Annales de l'institut Fourier

T. KIMURA
 S. KASAI
 H. Hosokawa
 Universal transitivity of simple and 2-simple prehomogeneous vector spaces

Annales de l'institut Fourier, tome 38, no 2 (1988), p. 11-41
http://www.numdam.org/item?id=AIF_1988_38_2_11_0
© Annales de l'institut Fourier, 1988, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

UNIVERSAL TRANSITIVITY OF SIMPLE AND 2-SIMPLE PREHOMOGENEOUS VECTOR SPACES

by T. KIMURA, S. KASAI and H. HOSOKAWA

\qquad

Introduction.

We denote by k a field of characteristic zero. Let \tilde{G} be a connected k-split linear algebraic group acting on $X=\mathrm{Aff}^{n}$ rationally by ρ which is defined over k. If there exists a Zariski-dense \tilde{G}-orbit Y, we say that (\tilde{G}, ρ, X) is a prehomogeneous vector space (abbrev. P.V.). When ρ is irreducible or $[\widetilde{G}, \widetilde{G}]$ is a simple algebraic group, or a product of two simple algebraic groups, they are completely classified over C (see [3] ~ [6]). Put $G=\rho(\tilde{G})$. Let ℓ be the number of $G(k)$-orbits in $Y(k)$, i.e., $\ell=\ell_{k}(G, X)=|G(k) \backslash Y(k)|$. In this paper, we shall assume that there exists a nonsplit quaternion k-algebra. In other words, $H^{1}\left(k, \operatorname{Aut}\left(S L_{2}\right)\right) \neq 0$. This condition is satisfied by every local field k other than C. We say that Y is a universally transitive open orbit if $\ell=\ell_{k}(G, X)=1$ for all such fields k, i.e., $Y(k)$ is a $G(k)$-orbit. Note that $G(k) \neq \rho(\widetilde{G}(k))$ in general. Professor J.-I. Igusa classified all irreducible regular P.V.'s with universally transitive open orbits ([1], [2]). He also proved in [2] that ℓ is invariant under castling transformations.

In this paper, we shall classify simple or 2 -simple P.V.'s with universally transitive open orbits. We shall also prove that ℓ is invariant under some P.V.-equivalences such as (1) $\left(S p_{n} \times G, \Lambda_{1} \otimes \rho\right)$ $(\operatorname{deg} \rho \leqslant 2 n) \leftrightarrow\left(G, \Lambda^{2}(\rho)\right) \quad$ (see Proposition 3.7) (2) $\left(G \times G L_{n}, \rho_{1} \otimes \Lambda_{1}+\right.$ $\left.\rho_{2} \otimes \Lambda_{1}^{*}\right)\left(n \geqslant \operatorname{deg} \rho_{1} \geqslant \operatorname{deg} \rho_{2}\right) \leftrightarrow\left(G, \rho_{1} \otimes \rho_{2}\right) \quad$ (see Proposition 4.1), and

Key-words: Galois cohomology. - Universal transitivity prehomogeneous vector spaces.
others (cf. Lemma 4.3-Proposition 4.7). This paper consists of the following four sections:

1. Preliminaries.
2. Simple P.V.'s with Universally Transitive Open Orbits.
3. 2-Simple P.V.'s of Type I with Universally Transitive Open Orbits.
4. 2-Simple P.V.'s of Type II with Universally Transitive Open Orbits.

The results are given in Theorems $2.19 ; 3.20 ; 4.2 ; 4.18 ; 4.25$; 4.26 ; and Corollaries $2.20 ; 3.21$. Also we shall check universal transitivity for non-regular irreducible P.V.'s (see Corollary 3.22). The first author would like to express his hearty thanks to Professor J.-I. Igusa and other members at The Johns Hopkins University in U.S.A. for their mathematical stimulation and hospitality while he stayed there in 1986. The idea for this work was first obtained that time.

1. Preliminaries.

We shall use the same notations as in [2]. For $\xi \in Y(k)$, put $\tilde{G}_{\xi}=$ $\{g \in \tilde{G} ; \rho(g) \xi=\xi\}$ and $\tilde{G}_{\xi}=\rho\left(\tilde{G}_{\xi}\right)$. Let ℓ be a number of $G(k)$-orbits in $Y(k)$, i.e., $\ell=|G(k) \backslash Y(k)|$.

Proposition 1.1. - We have $G(k) \backslash Y(k)=\alpha^{-1}(1)$, where $\alpha: H^{1}\left(k, G_{\xi}\right) \rightarrow H^{1}(k, G)$.

Corollary 1.2. - Assume that (1) $H^{1}(k, \tilde{G})=\{1\}$, (2) $H^{1}\left(k, \tilde{G}_{\xi}\right) \rightarrow$ $H^{1}\left(k, G_{\xi}\right)$ is surjective. Then we have $G(k) \backslash Y(k)=H^{1}\left(k, G_{\xi}\right)$.

Proof. - See [2].
Corollary 1.3. - Assume that (1) $H^{1}(k, \widetilde{G})=\{1\}$, (2) Ker $\rho=\{1\}$. Then we have $G(k) \backslash Y(k)=H^{1}\left(k, \widetilde{G}_{\xi}\right)$.

Proof. - If Ker $\rho=\{1\}$, then we have $\tilde{G}_{\xi} \simeq G_{\xi}$ and hence $H^{1}\left(k, \widetilde{G}_{\xi}\right) \rightarrow H^{1}\left(k, G_{\xi}\right)$ is bijective.
Q.E.D.

Corollary 1.4. - If $\tilde{G}_{\xi}=\{1\}$, then we have $\ell=1$, i.e., $Y(k)$ is a G(k)-orbit.

Proof. - We have $G_{\xi}=\rho\left(\tilde{G}_{\xi}\right)=\{1\} \quad$ and hence $G(k) \backslash Y(k)=\alpha^{-1}(1)=\{1\}$ for $\alpha: H^{1}\left(k, G_{\xi}\right)=\{1\} \rightarrow H^{1}(k, G)$. Q.E.D.

Proposition 1.5. - We have $\ell=1$ for $\left(\widetilde{G}, \rho_{1} \oplus \rho_{2}, X_{1} \oplus X_{2}\right)$ if and only if (1) $\ell=1$ for $\left(\tilde{G}, \rho_{1}, X_{1}\right)$ and (2) $\ell=1$ for $\left(H, \rho_{2} \mid H, X_{2}\right)$ where H is a generic isotropy subgroup of $\left(\tilde{G}, \rho_{1}, X_{1}\right)$.

Proof. - Let Y (resp. Y_{1}, Y_{2}^{\prime}) be the open orbit of $\left(\widetilde{G}, \rho_{1} \oplus \rho_{2}, X_{1} \oplus X_{2}\right)\left(\operatorname{resp} .\left(\tilde{G}, \rho_{1}, X_{1}\right), \quad\left(H, \rho_{2} \mid H, X_{2}\right)\right) . \quad(\Rightarrow) \quad$ For any $\xi_{1} \in Y_{1}(k)$ and $H=\widetilde{G}_{\xi_{1}}$, take $\xi_{2} \in Y_{2}^{\prime}(k)$. Then we have $\left(\xi_{1}, \xi_{2}\right) \in Y(k)$ and hence the projection $Y(k) \rightarrow Y_{1}(k)$ is a \tilde{G}-equivariant surjective map. Since $Y(k)$ is a $G(k)$-orbit, $Y_{1}(k)$ must be a $G(k)$-orbit, i.e., $\ell=1$ for ($\left.\tilde{G}, \rho_{1}, X_{1}\right)$. Now take any two points $\xi_{2}, \xi_{2}^{\prime} \in Y_{2}^{\prime}(k)$ for $H=\tilde{G}_{\xi_{1}}$. Since $\left(\xi_{1}, \xi_{2}\right)$ and $\left(\xi_{1}, \xi_{2}^{\prime}\right)$ are elements of $Y(k)$, there exists $g \in G(k)$ satisfying $\left(g \xi_{1}, g \xi_{2}\right)=\left(\xi_{1}, \xi_{2}^{\prime}\right)$. This implies that $g \in G_{\xi_{1}}(k)=H(k)$ satisfying $g \xi_{2}=\xi_{2}^{\prime}$, i.e., $\ell=1$ for $\left(H, \rho_{2} \mid H, X_{2}\right) .(\Leftarrow)$ Take any two points $\left(\xi_{1}, \xi_{2}\right)$ and $\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}\right)$ of $Y(k)$. Then there exists $g \in G(k)$ such that $g \xi_{1}^{\prime}=\xi_{1}$. We have $g\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}\right)=\left(\xi_{1}, g \xi_{2}^{\prime}\right)$, and two points ξ_{2} and $g \xi_{2}^{\prime}$ belong to $Y_{2}^{\prime}(k)$ for $H=\widetilde{G}_{\xi_{1}}$. Hence there exists $h \in H(k)$ satisfying $h g \xi_{2}^{\prime}=\xi_{2}$, i.e., $h g\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}\right)=\left(\xi_{1}, \xi_{2}\right)$, with $h g \in G(k) \quad$ Q.E.D.

Corollary 1.6. - Assume that $\ell=1$ for $\left(\tilde{G}, \rho_{1}, X_{1}\right)$ and $\left(H^{\circ}, \rho_{2} \mid H^{\circ}, \mathrm{X}_{2}\right)$ where H° is the connected component of a generic isotropy subgroup H of $\left(\tilde{G}, \rho_{1}, X_{1}\right)$. Then we have $\ell=1$ for $\left(\tilde{G}, \rho_{1} \oplus \rho_{2}, X_{1} \oplus X_{2}\right)$.

Remark 1.7. - Assume that $\ell=1$ for (G, ρ, X). Then $\ell=1$ for $(\tilde{G}, \tilde{\rho}, X)$ with $\tilde{\rho}(\tilde{G}) \supset \rho(G)$.

Theorem 1.8 (J.-I. Igusa [1], [2]). - A regular irreducible P.V. has a universally transitive open orbit (i.e., $\ell=1$) if and only if it is castlingequivalent to one of the following P.V.'s :
(1) $\left(G \times G L_{m}, \rho \otimes \Lambda_{1}\right)$ where ρ is an m-dimensional irreducible representation of G.
(2) $\left(G L_{2 m}, \Lambda_{2}\right)$.
(3) $\left(S p_{n} \times G L_{2 m}, \Lambda_{1} \otimes \Lambda_{1}\right)$.
(4) $\left(G L_{1} \times S O_{n}, \Lambda_{1} \otimes \Lambda_{1}\right)$ where n is even, and $n \geqslant 4$.
(5) $\left(G L_{1} \times\right.$ Spin $_{7}, \Lambda_{1} \otimes$ the spin rep.).
(6) $\left(G L_{1} \times S p i n_{9}, \Lambda_{1} \otimes\right.$ the spin rep.).
(7) $\left(\right.$ Spin $_{10} \times G L_{2}$, a half-spin rep. $\left.\otimes \Lambda_{1}\right)$.
(8) $\left(G L_{1} \times E_{6}, \Lambda_{1} \otimes \Lambda_{1}\right)$ with $\operatorname{deg}\left(\Lambda_{1}\right)=27$ for E_{6}.

2. Simple P.V.'s with Universally Transitive Open Orbits.

Theorem 2.1 ([4] with a correction [5]). - All non-irreductible simple P.V.'s with scalar multiplications are given as follows :
(1) $\left(G L_{1}^{k+1} \times S L_{n}, \Lambda_{1} \oplus \xrightarrow[\cdots]{\cdots} \oplus \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right)(1 \leqslant k \leqslant n, n \geqslant 2)$.
(2) $(G L_{1}^{k+1} \times S L_{n}, \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \cdots \overbrace{\cdots}^{k} \oplus \Lambda_{1}^{(*)})(1 \leqslant k \leqslant 3, n \geqslant 4)$ except
$\left(G L_{1}^{4} \times S L_{n}, \Lambda_{2} \oplus \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}^{*}\right)$ with $n=$ odd .
(3) $\left(G L_{1}^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{2}\right)$ for $m \geqslant 2$.
(4) $\left(G L_{1}^{2} \times S L_{n}, 2 \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right)$.
(5) $\left(G L_{1}^{3} \times S L_{5}, \Lambda_{2} \oplus \Lambda_{2} \oplus \Lambda_{1}^{*}\right)$.
(6) $\left(G L_{1}^{2} \times S L_{n}, \Lambda_{3} \oplus \Lambda_{1}^{(*)}\right) .(n=6,7)$
(7) $\left(G L_{1}^{3} \times S L_{6}, \Lambda_{3} \oplus \Lambda_{1} \oplus \Lambda_{1}\right)$.
(8) $\left(G L_{1}^{k} \times S p_{n}, \Lambda_{1} \oplus \stackrel{k}{\cdots} \oplus \Lambda_{1}\right)(k=2,3)$.
(9) $\left(G L_{1}^{2} \times S p_{2}, \Lambda_{2} \oplus \Lambda_{1}\right)$.
(10) $\left(G L_{1}^{2} \times S p_{3}, \Lambda_{3} \oplus \Lambda_{1}\right)$.
(11) $\left(G L_{1}^{2} \times \operatorname{Spin}_{n}\right.$, (half-)spin rep. \oplus the vector rep.), with $n=7$, $8,10,12$.
(12) $\left(G L_{1}^{2} \times \operatorname{Spin}_{10}, \Lambda \oplus \Lambda\right)$ where $\Lambda=$ the even half-spin representation.

Here $\Lambda^{(*)}$ stands for Λ or its dual Λ^{*}. Note that $(G, \rho, X) \simeq\left(G, \rho^{*}, X^{*}\right)$ as triplets if G is reductive.

Lemma 2.2. - We have $\ell=1$ for $\left(G L_{n}, \Lambda_{1} \oplus \stackrel{n}{\cdots} \oplus \Lambda_{1}, M(n)\right)$.
Proof. - Clearly the isotropy subgroup at $I_{n} \in M(n)$ is $\left\{I_{n}\right\}$, and hence $\ell=1$ by Corollary 1.4.
Q.E.D.

Lemma 2.3. - We have $\ell=1$ for

$$
\left(G \dot{L}_{1}^{n} \times G L_{n},\left(\Lambda_{1} \oplus \stackrel{n}{\cdots} \oplus \Lambda_{1}\right) \oplus \Lambda_{1}^{(*)}\right)
$$

where $G L_{1}^{n}$ acts independently on each irreducible component of $\left(\Lambda_{1} \oplus \cdots \oplus \Lambda_{1}\right)$ and it acts on $\Lambda_{1}^{(*)}$ trivially.

Proof. - By Remark 1.7 and Lemma 2.2, we have $\ell=1$ for

$$
(G L_{1}^{n} \times G L_{n}, \Lambda_{1} \oplus \overbrace{\cdots}^{n} \oplus \Lambda_{1})
$$

Its isotropy subgroup at I_{n} is

$$
H=\left\{\left(\alpha_{1}, \cdots, \alpha_{n},\left(\begin{array}{ccc}
\alpha_{1}^{-1} & & \\
& \ddots & \\
& & \alpha_{n}^{-1}
\end{array}\right)\right) ; \alpha_{1}, \cdots, \alpha_{n} \in G L_{1}\right\} .
$$

By Proposition 1.5 and Lemma 2.2 for $n=1$, we have $\ell=1$ for ($H, \Lambda_{1}^{(*)}$). Again by Proposition 1.5, we have $\ell=1$ for our P.V.
Q.E.D.

Proposition 2.4. - We have $\ell=1$ for

$$
\left(G L_{1}^{k+1} \times S L_{n}, \Lambda_{1} \oplus \widetilde{\cdots} \widetilde{\Im}^{k} \oplus \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right) \quad(1 \leqslant k \leqslant n, n \geqslant 2)
$$

Proof. - By Proposition 1.5, Lemma 2.2 and Lemma 2.3, we have our result.
Q.E.D.

Proposition 2.5. - We have $\ell \geqslant 2$ for following P.V.'s :
(1) $\left(G L_{1}^{2} \times S L_{n}, 2 \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right)$.
(2) $\left(G L_{1}^{2} \times S L_{n}, \Lambda_{3} \oplus \Lambda_{1}^{(*)}\right) .(n=6,7)$.
(3) $\left(G L_{1}^{3} \times S L_{6}, \Lambda_{3} \oplus \Lambda_{1} \oplus \Lambda_{1}\right)$.
(4) $\left(G L_{1}^{2} \times S p_{2}, \Lambda_{2} \oplus \Lambda_{1}\right)$.
(5) $\left(G L_{1}^{2} \times S p_{3}, \Lambda_{3} \oplus \Lambda_{1}\right)$.
(6) $\left(G L_{1}^{2} \times S p i n_{n}\right.$, (half-)spin rep. \oplus the vector rep.), with $n=7$ and 12.

Proof: - By Theorem 1.8, we have $\ell \geqslant 2$ for ($G L_{1} \times S L_{2}, 2 \Lambda_{1}$), $\left(G L_{n}, \Lambda_{3}\right),(n=6,7)\left(G L_{1} \times S p_{2}, \Lambda_{2}\right) \simeq\left(G L_{1} \times S O_{5}, \Lambda_{1}\right),\left(G L_{1} \times S p_{3}, \Lambda_{3}\right)$, $\left(G L_{1} \times S\right.$ pin $_{7}$, the vector rep. $) \simeq\left(G L_{1} \times S O_{7}, \Lambda_{1}\right)$, and $\left(G L_{1} \times S p i n_{12}\right.$, a half-spin rep.). By proposition 1.5, we have our result.
Q.E.D.

Remarks 2.6. - In [2], it is proved that, for $\left(G L_{7}, \Lambda_{3}\right), Y(k)$ is $G(k)$-transitive for any local field k other than \mathbb{R}. However, for $\left(G L_{1}^{2} \times S L_{7}, \Lambda_{3} \oplus \Lambda_{1}^{(*)}\right), \quad Y(k)$ is not $G(k)$-transitive even when k is a p-adic field. Because its generic isotropy subgroup H is $\left(G_{2}\right) \times\left\{c I_{7} ; c^{3}=1\right\}$ (see, p. 86 in [3]) and $\left(G L_{1} \times\left(G_{2}\right), \Lambda_{2}\right) \subset\left(G L_{1} \times S O_{7}, \Lambda_{1}\right)$, we have our result by Proposition 1.5 and [2].

Lemma 2.7. - We have $\ell=1$ for $\left(G L_{1} \times S p_{n}, 1 \otimes \Lambda_{1}+\Lambda_{1} \otimes \Lambda_{1}\right)$.
Proof. - We have $X=M(2 n, 2)$ and $\rho(g) x=\tilde{A} x\left[\begin{array}{ll}1 & 0 \\ 0 & \alpha\end{array}\right]$ for $g=(\alpha, \tilde{A}) \in G L_{1} \times S p_{n}, x \in X, \rho=1 \otimes \Lambda_{1}+\Lambda_{1} \otimes \Lambda_{1}$. For

$$
\tilde{A}=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] \in G L_{2 n}
$$

with $A, B, C D \in M_{n}$, we have $\tilde{A} \in S p_{n}$ if and only if (1) $A^{t} B$ and $C^{t} D$ are symmetric matrices, (2) $A^{t} D-B^{t} C=I_{n}$. We shall calculate the isotropy subgroup G_{ξ} at

$$
\xi=\left[\begin{array}{c|c}
1 & \\
0 & 0 \\
\vdots & \\
0 & \\
\hline & 1 \\
0 & 0 \\
& \vdots \\
& \left(=\left(e_{1}, e_{n+1}\right)\right) . .
\end{array}\right.
$$

Put

$$
A=\left[\begin{array}{l|l}
a_{1} & a_{2} \\
\hline a_{3} & A_{4}
\end{array}\right] \quad, \ldots, D=\left[\begin{array}{l|l}
d_{1} & d_{2} \\
\hline d_{3} & D_{4}
\end{array}\right]
$$

Then

$$
\tilde{A} \xi\left[\begin{array}{cc}
1 & 0 \\
0 & \alpha
\end{array}\right]=\left[\begin{array}{c|c}
a_{1} & b_{1} \alpha \\
a_{3} & b_{3} \alpha \\
c_{1} & d_{1} \alpha \\
c_{3} & d_{3} \alpha
\end{array}\right]=\xi
$$

implies that $a_{1}=1, d_{1}=\alpha^{-1}, \quad b_{1}=c_{1}=0, \quad$ and $a_{3}=b_{3}=c_{3}=d_{3}=0$. By the condition $A \in S p_{n}$, we get

$$
\text { (1) }\left|\begin{array}{ll}
A_{4} & B_{4} \\
C_{4} & D_{4}
\end{array}\right| \in S p_{n-1}
$$

(2) $\left|\begin{array}{ll}A_{4} & B_{4} \\ C_{4} & D_{4}\end{array}\right|\left|\begin{array}{c}{ }^{t} b_{2} \\ -{ }^{t} a_{2}\end{array}\right|=\left|\begin{array}{l}0 \\ 0\end{array}\right|$,
(3) $\left|\begin{array}{ll}A_{4} & B_{4} \\ C_{4} & D_{4}\end{array}\right|\left|\begin{array}{c}{ }^{t} d_{2} \\ -{ }^{t} c_{2}\end{array}\right|=\left|\begin{array}{l}0 \\ 0\end{array}\right|$,
(4) $\alpha^{-1}+a_{2}{ }^{t} d_{2}-b_{2}{ }^{t} c_{2}=1$.

Thus we have

$$
\tilde{G}_{\xi}=\left\{(\alpha, \tilde{\mathrm{A}}) \in G L_{1} \times S P_{n}, \alpha=1, \tilde{A}=\left[\begin{array}{cc|c}
1 & & 0 \\
& A_{4} & \\
\hline & B_{4} \\
\hline 0 & & 1 \\
& C_{4} & \\
\hline
\end{array}\right]\right\} \simeq S p_{n-1}
$$

On the other hand, $\operatorname{Ker} \rho=\{1]$ and $H^{1}\left(k, G L_{1} \times S p_{n}\right)=\{1\}$, we have $G(k) \backslash Y(k)=H^{1}\left(k, \widetilde{G}_{\xi}\right)=H^{1}\left(k, S p_{n-1}\right)=\{1\}$ by Corollary 1.3. \quad Q.E.D.

Proposition 2.8. - We have $\ell=1$ for $\left(G L_{1}^{2} \times S p_{n}, \Lambda_{1} \oplus \Lambda_{1}\right)$.
Proof. - By Remark 1.7 and Lemma 2.7, we have our result.
Q.E.D.

Proposition 2.9. - We have $\ell=1$ for $\left(G L_{1}^{3} \times S p_{n}, \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}\right)$.
Proof. - Similar calculation as Lemma 2.7 shows that a generic isotropy subgroup H of $\left(G L_{1}^{2} \times S p_{n}, \Lambda_{1} \oplus \Lambda_{1}\right)$ is isomorphic to

$$
\left\{\left(\alpha, \alpha^{-1},\left[\begin{array}{c|c}
\alpha^{-1} & \\
& \alpha
\end{array}\right]\right) ; A \in S p_{n-1}, \alpha \in G L_{1}\right\}
$$

By Propositions 1.5 and 2.8 , it is enough to show $\ell=1$ for ($G L_{1} \times$ $\left.H, \Lambda_{1}\right) \simeq\left(G L_{1} \times G L_{1} \times S p_{n},\left(\Lambda_{1} \otimes \Lambda_{1}^{*}+\Lambda_{1} \otimes \Lambda_{1}\right) \otimes 1+\Lambda_{1} \otimes 1 \otimes \Lambda_{1}\right)$. Since $\ell=1$ for $\left(S p_{n}, \Lambda_{1}\right)$ by Lemma 2.7, it is enough to show $\ell=1$ for $\left(G L_{1} \times G L_{1}, \Lambda_{1} \otimes \Lambda_{1}^{*}+\Lambda_{1} \otimes \Lambda_{1}\right)$. Put

$$
\tilde{G}=G L_{1} \times G L_{1}, \rho=\Lambda_{1} \otimes \Lambda_{1}^{*}+\Lambda_{1} \otimes \Lambda_{1},
$$

i.e., $\rho(\alpha, \beta)=\left(\alpha \beta^{-1}, \alpha \beta\right)$ and $G=\rho(\tilde{G})$. Since $G=G L_{1} \times G L_{1}$, we have $G(k)=G L_{1}(k) \times G L_{1}(k)(\supseteq \rho(\widetilde{G}(k))$ and

$$
Y(k)=\left\{(\alpha, \beta) \in k^{2} ; \alpha \beta \neq 0\right\}=G(k) .(1,1), \text { i.e., } \ell=1 . \quad \text { Q.E.D. }
$$

Proposition 2.10. - We have $\ell=1$ for

$$
\left(G L_{1}^{k+1} \times S L_{2 m}, \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \xrightarrow[\ldots]{k} \oplus \Lambda_{1}^{(*)}\right)(1 \leqslant k \leqslant 3, m \geqslant 2)
$$

Proof. - By Proposition 1.5, it is enough to show $\ell=1$ when $k=3$, i.e., $\left(G L_{1}^{3} \times G L_{2 m}, \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)}\right)$ where $G L_{1}^{3}$ acts on $\Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)}$ as independent scalar multiplications. Since the isotropy subgroup of $\left(G L_{2 m}, \Lambda_{2}\right)$ is $S p_{m}$, we have result by Proposition 2.9.
Q.E.D.

Lemma 2.11. - We have $\ell=1$ for $\left(G L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{1}\right)$.
Proof. - The isotropy subgroup

$$
H=\left\{A \in G L_{2 m+1} ;\left(A J^{\prime t} A, A e_{1}\right)=\left(J^{\prime}, e_{1}\right)\right\}
$$

at

$$
\xi=\left(J^{\prime}=\left|\begin{array}{c|c}
0 & 0 \\
\hline 0 & J \\
\hline
\end{array}\right|, e_{1}=\left|\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right| \text {, where } J=\left|\begin{array}{c|c}
0 & -I_{m} \\
\hline-I_{m} & 0
\end{array}\right|\right. \text {, }
$$

is given by

$$
H=\left\{\left.\begin{array}{|c|c|}
1 & 0 \\
\hline 0 & A^{\prime}
\end{array} \right\rvert\, ; A^{\prime} \in S p_{m}\right\} \simeq S p_{m} .
$$

Since $\operatorname{Ker} \rho=\{1\} \quad$ and $\quad H^{1}\left(k, G L_{2 m+1}\right)=\{1\}$, we have $G(k) \backslash Y(k)=H^{1}\left(k, S p_{m}\right)=\{1\}$ by Corollary 1.3
Q.E.D.

Proposition 2.12. - We have $\ell=1$ for $\left(G L_{1}^{4} \times S L_{2 m+1}\right.$, $\left.\Lambda_{2} \oplus \Lambda_{1} \oplus\left(\Lambda_{1} \oplus \Lambda_{1}\right)^{(*)}\right)$.

Proof. - It is enough to show $\ell=1$ when

$$
\tilde{G}=G L_{1} \times G L_{1} \times G L_{1} \times G L_{2 m+1},
$$

$$
\rho=(1 \otimes 1 \otimes 1) \otimes \Lambda_{2}+\Lambda_{1} \otimes 1 \otimes 1 \otimes \Lambda_{1}
$$

$$
+\left(1 \otimes \Lambda_{1} \otimes 1+1 \otimes 1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1}^{(*)}
$$

A generic isotropy subgroup of $(1 \otimes 1 \otimes 1) \otimes \Lambda_{2}+\Lambda_{1} \otimes 1 \otimes 1 \otimes \Lambda_{1}$ is

$$
\left\{\left(\alpha, \beta, \gamma ; ;\left|\begin{array}{c|c}
\alpha^{-1} & 0 \\
\hline 0 & A
\end{array}\right| \in \tilde{G} ; A \in S p_{m}\right\}\right.
$$

(cf. Lemma 2.11). Hence, by Proposition 1.5 and Lemma 2.11, it is enough to show $\ell=1$ for $\tilde{G}=G L_{1} \times G L_{1} \times G L_{1} \times S p_{m}, \quad \rho=$ $\Lambda_{1}^{(*)} \otimes\left(\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}\right) \otimes 1+1 \otimes\left(\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}\right)$. One can prove that $\ell=1$ for $\left(G L_{1} \times S p_{m}, \Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$ similarly as Lemma 2.7. Note that $\tilde{G}_{\xi} \simeq S p_{m-1} \times \operatorname{Ker} \rho$ in this case. Then our assertion is clear.
Q.E.D.

Proposition 2.13. - We have $\ell=1$ for $\left(G L_{1}^{4} \times S L_{2 m+1}\right.$, $\left.\Lambda_{2} \oplus \Lambda_{1}^{*} \oplus \Lambda_{1}^{*} \oplus \Lambda_{1}^{*}\right)$.

Proof. - It is enough to show $\ell=1$ when

$$
\tilde{G}=G L_{1} \times G L_{1} \times G L_{1} \times G L_{2 m+1},
$$

$\rho=(1 \otimes 1 \otimes 1) \otimes \Lambda_{2}+\left(\Lambda_{1} \otimes 1 \otimes 1+1 \otimes \Lambda_{1} \otimes 1+1 \otimes 1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1}^{*} . \quad$ The isotropy subgroup of $(1 \otimes 1 \otimes 1) \otimes \Lambda_{2}$ at

$$
J^{\prime}=\left|\begin{array}{l|l}
0 & 0 \\
\hline 0 & J
\end{array}\right| \text { is } \quad H=\left\{\left|\begin{array}{c|c}
\alpha & 0 \\
\hline A^{\prime} & A
\end{array}\right| \in G L_{2 m+1} ; A \in S p_{m}\right\} .
$$

By Proposition 1.5 and Lemma 2.11, it is enough to show $\ell=1$ for a P.V. given by

$$
X \mapsto\left[\begin{array}{c|c}
\alpha^{-1} & B \\
\hline 0 & A
\end{array}\right] X\left[\begin{array}{ccc}
\beta & 0 & 0 \\
0 & \gamma & 0 \\
0 & 0 & \delta
\end{array}\right]=\left\lvert\, \begin{array}{cc}
\left(\alpha^{-1} x_{1}, \alpha^{-1} x_{2}, \alpha^{-1} x_{3}\right)+B Z \\
A Z\left(\begin{array}{ll}
\beta & \\
& \gamma \\
& \\
& \\
&
\end{array}\right)
\end{array}\right.
$$

for $X=\left[\frac{x_{1}, x_{2}, x_{3}}{Z}\right] \in M(2 m+1,3), A \in S p_{m}$. Now by Proposition 2.9, any point $X=\left[\frac{x_{1}, x_{2}, x_{3}}{Z}\right]$ of $Y(k)$ is $G(k)$-equivalent to

$$
X_{0}=\left[\frac{z_{1}, z_{2}, z_{3}}{Z_{0}}\right]
$$

where

$Z_{0}=$| t | $10 \ldots 0$ |
| :---: | :---: |
| 0 | $0 \ldots 0$ |
| | $10 \ldots 0$ |
| $10 \ldots 0$ | $10 \ldots 0$ |$\left(=\left(e_{1}, e_{m+1}, e_{1}+e_{2}+e_{m+1}\right)\right.$,

cf. p. 81 in [4]) and $\left(z_{1}, z_{2}, z_{3}\right) \in k^{3}$. Put $B=\left(b_{1}, \ldots, b_{2 m}\right)$ with $b_{1}=-z_{1}, b_{2}=z_{1}+z_{2}-z_{3}, b_{m+1}=-z_{2}, b_{j}=0$ for all $j \neq 1,2$, $m+1$. Then we have

$$
\left|\begin{array}{c|c}
1 & B \\
\hline 0 & I_{2 m}
\end{array}\right| X_{0} I_{3}=\left|\begin{array}{c}
0 \\
\hline Z_{0}
\end{array}\right| .
$$

This implies that $G(k)$ acts on $Y(k)$ transitively.
Q.E.D.

Proposition 2.14. - We have $\ell=1$ for $\left(G L_{1}^{3} \times S L_{2 m+1}\right.$, $\left.\Lambda_{2} \oplus \Lambda_{1}^{*} \oplus \Lambda_{1}^{*}\right)$ and $\left(G L_{1}^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{1}^{*}\right)$.

Proof. - By Propositions 1.5 and 2.12, we have our result.
Q.E.D.

Proposition 2.15. - We have $\ell=1$ for $\left(G L_{1}^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{2}\right)$.
Proof. - A direct calculation shows that the isotropy subgroup G_{\square} of $\left(S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{2}\right)$ at

is given by

$$
G_{\xi}=\left\{\left|\right|\right\} \cong G_{a}^{2 m} .
$$

Since $H^{1}\left(k, S L_{2 m+1}\right)=\{1\}$, Ker $\rho=\{1\}$, and $H^{1}\left(k, G_{a}^{2 m}\right)=\{1\}$, we have $\ell=1$ for $\left(S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{2}\right)$ by Corollary 1.3. Hence we obtain our result.
Q.E.D.

Proposition 2.16. - We have $\ell=1$ for $\left(G L_{1}^{3} \times S L_{5}\right.$, $\left.\Lambda_{2} \oplus \Lambda_{2} \oplus \Lambda_{1}^{*}\right)$.

Proof. - Let H be the generic isotropy subgroup of $\left(G L_{1}^{2} \times S L_{5}, \Lambda_{2} \oplus \Lambda_{2}\right)$ at $\xi=\left(e_{2} \wedge e_{3}+e_{1} \wedge e_{4}, e_{1} \wedge e_{3}+e_{2} \wedge e_{5}\right)$. Clearly H contains $\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \operatorname{diag}\left(\varepsilon_{1}^{-1} \varepsilon_{2}^{-2}, \varepsilon_{1}^{-2} \varepsilon_{2}^{-1}, \varepsilon_{1} \varepsilon_{2}, \varepsilon_{2}^{2}, \varepsilon_{1}^{2}\right)\right) \in G L_{1}^{2} \times S L_{5}\right\}$ and

$$
\left\{\left(1,1,\left[\begin{array}{c|c}
I_{2} & A \\
\hline 0 & I_{3}
\end{array}\right] ; A=\left[\begin{array}{lll}
\gamma_{1} & \gamma_{2} & \gamma_{3} \\
\gamma_{2} & \gamma_{1} & \gamma_{4}
\end{array}\right],\left(\begin{array}{llll}
\gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4}
\end{array}\right) \in G_{a}^{4}\right\} .\right.
$$

By Corollary 1.6 and Proposition 2.15, it is enough to show that $\ell=1$ for $\left(G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}\right)$. An element $x={ }^{t}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in A f f^{5}$ is a generic point of $\left(G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}\right)$ if and only if $x_{1} x_{2} \neq 0$ (cf. Proposition 1.1 in [5]). Assume that x is in $Y(k)$, then by the action of $\quad g_{1}=\left(\varepsilon, \operatorname{diag}\left(\varepsilon_{1}^{-1} \varepsilon_{2}^{-2}, \ldots, \varepsilon_{1}^{2}\right)\right) \in H(k) \quad$ with $\quad \varepsilon=x_{1} / x_{2}^{2}, \quad \varepsilon_{1}=1$, $\varepsilon_{2}=x_{2} / x_{1}$, we may assume that $x_{1}=x_{2}=1$. Now it is transformed to $x_{0}={ }^{t}(1,1,0,0,0)$ by the action of

$$
g_{2}=\left(1,\left[\begin{array}{c|c}
I_{3} & A \\
\hline 0 & I_{2}
\end{array}\right]\right) \in H(k)
$$

with $A=\left[\begin{array}{ccc}x_{3}, & x_{4}-x_{3}, & 0 \\ 0, & x_{3}, & x_{5}\end{array}\right]$. Thus $G L_{1}(k) \times H(k)$ acts on $Y(k)$ transitively.
Q.E.D.

Proposition 2.17. - We have $\ell=1$ for $\left(G L_{1}^{2} \times \operatorname{Spin}_{n}\right.$, a half-spin rep. \oplus the vector rep.) with $n=8$ and 10 .

Proof. - Let n be 8 or 10. Then by Theorem 1.8, we have $l=1$ for ($G L_{1} \times S p i n_{n}$, the vector rep.) and ($G L_{1} \times S p i n_{n-1}$, the spin rep.). Since the restriction of a half-spin representation of $S p i n_{n}$ to a generic isotropy subgroup of ($G L_{1} \times S \operatorname{Sin}_{n}$, the vector rep.) gives ($G L_{1} \times S p i n_{n-1}$, the spin rep.), we have our result by Corollary 1.6.
Q.E.D.

Proposition 2.18. - We have $\ell=1$ for $\left(G L_{1}^{2} \times \operatorname{Spin}_{10}, \Lambda \oplus \Lambda\right)$ where $\Lambda=$ the even half-spin representation.

Proof. - Prof. J.-I. Igusa proved that $\ell=1$ for $\left(G L_{1} \times \operatorname{Spin}_{10}\right.$, $\Lambda_{1} \oplus(\Lambda \oplus \Lambda)$) (See p. 14 in [1]) and our assertion is obvious by Remark 1.7.
Q.E.D.

Theorem 2.19. - All non-irreducible simple P.V.'s with universally transitive open orbits are given as follows :
(1) $\left(G L_{1}^{k+1} \times S L_{n}, \Lambda_{1} \oplus \ldots \stackrel{k}{\ldots} \oplus \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right)(1 \leqslant k \leqslant n, n \geqslant 2)$,
(2) $\left(G L_{1}^{k+1} \times S L_{n}, \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \underset{\ldots}{\ldots} \oplus \Lambda^{(*) 1}\right) \quad(1 \leqslant k \leqslant 3, n \geqslant 4)$, except $\left(G L_{1}^{4} \times S L_{n}, \Lambda_{2} \oplus \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}^{*}\right)$ with $n=$ odd.
(3) $\left(G L_{1}^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{2}\right)$ for $m \geqslant 2$.
(4) $\left(G L_{1}^{3} \times S L_{5}, \Lambda_{2} \oplus \Lambda_{2} \oplus \Lambda_{1}^{*}\right)$.
(5) $\left(G L_{1}^{k} \times S p_{n}, \Lambda_{1} \oplus \stackrel{k}{\cdots} \oplus \Lambda_{1}\right)(k=2,3)$.
(6) $\left(G L_{1}^{2} \times S p i n_{n}\right.$, a half-spin rep. \oplus the vector rep.) with $n=8,10$.
(7) $\left(G L_{1}^{2} \times \operatorname{Spin}_{10}, \Lambda \oplus \Lambda\right)$ where $\Lambda=$ the even half-spin representation.

Proof. - By Proposition 2.4, 2.5, 2.8-2.10; 2.12-2.18, we have our result.
Q.E.D.

Corollary 2.20. - All non-irreducible regular simple P.V.'s with universally transitive open orbits are given as follows :
(1) $\left(G L_{1}^{2} \times S L_{n}, \Lambda_{1} \oplus \Lambda_{1}^{*}\right)$.
(2) $(G L_{1}^{n} \times S L_{n}, \Lambda_{1} \oplus \overbrace{\cdots}^{n} \oplus \Lambda_{1})$.
(3) $\left(G L_{1}^{n+1} \times S L_{n}, \Lambda_{1} \oplus \stackrel{n}{\cdots} \oplus \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right)$.
(4) $\left(G L_{1}^{3} \times S L_{2 m}, \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)}\right)$.
(5) $\left(G L_{1}^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{1}\right)$.
(6) $\left(G L_{1}^{4} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{1} \oplus\left(\Lambda_{1} \oplus \Lambda_{1}\right)^{(*)}\right)$.
(7) $\left(G L_{1}^{2} \times S p_{n}, \Lambda_{1} \oplus \Lambda_{1}\right)$.
(8) $\left(G L_{1}^{2} \times S p i n_{n}\right.$, a half-spin rep. \oplus the vector rep.) with $n=8,10$.
(9) $\left(G L_{1}^{2} \times \operatorname{Spin}_{10}, \Lambda \oplus \Lambda\right)$ where $\Lambda=$ the even half-spin representation.

3. 2-Simple P.V.'s of Type I with Universally Transitive Open Orbits.

Theorem 3.1. ([5]). - All non-irreducible 2-simple P.V.'s $\left(G L_{1}^{k} \times G\left(=G_{1} \times G_{2}\right), \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)$ of Type I, which do not contain a regular irreducible P.V.'s with $\ell \geqslant 2$, are castling-equivalent to the following P.V.'s :
(1) $G=S L_{2 m+1} \times S L_{2}, \quad \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}(+T) \quad$ with $T=1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)$.
(2) $G=S p i_{10} \times S L_{2}, \quad \rho=a$ half-spin rep. $\otimes \Lambda_{1}+1 \otimes \Lambda_{1}$ $(+T)$ with $T=1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)$.
(3) $G=S O_{n} \times S L_{n-1}, \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}(n=$ even $)$.
(4) $G=S L_{4} \times S L_{5}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}$.
(5) $G=S \operatorname{Sin}_{7} \times S L_{7}, \rho=$ the spin rep. $\otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}$.
(6) $G=S p i n_{8} \times S L_{7}, \rho=$ the vector rep. $\otimes \Lambda_{1}+a$ half spin rep. $\otimes 1+1 \otimes \Lambda_{1}^{*}$.
(7) $G=S p_{n} \times S L_{m}, \quad \rho=\Lambda_{1} \otimes \Lambda_{1}+T, \quad$ with $\quad T=1 \otimes$ $\left(\Lambda_{1}^{(*)}+\frac{k}{\ldots}+\Lambda_{1}^{(*)}\right)(1 \leqslant k \leqslant 3)$ except $1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}\right)$ with $m=$ odd $\quad \Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{1}^{(*)}+\cdots{ }_{\cdots}^{k}+\Lambda_{1}^{(*)}\right)(0 \leqslant k \leqslant 2) \quad$ except $\Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{1}+\Lambda_{1}^{*}\right)$ with $m=o d d, 1 \otimes \Lambda_{2}(m=o d d)$, $1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)(m=5)$.
(8) $G=S p_{n} \times S L_{2 m+1}, \rho=\Lambda_{1} \otimes \Lambda_{1}+\left(\Lambda_{1}+\Lambda_{1}\right) \otimes 1$.
(9) $G=S p_{n} \times S L_{2}, \rho=\Lambda_{1} \otimes 2 \Lambda_{1}+1 \otimes \Lambda_{1}$.
(IV)

$$
\begin{aligned}
& \text { (10) } G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\left(+1 \otimes \Lambda_{1} ;+\right. \\
& \Lambda_{1}^{*} \otimes 1 \text {). } \\
& \text { (11) } G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1\left(+1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)\right) \text {. } \\
& \text { (12) } G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right) \otimes 1 . \\
& \text { (13) } G=S L_{5} \times S L_{8}, \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*} \text {. } \\
& \text { (14) } G=S L_{5} \times S L_{9}, \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}\left(+\Lambda_{1}^{(*)} \otimes 1\right) \text {. } \\
& \text { (15) } G=S L_{7} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1, \Lambda_{2} \otimes \Lambda_{1}+ \\
& \Lambda_{1}^{*} \otimes 1\left(+1 \otimes \Lambda_{1}\right) \text {. } \\
& \text { (16) } G=S L_{9} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1 . \\
& \text { (17) } G=S p i n_{10} \times S L_{n}, \quad(n=14,15), \quad \rho=a \text { half-spin rep. } \\
& \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*} .
\end{aligned}
$$

Proposition 3.2. - We have $\ell=1$ for P.V's in (I), i.e., (1) and (2) in Theorem 3.1.

Proof. - For (1), it is enough to show $\ell=1$ when $\rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)$. Since we have $\ell=1$ for $\left(G L_{1}^{3} \times S L_{2}, \Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right) \quad$ and $\left(S L_{2 m+1} \times\left\{I_{2}\right\}, \quad \Lambda_{2} \oplus \Lambda_{1}\right)=\left(S L_{2 m+1}\right.$, $\Lambda_{2} \oplus \Lambda_{2}$), we have our result by Corollary 1.6 and the proof of Proposition 2.15. For (2), one can prove similary as above by the proof of Proposition 2.18.
Q.E.D.

Proposition 3.3. - We have $\ell \geqslant 2$ for P.V's in (II), i.e., (3)-(6) in Theorem 3.1.

Proof. - For (3), the $G L_{n-1}$-part of a generic isotropy subgroup H of $\left(S O_{n} \times G L_{n-1}, \Lambda_{1} \otimes \Lambda_{1}\right)$ is $O_{(n-1)}$ (cf. p. 109 in [3]). Since $\ell \geqslant 2$ for $\left(G L_{1} \times O_{n-1}, \Lambda_{1} \otimes \Lambda_{1}\right)(n-1=$ odd $)$, we have our result by Proposition 1.5. For remaining P.V.'s, since (Spin_{7}, the spin rep.) $\subset\left(\mathrm{SO}_{8}, \Lambda_{1}\right) \simeq\left(\mathrm{Spin}_{8}\right.$, the vector rep.) and $\left(S L_{4}, \Lambda_{2}\right) \simeq\left(S O_{6}, \Lambda_{1}\right)$, we have our result.
Q.E.D.

Sublemma 3.4. - Let $V=K^{2 n}$ with $\left\langle v, v^{\prime}\right\rangle={ }^{t} v J v^{\prime}$ where $J=$ $\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$. Assume that $\left\{v_{1}, \ldots, v_{r}\right\}$ and $\left\{u_{1}, \ldots, u_{r}\right\}$ are linearly independent subsets of V satisfying $\left\langle v_{i}, v_{j}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle$ for $i, j=1, \ldots, r$ with $r<2 n$. Then there exist v_{r+1} and u_{r+1} such that (1) $\left\{v_{1}, \ldots, v_{r+1}\right\}$ and $\left\{u_{1}, \ldots, u_{r+1}\right\}$ are linearly independent, (2) $\left\langle v_{i}, v_{j}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle$ for all $i, j=1, \ldots, r+1$.

Proof. - (I) The case when $\left\langle v_{1}, \ldots, v_{r}\right\rangle^{\perp} \notin\left\langle v_{1}, \ldots, v_{r}\right\rangle$. Take u_{r-} such that $u_{r+1} \notin\left\langle u_{1}, \ldots, u_{r}\right\rangle$. Since $\left\{v_{1}, \ldots, v_{r}\right\}$ is linearly independen the linear equation ${ }^{t}\left(v_{1}, \ldots, v_{r}\right) \quad J v={ }^{t}\left(u_{1}, \ldots, u_{r}\right) J u_{r+1} \quad$ (i.e $\left\langle v_{i}, v\right\rangle=\left\langle u_{i}, u_{r+1}\right\rangle$ for $i=1, \ldots, r$) has a solution v_{0}, and the set c solution is given by $v_{0}+\left\langle v_{1}, \ldots, v_{r}\right\rangle^{\perp}\left(\not \subset\left\langle v_{1}, \ldots, v_{r}\right\rangle\right)$. Hence ther exists $v_{r+1} \notin\left\langle v_{1}, \ldots, v_{r}\right\rangle$ such that $\left\langle v_{i}, v_{r+1}\right\rangle=\left\langle u_{i}, u_{r+1}\right\rangle$ fo $i=1, \ldots, r$.
(II) The case when $\left\langle v_{1}, \ldots, v_{r}\right\rangle^{\perp} \subset\left\langle v_{1}, \ldots, v_{r}\right\rangle$. Tak $v_{r+1} \notin\left\langle v_{1}, \ldots, v_{r}\right\rangle$. Assume that any solution $u \quad 0$ ${ }^{t}\left(u_{1}, \ldots, u_{r}\right) J u={ }^{t}\left(v_{1}, \ldots, v_{r}\right) J v_{r+1}$ belongs to $\left\langle u_{1}, \ldots, u_{r}\right\rangle$. Le $u=a_{1} u_{1}+\cdots+a_{r} u_{r}$ be a solution. Since ${ }^{t} u_{i} J u_{j}={ }^{t} v_{i} J v_{j}$ fo $i, j=1, \ldots, r$, we have $\quad{ }^{t}\left(v_{1}, \ldots, v_{r}\right) J\left(a_{1} v_{1}+\cdots+a_{r} v_{r}\right)=$ ${ }^{t}\left(v_{1}, \ldots, v_{r}\right) J v_{r+1}, \quad$ i.e., $\quad v_{r+1}-a_{1} v_{1}-\ldots-a_{r} v_{r} \in\left\langle v_{1}, \ldots, v_{r}\right\rangle$. $\subset\left\langle v_{1}, \ldots, v_{r}\right\rangle$ and hence $v_{r+1} \in\left\langle v_{1}, \ldots, v_{r}\right\rangle$ a contradiction. Henc there exists $u_{r+1} \in V$ satisfying $u_{r+1} \notin\left\langle u_{1}, \ldots, u_{r}\right\rangle \quad$ anc ${ }^{t}\left(u_{1}, \ldots, u_{r}\right) J u_{r+1}={ }^{t}\left(v_{1}, \ldots, v_{r}\right) J v_{r+1}$. Q.E.D

Lemma 3.5. - Let $\left\{v_{1}, \ldots, v_{r}\right\}$ and $\left\{u_{1}, \ldots, u_{r}\right\}$ are linearly independen subsets of $V=K^{2 n}$ satisfying $\left\langle v_{i}, v_{j}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle$ for $i, j=1, \ldots, r$. Ther there exists an element g of the symplectic group $S p_{n}(K)$ such tha $g v_{i}=u_{i}$ for $i=1, \ldots, r$.

Proof. - By Sublemma 3.4, there exist basis $\left\{v_{1}, \ldots, v_{r}, \ldots, v_{2 n}\right.$ and $\left\{u_{1}, \ldots, u_{r}, \ldots, u_{2 n}\right\}$ satisfying $\left\langle v_{i}, v_{j}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle$. Define an elemen g of $G L_{2 n}$ by $\left(v_{1}, \ldots, v_{2 n}\right) g=\left(u_{1}, \ldots, u_{2 n}\right)$. Then it is clear tha $g \in S p_{n}(K)$.
Q.E.D

Lemma 3.6. - Let Ω be the universal domain and K a subfield For $2 n \geqslant m$, put $W=\left\{v \in M_{2 n, m}(\Omega) ; \quad\right.$ rank $\left.v=m\right\} \quad$ anc $W^{\prime}=\left\{w \in \operatorname{Alt} t_{m}(\Omega) ;\right.$ rank w is maximal $\}$. Define a map $\psi: W \rightarrow \operatorname{Alt}_{m}(\Omega$, by $\psi(v)=\left(\left\langle v_{i}, v_{j}\right\rangle\right)$ for $v=\left(v_{1}, \ldots, v_{2 m}\right) \in W$. Then $\psi(W)=W^{\prime}$ and $\psi\left(W((K))=W^{\prime}(K)\right.$.

Proof. - Note that W (resp. W^{\prime}) is the Zariski dense orbit of $\left(S p_{n} \times G L_{m}, \Lambda_{1} \otimes \Lambda_{1}, \quad M_{2 n, m}(\Omega)\right) \quad\left(r e s p . \quad\left(G L_{m}, \Lambda_{2}, A l t_{m}(\Omega)\right)\right) . \quad$ Since $\psi\left(A v^{t} B\right)=B \psi(v)^{t} B$ for any $(A, B) \in S p_{n} \times G L_{m}, \psi(W)$ is an orbit of $\left(G L_{m}, \Lambda_{2}\right)$. Let X_{0} be the generic point of $\left(S p_{n} \times G L_{m}, \Lambda_{1} \otimes \Lambda_{1}\right)$ given in p. 101 in [3]. Then we have $\psi\left(X_{0}\right)=J(m=$ even $)$ or $\psi\left(X_{0}\right)=\left|\begin{array}{ll}J & 0 \\ 0 & 0\end{array}\right|(m=$ odd $)$, i.e., $\psi\left(X_{0}\right)$ is a generic point of $\left(G L_{m}, \Lambda_{2}\right)$. Hence $\psi(W)=W^{\prime}$. Since ψ is defined over the prime field, we have
$\psi(W(K)) \subset W^{\prime}(K)$. Since $\ell=1$ for $\left(G L_{m}, \Lambda_{2}\right), W^{\prime}(K)$ is a single $\Lambda_{2}\left(G L_{m}\right)(K)$-orbit. Since $\psi(W(K))$ is $\Lambda_{2}\left(G L_{m}\right)(K)$-admissible, we have $\psi(W(K))=W^{\prime}(K)$.
Q.E.D.

Proposition 3.7. - We have $\ell=1$ for $\left(S p_{n} \times G, \Lambda_{1} \otimes \rho\right)$ ($m=\operatorname{deg} \rho \leqslant 2 n$) if and only if $\ell=1$ for $\left(G, \Lambda^{2}(\rho)\right)$.

Proof. - Let $Y\left(\subset W \subset M_{2 n, m}(\Omega)\right)$ and $Y^{\prime}\left(\subset W^{\prime} \subset A l t_{m}(\Omega)\right)$ be the Zariski-dense orbits of $\left(S p_{n} \times G, \Lambda_{1} \otimes \rho\right)$ and $\left(G, \Lambda^{2}(\rho)\right)$ respectively. Then the map $\psi: W \rightarrow W^{\prime}$ in Lemma 3.6 gives the surjective $S p_{n} \times G$ equivariant map $\psi: Y \rightarrow Y^{\prime}$. Clearly we have $\psi(Y(K)) \subset Y^{\prime}(K)$. Take any element x of $Y^{\prime}(K)$. Since $\psi(W(K))=W^{\prime}(K) \supset Y^{\prime}(K)$, there exists $v=\left(v_{1}, \ldots, v_{m}\right) \in W(K)$ such that $\psi(v)=x$. On the other hand, we have $\psi(Y)=Y^{\prime} \supset Y^{\prime}(K)$ there exists $u=\left(u_{1}, \ldots, u_{m}\right) \in Y$ such that $\psi(u)=x$. By Lemma 3.5, there exists $g \in S p_{n}$ satisfying $v=g u \in Y$, i.e., $v \in Y \cap W(K)=Y(K)$ Hence $\psi: Y(K) \rightarrow Y^{\prime}(K)$ is surjective. By Lemma 3.5, each fibre is $S p_{n}(K)$-homogeneous. Thus the orbits in $Y(K)$ and $Y^{\prime}(K)$ correspond bijectively.
Q.E.D.

Corollary 3.8. - (1) We have $\ell=1$ for $\left(S p_{n} \times G, \Lambda_{1} \otimes \rho+1 \otimes \sigma\right)$ (deg $\rho \leqslant 2 n)$ if and only if $\ell=1$ for $\left(G, \Lambda^{2}(\rho)+\sigma\right)$.
(2) We have $\ell=1$ for $\left(S p_{n} \times G \times G L_{1}, \Lambda_{1} \otimes \rho \otimes 1+\Lambda_{1} \otimes 1 \otimes \Lambda_{1}+\right.$ $1 \otimes \sigma \otimes 1) \quad(\operatorname{deg} \rho \leqslant 2 n-1) \quad$ if and only if $\ell=1$ for $\left(G \times G L_{1}, \Lambda^{2}(\rho) \otimes 1+\rho \otimes \Lambda_{1}+\sigma \otimes 1\right)$.
(3) We have $\ell=1$ for $\left(G L_{1}^{2} \times S p_{n} \times G L_{2 m+1}, \quad 1 \otimes 1 \otimes \Lambda_{1} \otimes \Lambda_{1}+\right.$ $\left.\left(\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1} \otimes 1\right)(2 m+3 \leqslant 2 n)$ if and only if $\ell=1$ for $\left(G L_{1} \times G L_{2 m+1}, 1 \otimes \Lambda_{2}+\left(\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes \Lambda_{1}\right)$.

Proof. - (1) is obvious. Since $\Lambda^{2}\left(\rho \otimes 1+1 \otimes \Lambda_{1}\right)=\Lambda^{2}(\rho) \otimes 1+$ $\rho \otimes \Lambda_{1}$, we have (2). Since $\Lambda^{2}\left(1 \otimes 1 \otimes \Lambda_{1}+\Lambda_{1} \otimes 1 \otimes 1+1 \otimes \Lambda_{1} \otimes 1\right)$ for $G L_{1}^{2} \times G L_{2 m+1}, \quad$ is $G L_{1}^{2} \times G L_{2 m+1}, \quad 1 \otimes 1 \otimes \Lambda_{2}+\left(\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1}+$ $\Lambda_{1} \otimes \Lambda_{1} \otimes 1$), we have (3) by Proposition 1.5. Q.E.D.

Proposition 3.9. - For P.V's in (III) in Theorem 3.1, we have $\ell=1$ for (7), (8) and $\ell \geqslant 2$ for (9).

Proof. - By Theorem 2.19 and Corollary 3.8, we have $\ell=1$ for (7). By Lemma 2.7, the proof of Proposition 2.12, and (3) of Corollary 3.8, we have $\ell=1$ for (8). Since $\left(S L_{3}, \Lambda^{2}\left(\Lambda_{1}\right)=\left(S L_{3}, \Lambda_{2}\right)=\left(S L_{3}, \Lambda_{1}^{*}\right)\right.$, we have $\left(S O_{3}, \Lambda^{2}\left(\Lambda_{1}\right)\right)=\left(S O_{3}, \Lambda_{1}\right)$. Hence we have $\ell \geqslant 2$ for $\left(S p_{n} \times G L_{2}, \Lambda_{1} \otimes 2 \Lambda_{1}\right)=\left(S p_{n} \times G O_{3}, \Lambda_{1} \otimes \Lambda_{1}\right)$. Thus $\ell \geqslant 2$ for (9).

Lemma 3.10. - We have $\ell \geqslant 2$ for $\left(G L_{2 m+1} \times G L_{2}, \Lambda_{2} \otimes \Lambda_{1}+\right.$ $\left.\Lambda_{1} \otimes 1\right)(m=2,3)$.

Proof. - Assume that $\ell=1$. Then, by Proposition 1.5, we have $\ell=1$ for $\left(H \times G L_{2}, \Lambda_{2} \otimes \Lambda_{1}\right)$ where

$$
H=\left\{\left|\begin{array}{c|c}
1 & A^{\prime} \\
\hline 0 & A
\end{array}\right| ; A \in G L_{2 m}\right\}
$$

Since

1	A^{\prime}
0	A

\hline-^{t} y \& X\end{array}\right|\)| 1 | 0 |
| :---: | :---: |
| ${ }^{t} A^{\prime}$ | ${ }^{t} A$ |$|=|$| 0 | $*$ |
| :---: | :---: |
| $*$ | $A X^{t} A$ | , this implies $\ell=1$ for $\left(G L_{2 m} \times G L_{2}, \Lambda_{2} \otimes \Lambda_{1}\right)$, which is a contradiction by Theorem 1.8.

Proposition 3.11. - We have $\ell \leqslant 2$ for any P.V. in (10) in Theorem 3.1.

Proof. - By Proposition 1.5 and Lemma 3.10, we have our result.
Q.E.D.

Proposition 3.12. - We have $\ell=1$ for any P.V. in (11) in Theorem 3.1.

Proof. - It is enough to show $\ell=1$ for $\left(G L_{1}^{4} \times S L_{5} \times S L_{2}\right.$, $\left.\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$. Since $\ell=1$ for $\left(G L_{1}^{2} \times S L_{2}, \Lambda_{1}+\Lambda_{1}\right)$, it is enough to show $\ell=1$ for
$\left(G L_{1}^{2} \times S L_{5} \times\left[\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right], \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1\right) \simeq\left(G L_{1}^{3} \times S L_{5}, \Lambda_{2} \otimes \Lambda_{2} \otimes \Lambda_{1}^{*}\right)$.
Thus we have our result by Theorem 2.19.
Q.E.D.

Proposition 3.13. - We have $\ell=1$ for a P.V. (12) in Theorem 3.1.
Proof. - We shall prove that a generic isotropy subgroup of $\left(G L_{1} \times G L_{5} \times G L_{2}, 1 \otimes \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*} \otimes 1+\Lambda_{1} \otimes \Lambda_{1}^{*} \otimes 1\right)$ is $\{1\}$. Then we have $\ell=1$ by Corollary 1.4. The representation space V is given by $\left.V=\{(X, Y), Z) ; X, Y \in M_{5},{ }^{t} X=-X,{ }^{t} Y=-Y, Z \in M_{5,2}\right\}$. Then the action is given by $\rho(g) x=\left\{\left(A X^{t} A, A Y^{t} A\right)^{t} B,{ }^{t} A^{-1} Z\left({ }^{1} \alpha\right)\right\}$ for $g=(\alpha, A, B) \in G L_{1} \times G L_{5} \times G L_{2}$ and $x=\{(X, Y), Z\} \in V$. Put $x_{0}=\left\{\left(X_{0}, Y_{0}\right), Z_{0}\right\} \quad$ with $\quad X_{0}=\left(-e_{4},-e_{5}, 0, e_{1}+e_{5}, e_{2}-e_{4}\right)$, $Y_{0}=\left(0, e_{4}, e_{5},-e_{2}+e_{5},-e_{3}-e_{4}\right), \quad Z_{0}=\left(e_{4}, e_{5}\right) \quad$ where $\quad e_{i}=$ ${ }^{t}(0 \ldots \stackrel{\bar{i}}{1} \ldots 0) \in \Omega^{5}$. We shall calculate the isotropy subgroup
$H=\left\{g \in G L_{1} \times G L_{5} \times G L_{2} ; \rho(g) x_{0}=x_{0}\right\}$. One can easily check that ${ }^{t} A^{-1} Z_{0}\left({ }^{1} \alpha\right)=Z_{0}$ if and only if A is of the form

A_{1}	A_{2}
0	$\left({ }^{t} \alpha\right)$

We shall determine (A, B) satisfying $\left(A X_{0}{ }^{t} A, A Y_{0}{ }^{t} A\right)^{t} B=\left(X_{0}, Y_{0}\right)$ where A is of the above form. By comparing the components of $(1,4),(1,5)$, $(2,4), \quad(2,5), \quad(3,4), \quad(3,5), \quad(4,5), \quad$ we obtain $b_{12}=\alpha^{-1}-b_{11}$, $b_{21}=\alpha^{-1}-b_{22}, a_{12}=c-a_{11}, a_{13}=a_{11}-c, a_{14}=c-a_{11}$, $a_{15}=\alpha b_{22} c-a_{11}, \quad a_{21}=c-a_{22}, \quad a_{23}=c \alpha^{-1}-a_{22}$, $a_{24}=a_{22}-b_{22} c, \quad a_{25}=a_{22}-\alpha b_{11} c, \quad a_{31}=a_{33}-c \alpha^{-1}$, $a_{32}=c \alpha^{-1}-a_{33}, \quad a_{34}=b_{11} c-a_{33}, \quad a_{35}=c \alpha^{-1}-a_{33}$, where $c\left(b_{11}+b_{22}-\alpha^{-1}\right)=1, A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Then, by comparing the $(1,2), \quad(1,3), \quad(2,3)$ components, we obtain $a_{11}=a_{22}=a_{33}=b_{11}=b_{22}=c=\alpha=1$ Thus we have $H=\{1\}$.
Q.E.D.

Proposition 3.14. - We have $\ell \geqslant 2$ for a P.V. (13) in Theorem 3.1.
Proof. - Let \mathfrak{G} be the $\mathfrak{s I}_{8}$-part of the generic isotropy subalgebra of $\quad\left(G L_{1} \times S L_{5} \times S L_{8}, \Lambda_{1} \otimes \Lambda_{2} \otimes \Lambda_{1}\right) \quad$ at $\quad x_{0}=\left(\omega_{1}, 2 \omega_{3}, 2 \omega_{2}, \omega_{10}\right.$, $\omega_{5}-\omega_{8}, \omega_{4}-\omega_{9}, \omega_{6}, \omega_{7}$) (see P. 95 in [3]). Then its image by Λ_{1}^{*} is given by

$$
\begin{aligned}
& \Lambda_{1}^{*}\left(\mathfrak{H}=\left\{\tilde{\mathrm{A}}=\left(\begin{array}{ccc}
A & B & 0 \\
0 & A^{\prime} & B^{\prime} \\
0 & 0 & a
\end{array}\right) \in M_{8} ; B=\left(\begin{array}{ccc}
-2 d_{3}, & 4 d_{2}, & -2 d_{1}, \\
-d_{4}, & d_{3}, & d_{2}, \\
0, & -d_{4}, & 2 d_{3}, \\
\hline, d_{2}
\end{array}\right)\right. \text {, }\right. \\
& B^{\prime}=2^{t}\left(d_{1}, d_{2}, d_{3}, d_{4}\right), a=-25 t, A=15 t I_{3}+\left(2 \Lambda_{1}\right)(C), \\
& \left.A^{\prime}=-5 t I_{4}+\left(3 \Lambda_{1}\right)(C) \text { for } C \in \operatorname{sI}_{2}\right\} .
\end{aligned}
$$

Let H be any algebraic subgroup of $G L_{8}$ with Lie $(H)=\Lambda_{1}^{*}(\mathfrak{H})$. It is enough to show $\ell \geqslant 2$ for $\left(G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}, \Omega^{8}\right)$. Since $h A h^{-1}$ $\in \Lambda_{1}^{*}(\mathfrak{H})$, for any $h \in H$ and $A \in \Lambda_{1}^{*}(\mathfrak{G})$, we have

by Schur's lemma. Since the normalizer of GO_{3} is GO_{3}, we may assume that $h_{1} \in G O_{3}$. Let $x={ }^{t}\left(x_{1}, \ldots, x_{8}\right)$ be a point of $Y(k)$ for
$\left(G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}, \Omega^{8}\right)$. Clearly we may assume that $x_{8}=1$. By the action of one parameter subgroups obtained from B and B^{\prime} in $\Lambda_{1}^{*}(\mathfrak{H})$, we may also assume that $x_{4}=x_{5}=x_{6}=x_{7}=0$. Let H_{1} be the subgroup of H fixing $x_{4}=x_{5}=x_{6}=x_{7}=0$ and $x_{8}=1$. Then the corresponding Lie subalgebra \mathfrak{H}_{1} of $\Lambda_{1}^{*}(\mathfrak{H})$ consists of A of $\Lambda_{1}^{*}(\mathfrak{H})$ satisfying $B=B^{\prime}=0$. Since H_{1} normalizes \mathfrak{H}_{1}, we have

$$
H_{1} \subset\left\{\left(\begin{array}{c|c|c}
A & 0 & 0 \\
\hline 0 & * & 0 \\
\hline 0 & 0 & *
\end{array}\right) ; A \in G O_{3}\right\}
$$

and hence the action on $\left(x_{1}, x_{2}, x_{3}\right)$-space is $\left(G O_{3}, \Lambda_{1}\right)$ which $\ell \geqslant 2$ by Theorem 1.8.
Q.E.D.

Proposition 3.15. - We have $\ell \geqslant 2$ for any P.V. in (14) in Theorem 3.1.

Proof. - The generic isotropy subgroup of $\left(G L_{5}, \Lambda_{2}\right)$ is connected (see P. 76 in [3]). Hence the generic isotropy subgroup H of its castling transform $\left(S L_{5} \times G L_{9}, \Lambda_{2} \otimes \Lambda_{1}\right)$ is connected and it is contained in

$$
\left\{\left(\begin{array}{c|c}
A & * \\
\hline 0 & *
\end{array}\right) ; A \in G O_{5}\right\}
$$

(see the proof of Lemma 2.6 in [5]). Since $l \geqslant 2$ for $\left(G O_{5}, \Lambda_{1}\right)$, we have $\ell \geqslant 2$ for ($G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}, \Omega^{9}$). This proves our assertion.
Q.E.D.

Proposition 3.16. - We have $\ell \geqslant 2$ for any P.V. in (15) in Theorem 3.1.

Proof. - For the first P.V. in (15), we have $\ell \geqslant 2$ by Lemma 3.10. Now let H be the $S L_{7}$ - part of a generic isotropy subgroup of $\left(G L_{1} \times S L_{7} \times S L_{2}, \Lambda_{2} \otimes \Lambda_{1}\right)$. Then we have

$$
\begin{aligned}
& \operatorname{Lie}(H)=\left\{\left(\begin{array}{c|c}
A_{1} & 0 \\
\hline * & A_{2}
\end{array}\right) ; A_{1}=3 \Lambda_{1}^{*}(C)+3 t I_{4},\right. \\
&\left.A_{2}=2 \Lambda_{1}(C)-4 t I_{3} \text { for } C \in \mathfrak{s I}_{2}\right\}
\end{aligned}
$$

(see Lemma 1.4 in [5]). By the fact that the normalizer of $G O_{3}$ is $G O_{3}$ and by Schur's lemma, we have

$$
H \subset\left\{\left(\begin{array}{c|c}
* & 0 \\
\hline * & A
\end{array}\right) ; A \in G O_{3}\right\} .
$$

Since $\ell \geqslant 2$ for $\left(G O_{3}, \Lambda_{1}\right)$, we have $\ell \geqslant 2$ for ($G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}, \Omega^{7}$) and hence $\ell \geqslant 2$ for the latter P.V.'s in (15).
Q.E.D.

Proposition 3.17. - We have $\ell \geqslant 2$ for a P.V. (16) in Theorem 3.1.
Proof. - Let H be the $S L_{9}$-part of a generic isotropy subgroup of $\left(G L_{1} \times S L_{9} \times S L_{2}, \Lambda_{1} \otimes \Lambda_{2} \otimes \Lambda_{1}\right)$. Then, similarly as the proof of Proposition 3.16, we have

$$
H \subset\left\{\begin{array}{|c|c|}
* & 0 \\
\hline * & A
\end{array} ; A \in 3 \Lambda_{1}\left(G L_{2}\right)\right\} .
$$

Since $\ell \geqslant 2$ for $\left(G L_{2}, 3 \Lambda_{1}\right)$, we have $\ell \geqslant 2$ for ($G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}, \Omega^{7}$) and hence we obtain our result. Q.E.D.

Proposition 3.18. - We have $\ell \geqslant 2$ for $\left(G L_{1}^{2} \times S p i n_{10} \times S L_{15}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}\right)$.

Proof. - Let H be the $S L_{15}$-part of the generic isotropy subgroup of $\left(G L_{1} \times S \operatorname{Sin}_{10} \times S L_{15}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}\right)$ at $X_{0}=\left(e_{1} e_{5}, e_{2} e_{5}, e_{3} e_{5}\right.$, $e_{4} e_{5}, e_{2} e_{3} e_{4} e_{5},-e_{1} e_{3} e_{4} e_{5}, e_{1} e_{2} e_{4} e_{5},-e_{1} e_{2} e_{3} e_{5},-1+e_{1} e_{2} e_{3} e_{4}, e_{1} e_{2}, e_{1} e_{3}$, $\left.e_{1} e_{4},-e_{3} e_{4}, e_{2} e_{4},-e_{2} e_{3}\right)$. Then we have

$$
\operatorname{Lie}(H)=\left\{\left.\begin{array}{|c|c|}
A_{1} & 0 \\
\hline * & A_{2}
\end{array} \right\rvert\, \in M_{15}, A_{1}=\Lambda(B), A_{2}=\Lambda^{\prime}(B) \text { for } B \in \mathfrak{o}_{7}\right\}
$$

where Λ (resp. Λ^{\prime}) is the spin (resp. the vector) representation of \mathfrak{o}_{7}. By the fact that the normalizer of $G O_{7}$ is $G O_{7}$ and by Schur's lemma, we have $H \subset\left\{\left[\begin{array}{ll}* & 0 \\ * & \mathrm{~A}\end{array}\right] ; A \in G O_{7}\right\}$. Since $\ell \geqslant 2$ for $\left(G O_{7}, \Lambda_{1}\right)$, we have $\ell \geqslant 2$ for $\left(G L_{1} \times \vec{H}, \Lambda_{1} \otimes \Lambda_{1}^{*}\right)$. This implies our assertion. Q.E.D.

Proposition 3.19. - We have $\ell \geqslant 2$ for $\left(G L_{1}^{2} \times S p i_{10} \times S L_{14}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}\right)$.

Proof. - Let H be the $S L_{14}$-part of a generic isotropy subgroup of $\left(G L_{1} \times S p i n_{10} \times S L_{14}, \Lambda_{1} \otimes\right.$ a half-spin rep. $\left.\otimes \Lambda_{1}\right)$. By checking the
weights, one obtains $\operatorname{Lie}(H)=\operatorname{Lie}\left(G_{2} \otimes S L_{2}\right)$. Let G be the image of $\left(G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}\right)$. Then we have $1 \rightarrow G L_{1} \rightarrow G \rightarrow \operatorname{Aut}\left(G_{2} \otimes S L_{2}\right) \rightarrow 1$ (exact) and hence G is connected. Since $G \supset G_{2} \otimes G L_{2}$ and $\operatorname{dim} G=\operatorname{dim} G_{2} \otimes G L_{2}$, we have $\left(G L_{1} \times H, \Lambda_{1} \otimes \Lambda_{1}^{*}\right) \simeq\left(G_{2} \times G L_{2}\right.$, $\Lambda_{2} \otimes \Lambda_{1}, \Omega^{7} \otimes \Omega^{2}$) which has $\ell \geqslant 2$ by Theorem 1.8. This completes the proof.
Q.E.D.

Theorem 3.20. - All non-irreducible 2-simple P.V.'s (GL ${ }_{1}^{k} \times G, \rho$ $\left.\left(=\rho_{1} \oplus \cdots \oplus \rho_{k}\right)\right)$ of type I with universally transitive open orbits are given as follows :
(1) $G=S L_{2 m+1} \times S L_{2}, \quad \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}(+T) \quad$ with $T=1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)$.
(2) $G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1\left(+1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)\right)$.
(3) $G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right) \otimes 1$.
(4) $G=S p_{n} \times S L_{m}, \quad \rho=\Lambda_{1} \otimes \Lambda_{1}+T, \quad$ with $\quad T=1 \otimes\left(\Lambda_{1}^{(*)}+\right.$ $\left.\cdots+\Lambda_{1}^{(*)}\right)(1 \leqslant k \leqslant 3)$ except $1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}\right) \quad$ with $\quad m=o d d$, $\left.\Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{11}{ }^{(*)}+\cdots+\Lambda_{1}{ }_{1}^{(*)}\right)\right) \quad(0 \leqslant k \leqslant 2) \quad$ except $\quad \Lambda_{1} \otimes 1+1$ $\otimes\left(\Lambda_{1}+\Lambda_{1}^{*}\right)$ with $m=$ odd, $1 \otimes \Lambda_{2}(m=$ odd $), 1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)(m=5)$.
(5) $G=S p_{n} \times S L_{2 m+1}, \rho=\Lambda_{1} \otimes \Lambda_{1}+\left(\Lambda_{1}+\Lambda_{1}\right) \otimes 1$.
(6) $G=S p i n_{10} \times S L_{2}, \rho=a$ half-spin rep. $\otimes \Lambda_{1}+1 \otimes \Lambda_{1}(+T)$ with $T=1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)$.

Corollary 3.21. - All non-irreducible regular 2-simple P.V.'s of type I with universally transitive orbits are given as follows :
(1) $\left(G L_{1}^{3} \times S L_{5} \times S L_{2}, \Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right) \otimes 1\right)$.
(2) $\left(G L_{1}^{3} \times S p_{n} \times S L_{2 m}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}\right)\right.$.
(3) $\left(G L_{1}^{2} \times S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\right)$.
(4) $\left(G L_{1}^{4} \times S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)^{(*)}\right)$.
(5) $\left(G L_{1}^{3} \times S p n_{10} \times S L_{2}\right.$, a half-spin rep $\left.\otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$.
(6) $\left(G L_{1}^{4} \times S \operatorname{Sin}_{10} \times S L_{2}, a\right.$ half-spin rep $\left.\otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)\right)$.

Corollary 3.22. - Any non-regular irreducible P.V., which is not castling-equivalent to $\left(S p_{n} \times G O_{3}, \Lambda_{1} \otimes \Lambda_{1}\right)$, has the universally transitive open orbit.

Proof. - By Theorem 2.19 and the proof of Proposition 3.9, we have our result. Note that $\ell=1$ for any trivial P.V.
$\left(G \times G L_{n}, \rho \otimes \Lambda_{1}, \Omega^{m} \otimes \Omega^{n}\right) \quad(\operatorname{deg} \rho=m \leqslant n)$ since we have $\ell=1$ for $\left(\left\{I_{m}\right\} \times G L_{n}, \rho \otimes \Lambda_{1}\right) \simeq\left(G L_{n}, \Lambda_{1} \oplus \cdots \oplus \Lambda_{1}\right)(m \leqslant n)$ by Proposition 1.5 and Lemma 2.2.
Q.E.D.

4. 2-Simple P.V.'s of Type II with Universally Transitive Open orbits.

Proposition 4.1. - For $n \geqslant m_{1} \geqslant m_{2}$, we have $\ell=1$ for a P.V. $\left(G \times G L_{n}, \rho_{1} \otimes \Lambda_{1}+\rho_{2} \otimes \Lambda_{1}^{*}, M_{m_{1}, n} \oplus M_{m_{2}, n}\right)$ if and only if $\ell=1$ for a P.V. $\left(G, \rho_{1} \otimes \rho_{2}, M_{m_{1}, m_{2}}\right)$.

Proof. - Define a map $\psi: M_{m_{1}, n} \oplus M_{m_{2}, n} \rightarrow M_{m_{1}, m_{2}}$ by $\psi(X, Y)=X^{t} Y \quad$ for $\quad(X, Y) \in M_{m_{1}, n} \oplus M_{m_{2}, n}$. Since $\quad \psi\left(\rho_{1}(A) X^{t} B\right.$, $\left.\rho_{2}(A) Y B^{-1}\right)=\rho_{1}(A) \psi(X, Y)^{t} \rho_{2}(A)$ for $(A, B) \in G \times G L_{n}$, it is $G \times G L_{n^{-}}$ equivariant. Let W (resp. W^{\prime}) be the Zariski-dense orbit of the first P.V. (resp. the latter P.V.). By Theorems 1.4 and 1.6 in [6], we have $\psi(W)=W^{\prime}$. It is enough to show that $\psi: W(k) \rightarrow W^{\prime}(k)$ is surjective with $G L_{n}(k)$-homogeneous fibres. Clearly we have $W \subset U=$ $\left\{(X, Y) \in M_{m_{1}, n} \oplus M_{m_{2}, n} ;\right.$ rank $X=m_{1}$, rank $Y=$ rank $\left.X^{t} Y=m_{2}\right\} \quad$ and $W^{\prime} \subset U^{\prime}=\left\{Z \in M_{m_{1}, m_{2}}\right.$; rank $\left.Z=m_{2}\right\}$. Since $\psi\left(\left(I_{m_{1}}, 0\right),\left({ }^{t} Z, 0\right)\right)=Z$, the maps $\psi: U \rightarrow U^{\prime}$ and $\psi: U(k) \rightarrow U^{\prime}(k)$ are surjective. For any $(X, Y) \in \psi^{-1}(Z) \cap U$, there exists $B \in G L_{n}$ satisfying $X^{t} B=\left(I_{m_{1}}, 0\right)$ and $Y B^{-1}=\left({ }^{t} Z, Z^{\prime}\right)$. Since $\operatorname{rank}{ }^{t} Z=m_{2}$, we have ${ }^{t} Z C^{\prime}=Z^{\prime}$ for some $C^{\prime} \in M_{m_{1}, n-m_{1}}$. Put $C=\left(\begin{array}{c|c}I & C^{\prime} \\ \hline 0 & I\end{array}\right) \in G L_{n}$. Then we obtain $X^{t} B^{t} C=$ $\left(I_{m_{1}}, 0\right)$ and $Y B^{-1} C^{-1}=\left({ }^{t} Z,-{ }^{t} Z C^{\prime}+Z^{\prime}\right)=\left({ }^{t} Z, 0\right)$, i.e., $\quad(X, Y) \sim$ $\left(\left(I_{m_{1}}, 0\right),\left({ }^{t} Z, 0\right)\right)$.This implies that each fibre of $\psi: U \rightarrow U^{\prime}($ resp. $\left.\psi: U(k) \rightarrow U^{\prime}(k)\right)$ is $G L_{n}\left(\operatorname{resp} . G L_{n}(k)\right)$-homogeneous. Hence $G L_{n}(k)$ acts on each fibre of $\psi: W(k) \rightarrow W^{\prime}(k)$ transitively. For any $Z \in W^{\prime}(k)=U^{\prime}(k) \cap W^{\prime}$, there exists (X, Y) in $U(k)$ satisfying $\psi(X, Y)=Z$. Since $\psi(W)=W^{\prime} \ni Z$, there exists $\left(X^{\prime}, Y^{\prime}\right)$ in W satisfying $\psi\left(X^{\prime}, Y^{\prime}\right)=Z$. Hence $(X, Y)=\left(X^{\prime t} B, Y^{\prime} B^{-1}\right) \in U(k) \cap W=W(k)$ for some $B \in G L_{n}$, i.e., $\psi(W(k))=W^{\prime}(k)$.
Q.E.D.

Theorem 4.2. - We have $\ell=1$ for the following 2-simple P.V.'s (4.a)-(4.c) of type $I I$ if and only if $\ell=1$ for a simple P.V. $\left(G L_{1}^{r} \times G, \rho_{1} \oplus \cdots \oplus \rho_{r}\right)\left(\operatorname{deg} \rho_{i} \geqslant 2\right.$ for $\left.i=1, \cdots, r\right)($ see Theorem 2.19).
(4.a) $\left(G L_{1}^{s+r} \times G \times S L_{n},\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes \Lambda_{1}+\left(\rho_{1}+\cdots+\rho_{r}\right) \otimes 1\right)$ for any representation $\sigma_{1}+\cdots+\sigma_{s}$ of G and any natural number n satisfying $n \geqslant \operatorname{deg} \sigma_{1}+\cdots+\operatorname{deg} \sigma_{s}$.
(4.b) $\quad\left(G L_{1}^{t+r} \times G \times S L\left(\Sigma \operatorname{deg} \rho_{i}+r-1\right),\left(\rho_{1}+\cdots+\rho_{k}\right) \otimes \Lambda_{1}+\left(\rho_{k+1}^{*}+\right.\right.$ $\left.\left.\cdots+\rho_{r}^{*}\right) \otimes 1+1 \otimes\left(\Lambda_{1}+\cdots+\Lambda_{1}\right)\right)(1 \leqslant k \leqslant r)$ for any $t \geqslant 0$.
(4.c) $\quad\left(G L_{1}^{t+r} \times G \times S L_{n},\left(\rho_{1}+\cdots+\rho_{k}\right) \otimes \Lambda_{1}+\left(\rho_{k+1}+\cdots+\rho_{r}\right) \otimes 1+\right.$ $\left.1 \otimes\left(\Lambda_{1}+\stackrel{t-1}{\sim}+\Lambda_{1}+\Lambda_{1}^{*}\right)(1 \leqslant k \leqslant r)\right)$ for any pair of natural number (t, n) satisfying $t \geqslant 1$ and $n \geqslant t-1+\operatorname{deg} \rho_{1}+\cdots+\operatorname{deg} \rho_{k}$.

Proof. - For (4.a), we have our result by Proposition 1.5 and the remark in the proof of Corollary 3.22. A P.V. (4.b) is a castling transform of $\left(G L_{1}^{t+r} \times G, \rho_{1}^{*}+\cdots+\rho_{r}^{*}+1+\cdots+1\right)$. Clearly it has $\ell=1$ if and only if $\ell=1$ for ($G L_{1}^{r} \times G, \rho_{1}+\cdots+\rho_{r}$) (see § 2 in [2]). By proposition 4.1, we have $\ell=1$ for (4.c) if and only if $\ell=1$ for $(G L_{1}^{t+r+1} \times G, \rho_{1}+\cdots+\rho_{r}+1+\overbrace{-1}^{t-1}+1)$, i.e., $\ell=1$ for $\left(G L_{1}^{r} \times G, \rho_{1}\right.$ $\left.+\cdots+\rho_{r}\right)$.
Q.E.D.

From now on, for simplicity, we shall write $(G, \rho)^{\prime}$ instead of $\left(G L_{1}^{k} \times G, \rho\left(=\rho_{1} \oplus \cdots \oplus \rho_{k}\right)\right)$ where $G L_{1}^{k} \quad$ acts \quad on each irreducible component $\rho_{i}(1 \leqslant i \leqslant k)$ independently.

Lemma 4.3. - We have $\ell=1$ for $\left(G L_{2 m+1} \times H, \Lambda_{2} \otimes 1+\right.$ $\rho \otimes \rho^{\prime}\left(\right.$ resp. $\left.\left.\Lambda_{2}^{*} \otimes 1+\rho \otimes \rho^{\prime}\right)\right)$ if and only if $\ell=1$ for $\left(S p_{m} \times G L_{2 m+1} \times\right.$ $\left.H, \Lambda_{1} \otimes \Lambda_{1} \otimes 1+1 \otimes \rho \otimes \rho^{\prime}\left(r e s p . \Lambda_{1} \otimes \Lambda_{1}^{*} \otimes 1+1 \otimes \rho \otimes \rho^{\prime}\right)\right)$.

Proof. - Let H^{\prime} be a generic isotropy subgroup of $\left(G L_{2 m+1}, \Lambda_{2}\right.$ (resp. Λ_{2}^{*})). Then the $G L_{2 m+1}$-part of a generic isotropy subgroup of $\left(S p_{m} \times G L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}\left(\operatorname{resp} . \Lambda_{1} \otimes \Lambda_{1}^{*}\right)\right) \quad$ is H^{\prime}. Since $\ell=1$ for $\left(G L_{2 m+1}, \Lambda_{2}^{* *}\right)$ and $\left(S p_{m} \times G L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}^{* *}\right)$), by Proposition 1.5, both of ℓ coincide with ℓ for $\left(H \times H^{\prime}, \rho \otimes \rho^{\prime}\right)$.
Q.E.D.

Proposition 4.4. - We have $\ell=1$ for $\left(G \times G L_{2 m+1}\right.$, $\left.\rho \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+\sigma \otimes 1\right)^{\prime}$ with $\operatorname{deg} \rho \leqslant 2 m+1$, if and only if $\ell=1$ for $\left(G \times G L(\operatorname{deg} \rho-1), \rho^{*} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+\sigma \otimes 1\right)^{\prime}$.

Proof. - By Lemma 4.3, ℓ for the first P.V. coincides with ℓ for $\left(G \times S p_{m} \times G L_{2 m+1}, \quad \sigma \otimes 1 \otimes 1+\left(\rho \otimes 1+1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right), \quad$ which is castlingequivalent to $\left(G \times S p_{m} \times G L(\operatorname{deg} \rho-1), \sigma \otimes 1 \otimes 1+\left(\rho^{*} \otimes 1+1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right)$. Then, by Proposition 3.7, we have our result.
Q.E.D.

Proposition 4.5. - We have $\ell=1$ for $\left(G \times G L_{2 m+1}, \rho \otimes \Lambda_{1}+1\right.$ $\left.\otimes \Lambda_{2}^{*}+\sigma \otimes 1\right)^{\prime}$ with deg $\rho \leqslant 2 m+1$, if and only if $\ell=1$ for $\left(G \times S p_{m}, \rho \otimes \Lambda_{1}+\sigma \otimes 1\right)^{\prime}$.

Proof. - By Lemma 4.3, the number ℓ for the first P.V. coincides with ℓ for $\left(G \times S p_{m} \times G L_{2 m+1}, \sigma \otimes 1 \otimes 1+\rho \otimes 1 \otimes \Lambda_{1}+1 \otimes \Lambda_{1} \otimes \Lambda_{1}^{*}\right)^{\prime}$. By Proposition 4.1, it has the same ℓ as $\left(G \times S p_{m}, \sigma \otimes 1+\right.$ $\left.(\rho \otimes 1) \otimes\left(1 \otimes \Lambda_{1}\right)\left(=\sigma \otimes 1+\rho \otimes \Lambda_{1}\right)\right)^{\prime}$.
Q.E.D.

Proposition 4.6. - The following P.V.'s (1), (2), (3) have $\ell=1$ if and only if $\ell=1$ for $\left(G, \Lambda^{2}(\rho)+\rho+\sigma\right)^{\prime}$:
(1) $\left(G \times G L_{2 n^{\prime}+1}, \rho \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}\right)+\sigma \otimes 1\right)^{\prime}\left(\operatorname{deg} \rho \leqslant 2 n^{\prime}\right)$.
(2) $\left(G \times G L_{2 n^{\prime}+1}, \rho \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{*}+\Lambda_{1}\right)+\sigma \otimes 1\right)^{\prime}\left(\operatorname{deg} \rho \leqslant 2 n^{\prime}-1\right)$.
(3) $\left(G \times G L_{2 n^{\prime}+1}, \rho \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{*}+\Lambda_{1}^{*}\right)+\sigma \otimes 1\right)^{\prime}\left(\operatorname{deg} \rho \leqslant 2 n^{\prime}\right)$.

Proof. - By Proposition 4.4, (1) is equivalent to $\left(G \times G L(\operatorname{deg} \rho),\left(\rho^{*}+1\right) \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+\sigma \otimes 1\right)^{\prime} . \quad$ Since $\ell=1$ for $\left(G \times G L(\operatorname{deg} \rho), \rho^{*} \otimes \Lambda_{1}\right)$ which has a generic isotropy subgroup $\{(g, \rho(g)) ; g \in G\}$, we have our result for (1). Since $\ell=1$ for $\left(G L_{2 n^{\prime}+1},\left(\Lambda_{2}+\Lambda_{1}\right)^{(*)}\right)$ and their generic isotropy subgroups coincide, we have our result for (3). By Proposition 4.5, (2) is equivalent to $\left(G \times S p_{n^{\prime}},(\rho+1) \otimes \Lambda_{1}+\sigma \otimes 1\right)^{\prime}$, which is equivalent to $\left(G, \Lambda^{2}(\rho+1)+\sigma\right)^{\prime}=\left(G, \Lambda^{2}(\rho)+\rho+\sigma\right)^{\prime}$ by Proposition 3.7. Q.E.D.

Proposition 4.7. - Assume that $\operatorname{deg} \rho=$ odd $<2 n^{\prime}+1$. Then we have $\ell=1$ for $\left(G \times G L_{2 n^{\prime}+1}, \rho \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)+\sigma \otimes 1\right)^{\prime}$ if and only if $\ell=1$ for $\left(G, \Lambda^{2}(\rho)^{*}+\rho+\sigma\right)^{\prime}$.

Proof.. - Let ($W,$| X | Y |
| :---: | :---: |
| $-{ }^{t} Y$ | Z |) be a k-rational generic point of $\left(G \times G L_{2 n^{\prime}+1}, \rho \otimes \Lambda_{1}+1 \otimes \Lambda_{2}, M_{2 m^{\prime}+1,2 n^{\prime}+1} \oplus \mathrm{Alt}_{2 n^{\prime}+1}\right)^{\prime}\left(\operatorname{deg} \rho=2 m^{\prime}+1\right)$. Since $\ell=1$ for a trivial P.V. $\left(G \times G L_{2 n^{\prime}+1}, \rho \otimes \Lambda_{1}\right)$, we may assume that $W=\left(I_{2 m^{\prime}+1}, 0\right)$. Then the fixer at W acts on Z-spaces as $\left(G L_{2\left(n^{\prime}-m^{\prime}\right)}, \Lambda_{2}, \operatorname{Alt}_{2\left(n^{\prime}-m^{\prime}\right)}\right)$ which has $\ell=1$. Hence we may take

$$
Z=J=\left\lvert\, \begin{array}{c|c|}
0 & I_{n^{\prime}-m^{\prime}} \\
\hline-I_{n^{\prime}-m^{\prime}} & 0
\end{array} .\right.
$$

By the action of

$$
\begin{array}{|c|c|}
I_{2 m^{\prime}+1} & Y J \\
\hline 0 & I_{2\left(n^{\prime}-m^{\prime}\right)}
\end{array}\left(\in G L_{2 n^{\prime}+1}\right)
$$

we may assume that $Y=0$. The generic isotropy subgroup of (GL $\times G \times$
$\left.G L_{2 n^{\prime}+1}, 1 \otimes \rho \otimes \Lambda_{1}+\Lambda_{1} \otimes \mid \otimes \Lambda_{2}\right)$ at this point is given by

$$
\left.\left.\begin{array}{c|c|c|}
\{(\alpha, A, & { }^{t} \rho(A)^{-1} & 0 \\
\hline & 0 & B
\end{array} \right\rvert\, \in G L_{1} \times G \times G L_{2 n^{\prime}+1} ; \alpha^{t} \rho(A)^{-1} X, \quad \rho(A)^{-1}=X, \alpha B J^{t} B=J\right\} .
$$

Since

$$
\Lambda_{1}^{*}\left|\begin{array}{c|c|}
& { }^{t} \rho(A)^{-1} \\
\cline { 2 - 3 } & 0
\end{array}\right|=\left|\begin{array}{c|c|}
\rho
\end{array}\right|=\left|\begin{array}{c}
0 \\
\hline 0
\end{array}{ }^{t} B^{-1}\right|
$$

and $\ell=1$ for $\left(S p_{m-n}, \Lambda_{1}^{*}\right)$, our P.V. has $\ell=1$ if and only if $\left(G, \Lambda^{2}(\rho)+\rho+\sigma\right)^{\prime}$ has $\ell=1$.
Q.E.D.

Theorem 4.8. - We have $\ell=1$ for $\left(G L_{1}^{4} \times S L_{m} \times S L_{n}, \rho\right)(m<n=$ odd $)$ for the following ρ 's:
(4.1) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{*}+\Lambda_{1}+\Lambda_{1}\right) \quad\left(m=o d d, \quad\right.$ or $\quad m=2 n^{\prime}$, $\left.n=2 n^{\prime}+1\right)$.
(4.2) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}+\Lambda_{1}\right)(m=o d d)$.
(4.3) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{*}+\Lambda_{1}^{*}+\Lambda_{1}\right)(m=o d d)$.
(4.4) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)(m=$ even $)$.
(4.5) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{*}+\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)(m=$ even $)$.
(4.6) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}+\Lambda_{1}^{*}\right)(m=e v e n)$.

Proof. - For (4.1) with $m=2 n^{\prime}, n=2 n^{\prime}+1$, it is castlingequivalent to $\left(G L_{1}^{4} \times S L_{n}, \Lambda_{2}^{*}+\Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}\right)$, which has $\ell=1$. When $m=$ odd, by Lemma 4.3 and Proposition 4.1, it is equivalent to $\left(G L_{1}^{3} \times S L_{m} \times S p_{n^{\prime}}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$, which has $\ell=1$ by (5) in Theorem 3.20. By Proposition 4.4 (with $\rho=\Lambda_{1}+1+1$) and by a castling transformation, (4.2) is equivalent to $\left(G L_{1}^{4} \times S L_{m+1}, \Lambda_{2}+\Lambda_{1}+\Lambda_{1}+\right.$ Λ_{1}^{*}), which has $\ell=1$. Since the generic isotropy subgroups of $\left(G L_{2 n^{\prime}+1},\left(\Lambda_{2}+\Lambda_{1}\right)^{(*)}\right)$ coincide, we have (4.3) from (4.2). Now (4.4) (resp. (4.5), (4.6)) is a castling transform of (4.1) (resp. (4.2), 4.3)).
Q.E.D.

Lemma 4.9. - We have $\ell=1$ for $\left(G L_{1} \times G L_{2 m^{\prime}} \times G L_{2 n^{\prime}+1}\right.$, $\left.1 \otimes\left(\Lambda_{1}^{*} \otimes 1+\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}\right)+\Lambda_{1} \otimes 1 \otimes \Lambda_{1}^{*}\right)$ with $2 m^{\prime}<2 n^{\prime}+1$.

Proof. - Since $\ell=1$ for $\left(G L_{2 m^{\prime}}, \Lambda_{1}^{*}\right)$ and $\left(G L_{2 n^{\prime}+1}, \Lambda_{2}\right)$, we may assume that a k-rational generic point of

$$
\left(G L_{2 m^{\prime}} \times G L_{2 n^{\prime}+1}, \Lambda_{1}^{*} \otimes 1+\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}, \Omega^{2 m^{\prime}} \oplus M_{2 m^{\prime}, 2 n^{\prime}+1} \oplus \Omega^{2 n^{\prime}+1}\right)
$$

is $\left({ }^{t}(1,0, \ldots, 0), \left\lvert\, \begin{array}{c|c|}x & Y \\ \hline Z & W\end{array}\right.,{ }^{t}(1,0, \ldots, 0)\right)$. By the action of

we may assume that $x=1$ and $Y=Z=0$. The isotropy subgroup at this point is

$$
\left.B \in S p_{n}, A W^{t} B=W\right\}
$$

Since

$$
\Lambda_{1}^{*}\left|\begin{array}{c|c}
\alpha^{-1} & 0 \\
\hline 0 & B
\end{array}\right|=\left\lvert\, \begin{array}{c|c|}
\alpha & 0 \\
\hline 0 & B
\end{array}\right.
$$

and $\quad \ell=1 \quad$ for $\quad\left(G L_{1}^{2} \times S p_{n^{\prime}} \times S L_{2 m^{\prime}-1}, \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\right) \quad$ by \quad Theorem 3.20, we have our result.
Q.E.D.

Theorem 4.10. - We have $\ell=1$ for

$$
\left(G L_{1}^{k} \times S L_{m} \times S L_{n}, \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)(m<n=o d d)
$$

where ρ is one of (4.7) $\sim(4.13)$. Here T stands for any one of $\Lambda_{2} \oplus \Lambda_{1}$, $\Lambda_{2}^{*} \oplus \Lambda_{1}^{(*)}$:

$$
\begin{array}{ll}
\text { (4.7) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes T+\left(\Lambda_{1}+\Lambda_{1}\right)^{(*)} \otimes 1 . \tag{4.7}\\
\text { (4.8) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes T+\left(\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes 1(m=\text { even }) . \\
\text { (4.9) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)+\left(\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes 1(m=\text { odd }) . \\
\text { (4.10) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)+\left(\Lambda_{1}+\Lambda_{1}\right) \otimes 1 . \\
\text { (4.11) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{(*)}+\Lambda_{1}^{(*)}\right)\left(+\Lambda_{1}^{(*)} \otimes 1\right) \\
\text { (4.12) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)+\Lambda_{2}^{*} \otimes 1(m=5) \\
\text { (4.13) } & \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)+\Lambda_{2} \otimes 1(m=4)
\end{array}
$$

Proof. - By Theorem 2.19 and Proposition 4.6, we have (4.7) and (4.8). By Proposition 4.7, we have (4.9) and (4.12). Now (4.10) is a castling transform of (one of) (4.7). From (4.7), (4.9), (4.10) and Lemma 4.8, we have (4.11). By (4.12) and Lemma 4.3, we have $\ell=1$ for $\left(S L_{4} \times S L_{2 n^{\prime}+1} \times S L_{5}, \quad \Lambda_{2} \otimes 1 \otimes 1+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right) \otimes 1+\left(1 \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right.$ $\left.+\left(\Lambda_{1} \otimes 1\right) \otimes \Lambda_{1}^{*}\right)^{\prime}$. Now the proof of Proposition 4.1 shows that if $\ell=1$ for $\left(G \times G L_{n}, \rho_{1} \otimes \Lambda_{1}+\rho_{2} \otimes \Lambda_{1}^{*}\right)$ with $m_{1}>n \geqslant m_{2}$, then we have $\ell=1$ for $\left(G, \rho_{1} \otimes \rho_{2}\right)$. In our case, we have $\ell=1$ for (4.13).
Q.E.D.

Theorem 4.11. - We have $\ell=1$ for the following P.V.'s $\left(G L_{1}^{k} \times S L_{m} \times S L_{n}, \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)$ with $m<n=$ odd

$$
\begin{align*}
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+\sigma \otimes 1(m=\text { odd }) \text { with } \sigma=\Lambda_{2}^{*}, \tag{4.14}\\
& \left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)^{(*)},\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}\right),\left(\Lambda_{2}^{*}+\Lambda_{1}\right)(m=5) . \\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+\sigma \otimes 1(m=\text { even }) \text { with } \sigma=\Lambda_{2}^{(*)}, \tag{4.15}\\
& \left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)^{(*)},\left(\Lambda_{2}+\Lambda_{1}^{(*)}\right)(m=4) . \\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}^{*}+\sigma \otimes 1 \text { with } \sigma=\Lambda_{2}(m=\text { odd }), \tag{4.16}\\
& \Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}(m=\text { even }), \Lambda_{1}+\Lambda_{1}^{*}+\Lambda_{1}^{*}, \Lambda_{2}+\Lambda_{1}^{*}(m=5) . \\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}^{(*)}\left(+\Lambda_{1}^{(*)} \otimes 1\left(+\Lambda_{1}^{(*)} \otimes 1\right)\right)^{\prime} . \tag{4.17}
\end{align*}
$$

Proof. - By Proposition 4.4, (4.14) is equivalent to $\left(S L^{2 m^{\prime}+1} \times\right.$ $\left.S p_{m^{\prime}}, \Lambda_{1}^{*} \otimes \Lambda_{1}+\sigma \otimes 1\right)^{\prime}\left(m=2 m^{\prime}+1\right)$, which is equivalent to $\left(S L_{2 m^{\prime}+1} \Lambda_{2}+\sigma^{*}\right)^{\prime}$ by Lemma 4.3. Hence, by Theorem 2.19, we have $l=1$ for (4.14). For (4.15) with $\sigma=\Lambda_{2}^{(*)}$, it is equivalent to $S p_{m^{\prime}} \times$ $\left.S L_{2 n^{\prime}+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}\right)^{\prime}$ since $\ell=1$ for $\left(G L_{m}, \Lambda_{2}^{(*)}\right)\left(m=2 m^{\prime}\right)$. Then, by Propositions 4.4 and 3.7 , it is equivalent to $\left(S L_{2 m^{\prime}-1}, \Lambda_{2} \otimes \Lambda_{2}\right)^{\prime}$ which has $\ell=1$ by Theorem 2.19. For (4.15) with $\sigma=\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)^{(*)}$, by Proposition 4.4, it is equivalent to $\left(S L_{2 m^{\prime}} \times S L_{2 m^{\prime}-1}, \Lambda_{1} \otimes \Lambda_{1}+\right.$ $\left.1 \otimes \Lambda_{2}+\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)^{(*)} \otimes 1\right)^{\prime}$. When $\sigma=\Lambda_{1}+\Lambda_{1}+\Lambda_{1}$, it is castlingequivalent to $\left(S L_{2} \times S L_{2 m^{\prime}-1}, \quad\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right) \otimes 1+\Lambda_{1} \otimes \Lambda_{1}^{*}+1 \otimes \Lambda_{2}\right)$. Since $\ell=1$ for $\left(G L_{1}^{3} \times S L_{2}, \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}\right)$ with a generic isotropy subgroup $\{1\}$, it is equivalent to $\left(G L_{1}^{3} \times S L_{2 m^{\prime}-1}, \Lambda_{2} \oplus \Lambda_{1}^{*} \oplus \Lambda_{1}^{*}\right)$ which has $\ell=1$. When $\sigma=\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}^{*}$, by Proposition 4.1, it is equivalent to $\left(G L_{1}^{3} \times S L_{2 m^{\prime}-1}, \Lambda_{2} \oplus \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}\right)$ which has $\ell=1$. For (4.15) with $\left.\sigma=\Lambda_{2}+\Lambda_{1}^{(*)}\right) \quad(m=4), \quad$ it is equivalent to $\left(S L_{4} \times S L_{3}, \Lambda_{1}^{*} \otimes \Lambda_{1}+\right.$ $\left.1 \otimes \Lambda_{1}^{*}+\left(\Lambda_{2}+\Lambda_{1}^{(*)}\right) \otimes 1\right)^{\prime}$ by Proposition 4.4. Clearly it is also equivalent to $\left(S p_{2} \times S L_{3}, \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1}^{(*)} \otimes 1+1 \otimes \Lambda_{1}^{*}\right)^{\prime} \quad$ which has $\ell=1$ by Theorem 3.20. For (4.16), by Proposition 4.5, it is equivalent to $\left(S L_{m} \times S P_{n^{\prime}}, \Lambda_{1} \otimes \Lambda_{1}+\sigma \otimes 1\right)^{\prime}$, which is again equivalent to $\left(S L_{m}, \Lambda_{2}+\sigma\right)^{\prime}$ by Proposition 3.7. Hence we have our result by Theorem 2.19. By above results and Theorem 4.10, we have (4.17). Q.E.D.

Theorem 4.12. - We have $l=1$ for the following P.V.'s :
(4.18) $\quad\left(G L_{1}^{3} \times S p_{m^{\prime}} \times S L_{2 n^{\prime}+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}\right)$ with $2 m^{\prime} \leqslant 2 n^{\prime}+1$.
(4.19) $\quad\left(G L_{1}^{3} \times S p_{2} \times S L_{2 n^{\prime}+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+\Lambda_{1} \otimes 1\right)$.
(4.20) $\quad\left(G L_{1}^{3} \times S p_{2} \times S L_{2 n^{\prime}+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}+1 \otimes \Lambda_{1}^{*}\right)$.

Proof. - We have $l=1$ for (4.18) (resp. (4.19), (4.20)) by (4.15) with $\sigma=\Lambda_{2}^{(*)}$ (resp. (4.15) with $\sigma=\left(\Lambda_{2}+\Lambda_{1}^{(*)}\right)(m=4)$, (4.13))) Q.E.D.

Theorem 4.13. - We have $\ell=1$ for the following P.V.'s :
(4.22) $\quad\left(G L_{1}^{3} \times S L_{3} \times S L_{5}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{2}\right)\right)$.
(4.23) $\quad\left(G L_{1}^{3} \times S L_{4} \times S L_{5}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{2}\right)\right)$.

Proof. - Since (4.23) is castling-equivalent to ($G L_{1}^{3} \times S L_{5}, \Lambda_{2}$ $\oplus \Lambda_{2} \oplus \Lambda_{1}^{*}$), we have $\ell=1$ for (4.23). Since (4.21) is a castling transform of (4.22), it is enough to show $\ell=1$ for (4.22), namely, for $\left(G L_{1} \times G L_{5} \times G L_{3},\left(1 \otimes \Lambda_{2}+\Lambda_{1} \otimes \Lambda_{2}\right) \otimes 1+1 \otimes \Lambda_{1} \otimes \Lambda_{1}\right)$. The isotropy subalgebra \mathfrak{H} of $\left(G L_{1} \times G L_{5}, 1 \otimes \Lambda_{2}+\Lambda_{1} \otimes \Lambda_{2}\right)$ at ξ with $m=2$ in the proof of Proposition 2.15 is given by

$$
\begin{gathered}
\left\{(\alpha, A) \in \mathfrak{g l}_{1} \oplus \mathfrak{g l}_{5} ; A=\left|\begin{array}{c|c}
\mathrm{A}_{1} & 0 \\
\hline A_{3} & A_{2}
\end{array}\right| ; A_{1}=\operatorname{diag}(a, a-\alpha, a-2 \alpha),\right. \\
\left.A_{2}=\operatorname{diag}(-a, \alpha-a), A_{3}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4}
\end{array}\right]\right\} .
\end{gathered}
$$

Therefore the $G L_{5}$-part H of the isotropy subgroup at ξ contains $\left\{\operatorname{diag}\left(\varepsilon, \varepsilon^{\eta-1}, \varepsilon^{\eta-2}, \varepsilon^{-1}, \varepsilon^{-1 \eta}\right) ; \varepsilon, \eta \in G L_{1}\right\}$ and G_{ξ} with $m=2$ in the proof of Proposition 2.15. We shall show $\ell=1$ for $\left(H \times G L_{3}, \Lambda_{1} \otimes \Lambda_{1}, M_{5,3}\right)$. Let $X=\left[\begin{array}{c}Y \\ Z\end{array}\right]$ be a k-rational generic point where $Y \in M_{3}(k)$ and $Z=\binom{u_{1}, u_{2}, u_{3}}{,z_{1}, z_{2}, u_{4}} \in M_{2,3}(k)$. Since det $Y \neq 0$, we may assume that $Y=I_{3}$ by the action of $G L_{3}$. Similarly we have $u_{i}=0(1 \leqslant i \leqslant 4)$ by the action of G_{ξ}. In this case, we have $z_{1} z_{2} \neq 0$ since otherwise it cannot be a generic point. For example, one can check this by calculation of the isotropy subalgebra. By the action of

$$
g=\operatorname{diag}\left(\varepsilon, \varepsilon \eta^{-1}, \varepsilon \eta^{-2}, \varepsilon^{-1}, \varepsilon^{-1} \eta\right) \times \operatorname{diag}\left(\varepsilon^{-1}, \varepsilon^{-1} \eta, \varepsilon^{-1} \eta^{2}\right) \in H \times G L_{3}
$$

with $\varepsilon^{2}=z_{1}^{2} z_{2}^{-1}$ and $\eta=z_{1} z_{2}^{-1}$, we have $z_{1}=z_{2}=1$, i.e., $\ell=1$. Note that $\Lambda_{1} \otimes \Lambda_{1}(g)$ is k-rational even if $g \notin\left(H \times G L_{3}\right)(k)$. Q.E.D.

Theorem 4.14. - We have $\ell=1$ for the following P.V.'s $\left(G L_{1}^{k} \times S L_{m} \times S L_{n}, \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)$ where $n=2 n^{\prime}(=$ even $):$

$$
\begin{align*}
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}^{(*)}(+\sigma \otimes 1) \text { with } \tag{4.24}\\
& \sigma=\Lambda_{1}^{(*)}, \Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}, \Lambda_{1}+\Lambda_{1}^{*}+\Lambda_{1}^{*} \\
& \left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)^{(*)}, \Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}(m=\text { even }), \Lambda_{2}(m=\text { odd })
\end{align*}
$$

$$
\begin{align*}
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{(*)}+\Lambda_{1}^{(*)}\right)(+\sigma \otimes 1) \text { with } \sigma=\Lambda_{1}^{(*)} \tag{4.25}\\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}^{(*)}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}\right)(m=\text { odd }) \tag{4.26}\\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}^{(*)}+\left(\Lambda_{2}+\Lambda_{1}^{*}\right) \otimes 1(m=5) \tag{4.27}
\end{align*}
$$

Proof. - Since $\ell=1$ for $\left(G L_{n}, \Lambda_{2}^{(*)}\right)$ with a generic isotropy subgroup $S p_{n^{\prime}}$, (4.24) $\sim(4.27)$ reduce to the case of type I, and we have our result by Theorem 3.20.
Q.E.D.

Proposition 4.15. - We have $\ell \geqslant 1$ for $\left(S L_{2} \times S L_{n}, 2 \Lambda_{1} \otimes \Lambda_{1}+\right.$ $\left.\left.1 \otimes \Lambda_{2}^{(*)}\right)\left(+\Lambda_{1} \otimes 1\right)\right)^{\prime}$.

Proof. - If $n=2 n^{\prime}$, it is equivalent to $\left(S L_{2} \times S p_{n^{\prime}}, 2 \Lambda_{1} \otimes \Lambda_{1}\right.$ $\left.\left(+\Lambda_{1} \otimes 1\right)\right)^{\prime}$ which has $\ell \geqslant 2$ by Corollary 3.22. If $n=$ odd, we have $\ell \geqslant 2$ by Propositions 4.4 and 4.5.
Q.E.D.

Theorem 4.16. - We have $\ell=1$ for the following P.V.'s :

$$
\begin{align*}
& \left(G L_{1}^{s+t+1} \times S L_{n} \times S L_{n}, \Lambda_{1} \otimes \Lambda_{1}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes\right. \tag{4.28}\\
& \left.1+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)\right) \text { where }\left(G L_{1}^{s+t} \times S L_{n}, \sigma_{1}^{*}+\cdots+\sigma_{s}^{*}+\right. \\
& \left.\tau_{1}+\cdots+\tau_{t}\right) \\
& \text { is a simple P.V. with } l=1(\text { See Theorem 2.19). }
\end{align*}
$$

Proof. - It is obvious.
Q.E.D.

Theorem 4.17. - A P.V. of the type

$$
\begin{aligned}
\left(G L_{1}^{k+s+t} \times G \times S L_{n},\left(\rho_{1}+\cdots+\rho_{k}\right) \otimes \Lambda_{1}+\right. & \left(\sigma_{1}+\right. \\
& \left.\left.\cdots+\sigma_{s}\right) \otimes 1+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)\right)
\end{aligned}
$$

with $2 \leqslant \operatorname{deg} \rho_{i} \leqslant n(i=1, \ldots, k)$ and

$$
\left(\tau_{1}+\cdots+\tau_{t}\right) \neq\left(\Lambda_{1}^{(*)}+\cdots+\Lambda_{1}^{(*)}\right)
$$

has $\ell=1$ if and only if it is one of (4.1) ~ (4.28).
Proof. - We can find the table of all P.V.'s of this type in $\S \$ 5-2$ in [6]. From Lemma 4.3 to Theorem 4.16, we have investigated the number ℓ for all P.V.'s in $\S 85-2$ in [6] except P.V.'s which have an irreducible component with $\ell \geqslant 2$.
Q.E.D.

Proposition 4.18. - We have $\ell \geqslant 2$ for $\left(G L_{1}^{2} \times S L_{4} \times S L_{8},\left(\Lambda_{2}+\right.\right.$ $\left.\left.\Lambda_{1}\right) \otimes \Lambda_{1}\right)$.

Proof. - It is castling-equivalent to $\left(G L_{1}^{2} \times S L_{4} \times S L_{2},\left(\Lambda_{2}+\right.\right.$ $\left.\Lambda_{1}\right) \otimes \Lambda_{1}$) where $\left(S L_{4} \times G L_{2}, \Lambda_{2} \otimes \Lambda_{1}\right)=\left(S O_{6} \times G L_{2}, \Lambda_{1} \otimes \Lambda_{1}\right)$ has $\ell \geqslant 2$. Hence we have our result.
Q.E.D.

Lemma 4.19. - We have $\ell=1$ for the following P.V.'s (1) $\left(G L_{1} \times S p_{m}, \Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$, (2) $\left(G L_{1} \times G L_{2 m}, 1 \otimes \Lambda_{2}^{(*)}+\Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$, (3) $\left(G L_{1} \times G L_{2 m+1}, 1 \otimes \Lambda_{2}^{*}+\Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$.

Proof. - Applying Proposition 3.7 for $\left(G, \Lambda^{2}(\rho)\right)=\left(G L_{1}, \Lambda_{1} \oplus \Lambda_{1}\right)$, we have $\ell=1$ for $\left(G, \Lambda^{2}(\rho)\right)=\left(G L_{1}, 2 \Lambda_{1}\right)$, i.e. (1). Hence we have (2). By Proposition 4.5, (3) is equivalent to (1). Note that $\left(G L_{1} \times G L_{2 m+1}, 1 \otimes \Lambda_{2}+\Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$ is a non P.V. since it has a nonconstant absolute invariant.
Q.E.D.

Theorem 4.20. - We have $\ell=1$ for the following P.V.'s $\left(G L_{1}^{k} \times S L_{m} \times S L_{n}, \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)(n \geqslant m+1)$.

$$
\begin{align*}
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)+\sigma \otimes 1 \quad \text { with } \quad \sigma=\Lambda_{2}^{(*)} \tag{4.29}\\
& \Lambda_{2}^{(*)}+\Lambda_{1}, \Lambda_{2}^{*}+\Lambda_{1}^{*}, \Lambda_{2}+\Lambda_{1}^{*}(m=\text { even }) . \\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)+\Lambda_{2}^{(*)} \otimes 1, \tag{4.30}\\
& \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}\right)+\sigma \otimes 1 \text { with } \sigma=\Lambda_{2}^{*}, \tag{4.31}\\
& \Lambda_{2}(m=\text { even }) .
\end{align*}
$$

Proof. - By Proposition 4.1, (4.29) (resp. (4.30)) is equivalent to $\left(S L_{m}, \Lambda_{1} \oplus \Lambda_{1} \oplus \sigma\right)^{\prime} \quad\left(\right.$ resp. $\left.\left(G L_{1}^{4} \times S L_{m}, \Lambda_{2}^{(*)}+\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)\right)$ and hence, by Theorem 2.19, we have our result. For (4.31), it is equivalent to (2) or (3) in Lemma 4.20 by Proposition 4.1 and hence $\ell=1$. Q.E.D.

Theorem 4.21. - We have $\ell=1$ for the following P.V.:

$$
\begin{align*}
& \left(G L_{1}^{5} \times S L_{m} \times S L_{m+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)+\sigma \otimes 1\right) \tag{4.32}\\
& \text { with } \sigma=\Lambda_{2}, \Lambda_{2}^{*}(m=\text { even })
\end{align*}
$$

Proof. - It is castling-equivalent to $\left(G L_{1}^{5} \times S L_{m} \times S L_{2}, \Lambda_{1}^{*} \otimes \Lambda_{1}+\right.$ $\left.1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)+\sigma \otimes 1\right)$). Since $\ell=1$ for $\left(G L_{1}^{3} \times S L_{2}, \Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)$ with a generic isotropy subgroup $\{1\}$, it is equivalent to $\left(G L_{1} \times G L_{1} \times\right.$ $\left.S L_{m}, \Lambda_{1} \otimes 1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)+1 \otimes \Lambda_{1} \otimes \sigma\right)$. By Lemma 4.19 , we have our result.

THEOREM 4.22. - We have $\ell=1$ for the following P.V.'s $\left(G L_{1}^{k} \times S L_{m} \times S L_{n}, \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)(m=o d d):$
(4.33)

$$
\begin{aligned}
& \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)\left(+\Lambda_{1}^{*} \otimes 1 \quad \text { when } \quad m=5\right) \\
& (n \geqslant 1 / 2 m(m-1)) .
\end{aligned}
$$

$$
\begin{align*}
& \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}\right)(n \geqslant 1 / 2 m(m-1)+1) \tag{4.34}\\
& \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\left(+\Lambda_{1} \otimes 1 \quad \text { when } \quad m=5\right) \tag{4.35}\\
& (n=1 / 2 m(m-1)) \tag{4.36}
\end{align*}
$$

Proof. - Since $\ell=1$ for $\left(S L_{m}, \Lambda_{2} \oplus \Lambda_{2}\right)$ (see the proof of Proposition 2.15), we have $\ell=1$ for (4.33) and (4.34) by Propositions 4.1 and 2.16. A castling transform of (4.35) and (4.36) has $\ell=1$ by Theorem 3.20. Q.E.D.

Theorem 4.23. - We have $\ell=1$ for the following P.V.'s $\left(G L_{1}^{k} \times S p_{m} \times S L_{n}, \rho\left(=\rho_{1} \oplus \ldots \oplus \rho_{k}\right)\right)(n \geqslant 2 m):$
(4.37) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)(+T) \quad$ with $\quad T=\Lambda_{1} \otimes 1$, $1 \otimes \Lambda_{1}^{*}, 1 \otimes \Lambda_{1}(n \geqslant 2 m+1)$.

$$
\begin{array}{ll}
\rho & =\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}\right)(+T) \quad(n=2 m) \quad \text { with } \tag{4.38}\\
T & =\Lambda_{1} \otimes 1,1 \otimes \Lambda_{1}^{(*)}
\end{array}
$$

$$
\begin{equation*}
\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)(n=2 m+1) \tag{4.39}
\end{equation*}
$$

Proof. - By Propositions 4.1; 2.9 and Lemma 4.19, we have (4.37). Since $\Lambda_{1} \otimes \Lambda_{1}+\sigma \otimes 1+1 \otimes \tau(n=m)$ is equivalent to $\left(S p_{m}, \sigma+\tau\right)^{\prime}$, we have (4.38). A castling transform of (4.39) has $\ell=1$ by Theorem 3.20.
Q.E.D.

Theorem 4.24. - We have $\ell=1$ for the following P.V.'s $\left(G L_{1}^{k} \times S \operatorname{Sin}_{10} \times S L_{n}, a\right.$ half-spin rep. $\left.\otimes \Lambda_{1}+\rho^{\prime}\left(=\rho_{2} \oplus \ldots \oplus \rho_{k}\right)\right)(n \geqslant 16)$.
(4.40) $\quad \rho^{\prime}=1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right), 1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}\right)(n \geqslant 17)$.
(4.41) $\rho^{\prime}=1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)(n=16), 1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right) \quad(n=17)$.

Proof. - Since $\ell=1$ for $\left(G L_{1} \times \operatorname{Spin}_{10}, \Lambda_{1} \otimes(\Lambda+\Lambda)\right.$) (see P. 14 in [1]) where Λ is the even half-spin representation, we have (4.40) by Proposition 4.1. A castling transform of (4.41) has $\ell=1$ by Theorem 3.20. Q.E.D.

Theorem 4.25. - A P.V. of the type $\left(G L_{1}^{k+s+t} \times G \times S L_{n}\right.$, $\left(\rho_{1}+\cdots+\rho_{k}\right) \otimes \Lambda_{1}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1+1 \otimes(\Lambda_{1}^{(*)}+\overbrace{\cdots}^{t}+\Lambda_{1}^{(*)}$ with $2 \leqslant \operatorname{deg} \rho_{i} \leqslant n(i=1, \ldots, k) \quad$ and $\quad\left(G ; \quad \rho_{1}+\cdots+\rho_{k} ; \quad \sigma_{1}+\cdots+\right.$ $\left.\sigma_{s}\right) \neq\left(S L_{m}, \Lambda_{1}+\cdots+\Lambda_{1} ; \Lambda_{1}^{(*)}+\cdots+\Lambda_{1}^{(*)}\right)$ has $\ell=1$ if and only if it is one of (4.29)-(4.41).

Proof. - By §§ 5-3 in [6] and Proposition 4.18~Theorem 4.24, we have our result.

Theorem 4.26. - A P.V. of the type $\left(G L_{1}^{k+s+t} \times S L_{m} \times S L_{n}\right.$, $\left.\Lambda_{1}+\stackrel{k}{\square}+\Lambda_{1}\right) \otimes \Lambda_{1}+\left(\Lambda_{1}^{(*)}+\underset{\sim}{\sim}+\Lambda_{1}^{(*)} \otimes 1+1 \otimes\left(\Lambda_{1}^{(*)}+\stackrel{t}{\square}+\Lambda_{1}^{(*)}\right) h a s\right.$ always the universally transitive open orbit, i.e., $\ell=1$.

Proof. - P.V.'s of such type are completely classified in § 4 in [6]. P. V.-equivalences used there keep ℓ invariant (cf. Proposition 4.1, etc.). They are essentially reduced to trivial P.V.'s or simple P.V.'s of type $\left(G L_{1}^{s} \times S L_{n}, \Lambda_{1}^{(*)}+\underset{\sim}{-}+\Lambda_{1}^{(*)}\right.$ wich have $\ell=1$, and hence we obtain our result.
Q.E.D.

BIBLIOGRAPHY

[1] J. Igusa, On functional equations of complex powers, Invent. Math., 85 (1986), 1-29.
[2] J. Igusa, On a certain class of prehomogeneous vector spaces, to appear in Journal of Algebra.
[3] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.
[4] T. Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, Journal of Algebra, Vol. 83, $\mathrm{N}^{\circ} 1$, July (1983), 72-100.
[5] T. Kimura, S. Kasai, M. Inuzuka and O. Yasukura, A classification of 2-simple prehomogeneous vector spaces of type I, to appear in Journal of Algebra.
[6] T. Kimura, S. Kasai, M. Taguchi and M. Inuzuka, Some P.V.-equivalences and a classification of 2 -simple prehomogeneous vector spaces of type II, to appear in Transaction of A.M.S.
[7] J. Serre, Cohomologie Galoisienne, Springer Lecture Note, 5 (1965).
[8] H. Rubentheler, Formes réelles des espaces préhomogènes irréductibles de type parabolique, Annales de l'Institut Fourier, Grenoble, 36-1 (1986), 1-38.

Manuscrit reçu le 22 décembre 1986.
T. Kimura, S. Kasai and H. Hosokawa,
University of Tsukuba,
Institute of Mathematics
Tsukuba-shi
Ibaraki 305 (Japan).

