MASAYOSHI HATA On continuous functions with no unilateral derivatives

Annales de l'institut Fourier, tome 38, nº 2 (1988), p. 43-62 <http://www.numdam.org/item?id=AIF_1988_38_2_43_0>

© Annales de l'institut Fourier, 1988, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 38, 2 (1988), 43-62.

ON CONTINUOUS FUNCTIONS WITH NO UNILATERAL DERIVATIVES

by Masayoshi HATA

1. Introduction.

It is known that A. S. Besicovitch in 1925 gave the first example of a continuous function B(x) which has nowhere a unilateral derivative finite or infinite by geometrical process. E. D. Pepper [9] has examined this same function B(x), giving a different exposition. The graph of his function is illustrated in Figure 1. Later, A. N. Singh [12, 13] gave the arithmetical definition of B(x) and constructed an infinite class of such non-differentiable functions. On the other hand, A. P. Morse [8] gave an example of a continuous function f(x) satisfying

$$\liminf_{s \to x^{\pm}} \left| \frac{f(s) - f(x)}{s - x} \right| < \limsup_{s \to x^{\pm}} \left| \frac{f(s) - f(x)}{s - x} \right| = \infty$$

respectively, for every $x \in (0,1)$, by arithmetical process.

It seems, however, that their methods are somewhat complicated and inappropriate to the study concerning further properties of such functions. In the present paper we shall develop a simple but powerful method to construct and analyze such singular functions by using certain one-dimensional dynamical systems.

The difficulties of finding such functions may be explained by the fact that the set of functions which have nowhere a unilateral derivative finite or infinite is of only the first category in the space of continuous functions (S. Saks [11]), while the set of functions which have nowhere a finite unilateral derivative is of the second category (S. Banach [1], S. Mazurkiewicz [7] and V. Jarnik [5]).

Key-words : Non-differentiable functions - Knot points - Functional equations.

Fig. 1.

2. Main Result.

To state our main theorem, we need some definitions and notations. We denote, as usual, the upper and lower derivatives at x of a real-valued function f(x) on the right by $D^+f(x)$, $D_+f(x)$ respectively. Similarly the upper and lower derivatives, on the left, are denoted by $D^-f(x)$, $D_-f(x)$ respectively. A point x is said to be a knot point of f(x) provided that

$$D^{+}f(x) = D^{-}f(x) = \infty$$
 and $D_{+}f(x) = D_{-}f(x) = -\infty$.

The set of knot points of f(x) is denoted by Knot (f). For a measurable

set E, we denote by |E| the Lebesgue measure of E. Our theorem can now be stated as follows :

THEOREM 2.1. – For any $\alpha \in [0,1)$ and $\varepsilon \in (0,1)$, there exists a continuous function $\psi_{\alpha,\varepsilon}(x)$ defined on the unit interval I sayisfying the following properties :

- (1) $\psi_{\alpha,\varepsilon}(x)$ has nowhere a unilateral derivative finite or infinite;
- (2) $|\text{Knot}(\psi_{\alpha,\varepsilon})| = \alpha;$
- (3) $\psi_{\alpha,\varepsilon}(x)$ satisfies Hölder's condition of order 1ε .

Remark. – K. M. Garg [3] has shown that the set of knot points of Besicovitch's function is of measure zero. He also showed that, for every continuous function defined on I which has nowhere a unilateral derivative finite or infinite, the set of points at which the upper derivative on one side is $+\infty$, the lower derivative on the other side is $-\infty$, and the other two derivatives are finite and equal has a positive measure in every subinterval of I; therefore the constant α in our theorem can not be taken to be 1. Note that the set Knot (f) is of the second category if f(x) is a continuous function which has nowhere a finite or infinite derivative (W. H. Young [14]).

As a corollary, we have immediately

COROLLARY 2.2. – For any $\alpha \in [0, 2\pi)$ and $\varepsilon \in (0, 1)$, there exists an absolutely convergent cosine Fourier series

$$\Psi_{\alpha,\varepsilon}(x) = \sum_{n=0}^{\infty} a_{\alpha,\varepsilon,n} \cos nx$$

satisfying the following properties :

- (1) $\Psi_{\alpha,\varepsilon}(x)$ has nowhere a unilateral derivative finite or infinite;
- (2) $|\text{Knot}(\Psi_{\alpha,\varepsilon}|_{[0,2\pi]})| = \alpha$;
- (3) $\sum_{n=1}^{\infty} |a_{\alpha,\varepsilon,n}|^2 n^{2-\varepsilon} < \infty.$

For the proof of Theorem 2.1, we shall introduce a symbol space in section 3 and certain functional equations in section 4. The fundamental properties of the solution are investigated in sections 5 and 6. We then prove Theorem 2.1 in section 7 using Cantor sets of positive measure.

3. Preliminaries.

We first divide the unit interval I into m subintervals

$$I_1 = [c_0, c_1], I_2 = [c_1, c_2], \ldots, I_m = [c_{m-1}, c_m]$$

where $0 = c_0 < c_1 < c_2 < \cdots < c_m = 1$, $m \ge 2$ and define the *address* A(x) of a point $x \in I$ by setting A(x) = j for $c_{j-1} \le x < c_j$, $1 \le j \le m$ and $A(c_m) = m$. Let $g_j(x)$ be a strictly monotone, either increasing or decreasing, continuous function defined on the subinterval I_j such that $g_j(I_j) = I$ for $1 \le j \le m$. Define the sign ε_j to be either +1 or -1 according as g_j is monotone increasing or monotone decreasing on I_j . We assume, in addition, that $g_1(x)$ and $g_m(x)$ are monotone increasing; so $\varepsilon_1 = \varepsilon_m = +1$.

Let $\Sigma = \{1, 2, ..., m\}^N$ be the one-sided symbol space endowed with the metric

$$d(w,z) = \sum_{n=1}^{\infty} 2^{-n} |w_n - z_n|$$
 for $w = (w_n), z = (z_n) \in \Sigma$.

It is known that Σ is a totally disconnected compact metric space. Let $G(x) = g_{A(x)}(x)$ for brevity. Note that the function $G: I \to I$ is not necessarily continuous. We then define the *itinerary* v(x) of a point $x \in I$ by setting

$$v(x) = (A_0(x), A_1(x), \dots, A_n(x), \dots)$$

where $A_n(x) = A(G^n(x))$ for $n \ge 0$. Put $e_0 = \{0,1\}$ and define the set e_{n+1} inductively by setting $e_{n+1} = \{0 < x < 1; G(x) \in e_n\}$ for $n \ge 0$. Obviously $\# e_n = m^{n-1}(m-1)$ for $n \ge 1$. Let $e = \bigcup_{n\ge 0} e_n$. Then it is easily verified that the set of discontinuity points of v is precisely equal to the set $e - e_0$.

Put $\Lambda_0 = \{v(x); x \in e_0\}$. For $N \ge 1$, let Λ_N be the set of words $w = (w_n) \in \Sigma$ such that either $w_n = 1$ for n > N, $w_N \ne 1$ or $w_n = m$ for n > N, $w_N \ne m$. Let $\Lambda = \bigcup_{n \ge 0} \Lambda_n$. Then it is easily seen that for $x \in e - e_0$ there exist the limits

 $\lim_{\varepsilon\to 0^{\pm}} v(x+\varepsilon) = (A_0(x\pm), A_1(x\pm), \ldots)$

in $\Lambda - \Lambda_0$ respectively. Note that v(x) is equal to either v(x+) or v(x-). Thus the set Λ_n consists of the following $2m^{n-1}(m-1)$ distinct words:

$$\{v(x+); x \in e_n\} + \{v(x-); x \in e_n\}$$

for $n \ge 1$. Therefore we have $\Lambda = \Lambda_0 + \Sigma_+ + \Sigma_-$, where $\Sigma_+ = \{v(x+); x \in e-e_0\}$ and $\Sigma_- = \{v(x-); x \in e-e_0\}$.

We assume further that each function $h_j = g_j^{-1} : I \to I_j$ is a contraction; namely the Lipschitz constant

$$\operatorname{Lip}(h_j) = \sup_{x \neq y \in I} \left| \frac{h_j(x) - h_j(y)}{x - y} \right|$$

satisfies Lip $(h_j) < 1$. Let $\gamma = \max_{\substack{1 \le j \le m}} \text{Lip}(h_j) \in [1/m, 1)$. We then define the mapping $\mu : \Sigma \to I$ by setting

$$\mu(w) = \lim_{n \to \infty} h_{w_1} \circ h_{w_2} \circ \cdots \circ h_{w_n}(I) \quad \text{for} \quad w = (w_n) \in \Sigma.$$

Clearly μ is continuous. Then it follows that $X = \mu(\Sigma)$ is a compact subset of I and satisfies the following equality:

$$X = h_1(X) \cup h_2(X) \cup \cdots \cup h_m(X).$$

It is known that the above equation possesses a unique non-empty compact solution [4, p. 384]; thus we have $\mu(\Sigma) = X = I$, since $h_j(I) = I_j$ for $1 \le j \le m$. It also follows that the set *e* is a dense subset of *I*; therefore the mapping v is one to one.

Let
$$S_n = \bigcup_{0 \le j \le n} e_j$$
 for $n \ge 1$ and let

$$H_{n,x}(y) = h_{A_0(x)} \circ h_{A_1(x)} \circ \cdots \circ h_{A_{n-1}(x)}(y)$$

for $n \ge 1$ and $x, y \in I$. Obviously $H_{n,x}$ is a contraction satisfying Lip $(H_{n,x}) \le \gamma^n$. We first consider an arbitrary point $x \in I - e$. Put $K_{n,x} = H_{n,x}(I)$ for $n \ge 1$. Since $K_{n,x}$ is the connected component of $I - S_n$ containing x and $|K_{n,x}| \le \gamma^n$, we have

$$\lim_{n\to\infty}\bar{K}_{n,x}=x;$$

that is, $\mu \circ v(x) = x$. Thus v maps I - e homeomorphically onto

v(I-e). We next consider an arbitrary point $x \in e_N$, $N \ge 1$. Put $K_{n,x}^{\pm} = H_{n,x\pm}(\mathring{I})$ for $n \ge N$, respectively. Since $K_{n,x}^{\pm}$ are the two consecutive connected components of $I - S_n$ such that the left end point of $K_{n,x}^{\pm}$ is x and the right end point of $K_{n,x}^{\pm}$ is also x, we have

$$\lim_{n\to\infty}\bar{K}^+_{n,x}=\lim_{n\to\infty}\bar{K}^-_{n,x}=x;$$

so $\mu \circ \nu(x) = \mu \circ \nu(x \pm) = x$. Similarly we can define $K_{n,0}^+$ and $K_{n,1}^-$ for $n \ge 1$; thus $\mu \circ \nu(0) = 0$ and $\mu \circ \nu(1) = 1$. Then we have

LEMMA 3.1. $-v(I-e) = \Sigma - \Lambda$; namely, $w = (w_n) \in v(I-e)$ if and only if

$$\# \{n \ge 1; w_n \ne 1\} = \infty = \# \{n \ge 1; w_n \ne m\}.$$

Proof. - Suppose that $w = v(x) \in \Lambda$ for some $x \in I - e$. Since v is one to one, we have $v(I-e) \cap v(e) = \phi$; thus $w \in \Sigma_+ + \Sigma_-$. Hence there exists $y \in e - e_0$ such that either w = v(y+) or w = v(y-). Therefore $x = \mu \circ v(x) = \mu(w) = \mu \circ v(y\pm) = y$. This contradiction implies that $\Lambda \cap v(I-e) = \phi$; that is, $v(I-e) \subset \Sigma - \Lambda$. Thus it suffices to show that $\Sigma - \Lambda \subset v(I-e)$.

Suppose now that there exists a word $w = (w_n) \in \Sigma - \Lambda$ such that $w \notin v(I-e)$. Put $z = (z_n) \equiv v \circ \mu(w)$. Then it follows that $w \neq z$. For otherwise, we have $\mu(w) \in e$; thus, $w \in v(e) \subset \Lambda$, contrary to $w \in \Sigma - \Lambda$. Let $N \ge 1$ be the smallest integer such that $w_N \neq z_N$. Since $\mu(w) = \mu \circ v \circ \mu(w) = \mu(z)$, it follows that

$$h_{w_N} \circ h_{w_{N+1}} \circ \cdots = h_{z_N} \circ h_{z_{N+1}} \circ \cdots$$
, say p .

Then we have $p \in e_1$ and w, $z \in \Lambda_N$, contrary to $w \in \Sigma - \Lambda$. This completes the proof.

4. Functional Equations.

Let $f_j: I \to I$ be a contraction for $1 \le j \le m$. We assume that $c_0 = 0$ and $c_m = 1$ are unique fixed points of $f_1(x)$ and $f_m(x)$ respectively. The following lemma is a special case of the general theorem obtained by the author [4, p. 397], but we include the proof for completeness.

LEMMA 4.1. – The functional equations

(4.1) $\psi(x) = f_j(\psi(g_j(x)))$ for $x \in I_j, \ 1 \le j \le m$

possess a unique continuous solution $\psi(x)$ if and only if

(4.2)
$$f_j\left(\frac{1+\varepsilon_j}{2}\right) = f_{j+1}\left(\frac{1-\varepsilon_{j+1}}{2}\right) \quad \text{for} \quad 1 \le j \le m-1.$$

Remark. – This is a generalization of the theorem obtained by G. de Rham [10]; indeed he has shown that the equations

$$M\left(\frac{x}{2}\right) = F_0(M(x)), \ M\left(\frac{1+x}{2}\right) = F_1(M(x)) \quad \text{for} \quad x \in I$$

possess a unique continuous solution M(x) if and only if $F_1(p_0) = F_0(p_1)$ where p_0 , p_1 are unique fixed points of the contractions F_0 , F_1 respectively. Lebesgue's singular functions and Pólya's space-filling curves satisfy the above equations for certain affine contractions F_0 and F_1 .

Proof. — The conditions (4.2) are obviously necessary; thus it suffices to show the sufficiency. Let \mathscr{F} be the set of continuous functions u(x) defined on I satisfying u(0) = 0 and u(1) = 1; obviously \mathscr{F} is a closed subset of the Banach space C([0,1]) with the usual uniform norm. We now consider the following operator:

$$Tu(x) = f_{A(x)}(u(G(x))).$$

Then it is easily seen that the conditions (4.2) imply that $T(\mathcal{F}) \subset \mathcal{F}$; moreover T is a contraction, since

$$||Tu-Tv|| \leq \lambda \max_{x \in I} |u(G(x))-v(G(x))| \leq \lambda ||u-v||,$$

where $\lambda = \max_{\substack{1 \le j \le m}} \operatorname{Lip}(f_j) \in [1/m, 1)$, for any $u, v \in \mathscr{F}$. Hence T has a unique fixed point ψ in \mathscr{F} ; namely

$$\psi(x) = f_j(\psi(g_j(x))) \quad \text{for} \quad c_{j-1} \leq x < c_j, \quad 1 \leq j \leq m.$$

Obviously this equality holds also true for $x = c_j$. This completes the proof.

For $n \ge 1$ and $x, y \in I$, we define

$$F_{n,x}(y) = f_{A_0(x)} \circ f_{A_1(x)} \circ \cdots \circ f_{A_{n-1}(x)}(y).$$

The function $F_{n,x}$ is a contraction satisfying $\operatorname{Lip}(F_{n,x}) \leq \lambda^n$. Put $\beta = \max_{1 \leq j \leq m} \operatorname{Lip}(g_j) \in [m, \infty]$. Then we have

LEMMA 4.2. – Suppose that $\{f_j\}$ satisfy the conditions (4.2). If $\beta < \infty$, then the continuous solution $\psi(x)$ satisfies Hölder's condition of order $\log (1/\lambda)/\log \beta$.

Proof. – Consider arbitrary two points x < y in *I*. Let $N \ge 0$ be the smallest integer satisfying $\# \{S_{N+1} \cap (x,y)\} \ge 2$. We now distinguish two cases: (a) $S_N \cap (x,y) = \phi$; (b) $S_N \cap (x,y)$ consists of a single point, say *p*. In case (a), it follows that

$$\begin{aligned} |\psi(x) - \psi(y)| &= \lim_{\varepsilon \to 0^+} |\psi(x + \varepsilon) - \psi(y - \varepsilon)| \\ &= \lim_{\varepsilon \to 0^+} |F_{N, x + \varepsilon}(\psi(G^N(x + \varepsilon))) - F_{N, x + \varepsilon}(\psi(G^N(y - \varepsilon)))| \leq \lambda^N. \end{aligned}$$

Similarly we have $|\psi(x) - \psi(y)| \leq 2\lambda^N$ in case (b), since $(x,p) \cap S_N = (p,y) \cap S_N = \phi$. Now let s < t be any two consecutive points of e_{N+1} contained in (x, y). Then it follows that $|x-y| > |s-t| \ge \beta^{-N-1}$; thus

$$|\psi(x)-\psi(y)| \leq 2\lambda^{N} = \frac{2}{\lambda}\beta^{-\xi(N+1)} \leq \frac{2}{\lambda}|x-y|^{\xi}$$

where $\xi = \log (1/\lambda)/\log \beta$, which obviously completes the proof. \Box

5. Some Properties.

The continuous solution $\psi(x)$ of the equations (4.1) is not necessarily singular in general; for example, if we take

$$g_j(x) = mx - j + 1$$
 and $f_j(x) = \frac{x}{m} + \frac{j - 1}{m}$

for $1 \le j \le m$, then obviously $\psi(x) \equiv x$ is a smooth solution of (4.1). In this paper, to discuss the singularities of $\psi(x)$, we shall restrict ourselves to the following case:

(5.1)
$$\varepsilon_j = 1 + 2\left[\frac{j}{4}\right] - 2\left[\frac{j+1}{4}\right]$$

and

$$f_j(x) = \frac{1}{2k} \left\{ (-1)^{[j/2]} x + \left[\frac{j}{2} \right] - \left[\frac{j}{4} \right] + \left[\frac{j-1}{4} \right] \right\}$$

50

for $1 \le j \le m = 4k$, where k is a positive integer; so $\lambda = 1/2k$. Then it is easily seen that the functions $\{f_j\}$ satisfy the conditions (4.2); therefore the equations (4.1) possess a unique continuous solution $\psi(x)$, which depends only on the functions $\{g_j\}$ satisfying the conditions (5.1). Let η_j be the sign of the function f_j ; namely $\eta_j = (-1)^{U/2l}$, for $1 \le j \le 4k$. For brevity, put

$$\varepsilon_{n,x} = \prod_{j=0}^{n-1} \varepsilon_{A_j(x)}$$
 and $\eta_{n,x} = \prod_{j=0}^{n-1} \eta_{A_j(x)}$

for $n \ge 1$, $x \in I$.

Consider now an arbitrary point $x \in I - e$. We define

$$p_{j,n,x} = H_{n,x}(c_j)$$
 for $n \ge 1$, $0 \le j \le 4k$.

Obviously $p_{j,n,x} \neq x$. Since $p_{j,n,x} \in G^{-n}(c_j) \subset e_{n+1}$ for $1 \leq j \leq 4k - 1$, we have

$$G^n(p_{j,n,x}) = c_j \quad \text{for} \quad 1 \leq j \leq 4k-1.$$

The points $p_{0,n,x}$ and $p_{4k,n,x}$ are two end points of $K_{n,x}$ and do not satisfy the above equality in general; however,

$$\lim_{\substack{y \to p_{j,n,x} \\ y \in K_{n,x}}} G^n(y) = c_j \quad \text{for} \quad j = 0, \ 4k.$$

Note that $0 < |x - p_{i,n,x}| < \gamma^n$ for any $n \ge 1$. Then we have

LEMMA 5.1. – Suppose that $x \in I - e$. Then the points $\{p_{j,n,x}\}$ satisfy the following properties :

(1) sign
$$(x - p_{j,n,x}) = \varepsilon_{n,x} sign \left\{ A_n(x) - j - \frac{1}{2} \right\},$$

(2) $\psi(x) - \psi(p_{j,n,x}) = \frac{\eta_{n,x}}{(2k)^n} \left\{ \psi(G^n(x)) - \frac{1 - (-1)^j}{4k} - \frac{1}{k} \left[\frac{j}{4} \right] \right\}$

for $n \ge 1$ and $0 \le j \le 4k$.

Proof. - Since
$$p_{j,n,x} = H_{n,x}(c_j)$$
, we have
sign $(x - p_{j,n,x}) = \text{sign } \{H_{n,x}(G^n(x)) - H_{n,x}(c_j)\} = \varepsilon_{n,x} \text{ sign } \{G^n(x) - c_j\};$

thus the property (1) follows immediately. Since $K_{n,x} \cap S_n = \phi$,

$$\psi(p_{j,n,x}) = \lim_{\substack{y \to p_{j,n,x} \\ y \in K_{n,x}}} \psi(y) = \lim_{\substack{y \to p_{j,n,x} \\ y \in K_{n,x}}} F_{n,x}(\psi(G^{n}(y))) = F_{n,x}(\psi(c_{j}))$$

for $0 \le j \le 4k$; hence

$$\psi(x) - \psi(p_{j,n,x}) = F_{n,x}(\psi(G^n(x))) - F_{n,x}(\psi(c_j)) \frac{\eta_{n,x}}{(2k)^n} \{\psi(G^n(x)) - \psi(c_j)\},\$$

 \square

which obviously completes the proof.

We now consider an arbitrary point $x \in e_N$, $N \ge 1$. Then it is easily seen that, for $1 \le j \le 4k - 1$, each of the sets $K_{n,x}^{\pm}$ contains exactly one point of $G^{-n}(c_j) \subset e_{n+1}$, say $q_{j,n,x}^{\pm}$ respectively. Obviously $q_{j,n,x}^{\pm} \ne x$. Similarly we can define $\{q_{j,n,0}^{\pm}\}$ and $\{q_{j,n,1}^{-}\}$ for $n \ge 0$, $1 \le j \le 4k - 1$. Note that $0 < |x - q_{j,n,x}^{\pm}| < \gamma^n$ for any $n \ge N$. It also follows that

$$\lim_{\varepsilon \to 0^{\pm}} G^n(x+\varepsilon) = \frac{1}{2} (1 \mp \varepsilon_{N,x\pm})$$

for every $n \ge N$, respectively. We, of course, adopt the rule: $\varepsilon_{0,0^+} = \varepsilon_{0,1^-} = \eta_{0,0^+} = \eta_{0,1^-} = 1$. Then we have

LEMMA 5.2. – Suppose that $x \in e_N$, $N \ge 0$. Then the points $\{q_{j,n,x}^{\pm}\}$ satisfy the following :

$$\psi(x) - \psi(q_{j,n,x}^{\pm}) = \frac{\eta_{N,x\pm}}{(2k)^n} \left\{ \frac{1}{2} (1 \mp \varepsilon_{N,x\pm}) - \frac{1 - (-1)^j}{4k} - \frac{1}{k} \left[\frac{j}{4} \right] \right\}$$

for $n \ge N$ and $1 \le j \le 4k - 1$, respectively.

Proof. – Since $K_{n,x}^{\pm} \cap S_n = \phi$, we have

$$\begin{aligned} \psi(x) - \psi(q_{j,n,x}^{\pm}) &= \lim_{\varepsilon \to 0^{\pm}} \left\{ \psi(x+\varepsilon) - \psi(q_{j,n,x}^{\pm}) \right\} = \\ \lim_{\varepsilon \to 0^{\pm}} \left\{ F_{n,x+\varepsilon}(\psi(G^n(x+\varepsilon))) - F_{n,x+\varepsilon}(\psi(c_j)) \right\} = \frac{\eta_{N,x\pm}}{(2k)^n} \left\{ \frac{1}{2} (1\mp\varepsilon_{N,x\pm}) - \psi(c_j) \right\} \end{aligned}$$

for every $n \ge N$, respectively. This completes the proof.

6. Singularities.

For any $x \neq y \in I$, we define $\Delta \psi(x,y) = (\psi(x) - \psi(y))/(x-y)$. Let W be the set of points $x \in I$ at which $A_n(x) \equiv 2$ or 3 (mod 4) for infinitely many *n*'s. Obviously $W \subset I - e$. First of all, we have

THEOREM 6.1. – Suppose that $\gamma \leq 1/2k$. Then we have

 $D^{\pm}\psi(x) \ge 0 \ge D_{\pm}\psi(x)$ and $D^{\pm}\psi(x) - D_{\pm}\psi(x) \ge 1/4k$

respectively, for every $x \in W$.

Proof. - We distinguish two cases (not exclusive) as follows :

Case A. $A_n(x) \equiv 3 \pmod{4}$ for infinitely many n's.

Let $0 < n_1 < n_2 < \cdots$ be the subsequence of integers such that $A_{n_i}(x) = 4N_i + 3$, where $0 \le N_i < k$. From the functional equations (4.1), we have

$$\frac{N_i}{k} \leqslant \psi(G^{n_i}(x)) \leqslant \frac{2N_i+1}{k};$$

therefore $\{\psi(x) - \psi(P_{i,1})\}\{\psi(x) - \psi(P_{i,2})\} \le 0$ by (2) of Lemma 5.1, where $p_{i,j} = p_{4N_i+j,n_i,x}$ for $0 \le j \le 4$. On the order hand, we have sign $(x - P_{i,1}) = \text{sign}(x - P_{i,2}) = \varepsilon_{n_i,x}$ by (1) of Lemma 5.1. Since $\varepsilon_{n_i,x}$ changes the sign infinitely many times as *i* increases, it follows that $D^{\pm}\psi(x) \ge 0 \ge D_{\pm}\psi(x)$. It also follows that

$$|\Delta \psi(x, P_{i,1})| + |\Delta \psi(x, P_{i,2})| \ge \frac{(2k)^{-n_i-1}}{|x - P_{i,1}|} > \frac{1}{2k} (2k\gamma)^{-n_i} \ge \frac{1}{2k};$$

therefore $D^{\pm}\psi(x) - D_{\pm}\psi(x) \ge 1/4k$ respectively, as required.

Case B. $A_n(x) \equiv 2 \pmod{4}$ for infinitely many n's.

Let $0 < n_1 < n_2 < \cdots$ be the subsequence of integers such that $A_{n_i}(x) = 4N_i + 2$, where $0 \le N_i < k$. Since

$$\frac{N_i}{k} \leq \psi(G^{n_i}(x)) \leq \frac{2N_i+1}{k},$$

it is easily seen that $\{\psi(x) - \psi(P_{i,0})\} \{\psi(x) - \psi(P_{i,1})\} \leq 0$ and $\{\psi(x) - \psi(P_{i,2})\} \{\psi(x) - \psi(P_{i,3})\} \leq 0$. On the other hand, we have

sign $(x - P_{i,0}) = \text{sign}(x - P_{i,1}) = \text{sign}(P_{i,2} - x) = \text{sign}(P_{i,3} - x)$; therefore $D^{\pm}\psi(x) \ge 0 \ge D_{\pm}\psi(x)$. Moreover,

$$|\Delta \psi(x, P_{i,0})| + |\Delta \psi(x, P_{i,1})| \ge \frac{(2k)^{-n_i-1}}{|x - P_{i,0}|} > \frac{1}{2k} (2k\gamma)^{-n_i} \ge \frac{1}{2k}$$

The same estimate holds true if we replace $P_{i,0}$, $P_{i,1}$ by $P_{i,2}$, $P_{i,3}$, respectively; thus $D^{\pm}\psi(x) - D_{\pm}\psi(x) \ge 1/4k$ respectively. This completes the proof.

Let $W_0 \subset W$ be the set of points $x \in I$ at which $A_n(x) \equiv 2$ or 3 (mod 4) and $A_{n+1}(x) \equiv 2$ or 3 (mod 4) for infinitely many *n*'s. Then we have

THEOREM 6.2. – Suppose that $\gamma \leq 1/2k$. Then W_0 is contained in the set Knot (ψ) except for a set of measure zero.

Proof. – We consider an arbitrary point x of W_0 . Let $0 \le n_1 < n_2 < \cdots$ be the subsequence of integers such that $A_{n_i}(x) = 4N_i + \delta_i$ and $A_{n_i+1}(x) = 4L_i + \omega_i$, where $0 \le N_i$, $L_i < k$ and $2 \le \delta_i$, $\omega_i \le 3$. Then it is easily seen that

$$\frac{2N_i+1}{2k}-\frac{2L_i+1}{(2k)^2} \leqslant \psi(G^{n_i}(x)) \leqslant \frac{2N_i+1}{k}-\frac{L_i}{2k^2};$$

therefore by (2) of Lemma 5.1,

$$\eta_{n_i,x}(2k)^{n_i}\{\psi(x)-\psi(P_{i,0})\} = \psi(G^{n_i}(x)) - \frac{N_i}{k} \ge \frac{1}{2k} - \frac{2L_i+1}{(2k)^2} \ge (2k)^{-2}.$$

Similarly we have

$$\eta_{n_i,x}(2k)^{n_i}\{\psi(P_{i,4})-\psi(x)\} = \frac{N_i+1}{k} - \psi(G^{n_i}(x)) \ge \frac{1}{2k} + \frac{L_i}{2k^2} \ge \frac{1}{2k}.$$

Therefore, since sign $(x - P_{i,0}) = \text{sign}(P_{i,4} - x)$, it follows that

$$\operatorname{sign} \left(\Delta \psi(x, P_{i,0}) \right) = \operatorname{sign} \left(\Delta \psi(x, P_{i,4}) \right)$$

and

$$|\Delta \psi(x, P_{i,0})| > (2k)^{-2}, \qquad |\Delta \psi(x, P_{i,4})| > \frac{1}{2k}.$$

Hence the set $[D_+\psi(x), D^+\psi(x)] \cap [D_-\psi(x), D^-\psi(x)]$ contains an interval of length $(2k)^{-2}$ by Theorem 6.1. Thus it follows from Denjoy's theorem

[2, p. 105] that except for a set of measure zero, every point of W_0 is a knot point of $\psi(x)$. This completes the proof.

For $N \ge 0$, let Y_N be the set of points $x \in I$ at which $A_n(x) \equiv 0$ or 1 (mod 4) for all $n \ge N$ and $A_{N-1}(x) \equiv 2$ or 3 (mod 4). Obviously $I - W = \bigcup_{n \ge 0} Y_n$. For brevity, put $Y_n^* = Y_n \cap (I-e)$ for $n \ge 0$. Then

the unit interval I is decomposed as follows :

$$I = W + e + \bigcup_{n \ge 0} Y_n^*.$$

For $n \ge 1$, let Ξ_n be the set of finite words (w_1, \ldots, w_n) of length n such that $1 \le w_j \le 4k$ and $w_j \equiv 0$ or 1 (mod 4) for $1 \le j \le n$. Then we have

THEOREM 6.3. – Suppose that there exists a positive constant C_0 , independent of n, satisfying

$$\min_{(w_1 \cdots w_n) \in \Xi_n} |h_{w_1} \circ \ldots \circ h_{w_n}(I)| \ge C_0 (2k)^{-n}$$

for all $n \ge 1$. Suppose further that $\beta < \infty$. Then we have

$$D^{\pm}\psi(x) - D_{\pm}\psi(x) \ge \frac{1}{2k}$$

respectively, for every $x \in I - W$.

Proof. - We distinguish two cases as follows :

Case A. $x \in Y_N^*$ for some $N \ge 0$.

By Lemma 3.1, we have $A_n(x) \neq 1$ for infinitely many *n*'s. Let $N \leq n_1 < n_2 < \cdots$ be the subsequence of integers such that $A_{n_i}(x) \geq 4$. Put $Q_{i,j} = p_{j,n_i,x}$ for $0 \leq j \leq 2$. Since

$$\psi(G^{n_i}(x)) \ge \frac{1}{2k}$$

and sign $(x - Q_{i,1}) = \text{sign} (x - Q_{i,2}) = \text{sign} (Q_{i,2} - Q_{i,1}) = \varepsilon_{N,x}$, we have $|\Delta \psi(x, Q_{i,1}) - \Delta \psi(x, Q_{i,2})| =$ $(2k)^{-n_i} \left| \psi(G^{n_i}(x)) \left\{ \frac{1}{x - Q_{i,2}} - \frac{1}{x - Q_{i,1}} \right\} + \frac{1}{2k(x - Q_{i,1})} \right| \ge \frac{(2k)^{-n_i - 1}}{|x - Q_{i,1}|} > \frac{1}{2k}.$ On the other hand, it follows that

1

$$|x - Q_{i,0}| > |Q_{i,1} - Q_{i,0}| \ge \beta^{-N} \left| h_{A_N(x)} \circ \dots \circ h_{A_{n_i-1}(x)} \circ h_1(I) \right| \ge C_0 \beta^{-N} (2k)^{-n_i+N-1};$$

therefore

$$\Delta \psi(x, Q_{i,0})| = (2k)^{-n_i} \left| \frac{\psi(G^{n_i}(x))}{x - Q_{i,0}} \right| \leq \frac{2k}{C_0} \left(\frac{\beta}{2k} \right)^N.$$

Since sign $(x - Q_{i,0}) = \varepsilon_{N,x}$, we conclude that either $[D_+\psi(x), D^+\psi(x)]$ or $[D_-\psi(x), D^-\psi(x)]$ contains an interval of length 1/2k according as $\varepsilon_{N,x} = -1 \text{ or } + 1.$

It also follows from Lemma 3.1 that $A_n(x) \neq 4k$ for infinitely many *n*'s. Let $N \leq n_1 < n_2 < \dots$ be the subsequence of integers such that $A_{n_i}(x) \leq 4k - 3$. Put $R_{i,j} = p_{4k-j,n_i,x}$ for $0 \leq j \leq 3$. Since

$$\psi(G^{n_i}(x)) \leqslant \frac{2k-1}{2k}$$

and sign $(x - R_{i,2}) = sign (x - R_{i,3}) = sign (R_{i,3} - R_{i,2}) = -\varepsilon_{N,x}$, we have $|\Delta \psi(x, R_{i,2}) - \Delta \psi(x, R_{i,3})| =$ $(2k)^{-n_i} \left| \left\{ \frac{2k-1}{2k} - \psi(G^{n_i}(x)) \right\} \left\{ \frac{1}{x-R_{i,2}} - \frac{1}{x-R_{i,2}} \right\} + \frac{1}{2k(x-R_{i,2})} \right| \ge$

$$\frac{(2k)^{-n_i-1}}{|x-R_{i,2}|} > \frac{1}{2k}.$$

On the other hand, $|x - R_{i,0}| > |R_{i,1} - R_{i,0}| \ge C_0 \beta^{-N} (2k)^{-n_i + N - 1}$; thus

$$|\Delta \psi(x, R_{i,0})| = (2k)^{-n_i} \left| \frac{\psi(G^{n_i}(x)) - 1}{x - R_{i,0}} \right| \leq \frac{2k}{C_0} \left(\frac{\beta}{2k} \right)^N.$$

Since sign $(x - R_{i,0}) = -\varepsilon_{N,x}$, it follows that either $[D_+\psi(x), D^+\psi(x)]$ or $[D_{-}\psi(x), D^{-}\psi(x)]$ contains an interval of length 1/2k according as $\varepsilon_{N,x} = +1$ or -1. Hence $D^{\pm}\psi(x) - D_{\pm}\psi(x) \ge 1/2k$ respectively.

Case B. $x \in e_N$ for some $N \ge 0$.

For $n \ge N$, let $Q_n^+ = \max\{q_{1,n,x}^+, q_{3,n,x}^+\}, Q_n^- = \min\{q_{1,n,x}^-, q_{3,n,x}^-\}$ and let $R_n^+ = q_{2,n,x}^+$ respectively. Then $Q_n^- < R_n^- < x < R_n^+ < Q_n^+$.

Since sign $(x - Q_n^{\pm}) = \text{sign}(Q_n^{\pm} - R_n^{\pm}) = \pm 1$ respectively, it follows from Lemma 5.2 that

$$\begin{aligned} |\Delta \psi(x, R_n^{\pm}) - \Delta \psi(x, Q_n^{\pm})| &= \\ (2k)^{-n} \left| \frac{1}{2} (1 \mp \varepsilon_{N, x^{\pm}}) \left\{ \frac{1}{x - R_n^{\pm}} - \frac{1}{x - Q_n^{\pm}} \right\} + \frac{1}{2k(x - Q_n^{\pm})} \right| &\ge \frac{(2k)^{-n-1}}{|x - Q_n^{\pm}|} > \frac{1}{2k}, \end{aligned}$$

respectively. On the other hand, we have

$$|x-R_n^{\pm}| > |K_{n+1,x}^{\pm}| \ge \beta^{-N} |h_{A_N(x^{\pm})} \circ \cdots \circ h_{A_n(x^{\pm})}(I)| \ge C_0 \beta^{-N} (2k)^{-n+N-1};$$

therefore

$$|\Delta \psi(x, R_n^{\pm})| \leq \frac{(2k)^{-n}}{|x - R_n^{\pm}|} < \frac{2k}{C_0} \left(\frac{\beta}{2k}\right)^N.$$

Hence $D^{\pm}\psi(x) - D_{\pm}\psi(x) \ge 1/2k$ respectively. This completes the proof.

Let $Y^* = \bigcup_{n \ge 0} Y^*_n$ for brevity. Then we have

THEOREM 6.4. – Knot $(\psi) \cap Y^* = \phi$.

Proof. – We consider an arbitrary point x of Y_N^* for some $N \ge 0$. Let $s_n = p_{0,n,x}$ for $n \ge N$. Since sign $(x - s_n) = \varepsilon_{N,x}$ is independent of $n \ge N$, the sequence $\{s_n\}$ is monotone, either increasing or decreasing, and converges to x. Note that $s_n = s_{n+1}$ if and only if $A_n(x) = 1$. Put $J_n = [s_n, s_{n+1}] \subset \overline{K}_{n,x}$ for $n \ge N$. Then it is easily seen that

$$(x,s_N] = \bigcup_{n \ge N} J_n.$$

Since the function $G^n(x)$ maps $K_{n,x}$ homeomorphically onto (0,1), we have $A_n(x) > A_n(y)$ for all $y \in \mathring{J}_n$. Therefore

$$\psi(G^n(x)) \ge f_{A_n(x)}(0) \ge \max_{j \le A_n(x)} ||f_j|| \ge \psi(G^n(y));$$

thus

$$\eta_{N,x} \operatorname{sign} \left\{ \psi(x) - \psi(y) \right\} = \eta_{N,x} \operatorname{sign} \left\{ F_{n,x}(\psi(G^n(x))) - F_{n,x}(\psi(G^n(y))) \right\} = \operatorname{sign} \left\{ \psi(G^n(x)) - \psi(G^n(y)) \right\} \ge 0$$

By the continuity of ψ , we conclude that

$$\eta_{N,x} \operatorname{sign} \{ \psi(x) - \psi(y) \} \ge 0$$
 for every $y \in [x, s_N]$.

This means that x is not a knot point of $\psi(x)$.

7. Proof of Theorem 2.1.

First of all, for any integer $k \ge 1$ and positive numbers σ , τ , ρ satisfying

(7.1) $2k(\sigma+\tau) < 1$ and $\sigma \ge \rho$,

we shall construct two Cantor sets $E_0 \equiv E_0(k, \sigma, \tau)$ and $E_1 \equiv E_1(k, \sigma, \rho)$. The set $E_0(k, \sigma, \tau)$ is obtained from the unit interval *I* by a sequence of deletions of open intervals known as middle thirds, as follows : First divide *I* into *k* equal parts, say

$$I_{1,1} = \begin{bmatrix} 0, \frac{1}{k} \end{bmatrix}, \qquad I_{1,2} = \begin{bmatrix} \frac{1}{k}, \frac{2}{k} \end{bmatrix}, \qquad \dots, \qquad I_{1,k} = \begin{bmatrix} \frac{k-1}{k}, 1 \end{bmatrix},$$

and remove from each closed interval $I_{1,j}$ the open interval $U_{1,j}$ centered at (2j-1)/2k and of length 2σ . We subdivide each of the 2k remaining closed intervals into k equal parts, say $I_{2,j}$, $1 \le j \le 2k^2$, ordered from left to right, each of length $(1-2k\sigma)/(2k^2)$. Then remove from each closed interval $I_{2,j}$ the middle open interval $U_{2,j}$ of length $2\sigma\tau$, leaving the $4k^2$ closed intervals, each of length $(1-2k\sigma-4k^2\sigma\tau)/(4k^2)$. This process is permitted to continue indefinitely. At the *n*th stage of deletion, each length of the $2^{n-1}k^n$ open intervals $U_{n,j}$ is $2\sigma\tau^{n-1}$, and therefore the measure of the union of the open intervals removed in the entire sequence of removal operations is $2k\sigma/(1-2k\tau)$. The set E_0 is defined to be the closed set remaining; thus

$$|E_0| = \frac{1 - 2k(\sigma + \tau)}{1 - 2k\tau}$$

We next define the set $E_1(k,\sigma,\rho)$, which is slightly different from E_0 defined above, as follows: First divide the unit interval I into k equal parts, say

$$J_{1,1} = \begin{bmatrix} 0, \frac{1}{k} \end{bmatrix}, \qquad J_{1,2} = \begin{bmatrix} \frac{1}{k}, \frac{2}{k} \end{bmatrix}, \qquad \dots, \quad J_{1,k} = \begin{bmatrix} \frac{k-1}{k}, 1 \end{bmatrix}.$$

Then remove from each closed interval $J_{1,i}$ the two intervals

$$V_{1,j}^{-} = \left[\frac{j-1}{k}, \frac{2j-1-2k\sigma}{2k}\right), V_{1,j}^{+} = \left(\frac{2j-1+2k\sigma}{2k}, \frac{j}{k}\right],$$

each of length $(1-2k\sigma)/2k$. We subdivide each of the k remaining closed intervals into 2k equal parts, say $J_{2,j}$, $1 \le j \le 2k^2$, ordered

from left to right, each of length σ/k . Then delete from each closed interval $J_{2,j}$ the two intervals $V_{2,j}^{\pm}$ of length $\rho(1-2k\sigma)/2k$, leaving the $2k^2$ middle closed intervals, each of length $(\sigma - \rho + 2k\sigma\rho)/k$. At the *n* th stage of deletion, we have $|V_{n,j}^{\pm}| = \rho^{n-1}(1-2k\sigma)/2k$; therefore the measure of the union of the removed intervals in the entire sequence of removal operations is $(1-2k\sigma)/(1-2k\rho)$. The set E_1 is defined to be the closed set remaining; thus

$$|E_1| = \frac{2k(\sigma-\rho)}{1-2k\rho}.$$

Note that the set E_1 is contained in $\left[\frac{1-2k\sigma}{2k(1-\rho)}, 1-\frac{1-2k\sigma}{2k(1-\rho)}\right]$.

We now define the continuous function $\zeta_0(x) \equiv \zeta_0(k, \sigma, \tau; x)$ by setting

$$\zeta_0(x) = \int_0^x d_0(s) \, ds \quad \text{for} \quad 0 \le x \le 1 \,,$$

where $d_0(s) = 1/2k$ if $s \in E_0(k, \sigma, \tau)$ and $d_0(s) = \tau$ otherwise. We also define the continuous function $\zeta_1(x) \equiv \zeta_1(k, \sigma, \rho; x)$ by setting

$$\zeta_1(x) = \frac{1}{2k} - \sigma + \int_0^x d_1(s) \, ds \quad \text{for} \quad 0 \leq x \leq 1,$$

where $d_1(s) = 1/2k$ if $s \in E_1(k,\sigma,\rho)$ and $d_1(s) = \rho$ otherwise. Then it is easily seen that $\zeta_0(I) = [0,(1-2k\sigma)/2k], \zeta_1(I) = [(1-2k\sigma)/2k, 1/2k]$ and $\zeta_i(E_i) = E_i \cap \zeta_i(I)$ for i = 0, 1.

We next define, for $0 \leq i < k$,

$$g_{4i+1}(x) = \zeta_0^{-1} \left(x - \frac{i}{k} \right) \qquad \text{for} \quad x \in I_{4i+1} = \left[\frac{i}{k}, \frac{2i+1}{2k} - \sigma \right],$$

$$g_{4i+2}(x) = \zeta_1^{-1} \left(x - \frac{i}{k} \right) \qquad \text{for} \quad x \in I_{4i+2} = \left[\frac{2i+1}{2k} - \sigma, \frac{2i+1}{2k} \right],$$

$$g_{4i+3}(x) = \zeta_1^{-1} \left(\frac{i+1}{k} - x \right) \qquad \text{for} \quad x \in I_{4i+3} = \left[\frac{2i+1}{2k}, \frac{2i+1}{2k} + \sigma \right],$$

$$g_{4i+4}(x) = \zeta_0^{-1} \left(x - \frac{2i+1}{2k} - \sigma \right) \qquad \text{for} \quad x \in I_{4i+4} = \left[\frac{2i+1}{2k} + \sigma, \frac{i+1}{k} \right];$$

thus the unit interval I is divided into m = 4k subintervals $I_j = [c_{j-1}, c_j]$. We have $|I_{4i+1}| = |I_{4i+4}| = (1-2k\sigma)/2k$ and $|I_{4i+2}| = |I_{4i+3}| = \sigma$. Obviously the functions $g_j(x)$ satisfy the conditions (5.1) and we denote

by $\psi(k,\sigma,\tau,\rho;x)$ the corresponding continuous solution of the equations (4.1).

It follows from Theorems 6.1 and 6.3 that $\psi(k, \sigma, \tau, \rho; x)$ has nowhere a unilateral derivative finite or infinite for any integer k and positive numbers σ , τ , ρ satisfying (7.1), since we have

$$\gamma = \frac{1}{2k}, \qquad \beta = \max \left\{ \frac{1}{\rho}, \frac{1}{\tau} \right\}$$

and

$$|h_{w_1} \circ \cdots \circ h_{w_n}(I)| = \frac{1}{(2k)^n} - \frac{\sigma}{(2k)^{n-1}} - \frac{\sigma\tau}{(2k)^{n-2}} - \cdots - \sigma\tau^{n-1} > \frac{|E_0|}{(2k)^n},$$

for every finite word $(w_1 \ldots w_n) \in \Xi_n$.

Since the Cantor set E_0 is a unique compact subset of I satisfying

$$E_0 = h_1(E_0) \cup h_4(E_0) \cup h_5(E_0) \cup \cdots \cup h_{4k}(E_0)$$

and since the mapping v maps Y_0^* homeomorphically onto $v(Y_0^*)$, it follows that $\overline{Y}_0^* = E_0$. On the other hand, for every $x \in W + \bigcup_{n \ge 1} Y_n^*$, there exist n = n(x) and j = j(x) such that $x \in U_{n,j}$; thus $E_0 \subset Y_0^* + e$. Therefore $|Y_0^*| = |E_0|$, since e is countable. Let Ω_n be the set of finite words $(w_1 \dots w_n)$ of length n such that $1 \le w_j \le 4k$ for $1 \le j \le n$. Then for any $n \ge 0$, the set Y_{n+1}^* is decomposed as follows:

$$Y_{n+1}^* = \bigcup_{\substack{(w_1 \dots w_n) \in \Omega_n \\ j \in \Omega_1 - \Xi_1}} h_{w_1} \circ \dots \circ h_{w_n} \circ h_j(Y_0^*).$$

On each interval $V_{1,j}^{\pm}$, for any $(w_1 \dots w_n) \in \Omega_n$ and $j \in \Omega_1 - \Xi_1$, the function $h_{w_1} \circ \cdots \circ h_{w_n} \circ h_j(x)$ is a linear contraction; more precisely we have

$$\left|\frac{d}{dx}(h_{w_1}\circ\cdots\circ h_{w_n}\circ h_j)(x)\right| = \rho^{n+1-r(w)}\tau^{r(w)} \quad \text{for} \quad x \in \mathring{V}_{1,j}^{\pm}$$

where $r(w) \equiv r(w_1, \ldots, w_n) = \frac{1}{2} \sum_{j=1}^n (1 + \eta_{w_j})$. Since $Y_0^* \cap U_{1,j} = \phi$ for all j, we have

$$|Y_{n+1}^{*}| = 2k |Y_{0}^{*}| \sum_{(w_{1} \dots w_{n}) \in \Omega_{n}} \rho^{n+1-r(w)} \tau^{r(w)} = 2k\rho |E_{0}| (2k(\rho+\tau))^{n}$$

60

Therefore it follows that

$$|Y^*| = \sum_{n=0}^{\infty} |Y^*_n| = |E_0| + 2k\rho |E_0| \sum_{n=0}^{\infty} (2k(\rho+\tau))^n = \frac{1-2k(\sigma+\tau)}{1-2k(\rho+\tau)}.$$

For $N \ge 0$, let Z_N be the set of points $x \in I$ at which $A_n(x) \equiv 2$ or 3 (mod 4) for all $n \ge N$ and $A_{N-1}(x) \equiv 0$ or 1 (mod 4). Put $Z = \bigcup_{n \ge 0} Z_n$. Obviously $Z \subset W_0 \subset I - e$. Then it is easily seen

that the set Z_0 is a compact subset of I satisfying

$$Z_0 = h_2(Z_0) \cup h_3(Z_0) \cup h_6(Z_0) \cup \cdots \cup h_{4k-1}(Z_0);$$

therefore $Z_0 = E_1$. For any $n \ge 0$, the set Z_{n+1} is decomposed as follows:

$$Z_{n+1} = \bigcup_{\substack{(w_1 \cdots w_n) \in \Omega_n \\ j \in \Xi_1}} h_{w_1} \circ \cdots \circ h_{w_n} \circ h_j(Z_0).$$

On each open interval $U_{1,j}$, for any $(w_1 \dots w_n) \in \Omega_n$ and $j \in \Xi_1$, the function $h_{w_1} \circ \cdots \circ h_{w_n} \circ h_j(x)$ is a linear contraction such that

$$\left|\frac{d}{dx}(h_{w_1}\circ\cdots\circ h_{w_n}\circ h_j)(x)\right|=\rho^{n-r(w)}\tau^{1+r(w)}\quad\text{for}\quad x\in U_{1,j}.$$

Since $Z_0 \cap V_{1,j}^{\pm} = \phi$ for all j, we have

$$|Z_{n+1}| = 2k|Z_0| \sum_{(w_1 \dots w_n) \in \Omega_n} \rho^{n-r(w)} \tau^{1+r(w)} = 2k\tau |E_1| (2k(\rho+\tau))^n;$$

therefore

$$|Z| = \sum_{n=0}^{\infty} |Z_n| = |E_1| + 2k\tau |E_1| \sum_{n=0}^{\infty} (2k(\rho + \tau))^n = \frac{2k(\sigma - \rho)}{1 - 2k(\rho + \tau)} = 1 - |Y^*|.$$

Then it follows from Theorems 6.2 and 6.4 that

$$|Z| \leq |W_0| \leq |\text{Knot}(\psi)| \leq 1 - |Y^*| = |Z|;$$

hence we obtain

$$|\operatorname{Knot}(\psi)| = \frac{2k(\sigma - \rho)}{1 - 2k(\rho + \tau)}.$$

Thus if we take, for a fixed number $\alpha \in [0,1)$,

$$\sigma_0 = \frac{1+\alpha}{8k}, \quad \tau_0 = \frac{1}{4k} \quad \text{and} \quad \rho_0 = \frac{1}{8k}$$

then the function $\psi_0(x) \equiv \psi(k, \sigma_0, \tau_0, \rho_0; x)$ satisfies $|\text{Knot}(\psi_0)| = \alpha$ and Hölder's condition of order $\log (2k)/\log (8k)$ by Lemma 4.2, which obviously converges to 1 as k tends to infinity. This completes the proof of Theorem 2.1.

Remark. – Besicovitch's function B(x) illustrated in Figure 1 is precisely equal to the function $\psi(1, 1/8, 1/4, 1/8; x)$; thus B(x) satisfies Hölder's condition of order 1/3.

BIBLIOGRAPHY

- S. BANACH, Über die Baire'sche Ketegorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179.
- [2] A. DENJOY, Mémoire sur les nombres dérivés des fonctions continues, J. Math. Pures Appl. (Ser. 7), 1 (1915), 105-240.
- [3] K. M. GARG, On asymmetrical derivates of non-differentiable functions, Canad. J. Math., 20 (1968), 135-143.
- [4] M. HATA, On the structure of self-similar sets, Japan J. Appl. Math., 2 (1985), 381-414.
- [5] V. JARNIK, Über die Differenzierbarkeit stetiger Funktionen, Fund. Math., 21 (1933), 48-58.
- [6] R. L. JEFFERY, The Theory of Functions of a Real Variable, Toronto, 1951, pp. 172-181.
- [7] S. MAZURKIEWICZ, Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94.
- [8] A. P. MORSE, A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc., 44 (1938), 496-507.
- [9] E. D. PEPPER, On continuous functions without a derivative, Fund. Math., 12 (1928), 244-253.
- [10] G. DE RHAM, Sur quelques courbes définies par des équations fonctionnelles, Rend. Sem. Mat. Torino, 16 (1957), 101-113.
- [11] S. SAKS, On the functions of Besicovitch in the space of continuous functions, Fund. Math., 19 (1932), 211-219.
- [12] A. N. SINGH, On functions without one-sided derivatives I, Proc. Benares Math. Soc., 3 (1941), 55-69.
- [13] A. N. SINGH, On functions without one-sided derivatives II, Proc. Benares Math. Soc., 4 (1942), 95-108.
- [14] W. H. YOUNG, On the derivates of non-differentiable functions, Messenger of Math., 38 (1908), 65-69.

Manuscrit reçu le 28 novembre 1986. Masayoshi HATA, Department of Mathematics Faculty of Science Kyoto University Kyoto 606 (Japan).

62