Annales de l'institut Fourier

Masayoshi Hata
 On continuous functions with no unilateral derivatives

Annales de l'institut Fourier, tome 38, nº 2 (1988), p. 43-62

http://www.numdam.org/item?id=AIF_1988__38_2_43_0
© Annales de l'institut Fourier, 1988, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON CONTINUOUS FUNCTIONS WITH NO UNILATERAL DERIVATIVES

by Masayoshi HATA

1. Introduction.

It is known that A. S. Besicovitch in 1925 gave the first example of a continuous function $B(x)$ which has nowhere a unilateral derivative finite or infinite by geometrical process. E. D. Pepper [9] has examined this same function $B(x)$, giving a different exposition. The graph of his function is illustrated in Figure 1. Later, A. N. Singh [12, 13] gave the arithmetical definition of $B(x)$ and constructed an infinite class of such non-differentiable functions. On the other hand, A. P. Morse [8] gave an example of a continuous function $f(x)$ satisfying

$$
\liminf _{s \rightarrow x \pm}\left|\frac{f(s)-f(x)}{s-x}\right|<\limsup _{s \rightarrow x \pm}\left|\frac{f(s)-f(x)}{s-x}\right|=\infty
$$

respectively, for every $x \in(0,1)$, by arithmetical process.
It seems, however, that their methods are somewhat complicated and inappropriate to the study concerning further properties of such functions. In the present paper we shall develop a simple but powerful method to construct and analyze such singular functions by using certain one-dimensional dynamical systems.

The difficulties of finding such functions may be explained by the fact that the set of functions which have nowhere a unilateral derivative finite or infinite is of only the first category in the space of continuous functions (S. Saks [11]), while the set of functions which have nowhere a finite unilateral derivative is of the second category (S. Banach [1], S. Mazurkiewicz [7] and V. Jarnik [5]).

Key-words : Non-differentiable functions - Knot points - Functional equations.

Fig. 1.

2. Main Result.

To state our main theorem, we need some definitions and notations. We denote, as usual, the upper and lower derivatives at x of a realvalued function $f(x)$ on the right by $D^{+} f(x), D_{+} f(x)$ respectively. Similarly the upper and lower derivatives, on the left, are denoted by $D^{-} f(x), D_{-} f(x)$ respectively. A point x is said to be a knot point of $f(x)$ provided that

$$
D^{+} f(x)=D^{-} f(x)=\infty \quad \text { and } \quad D_{+} f(x)=D_{-} f(x)=-\infty
$$

The set of knot points of $f(x)$ is denoted by $\operatorname{Knot}(f)$. For a measurable
set E, we denote by $|E|$ the Lebesgue measure of E. Our theorem can now be stated as follows :

Theorem 2.1. - For any $\alpha \in[0,1)$ and $\varepsilon \in(0,1)$, there exists a continuous function $\psi_{\alpha, \varepsilon}(x)$ defined on the unit interval I sayisfying the following properties:
(1) $\psi_{\alpha, \varepsilon}(x)$ has nowhere a unilateral derivative finite or infinite;
(2) $\left|\operatorname{Knot}\left(\psi_{\alpha, \varepsilon}\right)\right|=\alpha$;
(3) $\psi_{\alpha, \varepsilon}(x)$ satisfies Hölder's condition of order $1-\varepsilon$.

Remark. - K. M. Garg [3] has shown that the set of knot points of Besicovitch's function is of measure zero. He also showed that, for every continuous function defined on I which has nowhere a unilateral derivative finite or infinite, the set of points at which the upper derivative on one side is $+\infty$, the lower derivative on the other side is $-\infty$, and the other two derivatives are finite and equal has a positive measure in every subinterval of I; therefore the constant α in our theorem can not be taken to be 1 . Note that the set $\operatorname{Knot}(f)$ is of the second category if $f(x)$ is a continuous function which has nowhere a finite or infinite derivative (W. H. Young [14]).

As a corollary, we have immediately
Corollary 2.2. - For any $\alpha \in[0,2 \pi)$ and $\varepsilon \in(0,1)$, there exists an absolutely convergent cosine Fourier series

$$
\Psi_{\alpha, \varepsilon}(x)=\sum_{n=0}^{\infty} a_{\alpha, \varepsilon, n} \cos n x
$$

satisfying the following properties:
(1) $\Psi_{\alpha, \varepsilon}(x)$ has nowhere a unilateral derivative finite or infinite;
(2) $\left|\operatorname{Knot}\left(\left.\Psi_{\alpha, \varepsilon}\right|_{[0,2 \pi]}\right)\right|=\alpha$;
(3) $\sum_{n=1}^{\infty}\left|a_{\alpha, \varepsilon, n}\right|^{2} n^{2-\varepsilon}<\infty$.

For the proof of Theorem 2.1, we shall introduce a symbol space in section 3 and certain functional equations in section 4. The fundamental properties of the solution are investigated in sections 5 and 6 . We then prove Theorem 2.1 in section 7 using Cantor sets of positive measure.

3. Preliminaries.

We first divide the unit interval I into m subintervals

$$
I_{1}=\left[c_{0}, c_{1}\right], I_{2}=\left[c_{1}, c_{2}\right], \ldots, I_{m}=\left[c_{m-1}, c_{m}\right]
$$

where $0=c_{0}<c_{1}<c_{2}<\cdots<c_{m}=1, m \geqslant 2$ and define the address $A(x)$ of a point $x \in I$ by setting $A(x)=j$ for $c_{j-1} \leqslant x<c_{j}, 1 \leqslant j \leqslant m$ and $A\left(c_{m}\right)=m$. Let $g_{j}(x)$ be a strictly monotone, either increasing or decreasing, continuous function defined on the subinterval I_{j} such that $g_{j}\left(I_{j}\right)=I$ for $1 \leqslant j \leqslant m$. Define the sign ε_{j} to be either +1 or -1 according as g_{j} is monotone increasing or monotone decreasing on I_{j}. We assume, in addition, that $g_{1}(x)$ and $g_{m}(x)$ are monotone increasing; so $\varepsilon_{1}=\varepsilon_{m}=+1$.

Let $\Sigma=\{1,2, \ldots, m\}^{N}$ be the one-sided symbol space endowed with the metric

$$
d(w, z)=\sum_{n=1}^{\infty} 2^{-n}\left|w_{n}-z_{n}\right| \quad \text { for } \quad w=\left(w_{n}\right), \quad z=\left(z_{n}\right) \in \Sigma
$$

It is known that Σ is a totally disconnected compact metric space. Let $G(x)=g_{A(x)}(x)$ for brevity. Note that the function $G: I \rightarrow I$ is not necessarily continuous. We then define the itinerary $v(x)$ of a point $x \in I$ by setting

$$
v(x)=\left(A_{0}(x), A_{1}(x), \ldots, A_{n}(x), \ldots\right)
$$

where $A_{n}(x)=A\left(G^{n}(x)\right)$ for $n \geqslant 0$. Put $e_{0}=\{0,1\}$ and define the set e_{n+1} inductively by setting $e_{n+1}=\left\{0<x<1 ; G(x) \in e_{n}\right\}$ for $n \geqslant 0$. Obviously \# $e_{n}=m^{n-1}(m-1)$ for $n \geqslant 1$. Let $e=\bigcup_{n \geqslant 0} e_{n}$. Then it is easily verified that the set of discontinuity points of v is precisely equal to the set $e-e_{0}$.

Put $\Lambda_{0}=\left\{v(x) ; x \in e_{0}\right\}$. For $N \geqslant 1$, let Λ_{N} be the set of words $w=\left(w_{n}\right) \in \Sigma$ such that either $w_{n}=1$ for $n>N, w_{N} \neq 1$ or $w_{n}=m$ for $n>N, w_{N} \neq m$. Let $\Lambda=\bigcup_{n \geqslant 0} \Lambda_{n}$. Then it is easily seen that for $x \in e-e_{0}$ there exist the limits

$$
\lim _{\varepsilon \rightarrow 0 \pm} v(x+\varepsilon)=\left(A_{0}(x \pm), A_{1}(x \pm), \ldots\right)
$$

in $\Lambda-\Lambda_{0}$ respectively. Note that $v(x)$ is equal to either $v(x+)$ or $v(x-)$. Thus the set Λ_{n} consists of the following $2 m^{n-1}(m-1)$ distinct words :

$$
\left\{v(x+) ; x \in e_{n}\right\}+\left\{v(x-) ; x \in e_{n}\right\}
$$

for $n \geqslant 1$. Therefore we have $\Lambda=\Lambda_{0}+\Sigma_{+}+\Sigma_{-}$, where $\Sigma_{+}=\left\{v(x+) ; x \in e-e_{0}\right\}$ and $\Sigma_{-}=\left\{v(x-) ; x \in e-e_{0}\right\}$.

We assume further that each function $h_{j}=g_{j}^{-1}: I \rightarrow I_{j}$ is a contraction; namely the Lipschitz constant

$$
\operatorname{Lip}\left(h_{j}\right)=\sup _{x \neq y \in I}\left|\frac{h_{j}(x)-h_{j}(y)}{x-y}\right|
$$

satisfies $\operatorname{Lip}\left(h_{j}\right)<1$. Let $\gamma=\max _{1 \leqslant j \leqslant m} \operatorname{Lip}\left(h_{j}\right) \in[1 / m, 1)$. We then define the mapping $\mu: \Sigma \rightarrow I$ by setting

$$
\mu(w)=\lim _{n \rightarrow \infty} h_{w_{1}} \circ h_{w_{2}} \circ \cdots \circ h_{w_{n}}(I) \quad \text { for } \quad w=\left(w_{n}\right) \in \Sigma
$$

Clearly μ is continuous. Then it follows that $X=\mu(\Sigma)$ is a compact subset of I and satisfies the following equality :

$$
X=h_{1}(X) \cup h_{2}(X) \cup \cdots \cup h_{m}(X)
$$

It is known that the above equation possesses a unique non-empty compact solution [4, p. 384]; thus we have $\mu(\Sigma)=X=I$, since $h_{j}(I)=I_{j}$ for $1 \leqslant j \leqslant m$. It also follows that the set e is a dense subset of I; therefore the mapping v is one to one.

Let $S_{n}=\bigcup_{0 \leqslant j \leqslant n} e_{j}$ for $n \geqslant 1$ and let

$$
H_{n, x}(y)=h_{A_{0}(x)} \circ h_{A_{1}(x)} \circ \cdots \circ h_{A_{n-1}(x)}(y)
$$

for $n \geqslant 1$ and $x, y \in I$. Obviously $H_{n, x}$ is a contraction satisfying $\operatorname{Lip}\left(H_{n, x}\right) \leqslant \gamma^{n}$. We first consider an arbitrary point $x \in I-e$. Put $K_{n, x}=H_{n, x}(I)$ for $n \geqslant 1$. Since $K_{n, x}$ is the connected component of $I-S_{n}$ containing x and $\left|K_{n, x}\right| \leqslant \gamma^{n}$, we have

$$
\lim _{n \rightarrow \infty} \bar{K}_{n, x}=x
$$

that is, $\mu \circ v(x)=x$. Thus v maps $I-e$ homeomorphically onto
$v(I-e)$. We next consider an arbitrary point $x \in e_{N}, N \geqslant 1$. Put $K_{n, x}^{ \pm}=H_{n, x \pm}(I)$ for $n \geqslant N$, respectively. Since $K_{n, x}^{ \pm}$are the two consecutive connected components of $I-S_{n}$ such that the left end point of $K_{n, x}^{+}$is x and the right end point of $K_{n, x}^{-}$is also x, we have

$$
\lim _{n \rightarrow \infty} \bar{K}_{n, x}^{+}=\lim _{n \rightarrow \infty} \bar{K}_{n, x}^{-}=x
$$

so $\mu \circ v(x)=\mu \circ v(x \pm)=x$. Similarly we can define $K_{n, 0}^{+}$and $K_{n, 1}^{-}$ for $n \geqslant 1$; thus $\mu \circ v(0)=0$ and $\mu \circ v(1)=1$. Then we have

Lemma 3.1. $-v(I-e)=\Sigma-\Lambda$; namely, $w=\left(w_{n}\right) \in v(I-e)$ if and only if

$$
\#\left\{n \geqslant 1 ; w_{n} \neq 1\right\}=\infty=\#\left\{n \geqslant 1 ; w_{n} \neq m\right\}
$$

Proof. - Suppose that $w=v(x) \in \Lambda$ for some $x \in I-e$. Since v is one to one, we have $v(I-e) \cap v(e)=\phi$; thus $w \in \Sigma_{+}+\Sigma_{-}$. Hence there exists $y \in e-e_{0}$ such that either $w=v(y+)$ or $w=v(y-)$. Therefore $x=\mu \circ v(x)=\mu(w)=\mu \circ v(y \pm)=y$. This contradiction implies that $\Lambda \cap v(I-e)=\phi$; that is, $v(I-e) \subset \Sigma-\Lambda$. Thus it suffices to show that $\Sigma-\Lambda \subset v(I-e)$.

Suppose now that there exists a word $w=\left(w_{n}\right) \in \Sigma-\Lambda$ such that $w \notin v(I-e)$. Put $z=\left(z_{n}\right) \equiv v \circ \mu(w)$. Then it follows that $w \neq z$. For otherwise, we have $\mu(w) \in e$; thus, $w \in v(e) \subset \Lambda$, contrary to $w \in \Sigma-\Lambda$. Let $N \geqslant 1$ be the smallest integer such that $w_{N} \neq z_{N}$. Since $\mu(w)=\mu \circ v \circ \mu(w)=\mu(z)$, it follows that

$$
h_{w_{N}} \circ h_{w_{N+1}} \circ \cdots=h_{z_{N}} \circ h_{z_{N+1}} \circ \cdots, \text { say } p
$$

Then we have $p \in e_{1}$ and $w, z \in \Lambda_{N}$, contrary to $w \in \Sigma-\Lambda$. This completes the proof.

4. Functional Equations.

Let $f_{j}: I \rightarrow I$ be a contraction for $1 \leqslant j \leqslant m$. We assume that $c_{0}=0$ and $c_{m}=1$ are unique fixed points of $f_{1}(x)$ and $f_{m}(x)$ respectively. The following lemma is a special case of the general theorem obtained by the author [4, p. 397], but we include the proof for completeness.

Lemma 4.1. - The functional equations

$$
\begin{equation*}
\psi(x)=f_{j}\left(\psi\left(g_{j}(x)\right)\right) \quad \text { for } \quad x \in I_{j}, 1 \leqslant j \leqslant m \tag{4.1}
\end{equation*}
$$

possess a unique continuous solution $\psi(x)$ if and only if

$$
\begin{equation*}
f_{j}\left(\frac{1+\varepsilon_{j}}{2}\right)=f_{j+1}\left(\frac{1-\varepsilon_{j+1}}{2}\right) \quad \text { for } \quad 1 \leqslant j \leqslant m-1 \tag{4.2}
\end{equation*}
$$

Remark. - This is a generalization of the theorem obtained by G. de Rham [10]; indeed he has shown that the equations

$$
M\left(\frac{x}{2}\right)=F_{0}(M(x)), M\left(\frac{1+x}{2}\right)=F_{1}(M(x)) \quad \text { for } \quad x \in I
$$

possess a unique continuous solution $M(x)$ if and only if $F_{1}\left(p_{0}\right)=F_{0}\left(p_{1}\right)$ where p_{0}, p_{1} are unique fixed points of the contractions F_{0}, F_{1} respectively. Lebesgue's singular functions and Pólya's space-filling curves satisfy the above equations for certain affine contractions F_{0} and F_{1}.

Proof. - The conditions (4.2) are obviously necessary; thus it suffices to show the sufficiency. Let \mathscr{F} be the set of continuous functions $u(x)$ defined on I satisfying $u(0)=0$ and $u(1)=1$; obviously \mathscr{F} is a closed subset of the Banach space $C([0,1])$ with the usual uniform norm. We now consider the following operator :

$$
T u(x)=f_{A(x)}(u(G(x)))
$$

Then it is easily seen that the conditions (4.2) imply that $T(\mathscr{F}) \subset \mathscr{F}$; moreover T is a contraction, since

$$
\|T u-T v\| \leqslant \lambda \max _{x \in I}|u(G(x))-v(G(x))| \leqslant \lambda\|u-v\|
$$

where $\lambda=\max _{1 \leqslant j \leqslant m} \operatorname{Lip}\left(f_{j}\right) \in[1 / m, 1)$, for any $u, v \in \mathscr{F}$. Hence T has a unique fixed point ψ in \mathscr{F}; namely

$$
\psi(x)=f_{j}\left(\psi\left(g_{j}(x)\right)\right) \quad \text { for } \quad c_{j-1} \leqslant x<c_{j}, \quad 1 \leqslant j \leqslant m
$$

Obviously this equality holds also true for $x=c_{j}$. This completes the proof.

For $n \geqslant 1$ and $x, y \in I$, we define

$$
F_{n, x}(y)=f_{A_{0}(x)} \circ f_{A_{1}(x)} \circ \cdots \circ f_{A_{n-1}(x)}(y)
$$

The function $F_{n, x}$ is a contraction satisfying $\operatorname{Lip}\left(F_{n, x}\right) \leqslant \lambda^{n}$. Put $\beta=\max _{1 \leqslant j \leqslant m} \operatorname{Lip}\left(g_{j}\right) \in[m, \infty]$. Then we have

Lemma 4.2. - Suppose that $\left\{f_{j}\right\}$ satisfy the conditions (4.2). If $\beta<\infty$, then the continuous solution $\psi(x)$ satisfies Hölder's condition of order $\log (1 / \lambda) / \log \beta$.

Proof. - Consider arbitrary two points $x<y$ in I. Let $N \geqslant 0$ be the smallest integer satisfying $\#\left\{S_{N+1} \cap(x, y)\right\} \geqslant 2$. We now distinguish two cases: (a) $S_{N} \cap(x, y)=\phi$; (b) $S_{N} \cap(x, y)$ consists of a single point, say p. In case (a), it follows that

$$
\begin{aligned}
|\psi(x)-\psi(y)| & =\lim _{\varepsilon \rightarrow 0^{+}}|\psi(x+\varepsilon)-\psi(y-\varepsilon)| \\
& =\lim _{\varepsilon \rightarrow 0^{+}}\left|F_{N, x+\varepsilon}\left(\psi\left(G^{N}(x+\varepsilon)\right)\right)-F_{N, x+\varepsilon}\left(\psi\left(G^{N}(y-\varepsilon)\right)\right)\right| \leqslant \lambda^{N}
\end{aligned}
$$

Similarly we have $|\psi(x)-\psi(y)| \leqslant 2 \lambda^{N}$ in case (b), since $(x, p) \cap S_{N}=(p, y) \cap S_{N}=\phi$. Now let $s<t$ be any two consecutive points of e_{N+1} contained in (x, y). Then it follows that $|x-y|>|s-t| \geqslant \beta^{-N-1} ;$ thus

$$
|\psi(x)-\psi(y)| \leqslant 2 \lambda^{N}=\frac{2}{\lambda} \beta^{-\xi(N+1)} \leqslant \frac{2}{\lambda}|x-y|^{\xi}
$$

where $\xi=\log (1 / \lambda) / \log \beta$, which obviously completes the proof.

5. Some Properties.

The continuous solution $\psi(x)$ of the equations (4.1) is not necessarily singular in general; for example, if we take

$$
g_{j}(x)=m x-j+1 \quad \text { and } \quad f_{j}(x)=\frac{x}{m}+\frac{j-1}{m}
$$

for $1 \leqslant j \leqslant m$, then obviously $\psi(x) \equiv x$ is a smooth solution of (4.1). In this paper, to discuss the singularities of $\psi(x)$, we shall restrict ourselves to the following case:

$$
\begin{equation*}
\varepsilon_{j}=1+2\left[\frac{j}{4}\right]-2\left[\frac{j+1}{4}\right] \tag{5.1}
\end{equation*}
$$

and

$$
f_{j}(x)=\frac{1}{2 k}\left\{(-1)^{[j / 2]} x+\left[\frac{j}{2}\right]-\left[\frac{j}{4}\right]+\left[\frac{j-1}{4}\right]\right\}
$$

for $1 \leqslant j \leqslant m=4 k$, where k is a positive integer ; so $\lambda=1 / 2 k$. Then it is easily seen that the functions $\left\{f_{j}\right\}$ satisfy the conditions (4.2); therefore the equations (4.1) possess a unique continuous solution $\psi(x)$, which depends only on the functions $\left\{g_{j}\right\}$ satisfying the conditions (5.1). Let η_{j} be the sign of the function f_{j}; namely $\eta_{j}=(-1)^{[j / 2]}$, for $1 \leqslant j \leqslant 4 k$. For brevity, put

$$
\varepsilon_{n, x}=\prod_{j=0}^{n-1} \varepsilon_{A_{j}(x)} \quad \text { and } \quad \eta_{n, x}=\prod_{j=0}^{n-1} \eta_{A_{j}(x)}
$$

for $n \geqslant 1, x \in I$.
Consider now an arbitrary point $x \in I-e$. We define

$$
p_{j, n, x}=H_{n, x}\left(c_{j}\right) \quad \text { for } \quad n \geqslant 1, \quad 0 \leqslant j \leqslant 4 k
$$

Obviously $p_{j, n, x} \neq x$. Since $p_{j, n, x} \in G^{-n}\left(c_{j}\right) \subset e_{n+1}$ for $1 \leqslant j \leqslant 4 k-1$, we have

$$
G^{n}\left(p_{j, n, x}\right)=c_{j} \quad \text { for } \quad 1 \leqslant j \leqslant 4 k-1
$$

The points $p_{0, n, x}$ and $p_{4 k, n, x}$ are two end points of $K_{n, x}$ and do not satisfy the above equality in general ; however,

$$
\lim _{\substack{y \rightarrow p_{j, n, x} \\ y \in \mathbb{K}_{n, x}}} G^{n}(y)=c_{j} \quad \text { for } \quad j=0,4 k
$$

Note that $0<\left|x-p_{j, n, x}\right|<\gamma^{n}$ for any $n \geqslant 1$. Then we have

Lemma 5.1. - Suppose that $x \in I-e$. Then the points $\left\{p_{j, n, x}\right\}$ satisfy the following properties :
(1) $\operatorname{sign}\left(x-p_{j, n, x}\right)=\varepsilon_{n, x} \operatorname{sign}\left\{A_{n}(x)-j-\frac{1}{2}\right\}$,
(2) $\psi(x)-\psi\left(p_{j, n, x}\right)=\frac{\eta_{n, x}}{(2 k)^{n}}\left\{\psi\left(G^{n}(x)\right)-\frac{1-(-1)^{j}}{4 k}-\frac{1}{k}\left[\frac{j}{4}\right]\right\}$
for $n \geqslant 1$ and $0 \leqslant j \leqslant 4 k$.
Proof. - Since $p_{j, n, x}=H_{n, x}\left(c_{j}\right)$, we have
$\operatorname{sign}\left(x-p_{j, n, x}\right)=\operatorname{sign}\left\{H_{n, x}\left(G^{n}(x)\right)-H_{n, x}\left(c_{j}\right)\right\}=\varepsilon_{n, x} \operatorname{sign}\left\{G^{n}(x)-c_{j}\right\} ;$
thus the property (1) follows immediately. Since $K_{n, x} \cap S_{n}=\phi$,

$$
\psi\left(p_{j, n, x}\right)=\lim _{\substack{y \rightarrow p_{j, n, x} \\ y \in K_{n, x}}} \psi(y)=\lim _{\substack{y \rightarrow p_{j, n, x} \\ y \in K_{n, x}}} F_{n, x}\left(\psi\left(G^{n}(y)\right)\right)=F_{n, x}\left(\psi\left(c_{j}\right)\right)
$$

for $0 \leqslant j \leqslant 4 k$; hence

$$
\psi(x)-\psi\left(p_{j, n, x}\right)=\mathrm{F}_{n, x}\left(\psi\left(\mathrm{G}^{n}(x)\right)\right)-\mathrm{F}_{n, x}\left(\psi\left(c_{j}\right)\right) \frac{\eta_{n, x}}{(2 k)^{n}}\left\{\psi\left(G^{n}(x)\right)-\psi\left(c_{j}\right)\right\}
$$

which obviously completes the proof.
We now consider an arbitrary point $x \in e_{N}, N \geqslant 1$. Then it is easily seen that, for $1 \leqslant j \leqslant 4 k-1$, each of the sets $K_{n, x}^{ \pm}$contains exactly one point of $G^{-n}\left(c_{j}\right) \subset e_{n+1}$, say $q_{j, n, x}^{ \pm}$respectively. Obviously $q_{j, n, x}^{ \pm} \neq x$. Similarly we can define $\left\{q_{j, n, 0}^{+}\right\}$and $\left\{q_{j, n, 1}^{-}\right\}$for $n \geqslant 0$, $1 \leqslant j \leqslant 4 k-1$. Note that $0<\left|x-q_{j, n, x}^{ \pm}\right|<\gamma^{n}$ for any $n \geqslant N$. It also follows that

$$
\lim _{\varepsilon \rightarrow 0 \pm} G^{n}(x+\varepsilon)=\frac{1}{2}\left(1 \mp \varepsilon_{N, x \pm}\right)
$$

for every $n \geqslant N$, respectively. We, of course, adopt the rule: $\varepsilon_{0,0^{+}}=\varepsilon_{0,1_{-}}=\eta_{0,0^{+}}=\eta_{0,1_{-}}=1$. Then we have

Lemma 5.2. - Suppose that $x \in e_{N}, N \geqslant 0$. Then the points $\left\{q_{j, n, x}^{ \pm}\right\}$satisfy the following :

$$
\psi(x)-\psi\left(q_{j, n, x}^{ \pm}\right)=\frac{\eta_{N, x \pm}}{(2 k)^{n}}\left\{\frac{1}{2}\left(1 \mp \varepsilon_{N, x \pm}\right)-\frac{1-(-1)^{j}}{4 k}-\frac{1}{k}\left[\frac{j}{4}\right]\right\}
$$

for $n \geqslant N$ and $1 \leqslant j \leqslant 4 k-1$, respectively.
Proof. - Since $K_{n, x}^{ \pm} \cap S_{n}=\phi$, we have

$$
\begin{aligned}
& \psi(x)-\psi\left(q_{j, n, x}^{ \pm}\right)=\lim _{\varepsilon \rightarrow 0 \pm}\left\{\psi(x+\varepsilon)-\psi\left(q_{j, n, x}^{ \pm}\right)\right\}= \\
& \lim _{\varepsilon \rightarrow 0 \pm}\left\{F_{n, x+\varepsilon}\left(\psi\left(G^{n}(x+\varepsilon)\right)\right)-F_{n, x+\varepsilon}\left(\psi\left(c_{j}\right)\right)\right\}=\frac{\eta_{N, x \pm}}{(2 k)^{n}}\left\{\frac{1}{2}\left(1 \mp \varepsilon_{N, x \pm}\right)-\psi\left(c_{j}\right)\right\}
\end{aligned}
$$

for every $n \geqslant N$, respectively. This completes the proof.

6. Singularities.

For any $x \neq y \in I$, we define $\Delta \psi(x, y)=(\psi(x)-\psi(y)) /(x-y)$. Let W be the set of points $x \in I$ at which $A_{n}(x) \equiv 2$ or $3(\bmod 4)$ for infinitely many n 's. Obviously $W \subset I-e$. First of all, we have

Theorem 6.1. - Suppose that $\gamma \leqslant 1 / 2 k$. Then we have

$$
D^{ \pm} \psi(x) \geqslant 0 \geqslant D_{ \pm} \psi(x) \quad \text { and } \quad D^{ \pm} \psi(x)-D_{ \pm} \psi(x) \geqslant 1 / 4 k
$$

respectively, for every $x \in W$.
Proof. - We distinguish two cases (not exclusive) as follows :
Case $A . A_{n}(x) \equiv 3(\bmod 4)$ for infinitely many $n ' s$.
Let $0<n_{1}<n_{2}<\cdots$ be the subsequence of integers such that $A_{n_{i}}(x)=4 N_{i}+3$, where $0 \leqslant N_{i}<k$. From the functional equations (4.1), we have

$$
\frac{N_{i}}{k} \leqslant \psi\left(G^{n_{i}}(x)\right) \leqslant \frac{2 N_{i}+1}{k}
$$

therefore $\left\{\psi(x)-\psi\left(P_{i, 1}\right)\right\}\left\{\psi(x)-\psi\left(P_{i, 2}\right)\right\} \leqslant 0 \quad$ by (2) of Lemma 5.1, where $p_{i, j}=p_{4 N_{i}+j, n_{i}, x}$ for $0 \leqslant j \leqslant 4$. On the order hand, we have $\operatorname{sign}\left(x-P_{i, 1}\right)=\operatorname{sign}\left(x-P_{i, 2}\right)=\varepsilon_{n_{i}, x}$ by (1) of Lemma 5.1. Since $\varepsilon_{n_{i}, x}$ changes the sign infinitely many times as i increases, it follows that $D^{ \pm} \psi(x) \geqslant 0 \geqslant D_{ \pm} \psi(x)$. It also follows that

$$
\left|\Delta \psi\left(x, P_{i, 1}\right)\right|+\left|\Delta \psi\left(x, P_{i, 2}\right)\right| \geqslant \frac{(2 k)^{-n_{i}-1}}{\left|x-P_{i, 1}\right|}>\frac{1}{2 k}(2 k \gamma)^{-n_{i}} \geqslant \frac{1}{2 k}
$$

therefore $D^{ \pm} \psi(x)-D_{ \pm} \psi(x) \geqslant 1 / 4 k$ respectively, as required.
Case $B . A_{n}(x) \equiv 2(\bmod 4)$ for infinitely many n 's.
Let $0<n_{1}<n_{2}<\cdots$ be the subsequence of integers such that $A_{n_{i}}(x)=4 N_{i}+2$, where $0 \leqslant N_{i}<k$. Since

$$
\frac{N_{i}}{k} \leqslant \psi\left(G^{n_{i}}(x)\right) \leqslant \frac{2 N_{i}+1}{k}
$$

it is easily seen that $\left\{\psi(x)-\psi\left(P_{i, 0}\right)\right\}\left\{\psi(x)-\psi\left(P_{i, 1}\right)\right\} \leqslant 0$ and $\left\{\psi(x)-\psi\left(P_{i, 2}\right)\right\}\left\{\psi(x)-\psi\left(P_{i, 3}\right)\right\} \leqslant 0$. On the other hand, we have
$\operatorname{sign}\left(x-P_{i, 0}\right)=\operatorname{sign}\left(x-P_{i, 1}\right)=\operatorname{sign}\left(P_{i, 2}-x\right)=\operatorname{sign}\left(P_{i, 3}-x\right) ;$ therefore $D^{ \pm} \psi(x) \geqslant 0 \geqslant D_{ \pm} \psi(x)$. Moreover,

$$
\left|\Delta \psi\left(x, P_{i, 0}\right)\right|+\left|\Delta \psi\left(x, P_{i, 1}\right)\right| \geqslant \frac{(2 k)^{-n_{i}-1}}{\left|x-P_{i, 0}\right|}>\frac{1}{2 k}(2 k \gamma)^{-n_{i}} \geqslant \frac{1}{2 k}
$$

The same estimate holds true if we replace $P_{i, 0}, P_{i, 1}$ by $P_{i, 2}, P_{i, 3}$, respectively; thus $D^{ \pm} \psi(x)-D_{ \pm} \psi(x) \geqslant 1 / 4 k$ respectively. This completes the proof.

Let $W_{0} \subset W$ be the set of points $x \in I$ at which $A_{n}(x) \equiv 2$ or 3 $(\bmod 4)$ and $A_{n+1}(x) \equiv 2$ or $3(\bmod 4)$ for infinitely many n 's. Then we have

Theorem 6.2. - Suppose that $\gamma \leqslant 1 / 2 k$. Then W_{0} is contained in the set $\operatorname{Knot}(\psi)$ except for a set of measure zero.

Proof. - We consider an arbitrary point x of W_{0}. Let $0 \leqslant n_{1}<n_{2}<\cdots$ be the subsequence of integers such that $A_{n_{i}}(x)=4 N_{i}+\delta_{i}$ and $A_{n_{i}+1}(x)=4 L_{i}+\omega_{i}$, where $0 \leqslant N_{i}, L_{i}<k$ and $2 \leqslant \delta_{i}, \omega_{i} \leqslant 3$. Then it is easily seen that

$$
\frac{2 N_{i}+1}{2 k}-\frac{2 L_{i}+1}{(2 k)^{2}} \leqslant \psi\left(G^{n_{i}}(x)\right) \leqslant \frac{2 N_{i}+1}{k}-\frac{L_{i}}{2 k^{2}} ;
$$

therefore by (2) of Lemma 5.1,

$$
\eta_{n_{i}, x}(2 k)^{n_{i}}\left\{\psi(x)-\psi\left(P_{i, 0}\right)\right\}=\psi\left(G^{n_{i}}(x)\right)-\frac{N_{i}}{k} \geqslant \frac{1}{2 k}-\frac{2 L_{i}+1}{(2 k)^{2}} \geqslant(2 k)^{-2} .
$$

Similarly we have

$$
\eta_{n_{i}, x}(2 k)^{n_{i}}\left\{\psi\left(P_{i, 4}\right)-\psi(x)\right\}=\frac{N_{i}+1}{k}-\psi\left(G^{n_{i}}(x)\right) \geqslant \frac{1}{2 k}+\frac{L_{i}}{2 k^{2}} \geqslant \frac{1}{2 k}
$$

Therefore, since $\operatorname{sign}\left(x-P_{i, 0}\right)=\operatorname{sign}\left(P_{i, 4}-x\right)$, it follows that

$$
\operatorname{sign}\left(\Delta \psi\left(x, P_{i, 0}\right)\right)=\operatorname{sign}\left(\Delta \psi\left(x, P_{i, 4}\right)\right)
$$

and

$$
\left|\Delta \psi\left(x, P_{i, 0}\right)\right|>(2 k)^{-2}, \quad\left|\Delta \psi\left(x, P_{i, 4}\right)\right|>\frac{1}{2 k}
$$

Hence the set $\left[D_{+} \psi(x), D^{+} \psi(x)\right] \cap\left[D_{-} \psi(x), D^{-} \psi(x)\right]$ contains an interval of length $(2 k)^{-2}$ by Theorem 6.1. Thus it follows from Denjoy's theorem
[2, p. 105] that except for a set of measure zero, every point of W_{0} is a knot point of $\psi(x)$. This completes the proof.

For $N \geqslant 0$, let Y_{N} be the set of points $x \in I$ at which $A_{n}(x) \equiv 0$ or $1(\bmod 4)$ for all $n \geqslant N$ and $A_{N-1}(x) \equiv 2$ or $3(\bmod 4)$. Obviously $I-W=\bigcup_{n \geqslant 0} Y_{n}$. For brevity, put $Y_{n}^{*}=Y_{n} \cap(I-e)$ for $n \geqslant 0$. Then the unit interval I is decomposed as follows:

$$
I=W+e+\bigcup_{n \geqslant 0} Y_{n}^{*}
$$

For $n \geqslant 1$, let Ξ_{n} be the set of finite words ($w_{1}, \ldots w_{n}$) of length n such that $1 \leqslant w_{j} \leqslant 4 k$ and $w_{j} \equiv 0$ or $1(\bmod 4)$ for $1 \leqslant j \leqslant n$. Then we have

Theorem 6.3. - Suppose that there exists a positive constant C_{0}, independent of n, satisfying

$$
\min _{\left(w_{1} \ldots w_{n}\right) \in \Xi_{n}}\left|h_{w_{1}} \circ \ldots \circ h_{w_{n}}(I)\right| \geqslant C_{0}(2 k)^{-n}
$$

for all $n \geqslant 1$. Suppose further that $\beta<\infty$. Then we have

$$
D^{ \pm} \psi(x)-D_{ \pm} \psi(x) \geqslant \frac{1}{2 k}
$$

respectively, for every $x \in I-W$.
Proof: - We distinguish two cases as follows :
Case A. $x \in Y_{N}^{*}$ for some $N \geqslant 0$.
By Lemma 3.1, we have $A_{n}(x) \neq 1$ for infinitely many n 's. Let $N \leqslant n_{1}<n_{2}<\cdots$ be the subsequence of integers such that $A_{n_{i}}(x) \geqslant 4$. Put $Q_{i, j}=p_{j, n_{i}, x}$ for $0 \leqslant j \leqslant 2$. Since

$$
\psi\left(G^{n_{i}}(x)\right) \geqslant \frac{1}{2 k}
$$

and $\operatorname{sign}\left(x-Q_{i, 1}\right)=\operatorname{sign}\left(x-Q_{i, 2}\right)=\operatorname{sign}\left(Q_{i, 2}-Q_{i, 1}\right)=\varepsilon_{N, x}$, we have $\left|\Delta \psi\left(x, Q_{i, 1}\right)-\Delta \psi\left(x, Q_{i, 2}\right)\right|=$

$$
(2 k)^{-n_{i}}\left|\psi\left(G^{n_{i}}(x)\right)\left\{\frac{1}{x-Q_{i, 2}}-\frac{1}{x-Q_{i, 1}}\right\}+\frac{1 \cdots}{2 k\left(x-Q_{i, 1}\right)}\right| \geqslant \frac{(2 k)^{-n_{i}-1}}{\left|x-Q_{i, 1}\right|}>\frac{1}{2 k}
$$

On the other hand, it follows that
$\left|x-Q_{i, 0}\right|>\left|Q_{i, 1}-Q_{i, 0}\right| \geqslant \beta^{-N}\left|h_{A_{N^{(x)}}} \circ \ldots \circ h_{A_{n_{i}-1}(x)} \circ h_{1}(I)\right| \geqslant$

$$
C_{0} \beta^{-N}(2 k)^{-n_{i}+N-1}
$$

therefore

$$
\left|\Delta \psi\left(x, Q_{i, 0}\right)\right|=(2 k)^{-n_{i}}\left|\frac{\psi\left(G^{n_{i}}(x)\right)}{x-Q_{i, 0}}\right| \leqslant \frac{2 k}{C_{0}}\left(\frac{\beta}{2 k}\right)^{N}
$$

Since $\operatorname{sign}\left(x-Q_{i, 0}\right)=\varepsilon_{N, x}$, we conclude that either $\left[D_{+} \psi(x), D^{+} \psi(x)\right]$ or $\left[D_{-} \psi(x), D^{-} \psi(x)\right]$ contains an interval of length $1 / 2 k$ according as $\varepsilon_{N, x}=-1$ or +1 .

It also follows from Lemma 3.1 that $A_{n}(x) \neq 4 k$ for infinitely many n 's. Let $N \leqslant n_{1}<n_{2}<\ldots$ be the subsequence of integers such that $A_{n_{i}}(x) \leqslant 4 k-3$. Put $R_{i, j}=p_{4 k-j, n_{i}, x}$ for $0 \leqslant j \leqslant 3$. Since

$$
\psi\left(G^{n_{i}}(x)\right) \leqslant \frac{2 k-1}{2 k}
$$

and $\operatorname{sign}\left(x-R_{i, 2}\right)=\operatorname{sign}\left(x-R_{i, 3}\right)=\operatorname{sign}\left(R_{i, 3}-R_{i, 2}\right)=-\varepsilon_{N, x}$, we have $\left|\Delta \psi\left(x, R_{i, 2}\right)-\Delta \psi\left(x, R_{i, 3}\right)\right|=$

$$
\begin{array}{r}
(2 k)^{-n_{i}}\left|\left\{\frac{2 k-1}{2 k}-\psi\left(G^{n_{i}}(x)\right)\right\}\left\{\frac{1}{x-R_{i, 3}}-\frac{1}{x-R_{i, 2}}\right\}+\frac{1}{2 k\left(x-R_{i, 2}\right)}\right| \geqslant \\
\frac{(2 k)^{-n_{i}-1}}{\left|x-R_{i, 2}\right|}>\frac{1}{2 k}
\end{array}
$$

On the other hand, $\left|x-R_{i, 0}\right|>\left|R_{i, 1}-R_{i, 0}\right| \geqslant C_{0} \beta^{-N}(2 k)^{-n_{i}+N-1}$; thus

$$
\left|\Delta \psi\left(x, R_{i, 0}\right)\right|=(2 k)^{-n_{i}}\left|\frac{\psi\left(G^{n_{i}}(x)\right)-1}{x-R_{i, 0}}\right| \leqslant \frac{2 k}{C_{0}}\left(\frac{\beta}{2 k}\right)^{N}
$$

Since $\operatorname{sign}\left(x-R_{i, 0}\right)=-\varepsilon_{N, x}$, it follows that either $\left[D_{+} \psi(x), D^{+} \psi(x)\right]$ or $\left[D_{-} \psi(x), D^{-} \psi(x)\right]$ contains an interval of length $1 / 2 k$ according as $\varepsilon_{N, x}=+1$ or -1 . Hence $D^{ \pm} \psi(x)-D_{ \pm} \psi(x) \geqslant 1 / 2 k$ respectively.

Case B. $x \in e_{N}$ for some $N \geqslant 0$.
For $n \geqslant N$, let $Q_{n}^{+}=\max \left\{q_{1, n, x}^{+}, q_{3, n, x}^{+}\right\}, Q_{n}^{-}=\min \left\{q_{1, n, x}^{-}, q_{3, n, x}^{-}\right\}$ and let $R_{n}^{+}=q_{2, n, x}^{+}$respectively. Then $Q_{n}^{-}<R_{n}^{-}<x<R_{n}^{+}<Q_{n}^{+}$.

Since $\operatorname{sign}\left(x-Q_{n}^{ \pm}\right)=\operatorname{sign}\left(Q_{n}^{ \pm}-R_{n}^{ \pm}\right)= \pm 1$ respectively, it follows from Lemma 5.2 that

$$
\begin{aligned}
& \left|\Delta \psi\left(x, R_{n}^{ \pm}\right)-\Delta \psi\left(x, Q_{n}^{ \pm}\right)\right|= \\
& \quad(2 k)^{-n}\left|\frac{1}{2}\left(1 \mp \varepsilon_{N, x \pm}\right)\left\{\frac{1}{x-R_{n}^{ \pm}}-\frac{1}{x-Q_{n}^{ \pm}}\right\}+\frac{1}{2 k\left(x-Q_{n}^{ \pm}\right)}\right| \geqslant \frac{(2 k)^{-n-1}}{\left|x-Q_{n}^{ \pm}\right|}>\frac{1}{2 k},
\end{aligned}
$$

respectively. On the other hand, we have

$$
\left|x-R_{n}^{ \pm}\right|>\left|K_{n+1, x}^{ \pm}\right| \geqslant \beta^{-N}\left|h_{A_{N}(x \pm)} \circ \cdots \circ h_{A_{n}(x \pm)}(I)\right| \geqslant C_{0} \beta^{-N}(2 k)^{-n+N-1}
$$

therefore

$$
\left|\Delta \psi\left(x, R_{n}^{ \pm}\right)\right| \leqslant \frac{(2 k)^{-n}}{\left|x-R_{n}^{ \pm}\right|}<\frac{2 k}{C_{0}}\left(\frac{\beta}{2 k}\right)^{N}
$$

Hence $D^{ \pm} \psi(x)-D_{ \pm} \psi(x) \geqslant 1 / 2 k$ respectively. This completes the proof.

Let $Y^{*}=\bigcup_{n \geqslant 0} Y_{n}^{*}$ for brevity. Then we have
Theorem 6.4. $-\operatorname{Knot}(\psi) \cap Y^{*}=\phi$.
Proof. - We consider an arbitrary point x of Y_{N}^{*} for some $N \geqslant 0$. Let $s_{n}=p_{0, n, x}$ for $n \geqslant N$. Since $\operatorname{sign}\left(x-s_{n}\right)=\varepsilon_{N, x}$ is independent of $n \geqslant N$, the sequence $\left\{s_{n}\right\}$ is monotone, either increasing or decreasing, and converges to x. Note that $s_{n}=s_{n+1}$ if and only if $A_{n}(x)=1$. Put $J_{n}=\left[s_{n}, s_{n+1}\right] \subset \bar{K}_{n, x}$ for $n \geqslant N$. Then it is easily seen that

$$
\left(x, s_{N}\right]=\bigcup_{n \geqslant N} J_{n} .
$$

Since the function $G^{n}(x)$ maps $K_{n, x}$ homeomorphically onto $(0,1)$, we have $A_{n}(x)>A_{n}(y)$ for all $y \in \dot{J}_{n}$. Therefore

$$
\psi\left(G^{n}(x)\right) \geqslant f_{A_{n}(x)}(0) \geqslant \max _{j<A_{n}(x)}\left\|f_{j}\right\| \geqslant \psi\left(G^{n}(y)\right) ;
$$

thus

$$
\begin{array}{r}
\eta_{N, x} \operatorname{sign}\{\psi(x)-\psi(y)\}=\eta_{N, x} \operatorname{sign}\left\{F_{n, x}\left(\psi\left(G^{n}(x)\right)\right)-F_{n, x}\left(\psi\left(G^{n}(y)\right)\right)\right\}= \\
\operatorname{sign}\left\{\psi\left(G^{n}(x)\right)-\psi\left(G^{n}(y)\right)\right\} \geqslant 0 .
\end{array}
$$

By the continuity of ψ, we conclude that

$$
\eta_{N, x} \operatorname{sign}\{\psi(x)-\psi(y)\} \geqslant 0 \quad \text { for every } \quad y \in\left[x, s_{N}\right]
$$

This means that x is not a knot point of $\psi(x)$.

7. Proof of Theorem 2.1.

First of all, for any integer $k \geqslant 1$ and positive numbers σ, τ, ρ satisfying

$$
\begin{equation*}
2 k(\sigma+\tau)<1 \quad \text { and } \quad \sigma \geqslant \rho \tag{7.1}
\end{equation*}
$$

we shall construct two Cantor sets $E_{0} \equiv E_{0}(k, \sigma, \tau)$ and $E_{1} \equiv E_{1}(k, \sigma, \rho)$. The set $E_{0}(k, \sigma, \tau)$ is obtained from the unit interval I by a sequence of deletions of open intervals known as middle thirds, as follows : First divide I into k equal parts, say

$$
I_{1,1}=\left[0, \frac{1}{k}\right], \quad I_{1,2}=\left[\frac{1}{k}, \frac{2}{k}\right], \quad \ldots, \quad I_{1, k}=\left[\frac{k-1}{k}, 1\right],
$$

and remove from each closed interval $I_{1, j}$ the open interval $U_{1, j}$ centered at $(2 j-1) / 2 k$ and of length 2σ. We subdivide each of the $2 k$ remaining closed intervals into k equal parts, say $I_{2, j}, 1 \leqslant j \leqslant 2 k^{2}$, ordered from left to right, each of length $(1-2 k \sigma) /\left(2 k^{2}\right)$. Then remove from each closed interval $I_{2, j}$ the middle open interval $U_{2, j}$ of length $2 \sigma \tau$, leaving the $4 k^{2}$ closed intervals, each of length $\left(1-2 k \sigma-4 k^{2} \sigma \tau\right) /\left(4 k^{2}\right)$. This process is permitted to continue indefinitely. At the nth stage of deletion, each length of the $2^{n-1} k^{n}$ open intervals $U_{n, j}$ is $2 \sigma \tau^{n-1}$, and therefore the measure of the union of the open intervals removed in the entire sequence of removal operations is $2 k \sigma /(1-2 k \tau)$. The set E_{0} is defined to be the closed set remaining; thus

$$
\left|E_{0}\right|=\frac{1-2 k(\sigma+\tau)}{1-2 k \tau}
$$

We next define the set $E_{1}(k, \sigma, \rho)$, which is slightly different from E_{0} defined above, as follows : First divide the unit interval I into k equal parts, say

$$
J_{1,1}=\left[0, \frac{1}{k}\right], \quad J_{1,2}=\left[\frac{1}{k}, \frac{2}{k}\right], \quad \ldots, \quad J_{1, k}=\left[\frac{k-1}{k}, 1\right] .
$$

Then remove from each closed interval $J_{1, j}$ the two intervals

$$
V_{1, j}^{-}=\left[\frac{j-1}{k}, \frac{2 j-1-2 k \sigma}{2 k}\right), V_{1, j}^{+}=\left(\frac{2 j-1+2 k \sigma}{2 k}, \frac{j}{k}\right]
$$

each of length $(1-2 k \sigma) / 2 k$. We subdivide each of the k remaining closed intervals into $2 k$ equal parts, say $J_{2, j}, 1 \leqslant j \leqslant 2 k^{2}$, ordered
from left to right, each of length σ / k. Then delete from each closed interval $J_{2, j}$ the two intervals $V_{2, j}^{ \pm}$of length $\rho(1-2 k \sigma) / 2 k$, leaving the $2 k^{2}$ middle closed intervals, each of length $(\sigma-\rho+2 k \sigma \rho) / k$. At the nth stage of deletion, we have $\left|V_{n, j}^{ \pm}\right|=\rho^{n-1}(1-2 k \sigma) / 2 k$; therefore the measure of the union of the removed intervals in the entire sequence of removal operations is $(1-2 k \sigma) /(1-2 k \rho)$. The set E_{1} is defined to be the closed set remaining ; thus

$$
\left|E_{1}\right|=\frac{2 k(\sigma-\rho)}{1-2 k \rho}
$$

Note that the set E_{1} is contained in $\left[\frac{1-2 k \sigma}{2 k(1-\rho)}, 1-\frac{1-2 k \sigma}{2 k(1-\rho)}\right]$.
We now define the continuous function $\zeta_{0}(x) \equiv \zeta_{0}(k, \sigma, \tau ; x)$ by setting

$$
\zeta_{0}(x)=\int_{0}^{x} d_{0}(s) d s \quad \text { for } \quad 0 \leqslant x \leqslant 1
$$

where $d_{0}(s)=1 / 2 k$ if $s \in E_{0}(k, \sigma, \tau)$ and $d_{0}(s)=\tau$ otherwise. We also define the continuous function $\zeta_{1}(x) \equiv \zeta_{1}(k, \sigma, \rho ; x)$ by setting

$$
\zeta_{1}(x)=\frac{1}{2 k}-\sigma+\int_{0}^{x} d_{1}(s) d s \quad \text { for } \quad 0 \leqslant x \leqslant 1
$$

where $d_{1}(s)=1 / 2 k$ if $s \in E_{1}(k, \sigma, \rho)$ and $d_{1}(s)=\rho$ otherwise. Then it is easily seen that $\zeta_{0}(I)=[0,(1-2 k \sigma) / 2 k], \zeta_{1}(I)=[(1-2 k \sigma) / 2 k, 1 / 2 k]$ and $\zeta_{i}\left(E_{i}\right)=E_{i} \cap \zeta_{i}(I)$ for $i=0,1$.

We next define, for $0 \leqslant i<k$,

$$
\begin{aligned}
& g_{4 i+1}(x)=\zeta_{0}^{-1}\left(x-\frac{i}{k}\right) \quad \text { for } \quad x \in I_{4 i+1}=\left[\frac{i}{k}, \frac{2 i+1}{2 k}-\sigma\right] \text {, } \\
& g_{4 i+2}(x)=\zeta_{1}^{-1}\left(x-\frac{i}{k}\right) \quad \text { for } \quad x \in I_{4 i+2}=\left[\frac{2 i+1}{2 k}-\sigma, \frac{2 i+1}{2 k}\right] \text {, } \\
& g_{4 i+3}(x)=\zeta_{1}^{-1}\left(\frac{i+1}{k}-x\right) \quad \text { for } \quad x \in I_{4 i+3}=\left[\frac{2 i+1}{2 k}, \frac{2 i+1}{2 k}+\sigma\right] \text {, } \\
& g_{4 i+4}(x)=\zeta_{0}^{-1}\left(x-\frac{2 i+1}{2 k}-\sigma\right) \text { for } x \in I_{4 i+4}=\left[\frac{2 i+1}{2 k}+\sigma, \frac{i+1}{k}\right] ;
\end{aligned}
$$

thus the unit interval I is divided into $m=4 k$ subintervals $I_{j}=\left[c_{j-1}, c_{j}\right]$. We have $\left|I_{4 i+1}\right|=\left|I_{4 i+4}\right|=(1-2 k \sigma) / 2 k$ and $\left|I_{4 i+2}\right|=\left|I_{4 i+3}\right|=\sigma$. Obviously the functions $g_{j}(x)$ satisfy the conditions (5.1) and we denote
by $\psi(k, \sigma, \tau, \rho ; x)$ the corresponding continuous solution of the equations (4.1).

It follows from Theorems 6.1 and 6.3 that $\psi(k, \sigma, \tau, \rho ; x)$ has nowhere a unilateral derivative finite or infinite for any integer k and positive numbers σ, τ, ρ satisfying (7.1), since we have

$$
\gamma=\frac{1}{2 k}, \quad \beta=\max \left\{\frac{1}{\rho}, \frac{1}{\tau}\right\}
$$

and

$$
\left|h_{w_{1}} \circ \cdots \circ h_{w_{n}}(I)\right|=\frac{1}{(2 k)^{n}}-\frac{\sigma}{(2 k)^{n-1}}-\frac{\sigma \tau}{(2 k)^{n-2}}-\cdots-\sigma \tau^{n-1}>\frac{\left|E_{0}\right|}{(2 k)^{n}},
$$

for every finite word $\left(w_{1} \ldots w_{n}\right) \in \Xi_{n}$.
Since the Cantor set E_{0} is a unique compact subset of I satisfying

$$
E_{0}=h_{1}\left(E_{0}\right) \cup h_{4}\left(E_{0}\right) \cup h_{5}\left(E_{0}\right) \cup \cdots \cup h_{4 k}\left(E_{0}\right)
$$

and since the mapping v maps Y_{0}^{*} homeomorphically onto $v\left(Y_{0}^{*}\right)$, it follows that $\bar{Y}_{0}^{*}=E_{0}$. On the other hand, for every $x \in W+\bigcup_{n \geqslant 1} Y_{n}^{*}$, there exist $n=n(x)$ and $j=j(x)$ such that $x \in U_{n, j}$; thus $E_{0} \subset Y_{0}^{*}+e$. Therefore $\left|Y_{0}^{*}\right|=\left|E_{0}\right|$, since e is countable. Let Ω_{n} be the set of finite words $\left(w_{1} \ldots w_{n}\right)$ of length n such that $1 \leqslant w_{j} \leqslant 4 k$ for $1 \leqslant j \leqslant n$. Then for any $n \geqslant 0$, the set Y_{n+1}^{*} is decomposed as follows:

$$
Y_{n+1}^{*}=\bigcup_{\substack{\left(w_{1} \ldots w_{n}\right) \in \Omega_{n} \\ j \in \Omega_{1}-\Xi_{1}}} h_{w_{1}} \circ \cdots \circ h_{w_{n}} \circ h_{j}\left(Y_{0}^{*}\right)
$$

On each interval $V_{1, j}^{ \pm}$, for any $\left(w_{1} \ldots w_{n}\right) \in \Omega_{n}$ and $j \in \Omega_{1}-\Xi_{1}$, the function $h_{w_{1}} \circ \cdots \circ h_{w_{n}} \circ h_{j}(x)$ is a linear contraction; more precisely we have

$$
\left|\frac{d}{d x}\left(h_{w_{1}} \circ \cdots \circ h_{w_{n}} \circ h_{j}\right)(x)\right|=\rho^{n+1-r(w)} \tau^{r(w)} \quad \text { for } \quad x \in \stackrel{\circ}{V}_{1, j}^{ \pm}
$$

where $r(w) \equiv r\left(w_{1}, \ldots, w_{n}\right)=\frac{1}{2} \sum_{j=1}^{n}\left(1+\eta_{w_{j}}\right)$. Since $Y_{0}^{*} \cap U_{1, j}=\phi$ for all j, we have

$$
\left|Y_{n+1}^{*}\right|=2 k\left|Y_{0}^{*}\right| \sum_{\left(w_{1} \ldots w_{n}\right) \in \Omega_{n}} \rho^{n+1-r(w)} \tau^{r(w)}=2 k \rho\left|E_{0}\right|(2 k(\rho+\tau))^{n}
$$

Therefore it follows that

$$
\left|Y^{*}\right|=\sum_{n=0}^{\infty}\left|Y_{n}^{*}\right|=\left|E_{0}\right|+2 k \rho\left|E_{0}\right| \sum_{n=0}^{\infty}(2 k(\rho+\tau))^{n}=\frac{1-2 k(\sigma+\tau)}{1-2 k(\rho+\tau)}
$$

For $N \geqslant 0$, let Z_{N} be the set of points $x \in I$ at which $A_{n}(x) \equiv 2$ or $3(\bmod 4)$ for all $n \geqslant N$ and $A_{N-1}(x) \equiv 0$ or $1(\bmod 4)$. Put $Z=\bigcup_{n \geqslant 0} Z_{n}$. Obviously $Z \subset W_{0} \subset I-e$. Then it is easily seen that the set Z_{0} is a compact subset of I satisfying

$$
Z_{0}=h_{2}\left(Z_{0}\right) \cup h_{3}\left(Z_{0}\right) \cup h_{6}\left(Z_{0}\right) \cup \cdots \cup h_{4 k-1}\left(Z_{0}\right) ;
$$

therefore $Z_{0}=E_{1}$. For any $n \geqslant 0$, the set Z_{n+1} is decomposed as follows :

$$
Z_{n+1}=\bigcup_{\substack{\left(w_{1} \ldots w_{n}\right) \in \Omega_{n} \\ j \in \Xi_{1}}} h_{w_{1}} \circ \cdots \circ h_{w_{n}} \circ h_{j}\left(Z_{0}\right)
$$

On each open interval $U_{1, j}$, for any $\left(w_{1} \ldots w_{n}\right) \in \Omega_{n}$ and $j \in \Xi_{1}$, the function $h_{w_{1}} \circ \cdots \circ h_{w_{n}} \circ h_{j}(x)$ is a linear contraction such that

$$
\left|\frac{d}{d x}\left(h_{w_{1}} \circ \cdots \circ h_{w_{n}} \circ h_{j}\right)(x)\right|=\rho^{n-r(w)} \tau^{1+r(w)} \quad \text { for } \quad x \in U_{1, j} .
$$

Since $Z_{0} \cap V_{1, j}^{ \pm}=\phi$ for all j, we have

$$
\left|Z_{n+1}\right|=2 k\left|Z_{0}\right| \sum_{\left(w_{1} \ldots w_{n}\right) \in \Omega_{n}} \rho^{n-r(w)} \tau^{1+r(w)}=2 k \tau\left|E_{1}\right|(2 k(\rho+\tau))^{n}
$$

therefore

$$
\begin{aligned}
& |Z|=\sum_{n=0}^{\infty}\left|Z_{n}\right|=\left|E_{1}\right|+2 k \tau\left|E_{1}\right| \sum_{n=0}^{\infty}(2 k(\rho+\tau))^{n}= \\
& \frac{2 k(\sigma-\rho)}{1-2 k(\rho+\tau)}=1-\left|Y^{*}\right| .
\end{aligned}
$$

Then it follows from Theorems 6.2 and 6.4 that

$$
|Z| \leqslant\left|W_{0}\right| \leqslant|\operatorname{Knot}(\psi)| \leqslant 1-\left|Y^{*}\right|=|Z| ;
$$

hence we obtain

$$
|\operatorname{Knot}(\psi)|=\frac{2 k(\sigma-\rho)}{1-2 k(\rho+\tau)}
$$

Thus if we take, for a fixed number $\alpha \in[0,1)$,

$$
\sigma_{0}=\frac{1+\alpha}{8 k}, \quad \tau_{0}=\frac{1}{4 k} \quad \text { and } \quad \rho_{0}=\frac{1}{8 k}
$$

then the function $\psi_{0}(x) \equiv \psi\left(k, \sigma_{0}, \tau_{0}, \rho_{0} ; x\right)$ satisfies $\left|\operatorname{Knot}\left(\psi_{0}\right)\right|=\alpha$ and Hölder's condition of order $\log (2 k) / \log (8 k)$ by Lemma 4.2, which obviously converges to 1 as k tends to infinity. This completes the proof of Theorem 2.1.

Remark. - Besicovitch's function $B(x)$ illustrated in Figure 1 is precisely equal to the function $\psi(1,1 / 8,1 / 4,1 / 8 ; x)$; thus $B(x)$ satisfies Hölder's condition of order $1 / 3$.

BIBLIOGRAPHY

[1] S. Banach, Über die Baire’sche Ketegorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179.
[2] A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues, J. Math. Pures Appl. (Ser. 7), 1 (1915), 105-240.
[3] K. M. Garg, On asymmetrical derivates of non-differentiable functions, Canad. J. Math., 20 (1968), 135-143.
[4] M. Hata, On the structure of self-similar sets, Japan J. Appl. Math., 2 (1985), 381-414.
[5] V. Jarnik, Über die Differenzierbarkeit stetiger Funktionen, Fund. Math., 21 (1933), 48-58.
[6] R. L. Jeffery, The Theory of Functions of a Real Variable, Toronto, 1951, pp. 172-181.
[7] S. Mazurkiewicz, Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94.
[8] A. P. Morse, A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc., 44 (1938), 496-507.
[9] E. D. Pepper, On continuous functions without a derivative, Fund. Math., 12 (1928), 244-253.
[10] G. de Rham, Sur quelques courbes définies par des équations fonctionnelles, Rend. Sem. Mat. Torino, 16 (1957), 101-113.
[11] S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math., 19 (1932), 211-219.
[12] A. N. Singh, On functions without one-sided derivatives I, Proc. Benares Math. Soc., 3 (1941), 55-69.
[13] A. N. Singh, On functions without one-sided derivatives II, Proc. Benares Math. Soc., 4 (1942), 95-108.
[14] W. H. Young, On the derivates of non-differentiable functions, Messenger of Math., 38 (1908), 65-69.

Manuscrit reçu le 28 novembre 1986.
Masayoshi Hata,
Department of Mathematics
Faculty of Science
Kyoto University Kyoto 606 (Japan).

