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UNIVERSAL TRANSITIVITY OF SIMPLE
AND 2-SIMPLE

PREHOMOGENEOUS VECTOR SPACES

by T. KIMURA, S. KASAI and H. HOSOKAWA

Introduction.

We denote by k a field of characteristic zero. Let G be a connected
k-split linear algebraic group acting on X = Aff1 rationally by p which
is defined over k. If there exists a Zariski-dense <?-orbit V, we say
that (<?,p, X) is a prehomogeneous vector space (abbrev. P.V.). When
p is irreducible or [G,G] is a simple algebraic group, or a product of
two simple algebraic groups, they are completely classified over C (see
[3] - [6]). Put G = p((?). Let ^ be the number of G'(fc)-orbits in Y(k),
i.e., f = ^k(G,X) = \G(k)\Y(k)\. In this paper, we shall assume that
there exists a nonsplit quaternion fe-algebra. In other words,
H^k^Aut^SL^)) ^ °- This condition is satisfied by every local field k
other than C. We say that Y is a universally transitive open orbit if
£ = ^((?,T» = 1 for all such fields k, i.e., Y(K) is a G'(k)-orbit. Note
that G(k) + p(G(k)) in general. Professor J.-I. Igusa classified all
irreducible regular P.V.'s with universally transitive open orbits ([I], [2]).
He also proved in [2] that ^ is invariant under castling transformations.

In this paper, we shall classify simple or 2-simple P.V.'s with
universally transitive open orbits. We shall also prove that ^ is inva-
riant under some P.V.-equivalences such as (1) (5'^xG',Ai®p)
(degp^yO^G'.A^p)) (see Propositions.?) (2) (GX G^,pi®Ai+
p2®A*) (n^deg pi ^deg p2) <-^ (G',Pi®P2) (see Proposition 4.1), and

Key-words : Galois cohomology. — Universal transitivity prehomogeneous vector
spaces.
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others (cf. Lemma 4.3-Proposition4.7). This paper consists of the following
four sections :

1. Preliminaries.
2. Simple P.V.'s with Universally Transitive Open Orbits.
3. 2-Simple P.V.'s of Type I with Universally Transitive Open Orbits.
4. 2-Simple P.V.'s of Type II with Universally Transitive Open

Orbits.

The results are given in Theorems 2.19; 3.20; 4.2; 4.18; 4.25;
4.26 ; and Corollaries 2.20 ; 3.21. Also we shall check universal transitivity
for non-regular irreducible P.V.'s (see Corollary 3.22). The first author
would like to express his hearty thanks to Professor J.-I. Igusa and
other members at The Johns Hopkins University in U.S.A. for their
mathematical stimulation and hospitality while he stayed there in 1986.
The idea for this work was first obtained that time.

1. Preliminaries.

We shall use the same notations as in [2]. For ^ € Y(k), put G^ =
{^eG;p(^==^} and G^ = p(G^). Let <f be a number of G'(fe)-orbits in
T(fe), i.e., < f = \G(k)\Y(k)\.

PROPOSITION 1.1. - We have G(k)\Y(k) = a'^l), where
ai'.H^k^-.H^k^G).

COROLLARY 1.2. - Assume that (1) H^k^G) = {1}, (2) H^k^G^ -^
^(fc.Gy is surjective. Then we have G(k)\Y(k) = H^k^G^.

Proof. - See [2].

COROLLARY 1.3. - Assume that (1) H^k^G) = {1}, (2) Ker p = {1}.
Then \ve have G(k)\Y(k) = ̂ (fe,^).

Proof. - If Ker p = {1}, then we have G^ ^ G^ and hence
H^k,^) -> H^k.G^ is bijective. Q.E.D.

COROLLARY 1.4. - If G^= {1}, then we have f = 1, i.e., Y(k) is a
G(k)-orbit.
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Proof. - We have G^ = p(G^) = {1} and hence
G(k)\Y(k) = a-^l) = {1} for a: H\k,G^ = {1} -> H\k,G). Q.E.D.

PROPOSITION 1.5. - We have f = 1 for ((?, piOp^A^®^) !/ ̂
onty z/(l) ^ = 1 /or (G,pi,Zi) and (2) £ = 1 /or (T^I^JQ where H
is a generic isotropy subgroup of (G, pi,^).

Proof. - Let F (resp. Y^, Y;) be the open orbit of
(<?,Pi©P2^i©^2) (resp.(G,pi,^), (H^\H,X^)). (=>) For any
^e Y,(k) and H = G^, take ^e ^W. Then we have (^i,^)e Y(k)
and hence the projection Y(k) -> Y^(k) is a (7-equivariant surjective
map. Since Y(k) is a G'(fe)-orbit, yi(fe) must be a G'(fe)-orbit, i.e., ^ = 1
for ((7,pi,A\). Now take any two points ^^z^^zW f01" ^ == ^i •
Since (^1,^2) ^d (^1,^2) are elements of Y(k), there exists geG(k)
satisfying (^1,^2) = Ki ,^2). This implies that g e G ^ ( k ) = H ( k )
satisfying g^ = ^2 ? i-c'? ^ = 1 for (H^^\H,X^). (<=) Take any two points
(^,^2) and (^1,^2) o11 y(fe)• Then there exists geG(k) such that
'̂i = ^r We have ^1,^2) = (Si^L and two points ^2 and g^

belong to Y'^(k) for H == G^ . Hence there exists heH(k) satisfying
'hg^ = ^2, i.e., ^(^1^2) = (^2), with /zgeG(fe) Q.E.D.

COROLLARY 1.6. - Assume that <f = I/or ((?, pi,^) and(fT, p^fF^X^)
where H0 is the connected component of a generic isotropy subgroup H
o/(G,pi,A\). Then we have ^ = 1 for (G^^p^^iQ^i)'

Remark 1.7. - Assume that ^ = 1 for (G,p,X). Then <f = 1 for
(G,p,^) with p((?)^p(G).

THEOREM 1.8 (J.-I. Igusa[l], [2]). - A regular irreducible P.V. has
a universally transitive open orbit (i.e., f = 1) if and only if it is castling-
equivalent to one of the following P. V. ' s :

(1) (G'x GLL^, p®Ai) where p is an m'dimensional irreducible repre-
sentation of G.

(2) (OL2,,A2).
(3) (^xGL2,,A,®A,).
(4) (GL^ x56^,Ai(g)Ai) where n is even, and n ^ 4.
(5) (GLi x iSjp^Ai® r^ 5pm r^p.).
(6) (GLi x 5^9, Ai® ^ 5pfn r^p.).
(7) (Spin^o'^GL^, a half-spin rep.®^i)-
(8) (6'LiX^,Ai®AO wi^ deg(Ai) = 27 for E ^ .
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2. Simple P.V.'s with Universally Transitive Open Orbits.

THEOREM 2.1 ([4] with a correction [5]). - All non-irreductible simple
P. V. s with scalar multiplications are given as follows :

k
(1) (C^^x^Ai® '^^QA,@^) ( l^fe^n,n^2) .

k
(2) (GZ^x^A^A^® •^^eA^) (l^fe^3,n>4) ^c^r

(OLfx^^eAieAieAT) with n = odd.
(3) (G'L?x5'Z^i,A2©A2) /or m ̂  2.
(4) (G^x5^,2Ai©A^).
(5) (GZ^x^A^A^eA?).
(6) (GLfx^^eA^). (M=6,7)
(7)(GL?x5L6,A3e'Ai©AO.

k
(8) (C^x^,Ai©^©Ai) (fe=2,3).
(9) (GZ^x^,A2©AO.

(10) (GL?x5p3,A3©AO.
(11) (GL[^Spin^ (half-)spin rep.Qthe vector rep.), with n = 7,

8, 10, 12.
(12) (GL^ x Spin^o, A©A) where A=the even half-spin representation.
Here A^ stands for A or its dual A*. Note that (G,p,JT) ^ (G',?*,^)

as triplets if G is reductive.

LEMMA 2.2. - We have ^ = 1 for (GL^Ai©^^©Ai,M(n)).

Proo/ - Clearly the isotropy subgroup at I^eM(n) is {/„}, and hence
/ = 1 by Corollary 1.4. Q.E.D.

LEMMA 2.3. - We have ^ = 1 for

(GL\ x GL^A,@^@A,)Q\y)

where GL\ acts independently on each irreducible component of
(AI©- • -®Ai) and it acts on A^ trivially.
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Proof. — By Remark 1.7 and Lemma 2.2, we have { = 1 for

(GL»iXG^,Ai©^©Ai).

Its isotropy subgroup at /„ is

/^ l \
7y={(a i , - - - ,a , , ' • . );ai,---,a,e(?Li}.

\ ";V

By Proposition 1.5 and Lemma 2.2 for n = 1, we have ^ = 1 for
(H,\y). Again by Proposition 1.5, we have <f = 1 for our P.V.

Q.E.D.
PROPOSITION 2.4. - Wg have ^ = \ for

k
((7Lkl+lx5(L„,Al©^~''s.©Al®A(*)) (l^fe^n, 02).

Ph?o/ - By Proposition 1.5, Lemma 2.2 and Lemma 2.3, we have
our result. Q.E.D.

PROPOSITION 2.5. — We have <f ^ 2 for following P.V.'s :
(1) ((^x^^AleA^).

(2) (OLfx^AaOA^). (n=6,7).

(3) (GL?x^,A3®Ai©AO.

(4) (G^x^,A2©AO.

(5) (GLixSp^QA,).

(6) (G'L^ x Spin^y (half-)spin rep. © ^^ vector rep.), with n = 7
anrf 12.

Pyw/; - By Theorem 1.8, we have <f ^ 2 for (6'Li x 5^2,2AJ,
(G^.A^, (n=6,7) ((7L,x^,A^ ^ ((^^x^s.AO, ((z^x^p^A^,
(GL^xSpin^, the vector rep.) ^ (GL^xSO^\^), and (GL^xSpin^, a
half-spin rep.). By proposition 1.5, we have our result. Q.E.D.

Remarks 2.6. - In [2], it is proved that, for (GL^A^), Y(k) is
G'(fe)-transitive for any local field k other thanR. However, for
(GL^xSL^A^Ay), Y(k) is not G(fe)-transitive even when k is a
p-adic field. Because its generic isotropy subgroup H is (G^) x {0/7; c3= 1}
(see, p. 86 in [3]) and (GL^ x^G^Ai) c (GL^ xSO^A^), we have our
result by Proposition 1.5 and [2].



16 T. KIMURA, S. KASAI AND H. HOSOKAWA

LEMMA 2.7. - We have f = 1 for (GL^ x Sp^, l®Ai+Ai®Ai).

Proo/. - We have A-= M(2n,2) and p(g)x == 2x [ 1 °1

g = (a,2) e GLi x S p ^ x e X , p = 1 (x) A^ + Ai ® A ^ . For
for

A B
^ = eGL'2nL C I 2) J

with A, B, C DeM^, we have AeSp^ if and only if(l) A^B and
C ' D are symmetric matrices, (2) A ' D - B 'C = /„. We shall calculate
the isotropy subgroup G^ at

^ = (=((?i,^i)).

Put

Then

^ =
fl^ | a^

L 031^ J

^

O J

, . . . ,Z)=

QI fcia
03 ^a
Ci dia

- €3 d^y. J

rii a
Ld, \D,

=^

implies that Oi=l , r f i=a~ 1 , &i=Ci=0, and a3=&3=C3=d3=0.
By the condition A e Sp^, we get

(1) ^4 5.

<^4 ^4
;4 6^,_i

(2)

(3)

^4 ^4 '&2

C4 Z>4 - '02

'^4 ^4|| ^2

C4 2)4 - 'C2

0
0 '

(4) a-1 + a^-b^ = 1.
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Thus we have

(?s={(a,A)6GLi x 5^,a= 1 , A

1
^

0
L €4

0
^4

1

£>4-

}^Pn

On the other hand, Ker p = {1] and H\k,GL^Sp^) = {1}, we have
G(fc)\y(k) = H\k,G^ = H^k.Sp^^) = {1} by Corollary 1.3. Q.E.D.

PROPOSITION 2.8. - We have / = 1 for {GL\ x 5^,Ai®Ai).

Proof. — By Remark 1.7 and Lemma 2.7, we have our result.
Q.E.D.

PROPOSITION 2.9. - We have ^ = 1 for (GL\ x 5^,Ai©Ai©Ai).

Proof. — Similar calculation as Lemma 2.7 shows that a generic
isotropy subgroup H of (GZ^ x 5'p^ Ai®Ai) is isomorphic to

{(a,a- );AeSp^^oLeGL^}.

By Propositions 1.5 and 2.8, it is enough to show ^ = 1 for (GL^ x
H,A^) ̂  (GLiXG'LiX5'p^,(Ai(8)Af+Ai(8)Ai)®l+Ai(g)l®Ai). Since
<f == 1 for (5'p^,Ai) by Lemma 2.7, it is enough to show £ = 1 for
(GLLiXGLi.A^Af+Ai^Ai) . Put

G = GLi x G'Li,p = Ai®Af + Ai®Ai,

i.e., p(a,P) = (ap'^ap) and G = p(G). Since G' = GL^ x GLi, we
have G(k) = GL^fe) x GL,(k)(^ p(G(k)) and

r(fc) = {(a,P)efe2 ;ap^O} = G(fe).(l,l), i.e., / == 1. Q.E.D.

PROPOSITION 2.10. — We have ^ = 1 for
k

(GL^x^L^.A^eA^e'^'eA^) (l^k^3,m>2).

Proof. — By Proposition 1.5, it is enough to show £ = 1 when
k = 3 , i.e., (GLfxG^.A^eA^eA^eA^) where GL? acts on
A^OA^OA^ as independent scalar multiplications. Since the isotropy
subgroup of (GL^m,^) ls Sp^, we have result by Proposition 2.9.

Q.E.D.
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LEMMA 2.11. - We have <f = 1 for (GZ^+i.A^eAr).
Proof. — The isotropy subgroup

H={AeGL^^(AJ'tA,Ae,) = (J\e,)}
at

^ = (^ =

is given by
rr c77 - {

0
0

0
J

1
0

> Cl =

0
^' ; A ' e S p ^ } ^ Sp^.

1

0

0

) where J =

0

-4
-4
0

Since Ker p = {1} and H^k.GL^^) = {1}, we have
G(fe)\y(fe) = H\k,Sp^ = {1} by Corollary 1.3 Q.E.D.

PROPOSITION 2.12.
A^A,Q(A,QA^).

We have ^ = 1 /or (GLf x SL^^

Proof. — It is enough to show <f = 1 when

(? = OLi x GLi x GL^ x GL^+i,

p = (1(8)1(8)1) (8) A^ + AI (8) 1 (8) 1 (x) AI

+ ( l^Ai^l+l^l^A^^A^.

A generic isotropy subgroup of (101(8)1) (8) A2 + Ai ® 1 (x) 1 ® Ai is

la - 1 ! 0
)e(?; ^e5^}{(a,P,y;

0 I A

(cf. Lemma 2.11). Hence, by Proposition 1.5 and Lemma 2.11, it is
enough to show <f = 1 for G = GL^ x GL^ x GL^ x Sp^, p =
A^ ® (Ai®l+l(8)Ai) ® 1 + 1 ® (Ai®l+l®Ai) . One can prove that
^ = 1 for (GLi x5'p^,Ai®(Ai+Ai)) similarly as Lemma 2.7. Note that
8^ ^ Sp^-i x Kerp in this case. Then our assertion is clear.

Q.E.D.

PROPOSITION 2.13. - We have f = 1 for (GLt x 5'Z^+i,
A^e^TCAfeA?).



PREHOMOGENEOUS VECTOR SPACES 19

Proof. — It is enough to show ^ = 1 when

G = GL^ x GL^ x G'Li x GZ^+i,

p = (10101) 0A^ + (Ai0101+10Ai01+1010Ai)0A*. The
isotropy subgroup of (10101) 0 A2 at

0 I J
0 0 a 0

J' = H = { eGL^i; ̂ e^}. is
A' I ^

By Proposition 1.5 and Lemma 2.11, it is enough,to show ^ == 1 for
a P.V. given by

FOC-I B ] [ p o o ] (a-^.a-^.a-^+.gZ
X A |^ O y O

L 0 0 8 J ^z
I- -I , V v/, ,

for ^= p^l^3 eM(2w+l,3), ^e^. Now by Proposition 2.9,
L z J

any point -^r = p1^2^3! of Y(k) is G(fe)-equivalent to
L z J .̂ ],x. =

where

Zn =

1 0

1 1 0 .

^

0

. 0

.. 0

0 .

1 0

1 0

. .0

. . .0

. . .0
L ? ^w+l,1 ^m+t)

cf. p. 81 in [4]) and ( z ^ z ^ , z ^ ) e k 3 . Put B = (fci, . . . ,b^) with
hi = - Z i , &2 = z! + ^ - ^3» fcm-n = - ^ 2 » ^ = 0 for all j 9^ 1, 2,
m + 1. Then we have

1 B

'2m
^=

Zn

This implies that G(fe) acts on Y(k) transitively. Q.E.D.

PROPOSITION 2.14. - We have <f = 1 for (GL^ x ^m+i.
A^eATCA?) and (GLf x ̂ L^i^A^CA*).

Proof. - By Propositions 1.5 and 2.12, we have our result.
Q.E.D.
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PROPOSITION 2.15. - We have ^ = 1 for (GLixSL^+i^^Q^i)'

Proof. - A direct calculation shows that the isotropy subgroup 6';
of (5'L2m+i,A2©A2) at

^ = (

0

0

0

0

0

4

0

-4
0

is given by

4.1
fli fl2 • • •

02 a^ • • •

^m ^m+1 • • •

^n+1

^m+2

^2m

0

4
} ̂ .

Since H\k,SL^,) == {1}, Ker p = {1}, and H\W1) = {1}, we have
^ = 1 for (5LL2^+i,A2®A2) by Corollary 1.3. Hence we obtain our
result. Q.E.D.

PROPOSITION 2.16.
A^eA^OAT).

We have ^ = 1 for (GL\ x SL^

Proof. — Let H be the generic isotropy subgroup of
(GL?x^5,A2©A2) at ^ = (^A^-h^ A^, ^ ^ A ^ + ^ A ^ ) . Clearly
^contains {(ei^i.diagCs^e^^er2^1^!^^^^))^^^^^} and

fj);.-[;:^:],(r, ̂ .)^,{(1,1,

By Corollary 1.6 and Proposition 2.15, it is enough to show that / = 1
for (GZ^xT^AiOOA?). An element x = \x^,x^,x^,x^x^) e Ajf5 is a
generic point of (GL^ x^,Ai(g)A*) if and only if x^ 7^ 0 (cf.
Proposition 1.1 in [5]). Assume that x is in Y(k), then by the action
of gi = (e, diag (sF1 e^2, . . . , £?)) 6 ̂ (fe) with e = x^/xj, £1 = 1,
E2 = X2/Xi, we may assume that x^ = x^ = 1. Now it is transformed
to XQ = '(I,!,0,0,0) by the action of

g2 = (1,
^3

-0

A

h-
)eH(k)
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with A = R3' X 4 X 3 ' °1. Thus GL^K) x H(k) acts on r(fe)
[^u? •^3 » -^SJ

transitively. Q.E.D.

PROPOSITION 2.17. - We have ^= 1 for (GL^xSpin^, a half-spin
rep. © the vector rep.) mth n = 8 and 10.

Proof. - Let n be 8 or 10. Then by Theorem 1.8, we have / = 1
for (GLi x Spiri^, the vector rep.) and (GL^ x Spin^-^, the spin rep.).
Since the restriction of a half-spin representation of Spin^ to a generic
isotropy subgroup of (GL^ x Spin^, the vector rep.) gives (GL^ x Spin^-^,
the spin rep.), we have our result by Corollary 1.6. Q.E.D.

PROPOSITION 2.18. - We have ^ = 1 for (GL\ x Spin^o, A ©A) wft^?
A = ̂  even half-spin representation.

Proof. — Prof. J.-I. Igusa proved that ^ = 1 for (G'Zq x Spin^,
Ai©(A©A)) (See p. 14 in [1]) and our assertion is obvious by
Remark 1.7. Q.E.D.

THEOREM 2.19. — All non-irreducible simple P.V.'s mth universally
transitive open orbits are given as follows :

(1) (GL^^xSL^A.Q.———QA.QAy) (l^fe^n,n^2),

(2) (GL^1 x SL,, A, © \y © ——— © A(*>1) (1 ̂  k ̂  3, n ̂  4),
except (GL[ x SL^, A^ © Ai © Ai ® Af) wK/i n = odd.

(3) (GL?xSL^i,A2©A2)/or m ^ 2.

(4) (GL?x^,A2©A2©AT).

(5) (^^^^^^©^©Ai) (k=2,3).

(6) (GLi^Spin^, a half-spin rep. © the vector rep.) mth n = 8, 10.

(7) (GL^x5'pmio,A©A) wter^ A = ̂  even half-spin representation.

Proof. - By Proposition 2.4, 2.5, 2.8-2.10; 2.12-2.18, we have our
result. Q.E.D.
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COROLLARY 2.20. — All non-irreducible regular simple P.V.'s mth
universally transitive open orbits are given as follow :

(1) ((^x^,Ai®A?).

(2) (GL\ x SL^, AI ®—— © Ai).

(3) (GLF' x ̂ ,, Ai © ——© AI © A^).

(4) (GL? x ̂ , A^ © Ay © A?)).

(5) (GLixSL^,,A^@A,).

(6) (GLf x SZ^1, A^ © AI © (Ai © Ai)^).

(7) (GZ^x^,Ai©AO.

(8) (GL^xSpm^, a half-spin rep. © the vector rep.) mth n = 8, 10.

(9) (G'Z^x Spin^Q,AQA) \vhere A = the even half-spin representation.

3. 2-Simple P.V/s of Type I with Universally Transitive Open Orbits.

THEOREM 3.1. ([5]). - All non-irreducible 1-simple P.V.'s
(GL\ x G'(= G'i x G^), p(= pi © . . . © p^») of Type 7, \vhich do not contain
a regular irreducible P.V/s mth ^ ^ 2 , are castling-equivalent to the
follomng P. V. s ;

(I) (1) G=SL^+,xSL^ p = A^Ai + l ® A i ( + D mth
T = l ® A i ( + l ® A i ) .
(2) G=Spin^^SL^, p = a half-spin rep. ® A i + l ® A i
(+7) mth r=l®Ai(+l®Ai).

(II) (3) G=SO,xSL^,, p = AI ®Ai + 1 (SA^ (n=even).
(4) G=SL^ x 5'L5, p = A 2 ® A i + A i ® l + l ® A f .
(5) G=Spin^SL^ p = ̂  5pm rep. (g)Ai + I® A*.
(6) G=SpinQX SL-j, p = the lector r^p. (g)Ai +0 half spin
rep. (g) 1 + 1 ® yl?.

(Ill) (7) G=Sp,xSL^, p = Ai ® AI + T, w^/i T = 1 (x)

(A (* )+——+A (* )) (l^fc^3) ^c^t I®(AI+AI+A?) mth

m=odd AI ® 1 + 1 (S(Ay +—— + A(lalc))(0^k^2) exc^r
AI g) 1 + 1 (g) (AI + A*) wf^ m = orid, 1 ® A^m = odd),
l®(A2+AT)(m=5) .
(8) G=Sp^xSL^^ p = A i ® A i + ( A i + A i ) ® l .
(9) G=^ x SL^, p = AI ® 2Ai + 1 ® AI .
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(IV) (10) G=SL^SL^, p = A 2 ® A i + A i ® l ( + l ® A , +
A? ®1). 1)

(11) G=SL^SL^, P = A 2 ® A i + A ? ® l ( + l ® A i ( + l ® A i ) ) .
(12) G'=5'Z-5X5'L2, p = Aa®Ai + ( A ? + A f ) ® l .
(13) G=SLs^SLs, p = A 2 ® A i + I® A?.
(14) G=SL^SLg, p = A ^ ^ A i + l ^ A K + A ^ ® ! ) .
(15) G = SZ-7 x ̂ , p = A ^ ® A i + A ^ ® 1 , A^AI +
A ? ® l ( + l ® A i ) .
(16) G=SLy ̂ SL^, p = A^ ® Ai + Af ® 1.
(17) G=Spin^xSL,, (n=14,15), p = a ^/-^n rep
® A i + l ® A ? .

PROPOSITION 3.2. - W. have ^ = \ for P.V's in (I), i.e., (1) and (2)in Theorem 3.1. v / v /

.Proo/. - For (1), it is enough to show ^ = 1 when
P = A^ ® A; + 1 ® (A^+Ai+Ai) . Since we have / = 1 for
(G£iX<?£,,Ai+Ai+AJ and (^.iX^L A,©AJ=(^^^,
A 2 © A ^ ) , we have our result by Corollary 1.6 and the proof of
Proposition 2.15. For (2), one can prove similary as above by the proof
of Proposition 2.18. r\v r»

\^.t^.L/t

PROPOSITION 3.3. - We have ^-1 for P.V's in (II), i.e., (3)-(6) in
Theorem 3.1.

Proof. - For (3), the G£,-i-part of a generic isotropy subgroup H
of (W,x<?L,_i,Ai®Ai) is O(,_D (cf. p. 109 in [3]). Since / > 2 for
(GLi x 0^ i, A, ®Ai) (n - 1 = odd), we have our result by Proposition 1 5
For remaining P.V.'s, since (Spin^, the spin rep.) c= (SO^,^) ̂  (Spin,,'
the vector rep.) and (SL^,A^) ̂  (SO^.A^, we have our result.

Q.E.D.

SUBLEMMA 3.4. - Let V = K2" with <t;,i/> = 'vJv' where J =

[-/„ SJ- Assume that ^•••^} and {«!,...,«,} are linearly

independent subsets of V satisfying <t;,,i;,> = <«;,̂ .> for i , j = l ,
with r <2n. Then there exist v^, and u,^ such that (1) { v ^ , . . . , v ^}
and^,... ,«^} are linearly independent, (2) <i;;,i;,> = <u;,^.> for all
l'> J L v . . , r + l .
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Proof. - (I) The case when <i;i, . . . , u,)1 ^ <Ui , . . . , i;,>. Take u^
such that M,+i i <Mi , .. . ,u ,>. Since {1:1, .. .,u,} is linearly independen
the linear equation ^i, . . . ,u,) Ju = \u^ . . . ,u,)Ju^^ (i.e
<^> = < M i , M r + i > /oy ! = 1, .. .,r) has a solution VQ, and the set c
solution is given by VQ + <t;i, . . . ,^>1 (^ <^, .. .,i;,». Hence ther
exists ^+1 ^ < ^ i , .. . , U r > such that <^ ,^+ i> = < ^ , M , + i > fo
i = l , . . . , r .

(II) The case when <i;i, . . . , u, >1 c <i^, . . . , v, > . Tak
^ i ^ (^i. • • • , ^ r> • Assume that any solution u o
' (Mi, .. .,u,)Ju = '(ui, .. .,u,)./u,+i belongs to < M I , . . . , M , > . Le
M == a^u^ + • • • + a^Uy be a solution. Since ^u^JUj = ^^J^ fo
ij = 1, . . . , r, we have \v^ .. .,v,)J(a^v^ 4- • . . + a,v,) =
^Fi, .. .,^)/i;,+i, i.e., u,+i - a^v^ - ' " - a^v, e <Ui , . . . ,u,>
c: <f i , . . . ,^> and hence v^+^ e <i;i, . . . ,^> a contradiction. Heno
there exists M,+i e V satisfying u,+^ t <u^, . . . ,u^> am
'(Mi, . . . , M,)./M,+ i = '(i;!, . . . , v,)Jv,+1. Q.E.D

LEMMA 3.5. - Let {v^, . . . , v^} and [u^, . . . , M^} ar^ linearly independen
subsets of V = K2" satisfying <^,^> = <t^,M,> for i,j = 1, . . . , r. 77î
^^r^ ^xfs^5 an element g of the symplectic group Sp^K) such tha
gVi = Uifor i = 1, .. ., r .

Proo/. - By Sublemma 3.4, there exist basis {^ i , . . . ,^, . . . .u^n
and { M i , . . . ,u, , . . . ,1^} satisfying <u»,^> = <^,^->. Define an elemen
^ of GL^n by (ui, .. .,v^)g = (MI, .. ..^n). Then it is clear thai
g e S p ^ K ) . Q.E.D

LEMMA 3.6. — Let Q be the universal domain and K a subfield
For In ^ m, put FF = {u e ̂ ^(Q) ; rank v=m} anc
^ = {w e ^f^(O) ; rank w is maximal}. Define a map \|/: F^ -^ ^n,(^
by ^(v) = «^,^» for u = (v,, . . . .^J e ^. Then \|/(^) = W and
v|/(^((79)= ^W.

Proo/. - Note that W (resp. W) is the Zariski dense orbit of
(^xGL^,Ai®Ai, M^(n)) (resp. (GL^A^Alt^))). Since
\|/(^^) = 5v|/(y)^ for any (A,E) e ̂  x G'Z^, i|/(^ is an orbit
of (GL^,\^). Let ^o ^ the generic point of (Sp^GL^, Ai(x)AJ
given in p. 101 in [3]. Then we have \|/(Ao) = J(w=even) or

vK^o) = o o (m=odd)' Le-' ^(^o) ^ a generic point of (GL^.A^).
Hence \|/(^0 = W . Since \|/ is defined over the prime field, we have
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^f(W(K))cz W'\K). Since ^ = 1 for (GL^A^), W'(K) is a single
A2(GLJ(^)-orbit. Since \KW)) is A2(GLJ(^)-admissible, we have
WW)= ^W Q.E.D.

PROPOSITION 3.7. - FF6? Aai^ ^ == 1 for (Spn x <?,Ai<x)p)
(w=degp<2n) ^ and on;^ i/ ^ = 1 for (G,A2(p)).

Proof. - Let Y(cz WczM^W) and Y'{ciW'c:Alt^)) be the
Zariski-dense orbits of (5'p^x G,Ai®p) and (G.A^p)) respectively. Then
the map v[/: W -> W in Lemma 3.6 gives the surjective Sp^ x G-
equi variant map \|/: Y -> Y ' . Clearly we have \|/(TW) <= r(A'). Take
any element x of Y ' { K ) . Since ^(^(A:)) = W'(K)^ Y ' ( K ) , there exists
v = (^i, .. .,uJ e ^(^) such that \|/(i;) = x. On the other hand, we
have i)/(r) = r =3 Y ' ( K ) there exists M = (u,, .. .,uJ € Y such that
\KM) = x . By Lemma 3.5, there exists g e Sp^ satisfying v = gu e V,
i.e., y e V n ^(^C) = V(70 Hence v|/: Y(K) -^ Y ' (K) is surjective. By
Lemma 3.5, each fibre is ^(^-homogeneous. Thus the orbits in Y(K)
and Y ' ( K ) correspond bijectively. Q.E.D.

COROLLARY 3.8. - (1) We have ^=1 for (Sp^x G',Ai®p+l(g)a)
(degp^2n) if and only if ^ = 1 for (G.A^+CT).

(2) We have ^= 1 for (Sp^x Gx GLi,Ai®p®l +Ai®l®Ai+
10cr®l) (degp^2n-l) if and only if ^ = 1 for
(G'xaLi.A^p^l+p^Ai+a®!).

(3) ^ fca^ ^ = 1 for (GLixSp^xGL^^ l®l®Ai®Ai+
(Ai(g)l + l®Ai)®Ai(g)l)(2w + 3 ^ 27i) if and only if ^ = 1 for
(GL.xGL^,, l®A2+(Al+A i!c)®AO.

Proo/. - (1) is obvious. Since A^p^l+l^Ai) = A^p) (g) 1 +
p ® A i , we have (2). Since A^l^lOOAi+AiOKgl+lOOAl®!) for
GL\ x GL^^ is GL\^GL^^ l®l®A2+(Ai®l+ 1®AJ ®Ai+
Ai®Ai®l), we have (3) by Proposition 1.5. Q.E.D.

PROPOSITION 3.9. - For P.V's in ( I I I ) in Theorem 3.1, w have ^ = 1
for (7), (8) anri ^ > 2 /or (9).

Proof. - By Theorem 2.19 and Corollary 3.8, we have ^ = 1 for
(7). By Lemma 2.7, the proof of Proposition 2.12, and (3) of Corollary 3.8,
we have ^= 1 for (8). Since (SL^A\A,) = (SL^A^) = ?3,A*), we
have (S^.A^Ai)) = (SO^A^). Hence we have ^2 for
(^xGL2,Ai®2Ai) = (5^xG'03,Ai(g)Ai). Thus / ^ 2 for (9).

Q.E.D.
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LEMMA 3.10. - We have ^ ^ 2 for (GL^+ix GL^,^®\^
Ai®l)(m=2,3).

Proof. — Assume that ^ = 1. Then, by Proposition 1.5, we have
^= 1 for (^xGZ^^OOAl) where

H = < 1 ^

Since
1 A'
0 I A

0 I ^

1

; A e GL2m r'

'A' I ̂ * 1^^^
this implies

/ = 1 for (GL^m x G'Z.25 A^^Ai), which is a contradiction by Theorem 1.8.

PROPOSITION 3.11. — We have ^ ^ 2 for any P.V. in (10) in
Theorem 3.1.

Proof. - By Proposition 1.5 and Lemma 3.10, we have our
result. Q.E.D.

PROPOSITION 3.12. — We have ^ == 1 for any P.V. in (11) in
Theorem 3.1.

Proof. - It is enough to show ^ = 1 for (GLf x SL^ x SL^,
A2®Ai+Af(g)l+l®(Ai+Ai)) . Since ^ = 1 for (GL\ x5'L2,Ai+Ai),
it is enough to show ^ = 1 for

(GZ^x^x ̂  ^1 A2®Ai+A?®l) ^ (GL? x ̂ .A^A^Af).

Thus we have our result by Theorem 2.19. Q.E.D.

PROPOSITION 3.13. - We have ^ = 1 for a P.V. (12) in Theorem 3.1.

Proof. — We shall prove that a generic isotropy subgroup of
(GL^GL^GL^\®^®A^\®A^\+A^A*®\) is {1}. Then we
have ^ = 1 by Corollary 1.4. The representation space V is given by
F = = {(^lO.Z^jr.ye.^/A^ - X,tY=-Y,Z€M^}' Then the
action is given by p(g)x = {(AyA.ArAjB/A-^Z^y)} for
g == (^A,K) e GLi x GL^ x GZ^ and x = {(X, Y),Z} e F. Put
XQ = {(A"o, ^0)^0} with Xo = (-^4, -^5.0^1+^5^2-^4),
Yo = (0, ̂  ̂ 5, - ^2 ̂ e^-e^-e^), Zo = (^4, ̂ 5) where e, =

'(0 1 . . . 0) e ft5. We shall calculate the isotropy subgroup
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H = {g e GLi •xGLs'xGL-i;p(g)xo=Xo}. One can easily check that
tA~lZo(ly) = Zo if and only if A is of the form

Ai

0

Az

Ca)

We shall determine (A,B) satisfying (AXo'A,AYoA)'B = (Xo, Yo) where
A is of the above form. By comparing the components of (1,4), (1,5),
(2,4), (2,5), (3,4), (3,5), (4,5), we obtain b^ = a-1 - b,,,
&2i = a~1 - b^, 012 = c - f lu , 013 = an - c, 0,4 = c - an,
"15 = 0*22C - O i l , 021 = C - f l22, fl23 = CV.~1 - 0^ ,

"24. = ^22 - fc22C> "25 = a22 - O^llC, "31 = "33 ~ CM"1 ,
032 = ca~1 - 033, fl34 = fcnc - 033, (135 = ca"1 - 033, where
c(&n + i»22 ~ a-l) .= 1' ^ = (fta) and ^ = (fry)- Then, by compa-
ring the (1,2), (1,3), (2,3) components, we obtain
a!! = a22 = ^33 = ^11 = ^22 = c = a = 1 Thus we have H = {1}.

Q.E.D.

PROPOSITION 3.14. - fl^ /law /$? 2 for a P.V. (13) in Theorem 3.1.

Proof. — Let $ be the s^-part of the generic isotropy subalgebra
of (GLi x5'Z,5x5'Lg,Ai®A2®Ai) at XQ = (coi, 20)3,20)2, <0io,
0)5-0)9,0)4-09,0)6, (07) (see P.95 in [3]). Then its image by A? is given

by
( A B 0\

A?($={A=( 0 A' B ' ] e M s ; B ^ \
\0 0 a

•2d,,
-^
0,

4^2,

d^,
-d^,

-2d,,
dz,
2d,,

0
-d,
-d2,

B' = l^d^d^d^d^), a = - 25t, A = 15t/3 + (2AO(Q,

A' = - 5t/4 + (3Ai)(C) for C 6 s^}.

Let H be any algebraic subgroup of GLs with Lie (H) = A?($). It is
enough to show / ^ 2 for (GLi x-ff,Ai®Ai,Q8). Since hAh~1

e A?($), for any he H and A € A'!'($), we have

He {
Ai
0

0

*

*

0

*
*
*

by Schur's lemma. Since the normalizer of GO^ is GO^, we may assume
that hi e GO 3. Let x = 'Qci, .. .,Xg) be a point of Y(k) for
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(GLi x^,Ai®Ai,Q8). Clearly we may assume that Xg = 1. By the
action of one parameter subgroups obtained from B and B' in
AT(§), we may also assume that ^4 = x^ = x^ = x-j = 0. Let H^ be
the subgroup of H fixing x^ = x^ = x^ = x-j = 0 and Xg = 1. Then
the corresponding Lie subalgebra §1 of A*(§) consists of A of
A*(§) satisfying B = J?' = 0. Since 77i normalizes §1, we have

HI < = {

^

0

0

0
*
0

0
0

•

; A e GOs}

and hence the action on (xi,X2,X3)-space is (GO^, Ai) which / ^ 2 by
Theorem 1.8. Q.E.D.

PROPOSITION 3.15. - We have ^ ^ 2 /or an^ P.V. in (14) fn
Theorem 3.1.

Proof. - The generic isotropy subgroup of (GLs,A^) is connected
(see P.76 in [3]). Hence the generic isotropy subgroup H of its castling
transform (SL^ x GL^^^^i) is connected and it is contained in

A | *
0 I * I; AeGO^}

(see the proof of Lemma 2.6 in [5]). Since I ^ 2 for (G0s,\^), we
have ^^ 2 for (GL^ x jf ,Ai®Af,Q 9) . This proves our assertion.

Q.E.D.

PROPOSITION 3.16. — We have ^ ^ 2 /or an^ P.K m (15) fn
Theorem 3.1.

Proo/ - For the first P.V. in (15), we have ^ ̂  2 by Lemma 3.10.
Now let H be the SL^ — part of a generic isotropy subgroup of
(GLi x 5Z.7 x 51.2, A2®Ai). Then we have

Lie(J¥)={
A, 0

1 ; ^=3AT(C)+3^,

^2 == 2Ai (0-4^3 for Cesy

* \Az
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(see Lemma 1.4 in [5]). By the fact that the normalizer of GO^ is GO^
and by Schur's lemma, we have

^ C = { 1
A

I; A e GOs}.

Since ̂  2 for (GC^.Ai), we have ̂  2 for (GLi x^,A^®A*,Q7)
and hence ^ ̂  2 for the latter P.V.'s in (15). Q.E.D.

PROPOSITION 3.17. - We have £ ^ 2 for a P.V. (16) m Theorem 3.1.

Proo/. - Let H be the SZ^-part of a generic isotropy subgroup of
(GL^ x SZ.9 x 5'L2,Ai®A2®Ai). Then, similarly as the proof of
Proposition 3.16, we have

A
H c z { ,Ae3A,(GL^)}.

Since ^ S? 2 for (GL2,3Ai), we have <f > 2 for (G^i x^,Ai(g)A*,a7)
and hence we obtain our result. Q.E.D.

PROPOSITION 3.18. - We have ^ ^ 2 for (GL\ x Spin^o x 57.15,
a half-spin rep. ®Ai+l®A*).

Proof. — Let J^ be the SL^-part of the generic isotropy subgroup
of (GL^ x Spin^Q x SL^^, a half-spin rep. ®Ai) at XQ = (^105,^2^5,^3^5,
^4^5^2^4^5. -e^e^5,e^e^e^ -e^e^es, -1+e^e^ e^e^,
^1^4, —^304,02^49 ~^2^3)- Then we have

-4i
*

0

AZ
Lie(^) = { eMi5,^i = A(^),^2=A /(^) for ^607}

where A(resp. A') is the spin (resp. the vector) representation of 0-7. By
the fact that the normalizer of GOj is GO^ and by Schufs lemma, we

r* o~]have H c= { 1 ^ .\,AeGO'j}. Since <f ^ 2 for (GC^Ai), we have

f > 2 for (GLi x AT, A i® A*). This implies our assertion. Q.E.D.

PROPOSITION 3.19. - We have < f ^ 2 for (GL^x Spm^ox SL^,
a half-spin rep. (SAi-hl^A'}6).

Proof. — Let H be the 5'£i4-part of a generic isotropy subgroup
of (GL^ xSpin^o^SL^,^® a half-spin rep.®Ai). By checking the
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weights, one obtains Lie(H) = Lie^G^SL^). Let G be the image of
(GL^ x jy,Ai®Af). Then we have 1 ̂  GL^ -^ G -^ ^(G^SL^) -> 1
(exact) and hence G is connected. Since G ^ 62 ® GL^ and
dim G = dim 62 (x) GL^, we have (GLi x ̂ , Ai (g)Af) ̂  (62 x GZ^,
A2(2)Al,Q700n2) which has <f ^ 2 by Theorem 1.8. This completes the
P10^ Q.E.D.

THEOREM 3.20. - AM non-irreducible 2-simple P.V.'s (GZ^xG'.p
(^i® • • • ®Pk)) of type I with universally transitive open orbits are given
as follow :

(1) G = SL^+i x SL^, p = A2 ® AI + 1 (g) Ai(+T) with
T= l ® A i ( + l ® A i ) .

(2) G= SLs x SL^, p = A 2 ® A i + A?® l(4-l(g)Ai(+l®Ai)).
(3) G = SL^ x SL^, p = A2 ® A! + (Af+Af) (g) 1.
(4) G = Sp^ x SL^, p = AI ® AI + T, with T = 1 ® (A^ +

• • • + A^XI ^ fe ^ 3) ^xc^ 1 ®(Ai+Ai+AT) mth m = odd,
AI ® 1 +1 (g) (A,y+ • ' ' +Al(lilt))) (0<k^2) ^xc^ Ai ® 1 +1
®(Ai+A?) wfrh m = odd, 1 ® A2(m=odd), 1 ® (A2 + A?) (m = 5).

(5) G = Sp, x 52.2, + i , p = AI ® Ai + (Ai+Ai) ® 1.
(6) G = Spin^o x 5'Z.2, p = a half-spin rep. ® Ai + 1 ® Ai(+T)

mth T= l ® A i ( + l ® A i ) .

COROLLARY 3.21. - All non-irreducible regular 2-simple P.V/s of type
I mth universally transitive orbits are given as follows :

(1) (G^x5L5x5L2,A2(g)Ai+(A?+A?)®l).
(2) (GL3, x Sp^ x 5L2,,Ai®Ai +1 ® (A^ + A^).
(3) (G^x^x5L2^i,Ai®Ai+Ai®l).
(4) (^x^x5L2„+l,Al®Al+Al®l+l®(Al+Al) ( s l t )).
(5) (GLixSpin^xSL^, a half-spin rep (x)Ai+l®(Ai+Ai)).
(6) (GLf x Spin.o x SL^ a half-spin rep ®Ai +1 (g) (A, + Ai + AQ).

COROLLARY 3.22. - ^4n^ non-regular irreducible P.V., which is not
castling-equivalent to (5'p^x GOa.Ai^Ai), has tte universally transitive
open orbit.

Proof. - By Theorem 2.19 and the proof of Proposition 3.9, we
have our result. Note that { = 1 for any trivial P.V.
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(G x GLn, p®Ai, ft^Q") (deg p = m < n) since we have ^ = 1 for
({4} x GLn, p®Ai) ^ (GL^,Ai© • • • ©Ai)(m^n) by Proposition 1.5 and
Lemma 2.2. Q.E.D.

4. 2-Simple P.V.'s of Type II with Universally Transitive Open orbits.

PROPOSITION 4.1. — For n ^ Wi ^ w^, v^e have £ = 1 for a P.V.
(G'xGZ^piOOAi+p^^OOAf, M^n © ^n^n) ^ anri ^Y if ^ = ^ for a
P.V. (G,Pi®p2,M^^).

Proof. - Define a map \)/: M^ © Af^ -> M^,^ by
i|/(X V) = VY for (X V) e M^ © M,^. Since ^(A)XtB,
p2(.4)ra~1) = pi(^)\t/(X^yp2(^) for (A,£)eG x G'^, it is G' x 04-
equivariant. Let F7(resp. H^') be the Zariski-dense orbit of the first P.V.
(resp. the latter P.V.). By Theorems 1.4 and 1.6 in [6], we have
\|/(FF) = W ' . It is enough to show that v|/: W(K) -^ W'ik) is surjective
with G^^-homogeneous fibres. Clearly we have W c: U =
{(X,Y)eM^QM^; rank X=m^ rank V=rank TY-m^} and
^ c: U ' = {ZeM,^;rank Z=m2}. Since i|/((4^0),CZ,0)) == Z, the
maps ^ : U -> U ' and v|/: £/(fc) -> U ' ( k ) are surjective. For any
(X^e^f'^Z) nU, there exists BeGL^ satisfying X^B = (7^^,0) and
y^-i = CZ,Z'). Since rank ^Z = m2, we have ^ZC7 = Z' for some

// | c^
C'eM^,^. Put C= [—h—jeG^. Then we obtain JT^C =

(7^,0) and Y^^C-1 = GZ,-^ZC'+Z-) = CZ,0), i.e., (X,Y) -
((4^,0), CZ,0)). This implies that each fibre of ^ : U -»- ^/'(resp.
\|/: C/(fe) -^ ^'(fe)) is G'L,,(resp. GL^(fc))-homogeneous. Hence GL^k) acts
on each fibre of \|/: W(k) -> W(k) transitively. For any
Ze W'(k) = U ' ( k ) n W, there exists (X,Y) in £/(k) satisfying
^(A', Y) = Z. Since \|/(^) = W ' 3 Z, there exists (A", Y1) in 1̂  satisfying
\|/(JT\ r) = Z. Hence (JT, F) = (X^B, YB~1) e C/(fe) n ^ == ^(fe) for
some BeGL^ i.e., \K^W) = ^W. Q.E.D.

THEOREM 4.2. — ^ /i^u^ ^ = 1 for the following 2-simple P.V/s
(4.a)-(4.c) of type II if and only if { = 1 for a simple P.V.
(GL\ x G,pi© • • • ©p,) (deg p^2 for i= 1, • • • ,r) (see Theorem 2.19).

(4.a) (GLf r xGxSL„ , ( a l+ . . .+G , )®Ai+(p i+ • • •+p , )®l ) /or
an^ representation a^ + • • • + cr, o/ G and an}/ natural number n
satisfying n > deg CTI + • • • + deg a,.
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(4.b) (GL^xGx&HZdegp.+r-l), (pi+ .. . +pfc)®Ai+(p?+i+
• • • +p*)®l+l®(Ai+ . . . 4-Ai))(l^fe^r)/or on}/ ( ^ 0.

(4.c) (GL^xGxSL^ (pi+ . . . +pk)®Ai+(p^i+ • • • +p,)®l+
t - 1

l®(Ai+ • • • +Ai+Af)( l^fe<r) ) for any pair of natural number (t,n)
satisfying t ^ 1 and n ^ t — 1 + deg pi + • • • + deg pj^.

Proo/. - For (4.a), we have our result by Proposition 1.5 and the
remark in the proof of Corollary 3.22. A P.V. (4.b) is a castling
transform of {GU^ x G, p* + • . • + p* + 1 + • . . +1). Clearly it has f = 1
if and only if f == 1 for (GZ/i x G',pi+ . . . +p,) (see §2 in [2]). By
proposition 4.1, we have ^ = 1 for (4.c) if and only if £ = 1 for

(GL rl+r+lxG !,pl+ • • • +p,+l +^^+1), i.e., < f = l for (GL^xG.pi
+ - - - + P . ) . Q.E.D.

From now on, for simplicity, we shall write (G,p)' instead of
(GL\ x G',p(=pi© • • • ©pk)) where GL\ acts on each irreducible
component p,(l^i'<k) independently.

LEMMA 4.3. - We have <f = 1 for (GL^+ix ̂ ,A2®1+
p ( S p ' ( r e s p . A?®l+p®p')) if and only if £ = 1 for (Sp^ x GL^+1 x
^,Ai®Ai®l+l®pg)p'(r^sp. Ai(g)A*(g)l+l®p®p')).

Proof. — Let 7:T be a generic isotropy subgroup of (GL^+^\^
(resp.A^)). Then the G'L^^+i-part of a generic isotropy subgroup of
(^xGZ^+i.Ai^A^resp.Ai^A?)) is I T . Since <f = 1 for
(G'L^+i.A^) and (5^x G^+i.A^A^)), by Proposition 1.5, both
of ^ coincide with ^ for (^x^,p®p7). Q.E.D.

PROPOSITION 4.4. - ^ have < f = l /or (GxGL^^+i,
p®Ai+l®A2+a®iy wf^ deg p < 2m + 1, if and only if { = 1 /or
(G'xG'L(degp-l), p*(x)Ai+l(g)A2+a(x)iy.

Proof. — By Lemma 4.3, <f for the first P.V. coincides with f for
(Gx^xGZ^+i, 0(2)1 ®l+(p®l+l®Ai)(8)Ai), which is castling-
equivalent to (GX 5^x GL(deg p- 1), CT®I®I+ (p*(g)l+ l®Ai)®Ai).
Then, by Proposition 3.7, we have our result. Q.E.D.

PROPOSITION 4.5. - We have < f = l /or (GX GZ^+^pOAi+l
®A2+o®iy mth deg p ^ 2m + 1, i/ and only if f = 1 /or
(Gx^,p®Ai+a®iy.
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Proof. - By Lemma 4.3, the number £ for the first P.V. coincides
with ^ for (GxSp^x GJ^-n, a®lg)l+p®l(2)Ai+l®Ai®A*y. By
Proposition 4.1, it has the same ^ as (G'x5'p^,a®l+
(p®l)®(10Ai)(== a®l + p®Ai)y. Q.E.D.

PROPOSITION 4.6. - The following P.V.'s (1), (2), (3) have £ = 1 if
and only if ^ = 1 for (G'.A^+p+CTy :

(1) (GxG^+i.p^Ai+lg^+AO+agnyCdegp^n').
(2) (GxGL^+l,p®Al+l®(A$+Al)+a®ly(degp<2n /- l ) .
(3) (GxGL2^i,p®Ai+l®(A2+AT)+a®iy(degp^2^).

Proof. — By Proposition 4.4, (1) is equivalent to
(GxG'L(degp) , (p*+l) (x)Ai+l®A2+cy®iy. Since ^ = 1 for
(GX G'L(deg p), p*®Ai) which has a generic isotropy subgroup
{(g,p(g));geG}, we have our result for (1). Since <f = 1 for
(GL^+i^^i^^i)^) ^d ^eir generic isotropy subgroups coincide, we
have our result for (3). By Proposition 4.5, (2) is equivalent to
(GX ^/.(p+l^Ai+CTgny, which is equivalent to
(G.A^p+^+oy = (G.A^+p+ay by Proposition 3.7. Q.E.D.

PROPOSITION 4.7. — Assume that deg p = odd < In' 4- 1 . Then we
have { = \ for (GX G^+^.p^Ai +l®(A2+A*)+a®iy ^anri on^ if
<f = 1 for (G.A^py+p+ay.

Proo/. - Let (W,
X

-^

Y

Z
) be a k-rational generic point

of (GxGL2^-n,p®Ai+l®A2,M2^-n,2n'+i©Alt2^+iy(degp=2m'+l).
Since £ = 1 for a trivial P.V. (GX G'L2n'+i?P®^i)» we "^^ assume
that W = (/2m'+i»°)' Then the fixer at ^ acts on Z-spaces as
{GL^'-m')^^^'2(n'-m1)) which has £ = 1. Hence we may take

Z = 7

By the action of

^m'+l yj
^2(n'-m')

(eGZ^i),

we may assume that Y = 0. The generic isotropy subgroup of (GL^ x G x
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G !L2n'+l,l(8)p®Al+Al®|®A2) at this point is given by

{(oc,^,
PW^X^Bra^J}.

Since

A*

w
n

0
R

^(A)-1

0

eGL^G^GL^n'+i; a'p^)-1^

0

5
PG4)

0

0
tQ-l

and ^ = 1 for (5^-^A?), our P.V. has £ = 1 if and only if
(G,A2(p)+p+CTy has £ = 1. Q.E.D.

THEOREM 4.8. - We have < f = l for (OLfx 5Z^x SL^p) (m<n=odd)
for the following p's:

(4.1) p = AI ®Ai + 1 (g)(A?+Ai+Ai)
n=2n'+l) .

(4.2) p = AI ® AI + 1 ® (A^+Ai+Ai) (m=odd).
(A^+Af+Ai ) (m=odd).
(A2+A*+Af) (m==even).
(A^+AT+A?) (m=even).
(A2+Ai+A'i6) (m=even).

(4.3) p = AI ® AI + 1 ®
(4.4) p = AI (x) AI + 1 ®
(4.5) p = AI ® AI + 1 (x)
(4.6) p = AI AI + 1

(m = odd, or m = 2n',

Proof. — For (4.1) with m = 2n\ ^ = 2 ^ + 1 , it is castling-
equivalent to (GLfx ^L^A^+Ai+Ai+A*) , which has ^ = 1. When
m = odd, by Lemma 4.3 and Proposition 4.1, it is equivalent to
(G'L?x5'L^x5 t^,Al®Al+l(x)(Al+Al)), which has <f = 1 by (5) in
Theorem 3.20. By Proposition 4.4 (with p = A i + l + l ) and by a castling
transformation, (4.2) is equivalent to (GL^ x SL^+1, A2 + Ai + A^ +
Af) , which has ^ = 1 . Since the generic isotropy subgroups of
(G'L2„/+l,(A2+Al)(*)) coincide, we have (4.3) from (4.2). Now (4.4)
(resp. (4.5), (4.6)) is a castling transform of (4.1) (resp. (4.2), 4.3)).

Q.E.D.

LEMMA 4.9. - We have <f = 1 for (GL^ x GL^ x GL^n'+i,
l®(A a ! t ®l+Al®Al+l®A2)+Al®l(x)A*) mth 2m' < In' + 1.

Proof. - Since ^ = 1 for (GL^',A*) and ((zZ^n'+i^), we may
assume that a fe-rational generic point of

(GL2^XC7L2„^l,AT(X)l+Al®Al+l®A2,02 m '©M2^2n /+l©^2 y l / + l)
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is C(l,0,...,0),
Z

y
w ' ( lA-.^O)). By the action of

)(e(GL^xGL^^)(fe)),
x

X - 1

1

Z

0

i
i

x-^Y

0

/

we may assume that x = 1 and Y = Z = 0. The isotropy subgroup
at this point is

{(
0 I A
a 0 a"1 0

Since

0 I B ) 6 GL^ x GL^^i; a 6 GL^, A e GL^.-i,

BeSp„AWtB=W}.

A?
a~1 0 a 0
0 I B 0 I B

and { = 1 for (GL \ x Sp^. x SL^, -1, Ai ®Ai + Ai ® 1) by Theo-
rem 3.20, we have our result. Q.E.D.

THEOREM 4.10. - We have / = 1 for

(GL\ x5^x5£,,p(=pi©.. .Qp^)(m<n=odd)

where p is one of (4.7) ~ (4.13). Here T stands for any one of A^ © Ai,
A? © A?':

(4.7) p = A i ® A i + 1 ® T + (Ai+Ai)0 1 0®!.
(4.8) p = A i < g ) A i + l ® r + (Ai+A?) ® 1 (m=even).
(4.9) p = A, ® AI + 1 ® (Az+AT) + (AI +A?) ® 1 (m=odd).
(4.10) p = A i ® A i + 1 ®(A2+Af) + (Ai+Ai)® 1.
(4.11) p = AI ® AI + 1 (g) (A?' + A^+A^®!).
(4.12) p = AI ® AI + 1 ® (A^+A?) + A$ ® 1 (w=5).
(4.13) p = AI ® AI + 1 ® (AZ+A?) + A2 g) 1 (w=4).

Proof. - By Theorem 2.19 and Proposition 4.6, we have (4.7) and
(4.8). By Proposition 4.7, we have (4.9) and (4.12). Now (4.10) is a
castling transform of (one of) (4.7). From (4.7), (4.9), (4.10) and Lemma
4.8, we have (4.11). By (4.12) and Lemma 4.3, we have ^ = 1 for
?4 x SL^+t x SLs, AZ (» 1 ® 1 + 1 ® (A^+Af) ® 1 + (l®Ai) ® Ai
+ (Ai®l)®AT)'. Now the proof of Proposition 4.1 shows that if / ' = 1
for (G'x6'^,pi®Ai+p2®A*) with Wi > n ^ m,, then we have / = 1
for (<7,pi(g)p2). In our case, we have if = 1 for (4.13). Q.E.D.
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THEOREM 4.11. - We have ^= 1 for the following P.V/s
(<^kl><5L„,x5'L„,p(=pl©...©p^) with m < n = odd

(4.14) p = AI (g) AI -h 1 ® A2 + CT g) 1 (m=odd) with a = A?,
(AI + AI + Ai)(il(), (AI + AI + A?), (A^ + AO (m = 5).

(4.15) p = AI (x) AI + 1 ® A2 + CT ® 1 (m=even) with a = A^
(Ai+Ai+AO^, (A2+A^) (m=4).

(4.16) p = AI ® AI + 1 (x) A$ + CT (x) 1 m^i CT = A2 (m=odd),
Ai+Ai+A* (m=even), A i+Af+A* , A^+A? (m=5).

(4.17) p = AI ®Ai + 1 ̂ A^+A^g^+A^®!))'.

Proo/. - By Proposition 4.4, (4.14) is equivalent to (AL^'^x
^An',A*(8)Al+CT(g)ly(m=2m /-^-l), which is equivalent to
(5fL2^lA2+ail{y by Lemma 4.3. Hence, by Theorem 2.19, we have
; = 1 for (4.14). For (4.15) with o = A^, it is equivalent to Sp^x
^2n'+i, AI ® AI + 1 ® A^V since ̂  = 1 for (GZ^.A^) (w = 2m'). Then,
by Propositions 4.4 and 3.7, it is equivalent to (SL^-^A^^iV which
hasY= 1 by Theorem 2.19. For (4.15) with CT = (A^+A^+Ai) ( i l ( ) , by
Proposition 4.4, it is equivalent to (SL^ x ̂ m'-i, Aig)Ai+
KSA^Ai-hAi+AO^iy. When c r = A i + A i + A i , it is castling-
equivalent to (SL^ x SL^._,, (Ai + A, + AQ® 1 + Ai ®A* 4-1 ®A^).
Since ^ = 1 for (GL^ x SL^^A^A^QA^ with a generic isotropy
subgroup {1}, it is equivalent to (GL\ x^'-i^CAfCA*) which
has ^ = 1. When CT = Af+A?+A*, by Proposition 4.1, it is equivalent
to (G'Ltx5Z2^_i,A2eAi©Ai©Ai) which has ^ = 1. For (4.15) with
CT = A^ + A^) (w=4), it is equivalent to (SL^ x SL^,A*®A^
1®A* + (A2+A(l*))(8)l)/ by Proposition 4.4. Clearly it is also equivalent
to (^x^.A^Ai+A^Ol+KgAfy which has ^ = 1 by
Theorem 3.20. For (4.16), by Proposition 4.5, it is equivalent to
(5Z^x57^,Ai(g)Ai+CT®iy, which is again equivalent to (SL^A^-^-o)'
by Proposition 3.7. Hence we have our result by Theorem 2.19. By
above results and Theorem 4.10, we have (4.17). Q.E.D.

THEOREM 4.12. - We have I = 1 for the following P.V/s :

(4.18) (<^x5^x^z^,Ai®Ai+l(g)A2) with 2m'^ In' + 1.
(4.19) (GLi x Sp2 x ̂ '-n ,Ai®Ai + l®A2+Ai®l) .
(4.20) (GLi x Sp^ x 5'^+i ,Ai(x)Ai + 1®A2+ 1(8)A*).

Proof. - We have ; = 1 for (4.18) (resp. (4.19), (4.20)) by (4.15)
with CT = \y (resp. (4.15) with CT = (A2+AW) (w=4), (4.13))) Q.E.D.
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THEOREM 4.13. — We have ^ = 1 for the following P.V/s :

(4.21) (GL3, x 5^2 x SLs, Ai®Ai + 1®(A^ +A$)).
(4.22) (G'L? x 5^3 x ̂ , Ai®Ai + 1®(A2 + As)).
(4.23) (GL\ x 5'L4 x SL^, Ai(g)Ai + 1®(A2 + A2)).

Proof. - Since (4.23) is castling-equivalent to (GL^ x 51/5, A^
©A2©Ai!c), we have / = 1 for (4.23). Since (4.21) is a castling transform
of (4.22), it is enough to show / = 1 for (4.22), namely, for
(GL^ x G7.5 x G'Z.3, (1 (x)A2 + Ai OOA^)® 1 + 1 ®Ai ®Ai). The isotropy
subalgebra § of (GLi x (72.5,1®^ +Ai®A2) at ^ with m = 2 in
the proof of Proposition 2.15 is given by

AI | 0{(a,^)e9liC9l5;^= h-—-^i=diag(a,fl-a,a-2a),
I ^3 I ^2 I

^,-d,>g(-.,,-«M,-^ ^ )̂.

Therefore the GI^-part H of the isotropy subgroup at ^ contains
{diag(e,eT1-l,8T1-2,£~ l,£~ lT1);£,r|eGLl} and G^ with m = 2 in the proof
of Proposition 2.15. We shall show ^= 1 for (Hx GL^,A^®^i,Ms^').

Let X = L, be a fe-rational generic point where Y € M^(k) and

( L J .
Z = Ml ? M 2 ' u3 ? ) e M^ a(fe). 5fnc^ d^r 7 ̂  0, we may assume that

Zl , ^2 ? ^4 7

F = /3 by the action of GL^. Similarly we have u, = 0(1^1^4) by
the action of G^. In this case, we have 2^2 7^ O since otherwise it
cannot be a generic point. For example, one can check this by calculation
of the isotropy subalgebra. By the action of

g = diag(£,£r|- l,e-n-2,£- l,8- lr|)xdiag(E - l,s~ lr|,e~ lr|2)e7:f x GL^

with e2 = 2?Z21 and T| = 2^2 1, we have Zi = z^ = 1, i.e., ^ = 1 .
Note that Ai 00 A^(g) is fc-rational even if g ^ (Hx GL^)(k). Q.E.D.

THEOREM 4.14. — We have ^ = 1 for the following P.V.'s
(G'LklX5'L^x5'L„,p(=pl©. . .©pfc)) v^here n = In' (==even):

(4.24) p = Ai ® Ai + 1 ® \y (+CT®I) mth
a = A^, Ay + A^, AI + A? + A*,
(Ai+Ai+Ai)^, Ai + Ai + A* (m=^^n), \^(m=odd).
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(4.25) p = AI g) AI -h 1 ® (A^+A^-h 0(8)1) mr/i CT = A^,

(4.26) p = AI ® AI + 1 (g) (A^+A^+A^) (m=odd).
(4.27) p = AI (g) AI + 1 ® A(21C)+(A2+AT) (x) 1 (w=5).

Pyw/. - Since ̂  == 1 for (GZ^, A^) with a generic isotropy subgroup
Sp^, (4.24) - (4.27) reduce to the case of type I , and we have our
result by Theorem 3.20. Q.E.D.

PROPOSITION 4.15. - We have ^1 for (SL^ x *S^,2Ai®Ai+
l^A^K+Ai®!))'.

Proof. - If n=2n\ it is equivalent to (SL^ x*S'p^,2Ai®Ai
(+Ai(g)l)y which has ̂  2 by Corollary 3.22. If n = odd, we have
^ ̂  2 by Propositions 4.4 and 4.5. Q.E.D.

THEOREM 4.16. - We have ^ = 1 for the following P.V.'s :

(4.28) (GL\^1 x SL, x SL^A^A, +(ai + . . . + a,)®
I+I®(TI+ . . .+T , ) ) w/i^ (GLl + t x5L„,CT*+. . .+a?+

T I + . . . + T , )
f5 fl sfwpk P.K mth I = 1 (5^ Theorem 2.19).

Proof. — It is obvious. Q.E.D.

THEOREM 4.17. - A P.V. of the type

(G^+ s + txGx^,(pl+.• .+p,)®Al+(CTl+
•• •+G- , )®I+I®(TI+ . . .+T , ) )

mt/i 2 < deg pf ^ n (f= 1, .. .,fe) and

(Tl+.••+T,)^(A ( l* )+...+AW)

has / == 1 y and on;^ y ^ is one of (4.1) ~ (4.28).

Proof. - We can find the table of all P.V.'s of this type in §§ 5-2
in [6]. From Lemma 4.3 to Theorem 4.16, we have investigated the
number ^ for all P.V/s in §§ 5-2 in [6] except P.V.'s which have an
irreducible component with ^ ̂  2. Q.E.D.

PROPOSITION 4.18. - We have / ^ 2 for (GL\ x SL^ x SLs (A^+
AO®AO.
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Proof. - It is castling-equivalent to (GL^ x SL^ x ̂ , (A2 +
Ai)(g)Ai) where (^SL^GL^\^®^\) = (.SC^ G^2»Ai®Ai) has ^ ̂  2.
Hence we have our result. Q.E.D.

LEMMA 4.19. - We have ^ = 1 for the following P.V.'s (1)
(GLiX5^,Ai(g)(Ai+Ai)), (2) (GL, x GL^, l^A^+AigXAi+AO),
(3) (GLiXGL^i,l®A$+A,®(Ai4-Ai)).

Proo/. - Applying Proposition 3.7 for (G,A^(p)) = (GLi,Ai©Ai),
we have ^ = 1 for (G.A^p)) = (GLi,2Ai), i.e. (1). Hence we have
(2). By Proposition 4.5, (3) is equivalent to (1). Note that
(GL^ xG'L2^+i,l®A2+Ai®(Ai+Ai)) is a non P.V. since it has a non-
constant absolute invariant. Q.E.D.

THEOREM 4.20. - We have ^ = 1 for the following P. V. ' s
(^x^L,x^,p(=pie.. .©Pfc))(n^m+l).

(4.29) p = AI (g) AI + 1 ® (A?+AT)+CT 0 1 mth a = A^,
A^ + Ai, A\ + A?, A^ + A? (w==^n).

(4.30) p = Ai ® Ai + 1 (x) (AT+Af+A^+A^ ® 1,
(4.31) p = Ai ®Ai + 1 (g)(A*+A*-hAi) + a® 1 mth C T = A $ ,

A2 (w= even).

Proof. - By Proposition 4.1, (4.29) (resp. (4.30)) is equivalent to
(^L^.A^AiOCTy (resp. (G'Lfx SL^A^ + Ai+A^+Ai) ) and hence,
by Theorem 2.19, we have our result. For (4.31), it is equivalent to (2)
or (3) in Lemma 4.20 by Proposition 4.1 and hence ^ == 1. Q.E.D.

THEOREM 4.21. - We have ^ = 1 for the following P.V. :
(4.32) ((7L^x5'L^x5^+i,Ai(8)Ai+l®(Ai+Ai+Ai)+a(g)l)

mth a = AZ, A$ (m=even).
Proof. - It is castling-equivalent to (C?Z^ x 5'Z^x 5'L2,A?g)Ai+

l(x)(Ai+Ai4-Ai)+a®l)). Since ^ = 1 for (GL\ x ^.Ai+A^+Ai)
with a generic isotropy subgroup {1}, it is equivalent to (GL^ x GL^ x
^Z^.Ai^lg^A'i'+A'^+l^Ai^a). By Lemma 4.19, we have our
result.

THEOREM 4.22. - We have ^ = 1 for the following P.V.'s
(GL\ x SL^ x SL^, p(= piC . . . Opk)) (m=o^ .-

(4.33) p = A2 ® Ai + 1 ® (Af+A?)(+AT®l when m=5)
(n^l/2w(m-l)).
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(4.34) p = A 2 ® A , + Kg^AT+Af+A,) (n>l/2m(m-!)+!).

(4.35) p= A 2 ® A i + l(8(Ai+AO(+A,®l vv^n w=5)
(n=l/2m(w-l)).

(4.36) p = A 2 ® A i + l ® ( A i + A i + A i ) (n== l/2w(w-!)+!).

Proo/. - Since ^ == 1 for (SL^A^A^) (see the proof of
Proposition 2.15), we have ^ = 1 for (4.33) and (4.34) by Propositions 4.1
and 2.16. A castling transform of (4.35) and (4.36) has ^ = 1 by
Theorem 3.20. 0 E D

THEOREM 4.23. - We have ^ = 1 for the following P.V/s
(GL\ x Sp^ x SL^, p(= pi®... ©p,)) (n^2m) ;

(4.37) p = AI ® AI + 1 ® (A*+A?)(+D with T = A, ® 1,
1 ®A?, 1 ®Ai (n^2m+l).

(4.38) p = AI g) Ai + 1 g) (A^ + A^) (+ T) (n = 2m) wf^
r = = A i ® i , i ® A?),

(4.39) p = AI ® A i + 1 ®(Ai+Ai+Ai ) (n=2m+l) .

Proof. - By Propositions 4.1; 2.9 and Lemma 4.19, we have (4.37).
Since Ai (g) Ai + CT ® 1 + 1 ® T(n=m) is equivalent to (^.O+T/,
we have (4.38). A castling transform of (4.39) has <f = 1 by
Theorem 3.20. O.E.D

THEOREM 4.24. - We have ^ = 1 for the following P.V/s
(GL\ x Spin^ x SL^ a half-spin rep. ® Ai + p'(= p^®. . . ©pk))(yi^ 16).

(4.40) p' = 1 ® (A?+A?), 1 ® (A*+Af+Ai) (n^l7).
(4.41) p- = l ® ( A i + A i ) (n=16), 1 ® (Ai+A.+Ai) (n=17).

Proo/. - Since ^ = 1 for (GL, x ̂ ^^^^(A+A)) (see P. 14 in
[1]) where A is the even half-spin representation, we have (4.40) by
Proposition 4.1. A castling transform of (4.41) has ^ = = 1 by
Theorem 3.20. Q.E.D.

THEOREM 4.25. - A P.V. of the type (GL^^xQx SL^
t

(Pi + • • • + P^®Al+((7l+. . •+a,)®l+l(8)(A ( l ) t )+^ +A(l*) mth
2 ^ degp, ^ n(;=l, ...,fe) and (G; P i + ' - ' + p f c ; CTI + • • .+
a,) ^ (5L,,Ai+ ... +A, ; \y + ... + A^) has ^ == 1 if and only if
it is one of (4.29)-(4.41).
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Proof. - By §§5-3 in [6] and Proposition 4.18-Theorem 4.24, we
have our result. Q.E.D.

THEOREM 4.26. - A P.V. of the type (GL^'^x SL^x SL^

A, +^+ AO ® Ai + (A^ -^ + A<^ ® 1 +1 ® (A^ +——+A?)) ̂
always the universally transitive open orbit, i.e., ^ = 1.

Proof. — P.V.'s of such type are completely classified in §4 in [6].
P. K-equi valences used there keep ^invariant (cf. Proposition 4.1, etc.).
They are essentially reduced to trivial P.V.'s or simple P.V/s of type
(GL\ x SLn^y^-'7^' -1-A^ wich have / = 1, and hence we obtain our
result. Q.E.D.
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