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DIFFERENTIATION IN LACUNARY DIRECTIONS
AND AN EXTENSION

OF THE MARCINKIEWICZ MULTIPLIER THEOREM

par Anthony CARBERY*

1, On the Marcinkiewicz multiplier theorem.

Let <f) be a nonnegative C°° bump function on R^ identically
one on {1 < |^-| < 2} and vanishing off {- < ]^[ < 4}. For a > 0, let
L2^ denote the n-parameter Sobolev space of functions g for which

ibiii^ /l^)l2^( l+^2)a^J 1=1
is fimte. One formulation of the multiplier theorem of Marcinkiewicz
is as follows :

THEOREM A. — Suppose m is a function which satisfies
sup ||m(2^i,..., 2^)^(011^ < oo

h,...,Jl-n€Z

for some a > —. Then m is a Fourier multiplier of L^R") for

1 < p < oo and moreover the operator T associated to m satisfies a
weighted L2 inequality

[{Tf^w^Crhn^Mw^
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for each r > 1, M denoting an appropriate iterate of the strong
maximal function.

While the hypothesis of the Hormander multiplier theorem (see
for example Stein, [6]) is rotationally invariant, clearly that of the
Marcinkiewicz theorem is not, since the definition of L\ gives the
directions {ej} parallel to the co-ordinate axes a special role. In this
paper we explore the situation when this special role is weakened by
the introduction of an arbitrary linear change of variables. Thus for
A € GL(n, R) we let

^A={^lbll^A=IKA" l•)ll^<~},
and we ask whether the condition

sup ||m(2^i,... ,2^^(0||^,A = Q(m) < oo,
Jl-l,..,fcn€Z

for some a > i, for some A 6 (?£(n,R) is still sufficient to imply
that m is a multiplier of L^, 1 < p < oo.

To answer this question, we attempt to adapt the proof of the
Marcinkiewicz theorem to our setting, and so we introduce g- and
g^- type functions. Thus if <j> is any function of the type described
above, we let

^i....^(0=^2'^i,...,2^^)
and

Let

^a")2^ E i^.-,fcn*/(^)i2.
ti>...,fc,,6Z

w^^n^+^r"'
i=l

and let
Aw(:c) = (detAr^A-1^).

LEMMA .. —: Ifv > 0 is a test function, and K is a convolution
kernel, then

fg^K^f)\x)v{x)dx<Q{K)

/ g^f)2^) sup (Aw)fc,,...,fc, ^v(x)dx.
J fci,...,fcn€Z
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The proof of this lemma is well-known, but we include it for
completeness.

Proof.

f g^{K^f)\x)v{x)dx

= E [^^^^k^K^f^v^dx
^i,...,^*7

= £ / I ^^k^KWk,^k^f(x-y)dy v(x)di. i. J J
"•1 r - '»^n

^ E JS\^^KW . v
k^...^J J (AW)fcl,...,^0/)

j /3k„...,k^f(x-z)\2(Aw)k^...,k^z)dzv(x)dx

^ [ sup /|/?*J<^ ^k (y)\2 dy }\k,_kJ " '1)- 'nwl (Aw)(z/)J

E / l̂ i.•^-n * /(^)12 (Aw)^,.,,^ * v(z)dz
^1,...,^'

^QW [g^f)2^) sup (Aw)^,,.^*^)Ac.
J ^l,...,^n

D

Invoking the Littlewood-Paley theory, (||^(/)||p » ||/||p ,1 <
p < oo,) we see that ||J<*/||p < C\\g^(K^f)\\p ^ C'Q(K)\\f\\p , 2 <
p < oo, provided that v -^ sup |(Aw)^,.,^ *z;| is bounded on £^

^l,...,^n
for 1 < q < oo.

Thus the answer to our question is affirmative provided we
can control a certain maximal function. This maximal function
the so-called "differentiation in lacunary directions" operator has
been studied in the case n = 2 and shown to be bounded on L9

1 < q < oo, by Nagel, Stein and Wainger [5]. Here we take up the
case of higher dimensions, and work, for ease of exposition, with the
ca.se n = 3, although the method readily extends to all dimensions.

Another reason for being interested in this maximal operator
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for n > 3 is that it is the lacunary analogue of the "equally-
spaced" Kakeya maximal operator which "controls" the Bochner-
Riesz multipliers (1 — |<^|2)^. for A small and positive. Optimal results
for the Kakeya maximal operator are known only when n = 2, with
partial results when n > 3 in [4]. As is usual in Fourier Analysis,
the lacunary operator is easier to handle, and, in this context, the
moral of our theorem below is that we have not uncovered any new
obstacles to boundedness of the Kakeya maximal operator in the
optimal range for n > 3.

We give a formal statement and proof of a maximal theorem
in §3 below; in §2 we give a general principle for maximal functions
which is useful in ^3.

2. An almost-orthogonality principle.

The original argument of Nagel, Stein and Wainger [5] used
to prove the 2-dimensional maximal theorem contained a boot-
strapping argument which required some geometrical considerations
at each stage. M. Christ has observed that it is possible to separate
the geometry from the analysis, and once the geometry is removed
we are in the following situation. We have a doubly indexed family
of subadditive operators {T^}, j € Z , v (E S (with S any set).
We shall assume

(1) sup || sup |T^/||lp< A[|/||p
3 v

and, to be able to assert that the Tjy for different j act independently,
that there is some sequence of operators {Rj} satisfying

/ v(2) ii Eî i2 }\\p^A\\f\\p•\ } /
We shall say that {Ty,/} is essentially positive if Tjv = Pjv ~ Qjv
with I/) <. g =» |Pji//| < Pjvg and \Qjv9\ <. Sjv\g\ for some { S j v }
satisfying 0 < / ^g =»0< S^f < S^g and || sup^ S^\f\ ||p ^
All/Up.
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THEOREM B (M. Christ, [3], unpublished). — Letl <p < oo;
suppose {Rj} is a sequence of operators for which (2) holds and
that {Tj^} is a family of subadditive operators for which (1) holds.
I f p < 2 we also assume that {T^} is essentially positive. Suppose
furthermore that

(3) \\^P\T^I-Rj)f\\\p<A\\f\\,.
i,"

Then there exists a constant C depending only on A and p such that

llsuplT^/III^C-11/11,,
J^

Proof. — i) p> 2. By the subadditivity of the T^,

/ \ 7

ŝ up \T^f\ < sup \T^I - R^f\ + ^ sup \T^R,f\P } .

Therefore,

II ŝ up \T^f\ ||p ^ All/11, + ^ [| s^p \T^R,f\ ||̂

<A|[/|1,+A ^p,/||̂
J

<"̂  I 7^^imip+AiK^i^/i2)^],
^A(A+1)11/1^.

ii) p_<_2. We first suppose that T,v = 0 for all but N fs; by (1)
there exists a least constant C(N) such that

l|s"Pl^/|||,<C(7V)||/||,.
],V

Hence
II sup 12^1 ||̂  ^ || sup IP^ .̂I ||p + || sup \Q^g, | ||p

•71^ J^ J',̂

^ ||supP^(sup|^-|)[|p + ||sup5-^(sup|^.|)|[p
J'" k j,v k

^ II SUP l̂ >(sup \gk\)\\p + 2|| sup5^(sup |̂ .|)||
],v k j^v k

^(GOV)+2A)||sup|^|||p.
J
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But (1) implies that

|| || sup \T^g,\ IÎ H^ A|| \\g,\\t. \\,.
V

Thus by interpolation,

/ vI) l^plT^n ||,<(2A+C(^)<?Al-<')||(^|ff,|2)i||,

where 0 < 0 = 0(p) < 1. Proceeding now as in case (i),
|| sup |T,,J| ||y ^ || sup \T,^I - R,)f\ I),,

J> J>

+ ^sup|r^/12

< All/ll, + (2A + C^A1^)]!^ |^/|2)^ II,

^(A+2A3+G(JV/A2-<?||/||,.

Now by the definition of C(N),C(N) < (A + 2A3 + C^N^A2-0).
Consequently C(N) < C = G(p,A), independently of TV. Removing
the restriction that Tjy = 0 for all but N j^s yields the desired
result. Q

For a variant of this theorem where condition (3) is replaced by
an assumption that the maximal operator supjTj^/j is "strongly

3.v

bounded" on Z/2, see [1]. At least when the Tjy are essentially
positive, this strong boundedness condition is a posteriori stronger
than (3) but is sometimes easier to verify. An interesting question is
to what extent some positivity hypothesis on {Tjv} is necessary when
p < 2. In certain special cases it may be dispensed with provided
that there is some control over "where Tjy lives", or some mild
smoothness hypothesis is satisfied. See [2].

3. A maximal theorem.

We fix an even function ^ : R —^ R which satisfies ^(0) > 0 ,
^ ^ 0, f ^ = 1, ^ decreasing polynomially at oo, ^ compactly
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supported in a small neighbourhood of 0 - for example a many-fold
convolution of the Fejer kernel with itself.

THEOREM. — Let 1J) be as above, and let u be any nonzero
vector in R3. Let

W^,^/f(0 = ̂ ((2^1,2^2,2^3) • Au)/(0.

Then for each p > 1 there exists a constant Cp such that

(4) II. . su? \Tk^^kf\\\p<CM^
^l,*'2i^3€Z Al>0

3

COROLLARY. — Let w{x) = n^+^F^ A ^ G^(3,R) and

Aw(.r) = (detA)-lw(A-l.z;). Let

(A^l,^3(0 = (^)^(2fclel,2^-2^,2fc3^).

Then if a > .
^

|| sup \(Aw)^,k^f\\\p^Cp\\f\\p for Kp^oo.
fcl , fc2,t3

Proof of Corollary. — When a > -, w is dominated by

rrr^[-«.,.)^),.. . .A yo Yo "^w,"^1'*2'*3)'
with f dfJ. <C, which is itself dominated by

/•OO y00 ^00

/ / / î ®^®^3^(^^2,<3)
JO JO JO

with ^ as above. Thus (Aw)^j^^ is dominated by
/•OO y*00 /•00

/ / / {A([^®^®^]tl,t2,t3)}fcl,^^3^(^^2^3),
Jo Jo Jo

where {A([^ ® ̂  ® ^]<i ,<2,<3}^i ,^2,^3 l̂ s Fourier multiplier
3n^'^i^^2^^^^)-^^),i'=i
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Ui being the t^th row of the matrix A. Hence convolution with
(Aw)fc^-2^3 is dominated by 3 applications of a maximal operator
of the type described in the theorem. So once the theorem is proved,
the corollary follows. D

Proof of Theorem. — First of all, we may asume that no
component of u is zero, for if one is zero, then we are taking maximal
averages over lines in a 1-parameter family of lacunary directions,
and so the result follows from the two-dimensional theorem of Nagel,
Stein and Wainger. So, without loss of generality, u = 1 = (1,1,1),
and 772(0 = ̂ -1) = fe+6+^0 is supported in {^ i+^+^ l <
a} with a as small as we please.

Let now r be a C°° function of 2 variables, of compact support,
with r ^ 1 on a 4a-neighbourhood of 0 in R2. Let 723 (O =
m(Or(^+^6).Thenif

(^L^)^)= ̂ ^^^^^^2^^^

^Pl^Y k k nh9\ls dominated by the strong maximal function of g
k3,h
defined with respect to axes pointing in directions {e3^1,—2k2~kl,0)
(2^-^,1,0)}. Thus sup {V^k^k^h^ is dominated by a maxi-

ki,k^,ks,h
mal function associated to a 1-parameter lacunary family of di-
rections of the type already controlled by Nagel, Stein and Wain-
ger. The same goes when we permute the coordinate variables
in the definition of 723 to obtain ni(<0 == ^(0^'(<f2 + C3?$i) and
n^) = m(0r(^ + ^2). If <J : R3 -^ R is a C°° func-
tion of compact support containing 0, then ^1,^2,^3,^ defined by
(^,^3,^f(0 = ^m)(h2k^^h2k^^h2k^3)g^) is dominated
by the strong maximal function.

Hence, the family of operators whose multipliers are the dilates
of g = m — n\ — 722 — 723 — 0-772 is essentially positive in the
sense of §2, and, for an appropriate choice of <7, q is supported in
{ l ^ i+^2+61 <a}n{l^i+6l ^ 2a or |^| >2a}n{|^i+6| ^
2a or |^| ̂  2a} ̂ }{\^ +<^| ̂  2a or |<^i| > 2a}; this set is contained
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in the cone

r =P<^±li<^
1 / 3 - -^3 -• }n{,

n{,
<H&<A

-^2 )

i<^i<4/?- -^i - ' j
for an appropriate choice of /? > 1.

Thus to prove (4), the assertion of the theorem, it suffices to
prove that

SUP \Qk,^,hf\(5) <Cp\\f\\p
\ki,k^h

for 1 < p < oo, where

(^2,^f(0 = q^^h^^h^f^).
Now the 1-dimensional Hardy-Littlewood maximal theorem ensures
that sup ||sup|T^,^,o,/J| \\p < Cp\\f\\p, 1 < p < oo, and T^,^,o,/i-

^1,^2 h

Qki,k-i,h is controlled by a maximal function already known to be
bounded on all 2^; so

sup || sup \Qk^k^hf\ \\p < Cp\\f\\p, 1 < p ^ oo.
fcl ,Jl"2 ^

Thus by theorem B, since the operators Qki,k^,h are essentially
positive, (5) holds if we can construct operators Rk^k^ such that
Qk^k^h = Qk^h Rkik^ tor all fci, ̂  and h, and

i |

(6) ^ l^^/l2 ^ ^11/llp
\^^ / p
E i^^/i2

<Jl-1^2 ^

for 1 < p < oo.
Let 0 : R —^ R be a nonnegative C00 function, identically

equal to one on [-r,A] and vanishing outside [—,2A]. Let 71 (Q =
0((^2+^)/ _ ^) if ^ ^ o and 71(0,^2,6) = 0. Define 72 and
73 similarly by permuting the coordinate variables. Let 7(<^) =
7i(072(073(0- I f A > l is chosen appropriately, 7 is identically 1 on
P. Let (^^f(0 = 7(2^i, 2^2,6MO- Thus Q^ = O^J?^ for
all j, k and /z. If we can show that the function ̂  ±7(2^1,2fc^2^3)

^
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is a Fourier multiplier of ^(R3), 1 < p < oo, uniformly in the
random choice of ±, the usual argument with Rademacher functions
(see for example Stein, [6]) yields (6).

We first of all decompose 7 into four pieces, a typical one of
which is 7($) = 7(0x^i,^2>o,^3<0i and then smoothly decompose 7
into three pieces,

7(0=7($M^M^MA-)+^2 $3 --$3

7(0 [l- 0(^(4-^4-1 6^
L €2 -^3 -S3J ^2

+7(ofl-^(i2-MA-)^A-)1 h-^NL ^2 -S3 -S3 J [ ?2 J

-^(O+^CO+^O),
where A in the definition of 6 is chosen to be large and 8 : (0, oo) —> R

is a nonnegative C°° function, identically zero on (0, -] and one^
on [2, oo). Now p\ is a C°° function which is homogeneous of
degree zero and is supported in a cone contained in {$1, $2 > 0 ,
$3 < 0} which stays away from the coordinate hyperplanes, and so
V^ ±/9l(2•7$l, 2^21 $3) satisfies the hypotheses of the Marcinkiewicz
j,fc
theorem, theorem A, for all a > 0. By symmetry in ^i and $25 it
suffices to deal with either p^ on p z ; we choose p^.

Now /?2(<0 = ^(($1 + $3)/ - ̂ 2)^(0 where A is a C°° function
which is homogeneous of degree zero and is supported in a small
conical neighbourhood of the line $1 + $3 = 0, ^ = 0. We fix j ==• 0
and examine mo(0 = ^> ±p2($i ̂ ^(2^ (3)' After performing the

k
,. , - . „ .. $1 +$3 . . . $i — $3linear change of variables ^i »-̂  —^—, ^2 ̂  ^ii ^3 h-^ —^—,
this multiplier becomes one which satisfies the hypothesis of theorem
A, for all a > 0. Consequently, if Sog(^) = ^o(<0^(0? we have

hSog^w^Cr /^(Mow7')1

for each r > 1, MQ denoting an appropriate iterate of the strong
maximal function defined with respect to the directions

{(0,1,0),(1,0,1),(1,0,-1)}.
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Similarly, if
m,(0=±^ ±^(2^i, 2^2,^3),

k

and Sj is the corresponding operator, then

J^W^CrJ^M^,

where Mj is the iterate of the strong maximal function defined with
respect to the directions {(0,1,0), {V, 0, !),(!, 0, -2^'), }. Hence,

J^w^Crhff^Mw^

for all j, where wM is an appropriate power of a 1-parameter Nagel,
Stein and Wainger type lacunary maximal operator.

Observe that m^($) is supported in {( : B~~1 < 2^i/ - ^3 <
B}, and if p;($) is a smooth function which is homogeneous of
degree zero, identically one on the support of mj but vanishing
on [J supp mj, and if we define {Pjg) ̂  ($) = pj(0^(0, the

j^k ^
Marcinkiewicz multiplier theorem and the usual argument with
Rademacher functions give

IKEl^l2)'"^"^^ l<P<oo-

Thus, to prove that V^ dbps (2^1,2^2 ,^3) is a Fourier multiplier of
j.k

^(R3), 1 < p < oo, it suffices to show thatv
^\P,xf\2} ^c,,||( |̂p,/l2)^,,
} j p

for 2 < p < oo, where Xg(Q = ̂  ±/>2(2^i, 2^2,^3 )ff(0. To see
J,k

this, we take w € -L^ and examine

/ ̂  l^AVI2^ W |5,P,/|2^
^ j

^Cr^ f^f^Mw^

3 J

=^y^|p,•/l2(^wr)l.
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The use of the Nagel Stein and Wainger theorem concerning M. then
establishes the required result. D
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