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CHAPTER II

DIFFERENTIABLE FUNCTIONS

10. Ideals generated by analytic functions.

We give an elementary proof of the theorem of Malgrange
[27, Ch. VI]. Let N be a real analytic manifold. Put (9 = G^. Let A
be a p x q matrix of real analytic functions on N, and let
A-^^N^-^^N)^' denote the ^ °° (N)-homomorphism defined by
multiplication by A .

THEOREM 10.1. - A-^N)^ = (A-^N)^.

Remark 10.2. — Let Z c Y be closed subanalytic subsets of N.
Suppose that/eJ^N^ and, for all a e Y , there exists G^e^ such
that fa = AQ • Ga. The following proof shows, moreover, that there exists
^eJ^(N;Z)9 such that/- A.geJ^N^ (cf. [7, Thm. O.I.I]).

Proof of Theorem 10.1. — Let s^ denote the sheaf of submodules
of (919 generated by the columns (p1, . . . (p^ of A . Let ^ be the subsheaf
of ^ of (germs of) relations among the columns of A . Then ^ is
coherent.

We can assume that N is an open subset of R". If a e N , we
identify ^ with R[[y]], y == ( ^ i , . . . ,3^). By Lemma 7.2 and Remark 7.3,
we can suppose there is a filtration of N by closed analytic subsets,

N = Xo ^ Xi =3 • • • => X,+i = 0,

such that, for each k = 0, . . . r :
(1) Xfc — Xfe+i is smooth.
(2) 9t(^a) and 9l(^) are constant on X ^ - X ^ + i . We write

9l^(^) = 9l«) and 9l,(^) = 9l(^), aeX, - X,^ .
(3) Let (P,J,), f = = l , . . . , r , denote the vertices of 9VO. Then,

for each f , there exists v|/' in the submodule of ^(X^)^]]^ generated by
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(the elements induced by) the ^ (cf. Remark 7.3), such that, for all
a e X, - X^i, v^a; •)) = ((U) and ^ e <,, where v|/;,(}0 =
^y).

(4) There exist ^ in the submodule of ^(X0[[^]p induced by ^(N)
such that the v(c/(a;-)) are the vertices of 91 )̂, for all aeXk - X^i.

Fix f e . Let {A,, A} denote the decomposition of N" x { I , . . . , ? }
determined by the vertices (P,J,) of 91^), as in § 6. Let a G X^ - X^i.
By the formal division algorithm (Theorem 6.2) and Remark 6.7, there
exist unique r\ e ̂  and <^ e ̂ , ^ = 1, . . . , t , such that
suppr;. c: A, (P^) + supp^,<, c: A^, and

(10.3) /lJi= E^,(^(^)+r^).

Put 9;.(^) = /Ji - ^(}/), f = 1, . . . , t ; then the 9;. e .< (cf. Corollary 7.7).
The coefficients %j(a) of Q^y) = ^Opj^)^^, as well as the coefficients

PJ
of the ^o, are analytic on X^ - X ^ + i , and extend to X,, as quotients
of analytic functions by products of powers of the \|/^(a), where
^a(y) = E^j^)^- There exist analytic functions O1 defined in a

(U
neighborhood of Xj^ - X ^ + i , whose power series expansions at each
a e X f e - Xfc+i are the 6;, (cf. Corollary 7.7(3)).

Suppose that fe (A -^(N)^ and that / is flat on X^-n . It suffices
to find Ae^(N;X^i)9 such that/- A - / I e^(N AY .

Let aeXjk — X j k + i . Then/a61^- By Ae formal division algorithm,
there are unique G,^ e ^a» l = 1 » • • • • » r ? such that (P,,7,) 4- supp G,^ c: A,
and

(10.4) /„= ZG,X.
i=i

Put G,,o = 0 if aeXfe-n .

We claim there exist ^,6^(N;Xfc+i) such that G^a = gi,a for all
a e X f e : Write G^ = S^*^).^- BY ̂  f01"111^ division algorithm and

p
y.ojasiewicz's inequality [27,IV.4.1], each G,,pis the restriction to X^ of
a <^00 function which is flat on X ^ + i . Let aeXk - X ^ + i . Since / is
%700 and the 91 are analytic, then, regarding both a and y as variables
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in N, we have

8fa(y) ^8Uy)
(10.5) ^ ^j

8Q^y)_8Q^y)
8a^ 8y^

7 = = l , . . . , n («Taylor expansion commutes with differentiation»). If
X = (^i , . . . ,^)eR", write D^=^^j8/8aj, D^ is the directional
derivative with respect to the a variables in the direction ^. If D^
is tangent to X^ - X^+i at a, then D^aG^a(y) is well-defined, and,

r

by (10.4) and (10.5), ^ (D^G,,. - D^GJ-O;, = 0. For each i,

(Fiji) + supp (D^aGi,a" D^^G,,o) <= A, (where supp is with respect to y).
Therefore, by the uniqueness of formal division, for each i = 1, . . . , t ,

(10.6) D^G,,,=D^G,,,.

Choose local coordinates (u,v) = (^i, . . . , M^ ,UI , . . . , Vn-m) ^ar
aeXk - Xk+i such that X^ - X^+i is given by v = 0. Write G^ as

G,,,(«..)= E (S G^a)5).^.
peN"-"* ^aeN^ * / r '

Then (10.6) implies that ^ G,"̂  (a)M7a! is the formal Taylor series of
a

G°^ at a. By Whitney's extension theorem [27,1.4.1] and Hestenes's
lemma [37, IV.4.3], there exists ^,e^(N;Xfe+i) such that G^a = gi,a, for
all aeXk, as claimed.

To finish the proof, we must express / in terms of the columns ^

of A. By (3) and (10.3), Q^y) = ^ ̂ aMa(y), i = 1, . . . , r , where
7s 1

^00 == ^(a^-y). ^a^Qa. and the coefficients ^(a) of ^,(^) =
S ̂ AP^).^ are quoficnts of analytic functions by products of powers of
p
the v|4/j/(^)' put ^i,a = (^i,a» • • •^iq,a)' By the formal division algorithm
and Remark 6.7, there exist unique r|,^(}0 ^ ^2 such that ̂  - T|̂  e ̂
and supp TI,, n 9l^(^) = 0. Write r|,,, = (r|,i^,..., r|̂ ,) and
T1y,a(^) = E^y,p(^)/, 7 = 1, . . . , ^. By (4), the r|y,p(a) extend to Xk as
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quotients of analytic functions. By the uniqueness of formal division,
r|yo(fc-a+y) = r|^(y), for b in some neighborhood of a in X^ - X^+i
(cf. the proof of Corollary 7.7 (3)). Thus the r|y^ are the formal power
series expansions at a of analytic functions rjy defined in a neighborhood
of X,, - X f c + i .

If a e X, - X,^ , then /, = ^ G,X = ^ T^G,,X . Put H,,, =
' iJ

E T1y.aG;,a if ^ <= X^. - X^-n , and H^ = 0 if a € X^ i , j = 1, . . . , q. Then

there exist /iye^(N ;X^+i) such that Hyo = ̂  for all aeXi, ,y = 1, . . . , < ? .
Thus, / - A • h e ̂ (N; XkY , where h = (h,, . . . , h,\ Q

1 1 . Modules over a ring
of composite differentiable functions.

Let K = R or C. Let M and N denote analytic manifolds (overK),
and let (p : M -> N be an analytic mapping. Let A and B be p x q
and p x r matrices of analytic functions on M, respectively. We use
the notation of 8.2. If a e M, let ^ = {G e 6^: <I^(G) e Im B,}.

Let ^ <= 6̂ 1 denote the sheaf of (^-modules generated by the
columns of B. Let U be a coordinate neighborhood of some point in
M, with coordinates Xi, . . . , x ^ , say. By Theorem 7.4, the diagram of
initial exponents 91 (^) c: N"1 x { l , . . . ,p} is Zariski semicontinuous on
U. Thus, after perhaps shrinking U, there is a filtration by closed
analytic subsets, U = X o = > X i => . . . = > X ^ + i =0 , such that 91 (^) is
constant on each X^ — X^+i . Let f c e N . The following proposition
shows that ^ is constant on every connected component of
(X. -X^On^P" 1 ^) , ^ -0 , . . . , t .

PROPOSITION 11.1. — Let U be a local coordinate chart in M. Let
b e N and let S be a locally closed semianalytic subset of U such that
S c: (p'^fc). Suppose that 91 (^) is constant on S. Let /e^(Uy and let
Ge&l. Then

Jf = {a e S : /, - 6,(G) e Im B,}

is open and closed in S.

Proof. — We can assume that U (respectively, N) is an open
neighborhood of the origin in K'" (respectively, K"), and that q>(0) = 0
and b = 0. We identify (the components of) (p and / and (the entries
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of) A and B with their convergent power series expansions at 0. If
x = (xi, . . . , xj and y = ( y i , . . . , y^), then

f(x + y) - A(x + y) • G ((p(x + y) - (p(x))

'S^-A^.S^Z^.)'.
aeN^ peN" p" va>o /

where a (respectively, P) denotes a multiindex in N" (respectively, N").
Thus

f(x + ^) - A(x + ^) • G((p(x + y) - (p (x)) - ^ "4°^,
aeN^ a'

where the H^ converge in a common neighborhood of 0 (which we can
take to be U). (For all a e N", each component of H^(x) - D^Oc) is
a finite linear combination of certain products of derivatives of the
components of (p times derivatives of the entries of A.)

Let 91 = 9l(^), a e S , and let (a,,;,), i = l , . . . , f c , denote the
vertices of 91. For each a e S , let ^(^e^ = K[[^]r, i == 1, . . . , ^ ,
denote the standard basis of ^5 where ing;, = ^a '^. Then each
g^y) = Z^j^y^ ls convergent, and each g^j(a) is analytic on S

OtJ

(Corollary 6.8).

Let a e S and let h^(y) = ̂  H^(a)^7a!. By Theorem 6.2, there exist
a

unique q^(y)^^a and ^(y)e^ such that (a,,7,) + supp^ c: A;,
supp r^ c= A (where A,, A are as in § 6), and

k

(11.2) ^)= E^(^(^)+r^).
1=1

Write r^(y) = ̂ r^c^y^. Then each raj(fl) is analytic on S (cf.
aJ

Remark 6.5). By (11.2), ^e ImB^ if and only if each r^(d) = 0; i.e.,
^ is closed.

Since f(y) - A(^)-G((p(^)) e ^o c= K^^r, there exist unique
^(yte^o such that (a,,;,) + supp^, c: A, and f(y) - A(y)-G(^>(y)) =

k

^ qi(y)go(y). Consider the identity
» = i

k

(11.3) /(x+^) - A(x+^).G((p(x+^)) = ^ ^(x+^o(x+y).
1=1
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Suppose that O e S . Let J c= (9^ == K{x} denote the ideal of germs of
analytic functions at 0 which vanish on S. Write ^3,0 = ^o/^ Bud
^s,o = ^oA^'^o- We expand each term of (11.3) as a power series in
y with coefficients in SQ = K[[x]], and take the induced power series
in y with coefficients in ^s,o. Since each component of (p vanishes on
S, the left-hand side of (11.3) §ives the same result as reducing the
coefficients of ^ Ha(x)^7a! modulo ^ ; write h^(y) for the resulting
element of ^olIylF- Likewise, write q^(y) and g\(y) for the elements
of ^s,o[[y|] and ^ottyir induced by ^,(x+y) and go(x+y), respectively.
Thus,

k

(11.4) h^y)= ^qUy)g^y)'

Since (a,, 7,) + supp^f, c: A,, then (a,, 7,) 4- supp^ c A,.
Clearly, in^(y) = /"7l.

On the other hand, by the formal division algorithm, there
are unique CU}0 e 6s^[[y]] and R^(^) € ^otb^ such that
(a,,;,) + suppQ^ c= A,, suppR^ c: A, and

k

(11.5) h^y) = ^ Q,,.(^(^) + R.(^).
1=1

Since the coefficients of h^(y) belong to ^s,o» so do those of Q,,;c(y)
and Rx(y) (^ Remark 6.5); moreover, all coefficients can be evaluated
in a common neighborhood of 0 in S.

Comparing (11.4) and (11.5), we get R^(y) = 0. But from (11.2)
and (11.5), Ro(^) = ra(y) for aeS sufficiently close toO. Therefore, all
r^j(a) vanish on S near'O; i.e., J€ is open. D

COROLLARY 11.6. — If (p is proper, then (locally in N^), there is a
bound s on the number of distinct submodules ̂  of ̂  where a e (p"1^).

Proof. — Let U, Xo, . . . , X ( + i be as above. Suppose that U is
relatively compact and each X^ is semianalytic in M. Then, for each
X = 0, . . . , t, there is a bound on the number of connected components
of (X,-X^i) ncp-1^) [II], [12], [20, Thm. 2.5]. The result follows
from Proposition 11.1. D

Remark 11.7. — Suppose (p is proper. Then (locally in N), there is
a bound s' on the number of connected components of a fiber (p'^b).
If B == 0, then Corollary 11.6 is satisfied with s = s ' .
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In the remainder of this section, we assume that K = R. Let (p* :
^ °° (N) -> ̂  °° (M) denote the ring homomorphism induced by (p, and
letO: ^°°(Ny-^ ^00(M)P denote the module homomorphism overcp*
defined by O(^) = A • (^ocp), where g e ̂  °° (N)9. Let B- :
^ °° (My -> ^00 (My denote the ^ °° (M)-homomorphism induced
by multiplication by the matrix B. \

Let (O^Ny+B-^MV)^ {fe^co(M)p: for all be(p(M), there
exists G^e^ such that/,, - ^(G^eImB^, for all aecp"1^)}.

THEOREM 11.8. — Suppose that (p fs proper. Then each of the
equivalent conditions of Theorem 8.2.5 implies that

w°°(Ny + B-^°°(My = (o^Ny + B-^°°(My;r.
Remark 11.9. — Let Z be a closed subanalytic subset of N. Our

proof of Theorem 11.8 will show that each of the equivalent conditions
of Theorem 8.2.5 implies the following stronger result: If
/G^^Ny + B-^Myf and /admB, for all aecp-^Z), then
there exists ^eJ^(N;Zy and he^co(M)r such that / = 0(^) + B-/I.

Remark 11.10. — In the case that A = I and B = 0, it is enough
to assume that 9 is semiproper [5, Rmk. 3.5]. The following example
shows that « semiproper » is not sufficient in general: Let M = Mi u M2
be the disjoint union of Mi = R2 and Ms = R2 . Let N = R2. Define
(p : M -^ N by (p(x,y) = (x,y) if (x,y) e Mi, (p(xjQ = (x,xy) if (x,y) e M^.
Let p = q = 1 and let A(x,^) = 0 on Mi, A(x^) = 1 on M;,. Take
B = 0. Define /e^°°(M) by f(x,y) = 0 on Mi and f(x,y) == ye-^
on Ms. Let (u,v) denote the coordinates of N. Then / is flat on
(p ~1 ({u = 0}), and outside (p ~ ' l ({u = 0}), / = 0 te), where
g(i^) = (v/u^e-^2. Hence/e(a)^°°(N)f. Clearly, /^^(N). This
example satisfies the conditions of Theorem 8.2.5 because (p Ms is
generically a submersion (cf. § 13).

T^wark 11.11. - The assertion that (D^N)9 + B-^°°(My =
((D^^N^+B-^^My^is local inN. Hence we can assume that N is
an open subset of R" and, by Corollary 11.6, that there is a bound 5
on the number of distinct submodules S^a cz ^L where aecp"1^),
b e N. We will prove Theorem 11.8 using the conditions of Theorem 8.2.5
with this s.

We will also use the following :
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Remark 11.12. - Let X be a germ at the origin of a closed analytic
subset of 1^". Let Xc denote the complexification of X , and let Sing Xc

denote (the germ of) the singular points of Xc. The real part Z of
Sing Xc is (a germ of) a proper analytic subset of X . There exist
fi(x)eR{x} = R{^i, .. .,x^}, l ^ i ^ k , such that the complexifications
fi(z) of the/(x) generate the ideal in C{z} = C{z i , . . .,z^,} of convergent
power series which vanish on X0. Then, for all a e X — E, e^x,a ls

generated by the / (where we have used the same symbol for a germ
at the origin and a representative of the germ in a suitable neighborhood,
and where ^x denotes the sheaf of germs of real analytic functions
vanishing on X).

Proof of Theorem 11.8. — We make the assumptions of Remark 11.11.
If fce(p(M), then there exist a\.. .^eq)"1^) such that f^ecp-1^)^

s s

= n^1- If a6M^ a = (a1, . . . ,0 s), we put ^,= H^a" since the

i= i i=i
diagram of initial exponents 91. = 91 (̂ ?.) is Zariski semicontinuous on
M^ (8.2.5(4)), there is a locally finite filtration of M^ by closed analytic
subsets, M^p = Zo =3 Zi =3 . . . Zy => Zy+i = ? . . . , such that, for all v e N,
91, is constant on Zy - Zy+i and, for all a e Z y - (p'^q^Zv+i)),
^a = f )o 6 (p'^^a)) ̂ a'

It follows that there is a locally finite partition {X^gN of M^p such
that, for each \JL :

(1) X^ is a relatively compact connected smooth semianalytic subset
of M^p, and X^ lies in a product coordinate chart U^ in M5.

(2) X, - X, c u,<,X,.
(3) 91, is constant, say 91. = 91^, on X^.
(4) Let Y, = (p(u,<,X,). Then, for all aeX, - (p-^Y,), ^.=

nae^"1^^))^'
(5) (By Remark 11.12.) There exist finitely many elements 9^ of

^(Ly such that, if W ^ = = { x e U ^ : 9^(x)=0 for all f}, then dimX^
= dim W^ and, for all a e X^, ^x ,a = -^w ,a == the ideal generated
by the 9 ,̂ at a (where ^x ,a denotes the germs of real analytic functions
vanishing on X^ at a). In particular, X^ is an .open subset of the
smooth part of W^.

Let/G^^N^+B-^M/f. It is enough to prove that, for each
H, there exist ^^(N)9 and he^ao(M)r such that/- <S>(g) - B-A is
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flat on (p'^Yn-n). By induction, we can assume that / is flat on
cp-TO-

Let X = X^ - (p'^Y^). If X = 0, we can take g = 0 and h == 0.
Suppose X 7^ 0. Then q> |X : X -> N — Y^ is proper. Let a € X , a =
(a\.. .,0, and let b = (p(a). By (3) and the formal division algorithm
(Theorem 6.2), there is a unique G(, e &{; such that

(11.13) supp G/,n9^ = 0,

and /^ - ^(G^,) e Im B^,i = 1, . . . , s. Then, by (4), for all a e (p'^fc),
7.-0.(G,)6lmB,.

Write G,= (G^,...,G,,/,), G,,, = ^ Gj^ e^ =R[M], where
p e N "

^ = (^i, . . .,^). Then (11.13) is equivalent to: D^^, = 0 for all
(Me 91,.

LEMMA 11.14. - For each (PJ) e N" x { 1 , . . .,^}, r^r^ ^cLsrs
^e ^°°(X) sMcfc tfcar;

(i) ^f extends continuously to zero on X — X .
(ii) For a« a e X , ^ = ^o<p; (D^.,^), w^r^ ^ :^a-^ ^x.a ^

induced by the inclusion i . : X -> M^p.

It follows from (ii) and an estimate of Glaeser [16, §§4,5] (or [37,
pp. 180-181]) that, for each j = 1, . . . , ^ , there exists ^Je^^N-Y^)
such that g'^ = G,,/, for all b £(p(X) = Y^i - Y^. By (i), for all
(PJ)eN" x { 1 , . . . , g } , D^|(p(X) extends continuously to zero on Y^.
Since Y^+i is subanalytic, it follows that there exist ^^^(N) such
that gj is flat on Y, and g^ = G^, for all b e (p(X). Put g = (gi, . . . , g q ) .
Then (f-^>(g)Ya e ImB, , for all ae (p-^Y^i). By Theorem 10.1 (and
Remark 10.2), there exists he^^M/ such that/.- <D(g) - B - f c is flat
on (p'^Y^+i), as required. D

Proof of Lemma 11.14. - If (Pj)e9l,, then D^,/, = 0 , for all
f c e < p ( X ) . Hence it is enough to prove the assertion for (PJ)^9l^. Let
a e X , a = (a1, . . ., 0s). We have f^ - A^, • (G^o^.) e Im B^,
f = 1, . . . , s ; i.e., C/^)i^s - ^a(G<p(a)) e Im B..

For each ^ e N , let ^F, (respectively, ^G,) denote the image of
(fi)i^i^s (respectively, of G^)) by the lower (respectively, upper)
horizontal arrow in the completion of the left-hand diagram (8.2.6);
thus,

(11.15) 'F,-A^/G.eImB^.
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Recall that ^G, is the element of ® p ^ f f x a induced by
(D^ocp.)^. Write ^G. = (G.%^ = (Gj3.)^^, where each
G^e ^x,a and G.P = (G^)^,. Then G^ = 0 for all (Pj)e9l,.

We use the notation of 8.2, 8.3. Let f c e N . According to
Theorem 8.2.5. (1), there exists < f = ^ ( f e ) e N such that <f(fe,a) ^ £ for
all aeX. Let P^(X)==max^xP^(a) and let a^(X)=max,,xC^(a).
Put Y^={aeX: p,,,(a)<p^(X)} and Z^={aeX: CT^(a)<a^(X)}.
Then Y^ and Z^ are proper analytic subsets of X, Let a e X . Define
T^(a) and T^. as in 8.3. From (11.15):

a^°^Wc /. Ad^-^n ^ T ^aa ^,fc,a o Ad D^ f e . • F, = T ,̂. • 'G.,

where S,,,,. == Ad'^^D^.o B,,..

Let e(k) denote the number of exponents (PJ) e N" x {1 , . . . ,^} such
that (PJ)^91, and |p| ^ k . Suppose a e X - (Y^-uZ^). By the formal
division algorithm (Theorem 6.2) and Remarks 8.2.4 and 8.3.1,
rank T?^(a) = e(k) ; moreover, if V.(fc) denotes the subspace

{G = (G^),p,^,^,^ e ®!pi^(^x,a/mx,,-^x,a)': Gf = 0 if (PJ) e9l,},

then rankT^(a)IV^) = ^(/c).

By the induction hypothesis and Cramer's rule, there is a minor
8 = 5^ of order e(k) of T?^ such that 8 is not identically zero on X
and such that, for all a e X and (PJ)^, I PI ^ k ,

O1-^) 8..G^=(^):,

where ^G^°°(X) is the restriction to X = X,, - (p'^Y^) of a ^°°
function on U^ which is flat on q)"^). The minor 8 is the restriction
to X of an analytic function defined on U^ (which we also denote 8).

Suppose (PJK9^, I P l ^ f c . By Whitney's extension theorem
[27,1.4.1], there exists T^e^00^) such that r|j3 is flat on W^ - X and
T i f | X = ^ . Then, by (11.16) and (5) above, for all aeU,, (^p);
belongs to the ideal in ^,a generated by 8. and the 9^. By

Theorem 10.1, there exists ^e^Ly such that r^ - 6'hf belongs to
the ideal generated by the 9,, in ^°°(U,). Then hf vanishes on X - X
and, if gf = hf\X, then g^ = Gf. for all a e X , as required.

D



60 E. BIERSTONE AND P. D. MILMAN

CHAPTER III

SEMICONTINUITY RESULTS

12. Algebraic morphisms.

Let K = R or C. Let K[x] (respectively, K[[x]]) denote the ring of
polynomials (respectively, formal power series) in x = (x i , . . . ,xJ.

DEFINITION 12.1. - Let U be an open subset of K'". An analytic
function /e^(U) is Nash if it is algebraic over the ring K[x] of
polynomials in the coordinates x = (xi , . . . ,x j of K"1; f.^., r/i^ fs a
nonzero polynomial P(x,y)eK[x,y] such that P(x,/(x)) = 0/or all x e U .
Z^t N(U) denote the ring of Nash functions on U.

We can define a category of Nash manifolds and Nash mappings
using, as local models, open subsets U of 1C", m e N, together with
the rings N(U).

THEOREM 12.2. — Let M and N denote Nash manifolds, and let
(p : M -> N &^ a Nash mapping. Let A and B be p ^ q and p x r
matrices, respectively, \vhose entries are Nash functions on M. We use
the notation of 8.2, 8.4. Let s e N. Assume that N is an open subset of
K". Then the diagram of initial exponents 91, = 9l(^a) ^ Zariski
semicontinuous on M^p.

Remarks 12.3. - (1) Our proof of Theorem 12.2 together with
Proposition 9.6 in fact establishes 12.2 under the following more general
hypothesis: Let M and N denote analytic manifolds. Let (p : M -> N
be an analytic mapping, and A , B matrices of analytic functions on
M, satisfying the following condition: For every a e M, there are
(analytic) coordinate neighborhoods U of a in M and V of (p(a) in N,
such that (p(U) c= V and both the components of (p|U and the entries
of A|U and B|U belong to N(U).

(2) In the special case that M and N are algebraic manifolds, (p is
a regular (rational) mapping, and A , B are matrices of regular functions
on M, our proofs actually show that 91, is Zariski semicontinuous in
the algebraic sense; i.e., for each aeM5^, {x e M^p: 91^ 91,} is a closed
algebraic subset of M^p.
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To prove Theorem 12.2, we will use a version of « Artin approximation
with respect to nested subrings » (cf. [2], [3], [33]):

DEFINITION 12.4. — A formal power series f(x) e K[[x]] (5 algebraic
if it is algebraic over K[x]. The algebraic elements of K[[x]] form a
subring which we denote K^x).

Clearly, K<x> c K{x}, the ring of convergent power series. Let
(x) == (xi, . . . ,xJ denote the ideal in K[[x]] generated by Xi, . . . x^.

Remark 12.5 [3]. - Let/i(x) e K[[x]]. Then/i(x) is algebraic if
and only if there exist r e N, fi(x)e K[[x]], i = 2, . . . , r,
and ¥j(x,y) e K[x,y], j = 1, . . . , r where y = (y^ . . . ,^,), such that:

(1) F(x,/(x)) = 0, where / = (/ i , . . . ,/r) and F == (Fi , . . . ,F,);

(2)d€t(^\OJ(0))^0.

THEOREM 12.6. - Let

(12.7) f(x,y,u,v) = 0

be a system of equations in x = (xi, . . ., x^), y = (y^, . . ., y^),
u = (Mi, . . . , Up) and v = (v^ . . . , Vq), w/i^r^ / = (/i, . . . ,/r) ^ ^^
^ 6K<x,^,M,r>. Assume that f is linear with respect to v ; i.e.,

q

f(x,y,u,v) = ^ v,gi(x,y,u),
i=0

where VQ = 1 and each ^eK<x,^,uy. Suppose that (12.7) admits a
solution u = M(x)eK[[x]r, v = t5(x,^)eK[[x,}/]p, w/i6?n? u(0) = 0. Then,
for all ? e N , (12.7) /zas a solution u = u(x)eK(xy, v = v(x,y) eK<x,^>9

5MC/2 r^r M(x) - M(x)e(xy-K[[x]r anrf u(x^) - v(x,y) e(x,y)t'K[[x,y]]q.

Remark 12.8. - The analogue of Theorem 12.6 for convergent
power series is false : Let f{x) = f(x^x^ and (p,(x), f = 1, 2, 3, be as

3

in Example 2.8. Then the equation f(x) - g(y) = ^ ^Oc,}QCyi-(piOO)
t'^i

admits a formal solution ^(3/), hi(x,y), f = 1, 2, 3, but no such convergent
solution.
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LEMMA 12.9. — Theorem 12.6 holds under the stronger assumption
that each fj(x,y,u,v) eK[x,y,u,v]. (In this case, it is unnecessary to
assume u(0) = 0.)

Proof. — For convenience, we make the following change of
notation: v will mean (po,v^ ... ,i^), where VQ = 1. We also put
v(x,y) = (uo(x,y), .. .,i^(x,y)), where Vo(x,y) = 1. Let A denote the
localization of the ring K[[x]][y| at the ideal generated by x and y .
Let A denote the completion of A ; of course, A = K[[x,^]].

Each gi(x,y,u(x)) e A. Since v = v(x,y) is a solution of the system
9
S ^lO^1^)) == ^ then, by KrulFs theorem, there is a solution
i=0

v = v(x,y), where VQ = 1 and each u,(x,y) e A . Clearly, v can be chosen
to approximate v to any given order.

We can write u(x,y) = w(x,y)/Wo(x,^), where w = (wo, . . . ,v^), each
W,€K[M][^] and Wo(0,0) + 0. Then ^ w,(x,^(x,}^(x)) = 0. Write

i

each w, and g, as a polynomial in ^i,. . . ,}^
^(x,y) =S w,(x)^€K[M]M, g^x^u) =^ ^(^^"eKtx.ul^r,

a a

where a denotes a multiindex in N". Then M = u(x), w,a = w,a(x) is a
formal solution of the system of polynomial equations

Z Z vv,^,p(x,u)=0, yeN\
i=0 a+P=y

By Artin's theorem [2, Thm. 1.10], there is an algebraic solution
u = u(x), w,a = w,a(x) which approximates the given formal solution to
any specified order.

Put w,(x,}Q =^ w^Oc)/1 and u(x,^) = w(x,}/)/Wo(x,}/), where
a

w = (wo, . . . ,w^) . Then u = u(x), v = v(x,y) is an algebraic solution
of (12.7). Clearly, the solution can be chosen to approximate u(x),
v(x,y) to any specified order. D

Proof of Theorem 12.6. — We make the same notational changes
as in Lemma 12.9 : v will mean v = (vo,v^ . . . , V q ) , where VQ = 1, etc.
Write ^ = fe i , . . . ,g i r ) , ( = 0 , . . . , ^ , where each ^eK<x,^u>. By
Remark 12.5, there exist s e N , s > q, as well as ^y(x,^,M)€K<x,^,ii>,
i = ^ + l , . . . ,5 , ; = ! , . . . , r , and G^(x,^,u,z) e K(x,^,u,z],
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k = 0, . . . , s , £ = 1, . . . , r , where z = (zy), f = 0, . . . , 5 , 7 == 1, . . . , r ,
such that:

(1) G(x,y,u,g(x,y,u)) = 0, where ^ = (̂ .), G = (G^);
(SG\

(2) det(^J(0,^(0))^0.

By the implicit function theorem,

z - g(x,y,u) + ^(0) = c(x,^M,z).G(x,^M,^(0) + z),

where c(x,^,M,z) = (c^(x,y,u,z)) is a matrix whose rows are indexed
by (fj) and whose columns are indexed by (fe,0. Each entry
Cy^(x,^,M,z)eK<x,^,M,z>. Then, for each j = 1, .. . , r ,

9
Z ̂ O^^)
i=0

9 9

= Z ^•(^(0) + ^o) - S Z^^(^^M,Z)G,,(X,^M,^(O) + z).
t^O i=0 fe/

Consider the system of polynomial equations
q

(12.10) ^ F,.(g,(0) + z,) = ^ W,^G^(X,^M^(O) + z),
i=0 k/

j = 1, . . . . r, where u, y and w = (w,^) are the unknowns. Then (12.10)
admits a formal solution u = u(x), v = v(x,y) and

q

^ = w^(x,^,z) = ^ u;(x,^)Cy^(x,^,M(x),z). Let r e N. By Lemma 12.9,
i=0

there exist u = u(x) eK(xy, v = v ' ( x , y , z) e K^.^.z)^1

and w^ = w^(x,^,z)ek<x,^,z> such that v'o(x,y,z) = 1,
M(x) - u(x)e(xy'K[[x]Y, v ' ( x , y , z ) - v(x,y) €(x,y,z)t'K[[x,y,z]]q+\ and

(12.11) Z ^(x,^z).^(0) + z,)
1=0

= Zwo^^^^Gfc^X.^M^),^^) 4- Z),
fc/

7 = 1, . . . , r. Substitute Zy = gij(x,y,u(x)) - gy(0) into (12.11), to get

q

Z Vi(x,y)g,(x,y,u(x)) = 0,
t=0

where v,(x,y) = v^x,y,g(x,y,u(x)) - g(0)), i = 0, . . . , q. D
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Remark 12.12. - Let/ i(x) eC<x> = C<Xi, . . . ,x^> . Let ^(x),
f = 2 , . . . , r , and F^(x,^), j = l , . . . , r , ^ = ( ^ 1 , . . . , ^ ) , be as in
Remark 12.5. Put Z = {(;c,y) eC"^: F(x,y) =0}. We can assume that
the projection n(x,y) = x of Z onto C" is finite. The smooth points of
Z which are not critical points of n project onto the complement of a
proper algebraic subset V of C". Clearly, /i extends to C" — V as a
multivalued holomorphic function, whose various determinations are
algebraic at every point of C" — V. By differentiating the system of
equations F(x,/(x)) = 0 with respect to Xj, we can see that the partial
derivative SfJQxj also extends to C"1 — V as a multivalued holomorphic
function whose various determinations are algebraic at every point.

Proof of Theorem 12.2. — By Lemma 9.5, we can assume that M
is connected. Let ao e M^p c: M5. There is a product coordinate

s

neighborhood U = Y[ U1 of ao in M5 such that the components of (p

and the entries of A and B all restrict to Nash functions on each U1.
Let x = (xi, . . . ,x^) (respectively, y = (^i, . . . ,^)) denote the coordinates
of each U1 (respectively, of N). The notation of this paragraph will be
fixed throughout the remainder of the section.

LEMMA 12.13. - Let a e M ^ n U , a = (a1, . . . ,0. Let <D,:
s s s

^(a) -> ®^ and Ba: O^,-^ ®^, as \vell as <D, and B., be as in

8.2. Let Ge^p?.) and He©^ . Put f = <D,(G) + B.(H) e ®^.,

/ = (/1, . . . ,/5). Suppose each f e (9^ = K[[x]F fs algebraic. Let t e N.
TTi^n ^r^ ^mt ^ e ^(a) fln^ he Q) ̂ r \ such that g and h are algebraic,

f= 0,fe) + B.W, r̂i g - Gem^.^, h - He ®m^,.

Proq/: - Write H == (H1, . . . ,H5). Then

(12.14) f(x) = A/x).G((p/x) - (p^)) + B^.H'^),

i = 1, . . . , 5. In other words, for each i = 1, . . . , 5, there is a p x n
matrix Q\x,y) with entries in K[[x,^]] such that

(12.15) f\x) - A/x).G(}0 - B^-H1^)

=Qi(^)•^- (P^)+ (P(a1)).
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In this system of equations, G(y) and the H^x), Q^x.y) are the
« unknowns ». Since A, B and (p are algebraic, then, by Theorem 12.6,
there is an algebraic solution g ( y ) , h\(x,y), q^x.y) of (12.15); i.e.,

(12.16) Ax) - A^x)-g(y) - B,(x).^0c^)

= ^(^y)-(^ - (p,,0c) + (p(^)),

i = 1, . . . , 5, such that g(y) - G(y) e (y)1 • K[[^]]9 and each
h\(x,y) - Hl(x)e(x,.yy•K[[x,y|]r. Substitute y == (p^(x)- (p(^) back into
(12.16), for each f , to see that g ( y ) , h^x) = ^(x,cp^(x) - (p(a1)) is a
solution of (12.14); clearly fr(x) - H'(x) e (xy-Kp.yir.

D

COROLLARY 12.17. - ^ a = { G e ^ ) : ^(G)€lmB«} 15 generated
by algebraic elements.

Proof. - Let (PJ) be a vertex of 91, = 9l(^). By Lemma 12.13,
there exists g e ^?a such that ^ is algebraic and in g = y^.

D

We now complete the proof of Theorem 12.2. We can assume that
K = C. Let X denote an irreducible germ at ao of a closed analytic
subset of M5^. We can assume that X is a closed analytic subset of U
and that its smooth points are connected. Let 9lx denote the generic
diagram of initial exponents (Definition 8.4.3). By Proposition 8.4.6(1),
it suffices to find a proper closed analytic subset W of X such that
91, = 9lx for all a e X - W.

Let (P^), <f = 1, . . . , r , denote the vertices of 9lx. Let k = fe(X)
as in Definition 8.4.1, so that each |p^| ^ k . Let D^ be as in (8.3.2)
and let Z c= X be as in Remark 8.4.4. By Lemma 8.4.5, 91. = 9lx for
all a e D f c n ( X - Z).

Let a i e D f c n ( X - Z ) , ai = (a;, . . . ,a\). Put b i = ( p ( a i ) . Let
G^y) = y^ - / ( y ) , <f = 1, . . . , r , denote the standard basis of ^,
so that supp/n9lx = 0; for each^f. By Corollaries 6.8 and 12.17,
each G^(y) is convergent. Thus, for b in some neighborhood of fci.we
can substitute b - fci + y into G'', and expand in powers ofy:

G\b - b, + y) = (b - b, + yf^ - /(b - b, + y)
= y ^ - r i ( y ) ,
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where supp ri(y) n 9lx = 0. For a in a sufficiently small neighborhood
°i ,al in Mv ? put ^^ = G'(<P(a) ~ fc! + y) • Then °i(y) =
^ - r.^), where ^ = r^. Clearly, G^e^. If a e X - Z, then
91, c 9lx by Proposition 8.4.6.(2), and it follows that in Gf = /^. In
particular, 91, = 9lx in a neighborhood of ai in X .

By Lemma 12.13, for each ^ = ! , . . . , ? , there exist ^e^p,
^e® ^j, ^= (^, . . . ,^), such that ^ and each h\ are algebraic,

in^=^'^, and <I^(^) = B^(^). In particular, ^eR.,. For each
^ = 1, . . . , ( , put

G^(v;y) = ^ (Dy)(.)^ e ^[M]9,
peN" r '

H^;x)= ^ (D^)^)^ G ^[[Mr, f = l , . . . , s ,
aeN'" a*

where M = (1^, . . . ,uJ and v = (1:1, . . . ,^). By the formal division
algorithm (cf. Remark 6.5),

(12.18) /^ = $: ̂ y)0(v,y) + R^;^),

^ = 1, . . . , r , where, for each ^,

Q,(u;^) e ̂ [[y|], R'(i;;^) G ^JMP, supp R^v,y) n 9lx = 0,

and the coefficients of Q^ and R'" (as elements of ^) are algebraic.
(They are linear combinations of the coefficients of the G\v\y) divided
by products of powers of the D^gi^v), where gf = (^f, . . .,^).)

For each <f = 1, . . . , ( , write

R^;j0= ^ RL-(r)/<
(PJ)^^X

It follows from Remark 12.12 that there exist:

(1) A proper algebraic subset V of N such that f c i ^ V , and, for
each f = l , . . . , 5, a proper algebraic subset W of U' such that
a\iW.
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(2) For each f == 1, . . . , t and (PJ) i 9lx, an (a prfon, multivalued)
analytic function pj^ defined on N - V, such that Rpj(r) is the formal
Taylor expansion (RpJ^(i;) of some branch R^ of pj^ at f c i . Likewise,
for each ^ = 1, . . . , r , multivalued analytic functions defined on N - V
(respectively, multivalued analytic functions defined on V1 - W1,
f = l , . . . , s ) which extend the coefficients of Q^ (respectively, the
coefficients of H;., i = 1, . . . , s).

For each <f = 1, . . . , ( , write ri(y) = ^ ^j(a)/'7. We claim that,
(PJK^x

for a in a sufficiently small neighborhood of a^ in X - Z,

(12.19) rp,(a)=Rp,((p(a)),

for all ^ , P, j . Indeed, if a belongs to a suitable neighborhood of ai ,
then Rpj((p(a)) = R|;j((p(a)-fci) and

G^p(a)-b^) = g'((p(a)-fci+^)e^..

Thus /^-R^a)-^;}^^. Moreover,

suppR /((p(a)-fcl;^) n 9lx = 0.

For a close enough to ai in X - Z, 91. = 9lx. so that

G^O=^-R^((p(a)-fc^),

by uniqueness of the standard basis; hence (12.19).
s

Let W = X n ((p-^V) u (J (^"^W)), where ^: M^-. M denotes

the projection ^(x) = x1, x = (X 1 , . . . ,x5). Then W is a closed analytic
subset of X , and a^W. By (12.19) and (2) above, the coefficients
rp/a) of each Gi(y) = /^ - r[(y), as well as the coefficients of the
Q^ composed with (p, and the coefficients of the H;., can be analytically
continued (as multivalued functions) throughout X - W. By continuity
and (12.18), if aeW, then any analytic continuation of (the coefficients
of) Gi(y) to a results in an element of ^,. If ae X - (ZuW), then
9la c: 9lx; it follows from uniqueness of the standard basis that any
analytic continuation of G^(y) to a gives the same result, and that
9 l a=9^x . D
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13. Regular mappings.

Let K = R or C.

THEOREM 13.1. - Let M and N be analytic manifolds {over K) and
let (p : M -> N be an analytic mapping. Suppose that (p is regular (as
in 2.7). Let s e N. For each a e M^, to H, ^nor^ t^ Hilbert- Samuel

s

function of the ring ^p(a)/^a» ^here ^ = (°| Kercp?, a = (a1,.. .,0.

TTi^n H, is Zariski semicontinuous on M.

Remark 13.2 (Tougeron). - If s = 1, the uniform Chevalley estimate
(8.2.5(1)) can be proved using results of [39].

Remark 13.3. - Let V be an analytic manifold, and let Z be a
closed analytic subset of V. We denote by ^z the subsheaf of ideals
of <^v of germs of analytic functions which vanish on Z. Suppose that
dim V = n and that Z has pure dimension n - 1. Let b e V. Then
^z,b is a principal ideal. Let [i be as in Remark 6.10(2); we call
Hz(&) = H the multiplicity of Z at b. Thus [iz(b) is the largest j ^ e N
such that ^z,fc c ̂  where m^, is the maximal ideal of ^v,& •

Proo/ o/ Theorem 13.1. — By Lemma 9.5, we can assume that the
generic rank r^(a) of (p near a is constant on M ; say r^(a) = n — k ,
aeM. Let aoe M^, ao = ( f l^ , . . .,a§). Put bo = (p(ao). We can assume
that N is an open subset of K" and bo = 0. Since (p is regular, then,
after replacing M and N by suitable neighborhoods of {ao,.. .,ay and
bo (respectively) if necessary, there is a closed analytic subset Z of N

s

of dimension n = f e , such that (p(M) c Z and ^z,o = 0 Kercp^.

The result is trivial if k = 0. Suppose that k = 1. We can assume
that K = C and that Z has pure dimension n — 1. Since Z is coherent,
the multiplicity of Z is Zariski semicontinuous, by Theorem 7.4 and
Remark 6.10. Let T| : Z7 -^ Z denote the normalization of Z. Since r|
is finite, it follows that (after shrinking N if necessary) there is a
filtration of Z by closed analytic subsets,

Z = Zo =» Zi =) . . . =) Z,+i == 0,
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such that, for each i = 0, . . . , t :
(1) Z, — Z,+i is smooth and connected.
(2) Let Z; = TI-^Z,). Then TI|(Z;-Z^): Z; - Z;^ ^ Z, - Z,^ is

a smooth covering projection.
(3) The multiplicity of Z is constant on Z, — Z,+i.

It follows from (2) that, for each f , there are finitely many analytic
sets Zy defined in a neighborhood of Z , — Z , + i , such that, for all
beZ, — Z,+i , the germs Zy^ of the Zy at b are the distinct irreducible
components of Z^,. Then, by (3), for each i and j , the multiplicity of
Zyf, is constant on Z, - Z,+i .

Let X^qr^Z,), f = 0 , . . . , r . Suppose that a=(a1,.. .^eX.-X.-n.
Then, for each ^ = 1, . . . , s , there is a j such that Ker (p*.
= ^Zy,<p(a) • It follows that Ker (p^ = ^zy,<p(x) for x = (x1,... ,x')
in some neighborhood of a in X, - X , + i . Therefore, by Remark 6.10,
the Hilbert-Samuel function H. is constant on each connected component
of X, — X , + i . By Proposition 8.3.7, H. is Zariski semicontinuous on
M5 This completes the proof in the case k = 1.

In general, by the representation theorem for germs of analytic sets
[32, Ch. Ill], we can assume:

(1) There is a neighborhood V of 0 in K"^ such that
N = V x K^ c: K"^ x K^.

(2) Let y = (^i, . . . ,}/„) denote the coordinates in K". Then, for each
i = 1, . . . , f e , there is a monic polynomial P,e ^(V)[Y^-,+i] such that
P, vanishes on Z.

(3) Let d, = degree P,, i = 1, . . . , k . Put P = P^ and d = ^. Let
A(ji,.. .,^-fe) denote the discriminant of P. Then A is not identically
zero and, for all j = 1, . . . , d and all a = (ai,.. .,a^) e ̂ k with
0 ^ a,< d,, i = 1, . . . , f e , there exists foy e ̂ (V) such that

j
Q,=A.^_^ ...KI - Eiv/.: î

vanishes on Z.

Suppose a = (a1,... ,a5) e M^ and fc = <p(a), b = ( & i , . . . ,&„). Set
V = (h i , . . . A-fe). Suppose G e ̂  = K[[^]]. Then, by the formal
Weierstrass division theorem, there exist Gg, e S y , 0 ^ a, < ri,,
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i = 1, . . . , k, such that

G - Z G,.^_,,, . . .^' e (P,)-^,
0^o(,<(/,

where (P,) denotes the ideal of ^ generated by the P,. By (3), there
exist H , e ^ , ' , 7 = l , . . . , d , such that

d
A ^ . G - ^H,.^:{.^ G (P,,Q,)-^.

Let TT : N -> V = V x K denote the projection
^ ( y \ . " ' . y n ) = (Vi,. • .J^+i). Put v|/ = T T O (p. Then \|/ is regular and

s

has generic rank n — k. If G € Q Ker (p^, then
d s

H = Z H,-^:Li. e H Ker 4^. It follows from the case k = 1 and

Theorems 8.2.5 and 9.1, that there is a neighborhood IT of ao in
M^ and a filtration of IT by closed analytic sets,
IT = Yo =3 YI =) . . . =3 Y^+i = 0, such that, for each X- = 0, . . . , t ,
there exist finitely many h^ e ^(Y^;Y^+i)[[yi,.. .,^-^+1]] such that the

s

^n(a;^i,.. .,^-k+i) generate Q Ker \J/^, a = (a1,.. .,^)eY^ - Y ^ + i .

Then by Proposition 9.4, there is a neighborhood U of ao in M^
and a filtration of U by closed analytic sets,
U = Xo => Xi =3 . . . => X^+i = 0, such that, for each ^ = 0 , . . . , r,
there exist finitely many elements g^e ^(X^;X^-n)[[y|] such that the

s

g^(^y) generate Q Ker <p^, for all a = (a\.. .,a5) eX^ - X^i.
f=\

Therefore, by Lemma 7.2 (2) and Proposition 8.3.7, the Hilbert-Samuel
function Ha is Zariski semi-continuous on M5 D

14. The finite case.

Let K = R or C. Let M and N denote analytic manifolds (over
K) and let (p : M -^ N be an analytic mapping. If a e M, then (9 a is
an ^(p(a)-module via the homomorphism (p? : (9^ -> (9 a .



RELATIONS AMONG ANALYTIC FUNCTIONS 71

DEFINITION 14.1. — We say that (p is locally finite if, for every
aeM, (9 a ls a finitely generated ^p^-wodufc. (This definition extends
to morphisms of (possibly singular) analytic spaces.)

THEOREM 14.2. — Let M and N be analytic manifolds, and let
(p : M -^ N be a locally finite analytic mapping. Let A and B be p x q
and p x r matrices of analytic functions on M, respectively. We use the
notation of 8.2. Let s e N. Then there is a uniform Chevalley estimate
(8.2.5(1)) on M;,.

Theorem 14.2 extends to the case that M is a (possibly singular)
analytic space which is Cohen-Macauley: see Remark 14.13 after the
proof.

Proof of Theorem 14.2. - We can assume that K = C and that N
is an open neighborhood of 0 in C". By Lemma 9.5, we can assume
that M has pure dimension m. Let ao = (fli, . . . ,ao)e M5^. Shrinking
N and replacing M by an appropriate neighborhood of {a^, . . . ,floL
we can assume that (p is proper and that Z = (p(M) is a closed analytic
subset of N, each irreducible component of which contains (p(ao).

Suppose that (p(ao) = 0 in N c: C". Since dim Z = m, we can assume
that N = 1ST x •1ST c: C" x C^ and that the projection n: N -> N'
induces a finite (i.e., proper and locally finite) mapping of Z onto N\
Let 9 = 7i o (p, 9 = (9i, . . . , 9J . Let a e M and let m^^a denote the
iHeal in (9 a generated by rrie^) (via the homomorphism 9*). Since 9 is
finite, dimc^a/^w^a < °o •

LEMMA 14.3. - Let £ = dimc^a/^fl)-^- Then m^1 c m ^ ' ^ a '

Proof. - If j ^ 1 and me^-^a -+- ̂  = m^^a + TH^S then, by
Nakayama's lemma, m^'^a = ̂ w^a + ^a, so that m^ c: me^-^-
Suppose m^1 ^- me^-^. Then, for all j ^ £ + 1,

dimc^/One^-^+m^1) > dimc^/^e^-^+m^).

Therefore, dim^a/me^ • ̂ , ^ dimc^/One^-^+m;^2) > <f ; a contra-
diction. Q

Remark 14.4. - We define the multiplicity mult,, 9 of 9 at a by

mult,, 9 = dimKQ _ Oa ® K^) ,
^9(a)
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where KQ^) denotes the field of fractions of G^a)- Then
mult^e = dimc^/^e^-^a (by [31, Ch. 6, Thm. A.10] and [40, App. 6,
Thm. 3]). Let d denote the number of points in a generic fiber of 9.
Then, for all be N\ ^ mult, 9 = d (WeiFs formula [31, Ch. 6,

(A.8)]).

COROLLARY 14.5. - For all aeM, m^1 c= n^'^a.

Let X be an irreducible germ at ao of a closed analytic subset of
M^p. In order to prove Theorem 14.2, it suffices to find (a germ at ao
of) a proper closed analytic subset Y of X, and a function { = <f(fe)
from N to itself, such that, for a e X — Y in some neighborhood of
ao, ^(fe,a) ^ ^(k) for all f e e N . (We use the same symbol for a germ
at ao and a suitable representative of the germ in some neighborhood.)

Put 9 = 7i o <p : M^-> N\ (Clearly, M^ c: Me c= NT; 6 is the
restriction to M^p of the mapping M^ -> N' induced by 9.) Then 6 is
finite.

LEMMA 14.6. — There exists (a germ at ao of) a proper analytic
subset Y' of X and, for all i = 1, . . . , s, a positive integer rf;, such that :

(1) T = XnO-^T));

(2) mult^9 = d, for all a = (^ . . . . .OeX - Y'.

Proof. - Let a e M. By Remark 14.4 and Corollary 14.5,
mult,, 9 = dimc^/Tn^1 - dimcme^-^/m^1. With respect to local
coordinates x = (x i , . . . , x^ ) in M, the vector space nie^'^a/m^1 is
generated by the equivalence classes modulo m^1 of
(x-aY-(6j(x)-Qj(a)), where 7 = l , . . . , w and aelV", a ^ d . Thus
dimcme^-^a/m^1 is the rank of a matrix whose entries are analytic
functions in a. (Its columns are the partial derivatives through order d
of the (x—ay9(Qj(x)—Qj(a)) with respect to x, evaluated at x = a.)
Therefore, mult,, 9 is (analytic) Zariski (upper-) semicontinuous. The
result follows since 6 is finite. D

Remark 14.7. - Let ai = (a}, . . . , a\) e M^. Suppose that
{a\, . . . ,a\} contains r distinct elements c1, . . . , c\ where d is repeated
\js! times, j = 1, . . . , r, and ^^j = s . Choose connected open neighbo-
rhoods U of d i n M, j = 1, . . . , r, and V of 6(ai) in N\ such that
the U7 are mutually disjoint and 9(U7) = V for each j. Put U = u U7.
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Then:
(1) Since 9|U is finite, ^ mult,, 0 is constant on V.

aeUne"1^)

(2) If a = (a1, . . . , a3) is sufficiently close to ai in M^p, then {a1, . . . , a5}
contains ^ elements of LP, for eachj.

COROLLARY 14.8. - Let Y' be as in Lemma 14.6. There exists r ^ 5
anrf a surjection a o/ {1, . . . ,5} onro { 1 , . . . , r } satisfying the following
conditions: Let M^p -+ M^ denote the embedding given by
(a1, . . . , 0 -. (a0^, . . . , ̂ ). TTi^i ;

(1) X c = M ^ .
(2) // a = (a1, . . . ,^) e X - T and i + 7, then a1 + of.

Proof. - It follows from Lemma 14.6 and Remark 14.7 that, for
each i and j, {a = (a\ . . . ,0 eX-Y' : a^af} is open in X - Y\
Clearly, it is closed. Since X - Y' is connected, the result follows. D

Let Y' be as in Lemma 14.6. According to Corollary 14.8, we can
assume, in our proof of Theorem 14.2, that if a = (a1, . . . ,0s) e X - Y'
and i ^ j , then a1 ^ a!.

For each a = (a 1 , . . . ,0 e X - Y', put ^, = © (9 . and E, =
» = i a

s

© ^/^(fl')'^-- Then ^, is an ^e(a)-module via the homomorphism
s

(9^)i^^ ^e(a) -> ® ̂ , and E, is a vector space over C. Clearly, E.

identifies with ^'a/^ie(a) • ̂ a •

Replacing M, if necessary, by a smaller neighborhood of
{a^ ..., a'o], we can assume there exist r|i, . . . , T|̂  e ^(M) and ai e X - Y'
such that the r^ induce a basis of E^. (We can, for example, choose
r | i , . . . ,r |^ to be polynomial with respect to local coordinates in a

s

neighborhood of each ao.) By Lemma 14.6, dimcE. = ^ d, is constant

on X - Y'. Thus there is (a germ at ao of) a proper analytic subset
Y of X such that Y' c: Y and the r|y induce a basis of E., for all
a e X - Y . Since 0 is finite, we can assume that Y = X nO'^Y)).

LEMMA 14.9. - For each a e X - Y , r|i, . . . ,T |^ induce a free set
of generators of the module c .̂ over (9^.
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Proof. — Let a = (a1, . . . , 0s) e X — Y . By Nakayama's lemma,
r|i, . . . , r\y induce a set of generators of e^a over (9^. By Remark 14.4,

s s

o = dimcE. = ^ mult^e = ^ dimK^/^®^Ke(a), where KQ(,) is the

field of fractions of (9^. Thus CT = dim^/ ^a®^/,)Ke(a), as required.
D

COROLLARY 14.10. - Put ^i(k) = ( r f + l ) ( f e + l ) - 1, where f c e N .
Z^ a = (^ . . . . .OeX - Y and let H^-e^a), j = l , . . . , a . //

t ^ (H/) • r|̂  e m^'' • ̂ , ^ = 1, . . . , s, r^n eacfc H, e mS(:/ • ^(a).
7 = 1

Proof. - If a e M, then, by Corollary 14.5, m^1 c m^^a' Therefore,
,s'

for all a = (a ' , . . . , 0s) e M,, © m^l)t • O^ <= i<.) • ^r., where
,s

^a = ©^. The result follows from Lemma 14.9. D

LEMMA 14.11. - LetfeO(M). Then:

(1) If a = (a1, . . ., a5) e X - Y , there exist unique hj ̂  e ^e(a)»
• 0

7 = 1 , . . . , C T , such that, for each i = 1, .. . ,5 , f^ = ^^'(^.a)' ̂ ,0"

(2) For ^acfc 7 == 1, . . . , or and P e N", let /if (a) = D^^a)), w/im?
a e X - Y . Then ^e^(X;Y).

Proo/. - (1) By Lemma 14.9.

(2) If a e M, let ©a '• ^{a) -* ^a denote the module homomorphism
CT

over 9? defined by ©^) = ^ 9*(^)-r|^^ where ^ = (^i, . . .,^0)
s

e (D^a). If a = (fl1, . . . , a5) e M^ c= Me, let 0,: (9^ -> ® (9^ denote(= i
A- S

the composition of ® 0^ with the diagonal injection (9^ -^ ® ^?(a).

Suppose that a e X - Y . Acording to (1), (f^i^s = ®a(^a), where
^a = (^i,a» • • • »^o,a)- We use the formalism of 8.2 and 8.3, where p = 1,
q = CT, B = 0, <&, is replaced by ©a, etc. For each ^ e N , let ^Fa
(respectively, ''H.) denote the image of (f^i^s (respectively, of /ij by
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the lower (respectively, upper) horizontal arrow in the left-hand diagram
of (8.2.6); thus, ^F.=A^-^H, . Recall that ^H. is the element of
©ipi^x,a induced by (D^.o9.)ipi^. -Write U = (Hpj,,)ipi^i^^, where
each Hpj,,e^x,a-

Let k € N and let <f =• ^{k). Then
A-iP^/cWr^ ^rr — r^ kr_s
Ad L ^ k a - ^a - ^^a* "a •

Let e(k) denote the number of pairs (P^eN" x { ! , . . . , a} such that
| PI ^ k (e(k) is the number of columns of Q^g). By Corollary 14.10
and Lemma 8.1.1 (2), rankC^a) = e(k). Then, by Cramer's rule, for
all (M^N^ x {1, . . . , < j } , |p| ^ f e , we obtain (;pj, o)pj€^(U) (U is a
product coordinate neighborhood of ao in M") such that, if a e X - Y,
then o)pj(a) ^ 0 and Hp^ = ^j,a/cE)p^, as required. D

We can now complete the proof of Theorem 14.2. Since the projection
of Z onto N' is finite, then, by the finite coherence theorem of Grauert
and Remmert [32, Ch. IV, Thm. 7], we can assume there exist
^i, . . . , ^p e ^(N) satisfying the following condition: For all
b e Z and G e ̂ , there exist Gi, . . . , Gp € ̂  such that

p
G - ^ 7i?(G/,)«^ e ^ z ^ b ' ^ b , where ^z denotes the sheaf of germs

h=\

of analytic functions which vanish on Z.

Let a e X - Y , a = (^, .. .,0. By Lemma 14.11 (1), there exist
unique p x ^ matrices C^a, /i = 1, . . . . p, 7 = 1, . . . . a, and unique
p x r matrices D^a, ^, 7 = 1, . . . , a , all with entries in ^e(a)» ^ch
that, for all i''. = 1, . . . , s,

(^W9^ =i:^-(C^o8,),

^•B^ = Sr|,^(D,,,o^,).
j = i

By Lemmas 14.11 (2) and 7.2 (3) and Remark 7.6, there exists ^ e N
satisfying the following condition: Let a e X — Y . Suppose that

p
G,e^, , , h = 1, . . . , p , H,e^e(a), ^ = 1, . . . , a , and ^ C,^.G, +0(a)5

^ D^-H^emS^-^, 7 = 1, . . . , a . Then there exist G^e^ and
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H^€^ such that EC,,...G, + SD,,,..H^ = 0, 7 = ! , . . . , a, and
/i ^ '

G, - G, e mS(.) • ̂ , H, - H; e T<.) • ̂ .

Let ^ ( f e ) = ^ ( f e + ^ ) , f e e N . We claim that <f(fe,a) ^ <f(fe) for all
a e X - Y and f e e N : L e t a e X - Y and let Ge^ . Suppose that

A^-(GO(^,) + B^-H'em^1-^, where H'e ̂ , f = 1, . . . , s. There

exist Gi, . . . ,Gpe^ such that G - S ̂ ,<p(a) • (G^oft^) e ^z,<p(.) • ̂ a) •
/i

Also, there exist unique Hi, . . . , H^e (9^ such that H1 =
E r|^.- (H^o&^), i = 1, . . . s. Thus, for each i = 1, . . . , s,

<^ '

A,,.(Go^,) + B^.H' = f: T^-ffE C,,,.G, + 1 D,,,.H,)o@l
^•=1 ' \ \A= l ^=1 / /

By Corollary 14.10, ^C^.G,+ED^.H,e mii^1.^, 7= 1,. . . , a.
A (

Thus there exist G;, . . . , Gp e (9^ and H'l, . . . , H^ e ^e(a) such

that EC,^ • G, + ED,,,. • H^ = 0, 7 = 1, . . . , a, and each
h f

G,-G,6mS(:)1.^.,. Put G'=f: (̂.).(G,oft,(.)). Then A^(G'o^,)

e I m B , , (' = 1, . . . , s , and G — G' e m^\ • €>^, as claimed. This
completes the proof of Theorem 14.2. D

Remark 14.12. - (1) Let a = (a', . . . . aQeX - Y. Let G£^(.)

and let H e ®^,, H = (H', . . . , H5). Let / = <&,(G) + B,(H) 6 ® ^,;

i.e., /=( / ' , . . .,/5), where each /• = A^(Go<^,) + B^.H". Suppose
that /' 6 ̂ ,, i = 1, . . . , s. Then, for all k e N, there exists g e (P^) and

h e ® (9^ such that / = ^(g) + B.(/i), g - G e m^' ff^, and
S ^

h — H e © m^ • (9\: We use the notation introduced above. Let
,= i a a

Gi,...,Gpe^ such that G - E ,̂<p(a) • (G.oft̂ ) G ̂ z,<p(.) • ̂ (.), and

let Hi, . . . , H,e ^(.) such that H1 = ^TI^, • (H,o^,), i = 1, . . . , s . By
e ' '
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Lemma 14.9, ^C^.G, + ED^.H.e ̂  j = 1, . . . , a. By KrulPs
h £

theorem, there exist gi, . . . , gp e ̂  and /ii, . . . , hy e ^e(a) such that

EC,,,.-^ + SD,,,..̂  = ZC^.G, + SD^.H,,
/i { h { .

j = 1, . . . , o, and each ^ - G^e m^ • 3^, ^ - H^ e m^a) • ^e(a). Put

8 == Z^,<p(a)-(^o7t<p(a)), ^ = Z^"(^09,^ f = 1, . . . . s, and
A <f

h=(h{^..,hs).
(2) Let a = (a1, . . . , a5) e X - Y . Then .̂ = {G € &^: ^.(G)

elm 6,} is generated by .̂ n (9^ (cf. Corollary 12.17).

Remark 14.13. - Let X be an analytic space over K. It follows
from theorems of Buchsbaum and Eisenbud [9, Thms. 1.2, 2.1] and
[37, 1.5.1] that {xeX: ^x,x is Cohen-Macauley} is open in X. (We are
grateful to David Eisenbud for the reference.) We say that X is Cohen-
Macauley if, for all x e X , ^x,x is a Cohen-Macauley ring. Thus, a
Cohen-Macauley real analytic space admits a Cohen-Macauley complexi-
fication,

Our proof of Theorem 14.2 extends to the case that M is a Cohen-
Macauley analytic space with essentially no change: We can assume
that K = C. The equalities of Remark 14.4 remain valid. In Lemma 14.11,
we can assume that M is embedded in an open subspace W of C"1,
and that (9^ = ^w/L-^w» where L is a 1 x r matrix with entries in
(^(W); the same proof goes through using the formalism of 8.2, 8.3
with B = L rather than B = 0.

N.B.: Bibliography published in the first issue of volume 37 (1987).
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