), Vn ^ 1,
1

and £'(/((o)) for the expectation of/eL^Q). Thus

(2) ^(^fc(co)) = E(B^)) = 1, Vk ^ 1.

Now let m ^ n ^ r be nonnegative integers. Then

/ w \ / " \172/ r \[^(^^((o)]1^^) = m )̂ n ̂ (<o)^(co) (rK(co))
V 1 / \m+l / \n+l )

by (1). Since the projections CD -> ̂  are stochastically independent, it
follows from (2) and Lemma 2.3 that

(3) EdH^H^)]1/2?^ = f] ̂ ([^((o^o))]1/^
m+l

n ^n W^AOO^) = n ̂ '^)
"''"I m + l
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for all x € G. On the other hand,

(4) f H^)P^)da = f &(o))fn^))Ar = 1
JG JG \n+l

by (1) and condition (a) of Proposition B. Therefore Schwarz' inequality
applied to the measure ^(co)<7 yields

(5) f [H^HMl2?^) da < 1, V(o e ft.
JG

Since P^(co)a ->- ̂  weakly, we also have

(6) f [^(o))^(co)]1/2^ == lim f [H^HM^PM do
JG r Jo

for each © e ft. In particular, the left-hand side of (6) is Borel measurable
qua function of (o. It follows from (5) and (6) that

(7) E([ [^(G))^(o))]1/2^)
\JG /

= l i m ^ f f [H^HM^P^da} by Lebesguer \JG /

= lim | E^H^H^)]112?^)) da by Fubini
r JG

= f A^A)^ by (3)
JG m+l

= n^A)
m + l

whenever m ^ n.

Now assume that the series in Theorem 2 converges, so

" , . -/cos^St-tn) \
^^(o-M)-^)'00 ' .

where Cfc = (b^a^/l = | ̂  | exp (iSfc) and d^ = (b^-a^ll = |^|exp(ftfc)
for all k. Then we can choose natural numbers N^ < N^ < ' " so
that

<8) n[.-..i<^^)]>>-4--
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for all n ^ m ^ 7Vj and all 7 = 1,2, . . . It follows from (7), Lemma 2.3
and (8) that

E(\ [^(co)^((o)]1/2^) > 1 - 4-^'
\JG /

whenever n ^ m ^ Nj. Taking (5) and (6) into account, we therefore
infer from Schwarz' inequality and E(l) == 1 that

E (Tl - f [H^H^^d^ \ ̂

\E ( l - f [^(o))^^)]1/2^ < 2-^'

for all n ^ m ^ TV^-. Hence

^ f I f1- f [^/co)^,^^)]1^^"! ) < 1 ;
\7'=lL JG J /

in particular,

(9) E |~1- f [^/^^.^((o)]172^! < oo almost surely.
7 = l L JG J

Moreover, we have

(10) ^(©) ̂  = lim ^(G))P,(CD) do = 1 Vn ^ 1
JG r JG

by (4). It follows from (9), (10) and Lemma 2.1 that almost surely
(J^.((y))JLi converges in the norm of L1^). Recalling that
7^((o) = ^(o))/P^((o) for all n , we therefore conclude from Lemma 1.3
that almost surely v<o e L1 (j^) •

Conversely, suppose that the series in Theorem 2 diverges. Then,
since sin2 t + cos2 t = 1, it is obvious that01) l/•l'(^^l^+8m'<••-'•))-co•
Now (7) with w = 0 and Lemma 2.3 yield

E ( ! ^(co)1/2^ = n ,̂ ̂ ) <
n^-T^-2^-..')]
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for all n. From this and (11) it follows that

l im^ff^^/^^O;n \JG )
hence

E ( lim inf | ^(co)172^) = 0
\ n JG )

by Fatou's lemma ; hence

(12) lim inf ^(o))172^ = 0 almost surely.
n JG

Moreover, v^ = &,(co)Va(n) by Lemma 1.3, and so

(13) ^(o) == e«((o)/P^((o) > 0, v, - a.e.

for all n ^ 1 and coeO. Furthermore, Schwarz' inequality yields

(14) f ^(co)-1/2^ = f [Pn^/QnW^^dv^n) ̂
JG JG

.1/2
( | ?„(©) dv^(n) \ Q^) dvM\
\JG JG /

?„(©) d^(n) | e^((o) ̂ vjn) = 1
JG JG /

for all coeQ. By (12)-(14) we may apply Lemma 2.2 to conclude that
almost surely ^ and v^ are mutually singular. This completes the proof
of Theorem 2.

Remark (VI). - Ritter [12 : (4.2)] observes that, in the case of usual
(generalized) Riesz product measures ^i, v, the condition which naturally
corresponds to (12) in the above proof implies the mutual singularity
of ^ v.

THEOREM 3. - Write b^-a^ = {b^-a^ exp (f^) and a^ = fljj
exp(fMfc), -where the 4 and u^ are real for all k ^ 1. Suppose that
1 < p < oo and that :

"00

(i) in case p < 3/2, ^ |^-V < oo ;
i

(ii) in case p = 3/2,
00Zi^-wicos^-^i^iogai-ifljr^+i} < oo;i
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(iii) in case 3/2 < p ^ 2,
00

E 1^-fcfc ^ICOS (t,-U,)\P/(l - W 3/2 + 1} < 00 ;
1

oo

(iv) fn cas^ p > 2, S I^-W/O-I^IV372 < oo anrf
i

00

El^-^12{|cos(^-^)|2/(l-|aJ) l /2+l}< oo.
i

Then v^eL^J ^wosr sur̂ .

We believe that the conditions in (i)-(iii) are best possible, although
we have not attempted to prove it. On the other hand, the first
condition in case (iv) can be slightly relaxed in the case 2 < p < 3.
This will become clear from our proof of Theorems and the lemma
given below. If the reader feels that the above result is too messy, he
is strongly encouraged to give a direct proof that, e.g., the condition
in (ii) implies the convergence of the series in Theorem 2.

LEMMA 3.1. - Let 1 < p < oo and let
r2n

^(a,8)= Icos^+S^/a-acos^-1^
Jo

for a 6 [0, 1) and real 5. Then there exists a finite constant Mp, depending
only on p and independent of a and 8, such that :

(0 if P < 3/2, then 7^(a, 8) ^ Mp;
(ii) if p = 3/2, then

//a, 8) ^ Mp{\cos ̂  log ((1-oi)-1)-{-!};

(iii) if 3/2 < p < 3, then

//a, 8) < M^|cos 81^(1 -a^-^+l};

(iv) if p = 3, then

/s(a, 8) ^ M3{|cos 8[3/(l -a)^2 + |sin 8|3 log ((1 -a)-1)-}-1};

(v) if p > 3, then

7/a,8)^ A^/a-a^-372.
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Proof. - In this proof, the symbols K^ K^, . . . , will denote finite
positive constants which depend only on p and are independent of a
and S.

If p < 3/2, then
rn/2 /.2

/^(a,8) ^ 4 l/O-cos^-1^ ^ 4 l/(t2/4y-ldt =
Jo Jo

4? j \ -2(p-l)^ = ^ < ^
Jo

since 2(p-l) < 1. This establishes (i).

So assume that p ^ 3/2. If a ^ 1/2, then the integrand in the
definition of Jp(a,5) is less than or equal to l/O-a)^"1 < 2P~1 , so
7p(a,5) ^ In.y1. Therefore we may also assume that a > 1/2.

Now define

-fJo
(1) Cp(a) = cost^/a-acosyA

Jo

for a e (1/2, 1). Then we have
r^/2

CpW ^ 4 (cos 0 / (1 - a cos tY-1 dt ^
Jo

/•7C/2

4 (cos t/2) / (1 - a + 2a sin2 (tW 1 dt ^
Jo

8 l/(l-a+2aM2)p-l^ ^ 8 f 1 (1-cx+u2)-^-1) ̂
Jo Jo

since 2a > 1. In particular,

(2) C3/^a)<8 ( (l-a+M2)- l/2^=8[^(M+(l-a4-M2) l/2]b l<
Jo

8 [2 + log ((1-a)-1)].

In case p > 3/2, set ^ = (1-a)172. Then

w/8 ^ f r + rVi-a+u2)-^-1^ <
\ Jo J^ /

^(1-a)-^-^ + ( u-^-^du < ^(l-a)1-^ + ^3-2p/(2p-3);
JA
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hence

(3) ^(a) < ^/(l-a^-3/2 for p > 3/2.

Now we estimate
riK

(4) 5p(a) = |sin ̂ /(l -a cos r^-1 A
Jo

for a e (1/2, 1). Note that
r^/2

SpW ^ 4 Isin^/Cl-acosO^-1^ ^
Jo

^/2

4.2^ |sin W2)|^/(l -a + sin2 t/2)Y-1 dt.
Jo

Letting u = sin2 Q/2) and v = 1 - a 4- u, we therefore have

5^(a) < 8.21' | ^-^/(l-a+i^-1^ =
Jo

p2-a ^

8.2^ (y-l+a)^-1^/^-1 rft; < 8.2^ v-^-^dv
J^- Ji-.Hence

(5) ^(a) ^ 8.2^ f2!;-^-1)/2^ == ^3 for p < 3,
Jo

(6) 63 (a) ^64 v~1 dv ^ 64 [14- log ((1 - a)-1)],
Jl-a

and

(7) ^(a) ^ 8.2^ f v-^-^dv ^ ̂ /(1-a)^-3/2 for p > 3.
Jl-a

Finally, note that

I cos (t + 8)1^ ^ V (| cos 8 cos t j" + | sin 5 sin t ̂ )

for all real t and 8. Hence

(8) /^(a,8) < 2^|cos 81^^(0) + |sin S^S^a)}

by (1) and (4). The desired results for p ^ 3/2 are obtained by combining
(2) and (3) with (5)-(8). We leave the details to the reader.
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Proof of theorem 3. — We shall preserve all the notations in the
proof of Theorem 2 except for d^ = b^ - a^ = \d^ exp (it^. However,
we shall omit co in ^(0), ^k(co), etc. Write Dj, = Bj, - A^ = Re [d^G J
for each k.

Let Cp be the positive finite constant furnished by Lemma 1.1, and
let n, r be two natural numbers with n < r . Assuming p ^ 2, we then
have

\= l"n (i+^/^l^r^[Qn/Pn^Pr = fl ̂  + ̂ / ̂ ) p p.

[n (i+p^/^+^iz),/^^)1n^ =
Lk=l Jk=l

rrK^+p^+^i^i^r^ln^-
Lk=l Jn+1

Recall that E(A^) = E{B^ = 1 for all k and that the 0^ are stochastically
independent. It follows from the above inequality that

(1) E(\QJP^P,) ^ n (l+c^(|2)^/^-1)).
k = l

Now fix x e G and choose a real number v^ = ^(x) so that
9fc(x) = exp (iVk). Then

^^ ,./^-i) = ̂  f" icos(^^+^r^ ^
MIAJ /Ak ) 27T J, (l+|a,|cos(r+t^))-1

l^l^f271 |cosft+8,)|^f |̂
-2.-! (i-^i cos or ̂ ^^i98^

where 8^ = tk — Mk for k S? 1. Assuming further that p < 3/2, we
therefore have

(2) E^D^/A^-1) ̂  MpW for all k ^ 1,

where Afp is the positive finite constant furnished by Lemma 3.1 (i).
Hence

(3) E( Qn/P^Pr) < n;=, (14-C^I^) ^
00

exp(CpMp^|^|")= C, say,
i
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for all r > n by (1) and (2). Since P,a -^ ̂  weakly by Proposition B,
it follows from Fatoifs lemma, Fubini's theorem, and (3) that

E( \ \QJP^d^\ = ^lim f \Qn/P^P,da} <
\JG / \ r JG )

liminf ^( \QJP^P,da) = liminf f E(\QJP^P,) da ^ C
r \JG ) r JG

for all n. Therefore one more application of FatoiTs lemma yields

(4) ^(lim inf f \QJP^ d^ ^ C.
\ n JG /

00

Notice that C < oo since ^ 1^1^ < oo by the present case assumption.
i

Hence (4) implies that

(5) liminf \Qn|Pn\p d^ < oo almost surely.

From (5), Lemmas 1.2 and 1.3 (iii), we conclude that almost surely
00

v^eL^nJ, provided that 1 < p < 3/2 and ^ Iri^ < oo.
i

The proofs for the other cases will now be clear to the reader. We
omit the details.

Finally, we give two applications of Theorem 2 to Riesz product
measures on the circle group T, where the basic probability measure
<j is chosen to be the normalized Lebesgue measure on T. As usual,
we shall regard T as R (mod 2n) and identify the dual of T with the
additive group Z of all integers.

THEOREM 4. - Let (Wt) and (n^) be t\vo sequences of natural numbers
such that

(i) 2(wini + .. • +w^) < n^-n for all k ^ 1.

Also let (Ok) and (b^) be two sequences in {z e C: \z\ < 1}. Define
^ = -R({"kL (0) and v = R({Uk}, (fr^)). Choose 5^, ^ e R 50 that

(Ok + bk) exp (- is,,) ̂  0 and (^ - ̂ ) exp (- iQ ^ 0

fo all k ^ 1.
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(a) If jfljj < mjk/( l+Wk) and jhjj ^ Wfc/( l -hmk) for all k, and if

^-^{p-^^^1}^-
then v « H .

(b) On the other hand, if

^"•-^'{p-ij^to'^.)]-^'}-'0-
then v J- H .

Proof. — First of all, note that the n^ form a dissociate set in Z
by (i), and so the definitions of p. and v make sense.

Next recall that the m th Fejer kernel on T is the function K^
defined by

^(0 = £[l-l^l/(l+^)]exp(^) for r e R .
—m

Thus K^ is a nonnegative trigonometric polynomial on T with

L, ̂ a = 1 (cf. [15]).

Now let (o = (o)fc) e ft be given. Writing co^ = exp (i^) with real ^,
define 7?k(0=7^(o), 0==^(i^4-n^) for fe > 1. Thus R^ is non negative
and

mfc

^(O- Z [l-|^|/(l+m,)](oJ,exp(^r).
-Wfc

By using (i), it is easy to show that the sequence (R^R^, . . . Rr^)^\
converges weak-* to a probability measure ^ e M(T). Moreover,

r

(1) Un)= PI [l-141/(l+m,)]o^
k = l

if n € Z has the form n = ^n^ + • • • + ^.n,., where r e N and
^ € {0, ± 1, . . . , ±mjJ for k = 1, 2, ..., r ; and X^(n) = 0 if n does not
have the above form (cf. [10] and [11]).

Now suppose that the hypotheses in part (a) hold. Let
a^ = ^(l+m^/Wfc and b^ = b^l^-m^/m^ for all k > 1. Consider the



RIESZ PRODUCT 91

Riesz product measures

^ = ^({^}, (^(Ok)) and v;, = ^({^}, (b )̂)

for 0)60. By (1), it is easy to show that p, = ̂  * ̂  and v = v^ • ̂
for all o) e Q, where CD = (o^) • On the other hand, the series in (a)
converges, and so Theorem 2 ensures that Va« ̂  almost surely.
In particular, there exists co € ft such that v^ « p^ • Since all of ^,
v<o and ^ are positive measures, it follows that v =
V(o * ̂  « HO) * ̂  = n.

Finally, suppose that the series in part (V) diverges. Define ^ =
^({"k}, (^®k)) and v^ = ^({Ufc}, (A^)), where ^ = a^/O ^-w^)
and bfc = b^m^KX+m^ ^or all k. Then we have Ha = n * ^co and
v^ = v * X(Q for all co e Q. Moreover ̂  ± v^ almost surely by Theorem 2
and the present hypothesis. Consequently we obtain ^ J - v , which
completes the proof.

COROLLARY 4.1 (Notation as in Theorem 4.) — Suppose that
(i) 2(miMi+ • • • +Wfcnk) < M^+i for all k ^ 1 ,

oo

(ii) £ (1^1 + \bk\)/m, < ao, and
k = l

(iii) max(|flj, |bJ) < m^l^^rm^ for all k ^ 1 .

TTî n /̂î r v « p or v JL n. Moreover v « p. obtains if and only if

<•' ^•••V^-1}--
Proo/. - We shall preserve all the notations in the proof of

Theorem 4. Define ̂  = ^({njj, (a^k)) and v<o = ^({Wfc}, (^0^)) for co e 0.

We claim that for each coeQ, the three measures pa, ^, ^[VQ,,
^5 ^l are mutually equivalent, i.e., mutually absolutely continuous. In
fact, coeQ implies

00 00

£ |flk0)k-flk(oj = £ l^kl/mfc < oo
i i

by (ii). Also \a^\ ^ 1^0)^1 = j a^Kl+m^/mfc < 1 for all k by (iii).
Thus two applications of Theorem 1 with p = 1 ensure that ^ and
Ha are mutually equivalent. Similarly ^ and ^ are mutually equivalent.
The same argument with the a's replaced by the b's shows that v<o,
v^, VQ», are mutually equivalent.
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Now suppose that the series in (*) converges. Then almost surely
^ and Vm are mutually equivalent by Theorem! and (iii). It follows
from the above claim that almost surely ^ and v^ are mutually
equivalent. Hence the series in part (a) of Theorem 4 converges by
Theorem 2. Therefore v « ^ by Theorem 4 and (iii).

Finally suppose that the series in (*) diverges. Then almost surely
|i(o and Va are mutually singular by Theorem 2 and (iii). Therefore,
almost surely p,̂  and v^ are mutually singular by the above claim.
Hence the series in part (fo) of Theorem 4 diverges by Theorem 2, and
so n and v are mutually singular by Theorem 4. This completes the
proof.

Remarks (VII). — Suppose in Theorem 2 that © is an independent
set consisting of elements of infinite order and that CT = 0 on Gp(Q)\{l},
where Gp(©) denotes the subgroup of F generated by ©. Then the
«almost sure» statements in Theorem 2 may be replaced by the
corresponding «sure» statements. The proof of this depends on the
fact that © is stochastically independent with respect to <j and on the
property that a(9") = 0 for all 9 e © and all nonzero n e Z (under the
present hypotheses). The same comment applies to Theorem 3 as well.
We omit the details.

(VIII) Let (nk) be a sequence of natural numbers. As is well-known,
if Ujk -> oo « very rapidly », then the exponential functions t -^ exp (in^t)
behave as if they were stochastically independent (with respect to the
normalized Lebesgue measure on the circle group). This gives us an
intuitive explanation of why the conclusions of Corollary 4.1 hold.
However, the important point of Corollary 4.1 is that, given two
sequences (a^), (bj,) in {z e C: |z| < 1}, it provides an explicit sufficient
condition on the « speed » of n^ -^ oo in order that the corresponding
Riesz product measures be either mutually absolutely continuous or
mutually singular.

(IX) Part of Theorem 1 is based on lectures about usual Riesz
product measures given by the second author at Tokyo Metropolitan
University in 1975 or 1976. Most of the results in sections 2 and 3
(for usual Riesz product measures) are contained in the first author's
Ph.D. dissertation at Kansas State University (Summer, 1986), which
was written under the direction of the second author.

(X) Added on May 22, 1987. The referee has kindly pointed out to
us that Peyriere's paper [16] deals with Riesz product measures on
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the real line. He has also suggested that the restriction
max (ctk, bk) < m^ / ( 1 + m^) in Theorem 4 might be slightly relaxed by
using appropriate kernels other than the Fejer kernel.
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