GENEVIEVE POURCIN

Deformations of coherent foliations on a compact normal space

<http://www.numdam.org/item?id=AIF_1987__37_2_33_0>
DEFORMATIONS OF COHERENT FOLIATIONS
ON A COMPACT NORMAL SPACE

by Geneviève POURCIN

Introduction.

Let X be a normal reduced compact analytic space with countable
topology. Let Ω^1_X be the coherent sheaf of holomorphic 1-forms on X and
$\Theta_X = \text{Hom}_{O_X}(\Omega^1_X, O_X)$ its dual sheaf. The bracket of holomorphic vector
fields on the smooth part of X induces a C-bilinear morphism
$m : \Theta_X \times \Theta_X \to \Theta_X$ (section 1); therefore, for any open subset U of X, m
defines a map $m_U : \Theta_X(U) \times \Theta_X(U) \to \Theta_X(U)$ which is continuous for the
usual topology on $\Theta_X(U)$.

We shall study coherent foliations on X (section 1 definition 2), using
the definition given in [2], this notion generalizes the notion of analytic
foliations on manifolds introduced by P. Baum ([1]) (see also [8]). A
coherent foliation on X defines a quotient O_X-module of Θ_X by a m-stable
submodule (condition (i) of definition 2), this quotient being a non zero
locally free O_X-module outside a rare analytic subset of X (condition (ii) of
definition (ii)).

Then the set of the coherent foliations on X is a subset of the universal
space H of all the quotient O_X-modules of Θ_X; the analytic structure of H
has been constructed by A. Douady in [4].

The aim of this paper is to prove that the set of the quotient O_X-modules
of Θ_X which satisfy conditions (i) and (ii) of definition 2 is an analytic
subspace \mathcal{H} of an open set of H and that \mathcal{H} satisfies a universal property
(Theorem 2). Any coherent foliation gives a point of \mathcal{H}, any point of \mathcal{H}
defines a coherent foliation but two different points of \mathcal{H} can define the
same foliation (cf. section 1, remark 3).

Key-words: Singular holomorphic foliations - Deformations.
In section 2 one proves that, in the local situation, m-stability is an analytic condition on a suitable Banach analytic space (of infinite dimension).

In section 3 we follow the construction of the universal space of A. Douady and we get the analytic structure of \mathcal{H}.

Notations:

- For any analytic space Y and any analytic space not necessarily of finite dimension Z let us denote $p_{Z}: Z \times Y \to Y$ the projection.

- For any $O_{Z \times Y}$-module \mathcal{F} and any $z \in Z$ let us denote $\mathcal{F}(z)$ the O_{Y}-module which is the restriction to $\{z\} \times Y$ of \mathcal{F}, by definition we have for any $y \in Y$

$$\mathcal{F}(z)_{y} = \mathcal{F}(z,y) \otimes_{O_{Z \times Y}} O_{Z,z}/m_{z}.$$

1. **Coherent foliations.**

Let X be a reduced connected normal analytic space with countable topology; let Ω_{X}^{1} be the coherent sheaf of holomorphic differential 1-forms on X and

$$\Theta_{X} = \text{Hom}_{O_{X}}(\Omega_{X}^{1}, O_{X})$$

Θ_{X} is called the tangent sheaf on X. Let S be the singular locus of X, then S is at least of codimension two and the restriction of Θ_{X} to $X - S$ is the sheaf of holomorphic vector fields on the manifold $X - S$.

Bracket of two sections of Θ_{X}.

The bracket of two holomorphic vector fields on the manifold $X - S$ is well-defined; recall that, if $z = (z_{1}, \ldots, z_{p})$ denotes the coordinates on C^{p}, if U is an open set in C^{p} and if a and b are two holomorphic vector fields on U, with

$$a = \sum_{i=1}^{p} a_{i}(z) \frac{\partial}{\partial z_{i}}, \quad b = \sum_{i=1}^{p} b_{i}(z) \frac{\partial}{\partial z_{i}}$$

then we have $[a,b] = c$ with

$$c = \sum_{i=1}^{p} c_{i} \frac{\partial}{\partial z_{i}} \text{ where } c_{i} = \sum_{j=1}^{p} \left(a_{j} \frac{\partial b_{i}}{\partial z_{j}} - b_{j} \frac{\partial a_{i}}{\partial z_{j}} \right).$$
Let $m_U : O(U)^p \times O(U)^p \to O(U)^p$ be the \mathbb{C}-bilinear map which sends $((a_1, \ldots, a_p), (b_1, \ldots, b_p))$ onto (c_1, \ldots, c_p); the Cauchy majorations imply the continuity of m_u for the Frechet topology of uniform convergence on compacts of U.

Proposition 1. — For every open subset U of X the restriction homomorphism

$$\rho : H^0(U, \Theta_X) \to H^0(U - U \cap S, \Theta_X)$$

is an isomorphism of Frechet spaces.

Proof. — One knows that ρ is continuous; by the open mapping theorem it is sufficient to prove that ρ is bijective.

Now we may suppose that X is an analytic subspace of an open set V in \mathbb{C}^n; let I be the coherent ideal sheaf defining X in V; one has an exact sequence

$$0 \to \Theta_X \to O_X^e \xrightarrow{\alpha} \text{Hom}_{O_U}(I/I^2, O_X)$$

where the map α is defined by

$$\alpha(a_1, \ldots, a_n)(f) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial z_i}|_X$$

z_1, \ldots, z_n being the coordinates in \mathbb{C}^n.

Because the complex space X is reduced and normal it follows from the second removable singularities theorem two isomorphisms

$$O_X(V) \cong O_X(V - S)$$
$$I(V) \cong I(V - S).$$

Then the proposition 1 follows from (1) and (2). As an immediate consequence of proposition 1 we obtain the following corollary:

Corollary and Definition. — It exists a unique homomorphism of sheaves of \mathbb{C}-vector spaces

$$m : \Theta_X \times \Theta_X \to \Theta_X$$

extending the bracket defined on $X - S$. Therefore, for every open subset U
of X, the induced map

$$m_U : H^0(U, \Theta_X) \times H^0(U, \Theta_X) \to H^0(U, \Theta_X)$$

is C-bilinear and continuous for the Frechet topology on $H^0(U, \Theta_X)$. We call bracket-map the sheaf morphism $m : \Theta_X \times \Theta_X \to \Theta_X$.

Coherent foliations.

Definition 1. A coherent O_X-submodule T of Θ_X is said to be maximal if for any open $U \subset X$, any section $s \in \Theta_X(U)$ and any nowhere dense analytic set A in U

$$s \in T(U - A) \Rightarrow s \in T(U)$$

holds.

Because X is reduced and normal, then locally irreducible, T is maximal if and only if Θ_X/T has no O_X-torsion.

Definition 2 [2]. A coherent foliation on X is a coherent O_X-submodule T of Θ_X such that:

(i) Θ_X/T is non zero locally free outside a nowhere dense analytic subset of X;

(ii) T is a subsheaf of Θ_X stable by the bracket-map;

(iii) T is maximal.

Remarks. 1) A coherent foliation induces a classical smooth holomorphic foliation outside a nowhere dense analytic subset of $X - S$.

2) If T is maximal the stability of T by the bracket-map on X is equivalent to the stability of T on $X - A$, for any rare analytic subset A.

3) A coherent foliation on a connected reduced normal complex space X is characterized by a quotient module F of Θ_X, without O_X-torsion, such that ker $[\Theta_X \to F]$ is stable by the bracket-map and which is a non zero locally free O_X-module outside a rare analytic subset of X.

4) Let T be a coherent O_X-submodule of Θ_X satisfying conditions (i) and (ii) of definition 2; then T is included in a maximal coherent sheaf \hat{T} which is equal to T outside a rare analytic subset of X ([7] 2.7); the conditions (i) and (ii) are also fulfilled for \hat{T}, hence one can associate to T a maximal foliation on X. But two different T for which (i) and (ii) hold may give the same maximal sheaf \hat{T}.
We suppose X compact.

The purpose of this paper is to put an analytic structure on the set of all subsheaves of \mathcal{O}_X satisfying conditions (i) and (ii) of Definition 2 (Theorem 2 below), that gives a versal family of holomorphic singular foliations for which a coherent extension exists.

First we have the following proposition:

Proposition 2. — Let X be an irreducible complex space; let Z be a complex space and F a coherent $\mathcal{O}_{Z \times X}$-module. Let F be Z-flat.

Let Z_1 be the set of points $z \in Z$ such that $F(z)$ is a non-zero locally free \mathcal{O}_X-module outside a rare analytic subset of X.

Then Z_1 is an open subset of Z.

Proof. — For every $z \in Z$ let σ_z be the analytic subset of points $x \in X$ where $F(z)$ is not locally free ([3]). Put $z_0 \in Z_1$. The irreducibility of X implies that G_{z_0} is nowhere dense; fix $x_0 \in X - S \cap \sigma_{z_0}$ and denote $r > 0$ the rank of the \mathcal{O}_{X,x_0}-module $F(z_0)$. The Z-flatness of F implies that F is $\mathcal{O}_{Z \times X}$-free of rank r in an open neighborhood V of (z_0, x_0). Let U be the projection of V on Z. For any point z of the open set U the Z-flatness of F implies that $F(z)_{x_0}$ is \mathcal{O}_{x_0}-free of rank r; then the support of the sheaf $F(z)$ contains a neighborhood of x_0; hence the irreducibility of X implies

$$\text{support } F(z) = X$$

and the proposition.

For any analytic space S $m_S : p_S^* \mathcal{O}_X \times p_S^* \mathcal{O}_X \to p_S^* \mathcal{O}_X$ denotes the pull back of m by the projection $p_S : S \times X \to X$ (i.e. the bracket map in the direction of the fibers of the projection $S \times X \to S$). Our aim is the proof of the following theorem:

Theorem 1. — Let X be a compact connected normal space. There exist an analytic space \bar{A} and a coherent $\mathcal{O}_{\bar{A} \times X}$-submodule \mathcal{T} of $p_{\bar{A}}^* \mathcal{O}_X$ such that:

(i) $p_{\bar{A}}^* \mathcal{O}_X \big/ \mathcal{T}$ is \bar{A}-flat;

(ii) \mathcal{T} is a $m_{\bar{A}}$-stable submodule of $p_{\bar{A}}^* \mathcal{O}_X$;

(iii) (\bar{A}, \mathcal{T}) is universal for properties (i) and (ii).

As a corollary of proposition 2 and theorem 1 we obtain:
THEOREM 2. — Let X be a compact connected normal space and r a positive integer. There exist an analytic space \(\mathcal{H} \) and a coherent \(O_{X \times X} \)-submodule \(\mathcal{E} \) of \(p^*_X \Theta_X \) such that:

(i) \(p^*_X \Theta_X/\mathcal{E} \) is \(\mathcal{H} \)-flat;

(ii) \(\mathcal{E} \) is \(m_X \)-stable and for any \(h \in \mathcal{H} \Theta_X/\mathcal{E}(h) \) is a locally free \(O_X \)-module of rank \(r \) outside a rare analytic subset of \(X \);

(iii) \((\mathcal{H}, \mathcal{E}) \) is universal, i.e. for any analytic space \(S \) and any coherent \(O_{S \times X} \)-submodule \(\mathcal{F} \) of \(p^*_S \Theta_X \) such that

- \(p^*_S \Theta_X/\mathcal{F} \) is \(S \)-flat;
- \(\mathcal{F} \) is \(m_S \)-stable and for any \(s \in S \Theta_X/\mathcal{F}(s) \) is a locally free \(O_X \)-module of rank \(r \) outside a rare analytic subset of \(X \) then it exists a unique morphism \(f: S \rightarrow \mathcal{H} \) satisfying

\[
(f \times 1_X)^*(p^*_X \Theta_X/\mathcal{E}) = p^*_S \Theta_X/\mathcal{F}.
\]

We shall use the following theorem and Douady ([4]):

THEOREM. — Let \(X \) be a compact analytic space and \(\mathcal{E} \) a coherent \(O_X \)-module; there exist an analytic space \(\mathcal{H} \) and a quotient \(O_{\mathcal{H} \times X} \)-module \(\mathcal{R} \) of \(p^*_\mathcal{H} \mathcal{E} \) such that:

(i) \(\mathcal{R} \) is \(\mathcal{H} \)-flat;

(ii) for any analytic space \(S \) and any quotient \(O_{S \times \mathcal{H}} \)-module \(\mathcal{F} \) of \(p^*_S \mathcal{E} \) which is \(S \)-flat, it exists a unique morphism \(f: S \rightarrow \mathcal{H} \) satisfying

\[
(f \times 1_\mathcal{H})^* \mathcal{R} = \mathcal{F}.
\]

2. Local deformations.

One uses notations and results of [4]; the notions of infinite dimensional analytic spaces, called Banach analytic spaces, and of anaflatness are defined respectively in ([4] § 3) and in ([4] § 8).

In this section we fix an open subset \(U \) of \(C^n \), two compact polycylinders of non-empty interior \(K \) and \(K' \) satisfying

\[
K' \subset \hat{K} \subset K \subset U
\]

and a reduced normal analytic subspace \(X \) of \(U \). Let \(B(K) \) be the Banach algebra of those continuous functions on \(K \) which are analytic on the interior \(\hat{K} \) of \(K \); one defines \(B(K') \) in an analogous way.
For every coherent sheaf \mathcal{F} on U, one knows that it exists finite free resolutions of \mathcal{F} in a neighborhood of K; for such a resolution

$$(L.) \quad 0 \to L_n \to L_{n-1} \to \cdots \to L_0$$

let us consider the complex of Banach spaces

$$B(K,L.) = B(K) \otimes_{O(K)} H^0(K,L.)$$

and the vector space

$$B(K,\mathcal{F}) = \text{coker } [B(K;L_1) \to B(K,L_0)].$$

Definition 1 ([4] §7, [5]). K is \mathcal{F}-privileged if and only if it exists a finite free resolution $L.$ of \mathcal{F} on a neighborhood of K such that the complex $B(K,L.)$ is direct exact.

Then this is true for every finite free resolution; therefore $B(K,\mathcal{F})$ is a Banach space which does not depend of the resolution; \mathcal{F}-privileged polycylinders give fundamental systems of neighborhoods at every point of U. For a more geometric definition of privilege, the reader can refer to ([6]).

In the following, we always suppose that the two polycylinders K and K' are Θ_x-privileged, Θ_x being the tangent sheaf defined by $1 - (*)$.

Let G_K be the Banach analytic space of those $B(K)$-submodules Y of $B(K,\Theta_x)$ (or equivalently of quotient modules) for which it exists an exact sequence of $B(K)$-modules

$$0 \to B(K)^n \to \cdots \to B(K)^0 \to B(K,\Theta_x) \to B(K,\Theta_x)/Y \to 0$$

which is a direct sequence of Banach vector spaces.

A universal sheaf R_K on $G_K \times K$ is constructed in [4]; R_K satisfies the following proposition:

Proposition 1 ([4] §8 no 5). (i) R_K is G_K-anaflat.

(ii) For every Banach analytic space Z and for every Z-anaflat quotient \mathcal{F} of $p_2^*\Theta_x$ it exists a natural morphism $\varphi : Z \to G_K$ such that

$$(\varphi \times 1_K)^* R_K = \mathcal{F}_{S \times K}.$$

Recall that the Z-anaflatness generalizes to the infinite dimensional space Z the notion of flatness; pull back preserves anaflatness.
Let $G_{K,K}$ be the set of the $B(K)$-submodules E of $B(K,\Theta_X)$, element of G_K, such that $E \otimes_{B(K)} B(K')$ gives an element of $G_{K'}$.

Proposition 2. — (i) $G_{K,K}$ is an open subset of G_K.

(ii) Let \mathcal{R} be the pull back of R_K by the inclusion $G_{K,K} \hookrightarrow G_K$. Then the map from $G_{K,K}$ to G_K which maps every $B(K)$-module E element of $G_{K,K}$ onto the $B(K')$-module $E \otimes_{B(K)} B(K')$ is given by a unique morphism

$$\rho_{K,K'} : G_{K,K} \rightarrow G_K$$

satisfying

$$\rho_{K,K'}^* R_{K'} = \mathcal{R}.$$

Proof. — Proposition 2 follows from ([4] 14 prop. 4).

Let $\rho_1 : B(K,\Theta_X) \times B(K,\Theta_X) \rightarrow \Theta_X(\hat{K}) \times \Theta_X(\hat{K})$ and $\rho_2 : \Theta_X(\hat{K}) \rightarrow B(K',\Theta_X)$ be the restriction homomorphisms and

$$m : \Theta_X(\hat{K}) \times \Theta_X(\hat{K}) \rightarrow \Theta_X(\hat{K})$$

the bracket map.

Let

$$m_{K,K'} : B(K,\Theta_X) \times B(K,\Theta_X) \rightarrow B(K',\Theta_X)$$

be the continuous C-bilinear map defined by

$$m_{K,K'} = \rho_2 \circ m \circ \rho_1.$$

Definition 2. — A $B(K)$-submodule Y of $B(K,\Theta_X)$ is said to be $m_{K,K'}$-stable if it verifies:

(i) Y is an element of $G_{K,K'}$,

(ii) for every f and g in Y one has

$$m_{K,K'}(f,g) \in \rho_{K,K}(Y).$$

Then, if $\bar{\Theta}$ is a m-stable O_X-submodule of Θ_X such that K and K' are $\bar{\Theta}$-privileged, $B(K,\bar{\Theta})$ is $m_{K,K'}$-stable; the converse is not necessarily true; however we have the following proposition:
Proposition 3. — Let \(Y \) be a \(m_{K,K} \)-stable \(B(K) \)-submodule of \(B(K,\Theta_X) \); then \(Y \) defines in a natural way a coherent \(O_X \)-submodule of \(\Theta_X \) on \(\hat{K} \), the restriction to \(\hat{K}' \) of which is \(m \)-stable (i.e. stable by the bracket-map).

Proof. — Let \(B_Y \) be the privileged \(B_K \)-module given by \(Y \) ([6]); the restriction to \(\hat{K} \) of \(B_Y \) is a coherent sheaf; therefore one has ([6] th. 2.3 (ii) and prop. 2.11)

\[
Y = \hat{H}(K,B_Y)
\]

and the restriction homomorphism

\[
i: Y = H^0(K,B_Y) \to H^0(\hat{K},B_Y)
\]

is injective and has dense image; therefore the restriction \(B_{Y_K} \) is a submodule of \(\Theta_X \) ([4] § 8 lemme 1(b)), hence \(H^0(\hat{K}',B_Y) \) is a closed subspace of the Frechet space \(H^0(\hat{K}',\Theta_X) \).

Let us show that \(m_{K,K} \) induces a \(C \)-bilinear continuous map

\[
m: H^0(\hat{K},B_Y) \times H^0(\hat{K},B_Y) \to H^0(\hat{K}',B_Y).
\]

Take \(t_1, t_2 \) two elements of \(H^0(\hat{K},B_Y) \) and \((t_1^n) \) and \((t_2^n) \) two sequences of elements of \(Y \) with

\[
\lim_{n \to \infty} t_i^n = t_i, \quad i = 1, 2.
\]

Because the bracket-map \(m: H^0(\hat{K},\Theta_X) \times H^0(\hat{K},\Theta_X) \to H^0(\hat{K},\Theta_X) \) is continuous one has

\[
\lim_{n \to \infty} m(t_1^n, t_2^n) = m(t_1, t_2) \in H^0(\hat{K},\Theta_X).
\]

Therefore the \(m_{K,K} \)-stability of \(Y \) implies for every \(m \)

\[
m_{K,K}(t_1^n, t_2^n) \in B(\hat{K}',B_Y) \subseteq H^0(\hat{K}',B_Y)
\]

then \(m(t_1, t_2)|_{\hat{K}'} \in H^0(\hat{K}',B_Y) \) follows.

In order to prove the proposition it is sufficient to remark that, for every polycylinder \(K'' \subset \hat{K}' \), the restriction homomorphism

\[
H^0(\hat{K}',B_Y) \to H^0(\hat{K}'',B_Y)
\]

has a dense image. Q.E.D.
Recall some properties of infinite dimensional spaces: let V be an open subset of a Banach C-vector space; let F be a Banach vector space and $f: V \to F$ an analytic map. Let \mathcal{X} the Banach analytic space defined by the equation $f = 0$; \mathcal{X} is a local model of general Banach analytic space; the morphisms from \mathcal{X} into a Banach vector space G extend locally in analytic maps on open subsets of V; for such a morphism $\varphi: \mathcal{X} \to G$ the equation $\varphi = 0$ defines in a natural way a Banach analytic subspace of \mathcal{X}; the morphisms from a Banach analytic space \mathcal{Y} into \mathcal{X} are exactly the morphisms $\psi: \mathcal{Y} \to V$ such that $f \circ \psi = 0$.

Proposition 4. — Let $S_{K,K'}$ be the subset of elements of $G_{K,K'}$ which are $m_{K,K'}$-stable. Then $S_{K,K'}$ is a Banach analytic subspace of $G_{K,K'}$.

Proof. — Let $Y_0 \in S_{K,K'}$ and $Y_0' = \rho_{K,K}(Y_0)$; let G_0 (resp. G_0') a closed C-vector subspace of $B(K,\Theta_{\chi})$ (resp. $B(K',\Theta_{\chi'})$) which is a topological supplementary of Y_0 (resp. Y_0'). Let U_0 (resp. U_0') the set of closed C-vector subspaces of $B(K,\Theta_{\chi})$ (resp. $B(K',\Theta_{\chi'})$) which are topological supplementaries of G_0 (resp. G_0'); we identify U_0 and $L(Y_0,G_0)$, hence $U_0 \cap G_K$ is a Banach analytic subspace of $U_0(\text{[4] § 4})$.

For every Y in U_0 one denotes $p_Y : B(K,\Theta_{\chi}) = Y \oplus G_0 \to G_0$ the projection and $j_Y : Y_0 \to Y \subset B(K,\Theta_{\chi})$ the reciprocal map of the restriction to Y of the projection $B(K,\Theta_{\chi}) = Y_0 \oplus G_0 \to Y_0$.

Then the two maps

$$
p^K : G_K \to L(B(K,\Theta_{\chi}),G_0)
$$

$$
j^K : G_K \to L(Y_0,B(K,\Theta_{\chi}))
$$

defined by $p^K(Y) = p_Y$ and $j^K(Y) = j_Y$ are induced by morphisms ([4] § 4, n° 1); associated to the polycylinder K' we have in the same way morphisms p^K and j^K. Put $W_0 = G_{K,K'} \cap U_0 \cap \rho_{K,K}^{-1}(U_0')$; W_0 is an open subset of $G_{K,K'}$. Let be

$$
\varphi_1 = p^K \circ \rho_{K,K'} : W_0 \to L(B(K',\Theta_{\chi}),G_0')
$$

and $\Delta : G_K \to L(Y_0 \otimes Y_0,B(K',\Theta_{\chi}))$ the morphism defined by

$$
\Delta(Y) = m_{K,K'} \circ (j_Y \times j_Y).
$$

Let be $\varphi_2 = \Delta \circ j^K : W_0 \to L(Y_0 \otimes Y_0,B(K',\Theta_{\chi}))$; φ_1 and φ_2 are
morphism; let

\[\phi : W_0 \to L(Y_0 \otimes Y_0, G'_0) \]

be the morphism defined by

\[\phi(Y) = \phi_2(Y) \circ \phi_1(Y). \]

We have \(W_0 \cap S_{K,K'} = \phi^{-1}(0) \), hence \(S_{K,K'} \cap W_0 \) is a Banach analytic subspace of \(W_0 \); following ([4] § 4, n° 1 (i) and (ii)) one easily proves that the analytic structures obtained in the different charts of \(G_K \) and \(G_{K'} \) patch together in an analytic structure on \(S_{K,K'} \); that proves proposition 4.

Remark 1. — With the previous notations the morphisms of Banach analytic spaces \(g : Z \to S_{K,K'} \cap W_0 \) are the morphisms \(g : Z \to W_0 \) satisfying \(\phi \circ g = 0 \).

Let \(\iota : S_{K,K'} \to G_K \) be the inclusion and \(R_{K,K'} \) the pullback of \(R_K \) by \(\iota \); \(R_{K,K'} \) is \(S_{K,K'} \)-anaflat; by construction \(R_{K,K'} \) is a quotient of \(p_{S_{K,K}}^* \Theta_X \), then put

\[R_{K,K'} = p_{S_{K,K}}^* \Theta_X / T_{K,K'}. \]

By anaflatness one obtains for every \(s \in S_{K,K'} \) exact sequence of coherent sheaves on \(\mathfrak{K} : \)

\[0 \to T_{K,K'}(s) \to \Theta_X \to R_{K,K'}(s) \to 0. \]

From the definition of the analytic structure of \(S_{K,K'} \) and from proposition 3 one deduces the following theorem:

Theorem 3. — (i) For every \(s \in S_{K,K'} \) the restriction to \(\mathfrak{K}' \) of the coherent subsheaf \(T_{K,K'}(s) \) of \(\Theta_X \) is stable by the bracket-map.

(ii) For every Banach analytic space \(Z \) and every quotient \(\mathcal{F} = p_{S_{K,K}}^* \Theta_X / T \) of \(p_{S_{K,K}}^* \Theta_X \) by a \(O_{Z \times X} \)-submodule \(T \) such that

- \(\mathcal{F} \) is \(Z \)-anaflat.
- \(T \) is \(m_Z \)-stable and for any \(z \in Z \) the polycylinders \(K \) et \(K' \) are \(\mathcal{F}(z) \)-privileged;

then the unique morphism \(g : Z \to G_K \) satisfying

\[(g \times I_K)^* R_K = \mathcal{F} \]

factorizes through \(S_{K,K'} \) (i.e. it exists a unique morphism \(f : Z \to S_{K,K'} \) with \(r \circ f = g \)).
Remark 2. — We don’t know if the restriction of \(R_{K,K} \) to \(S_{K,K} \times \hat{K} \) is \(m_{S,K,K} \)-stable; but if \(S \) is a finite dimensional analytic space then the pull back of \(R_{K,K} \) by any morphism \(S \to S_{K,K} \) is \(m_S \)-stable.

In this section \(X \) denotes a compact reduced normal space and \(\Theta_X \) its tangent sheaf. Let \(H \) be the universal space of quotient \(O_X \)-modules of \(\Theta_X \) and \(\mathcal{R} \) the \(H \)-flat universal sheaf on \(H \times X \) ([4]). Put \(\mathcal{R} = p^\#_X \Theta_X/E \), \(E \) being a coherent submodule of \(p^\#_X \Theta_X \); for any \(h \in H \) \(\mathcal{R}(h) \) is a coherent submodule of \(\Theta_X \). We shall construct the space \(\hat{H} \) as an analytic subspace of an open subset of \(H \).

1. Refining of a privileged « cuirasse ».

Let \(M \) be a \(\Theta_X \)-privileged « cuirasse » ([4] § 9, n° 2); \(M \) is given by,

(i) a finite family \((\phi_i)_{i \in I}\) of charts of \(X \), i.e. for every \(i \in I \) \(\phi_i \) is an isomorphism from an open set \(X_i \subset X \) onto a closed analytic subspace of an open set \(U_i \) in \(C^n \),

(ii) for every \(i \in I \) a \(\Theta_X \)-privileged polycylinder \(K_i \subset U_i \) (i.e. a \(\phi_i *-\Theta_X \)-privileged polycylinder), and an open set \(V_i \subset X_i \) satisfying

\[
V_i = \phi_i^{-1}(\hat{K}_i) \subset X_i
\]

\[
X = \bigcup_{i \in I} V_i
\]

(iii) for every \((i,j) \in I \times J\) a chart \(\phi_{ij} \) defined on \(X_i \cap X_j \) with values in an open \(U_{ij} \subset C^{n_j} \) and a finite family \((K_{i\alpha})\) of \(\Theta_X \)-privileged polycylinders in \(U_{ij} \) such that conditions

\[
V_i \cap V_j = \bigcup_{\alpha} \psi_{ij}^{-1}(K_{i\alpha})
\]

\[
\phi_{ij}^{-1}(K_{i\alpha}) \subset \phi_i^{-1}(\hat{K}_i) \cap \phi_j^{-1}(\hat{K}_j)
\]

are fulfilled.

As in ([4]) let us denote \(H_M \) the open subset of the elements \(F \) of \(H \) for which \(M \) is \(F \)-privileged (i.e. all the polycylinders \(K_i, K_{i\alpha} \) are \(F \)-privileged); we shall construct \(\hat{H} \) as union of open subsets \(\hat{H} \cap H_M \).

— For any \(\Theta_X \)-privileged polycylinder \(K \) let us denote \(G_K \) (§ 2) the Banach analytic space of quotients of \(B(K,\Theta_X) \) with finite direct resolution.
For every $i \in I$ let G_i be the open subset of G_{K_i} on which, for any α, the restriction homomorphisms $B(K_i) \rightarrow B(K_{ij\alpha})$ induce morphisms $G_i \rightarrow G_{K_{ij\alpha}}$. The Douady construction of H_M gives a natural injective morphism

$$i : H_M \rightarrow \prod_{i \in I} G_i.$$

Definition 5. — A refining of the « cuirasse » M is given by a family $(K_i)_{i \in I}$ of poly-cylinders satisfying:

(i) for every $i \varphi_i(V_i) \subseteq \hat{K}_i \subseteq K_i \subseteq \hat{K}_i$,

(ii) for every $i, j, \alpha \varphi_{ij}^{-1}(K_{ij\alpha}) \subseteq \varphi_i^{-1}(\hat{K}_i) \cap \varphi_j^{-1}(\hat{K}_j)$,

(iii) for every $i K_i$ is Θ_X-privileged.

We denote by $M((K_i))$ such a refining; for any coherent sheaf \mathcal{F} on X we shall say that $M((K_i))$ is \mathcal{F}-privileged if M is \mathcal{F}-privileged and if, for every i, K_i is \mathcal{F}-privileged.

Lemma 1. — (i) Let \mathcal{F} be a coherent sheaf such that M is \mathcal{F}-privileged; then it exists a \mathcal{F}-privileged refining of M.

(ii) Let $M((K_i))$ a refining of M; then the set of quotient \mathcal{F} of Θ_X such that $M((K_i))$ is \mathcal{F}-privileged is open in H_M.

Proof. — (i) follows from ([4] § 7, n° 3 corollary of prop. 6) and (ii) is an immediate consequence of flatness and privilege.

2. Now we fix a Θ_X-privileged « cuirasse » $M = M(I, (K_i), (V_i), (K_{ij\alpha}))$ and a Θ_X-privileged refining $M((K_i))$ of M.

Lemma 2. — Let H'_M be the subset of H_M the points of which are quotients Θ_X/T satisfying:

(i) $M((K_i))$ is Θ_X/T-privileged,

(ii) T is a subsheaf of Θ_X stable by the bracket-map.

Then H'_M is an analytic subspace of an open subset of H_M.

Proof. — Using notations of section 2 one puts for every $i \in I$

$$G'_i = G_{K_i,K_i} \cap G_i$$

G'_i is an open subset of G_i and G_{K_i}; put $S_i = S_{K_i,K_i} \cap G'_i$.
One knows that the category of Banach analytic spaces has finite products, kernel of double arrows and hence fiber products (for all this notions the reader can refer to ([4] § 3, n° 3). Then \(\prod_{i \in I} S_i \) is a Banach analytic subspace of \(\prod_{i \in I} G_i \); since \(\prod_{i \in I} G_i \) is an open subset of \(\prod_{i \in I} G_i \) it follows from (§II Theorem 3)

\[
H'_M = H_M \times \prod_{i \in I} S_i
\]

and the lemma is proved.

— Now let \(R'_M \) (resp. \(T'_M \)) be the pull back of \(\mathcal{R} \) (resp. \(\mathcal{E} \)) by the inclusion morphism \(H'_M \times X \to H \times X \); \(R'_M \) is the quotient of \(p^*_H \Theta_X \) by \(T'_M \) (the sheaves \(T'_M \) and \(\ker[p^*_H \Theta_X \to R'_M] \) are \(H'_M \)-flat and equal on the fibers \(\{h\} \times X \).

Lemma 3. — \(T'_M \) is a \(m_{H'_M} \)-stable submodule of \(p^*_H \Theta_X \).

The proof follows immediately of the remark 2 of paragraph 2 and of

\[
X = \bigcup_{i \in I} V_i = \bigcup_{i \in I} \varphi_i^{-1}(K'_i).
\]

— Using the universal property of \(H_M \), Theorem 3 §2 and the commutative diagram

\[
\begin{array}{ccc}
H'_M \times X & \to & H_M \times X \\
\downarrow & & \downarrow \\
(\prod_{i \in I} G'_i) \times X & \to & (\prod_{i \in I} G_i) \times X
\end{array}
\]

we obtain the following proposition:

Proposition 1. — Let \(Z \) be an analytic space and \(T_Z \) a coherent subsheaf of \(p^*_Z \Theta_X \) satisfying:

(i) \(p^*_Z \Theta_X/T_Z \) is \(Z \)-flat.

(ii) For every \(z \in Z \) the cuirasse \(M((K'_i)) \) is \(\Theta_X/T_Z(z) \)-privileged.

(iii) \(T_Z \) is a \(m_Z \)-stable submodule of \(p^*_Z \Theta_X \).
Then the unique morphism \(g : Z \to H \) such that

\[
(g \times I_X)^* \mathcal{R} = p_2^* \Theta_X/T_z
\]

factorizes through \(H'_M \) and verifies

\[
(g \times I_X)^* T'_M = T_z.
\]

3. End of the proof of Theorem 1.

Notations are those of the previous proposition; the unicity of \(g \) implies the unicity of its factorization through the subspace \(H'_M \) of \(H \). Hence, when the refinings of a given \(M \) are varying, one obtains analytic spaces \(H'_M \) which patch together in an analytic subspace of an open subset of \(H_M \).

When the « cuirasse » \(M \) varies in the family of all the \(\Theta_X \)-privileged « cuirasse » the spaces \(H_M \) form an open covering of \(H \); then the universal property of the \(H_M \)'s implies that \(\mathcal{H} = \bigcup_M H'_M \) is an analytic subspace of an open subset of \(H \). Theorem 4 is proved.

Remark. — More generally if \(X \) is not compact, let \(\Theta \) be a coherent sheaf on \(X \) and \(m : \Theta \times \Theta \to \Theta \) a sheaf morphism inducing for each open set \(U \) a continuous \(C \)-bilinear map \(m_U : \Theta(U) \times \Theta(U) \to \Theta(U) \); let \(H \) be the Douady space of the coherent quotients of \(\Theta \) with compact support ([4]). We get a universal analytic structure on the subset of those quotients which are \(m \)-stable.

BIBLIOGRAPHY

Manuscrit reçu le 12 mars 1986.

Geneviève Pourcin,
Département de Mathématiques
Faculté des Sciences
2 Bd Lavoisier
49045 Angers Cedex (France).