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ON FINITELY GENERATED CLOSED IDEALS
IN H°°(D)

by Jean BOURGAIN

1. Introduction.

Let H00 = H°°(D) be the Banach algebra of bounded analytic
functions on the open disc D = {zeC; |z |<l}, endowed with the
sup norm ||/|| = sup |/(z)|. The result presented in this paper may as well

zeD
be formulated for H°° on the upper half plane R2. = {x-{-iy; xeR,
yeR^}.

If /i, . . . , /N is a finite sequence in H°°, we denote I(/i,.. .,/N) the
ideal generated by { / i , . . . ,/N} » thus

icri,...^}-^ Z /^;^eH°°l.
U<^N J

The solution to the corona problem for H°°(D) (see [I], [4]) states that the
1-function 1 belongs to I(/i,.. .,/N) if

inf max |/,(z)| > 0.
zeD 1<;<N

There are by now several methods to prove this result. The reader may
consult [4] for a systematic exposition. The simple approach due to T.
Wolff permits to obtain certain extensions. For instance, if {//}i^N ^d /
in H°° satisfy

(1) |/(z)| ^ C max |/,(z)|
1</<N

for all z e D and a constant C, then /3 belongs to I(/i,.. .,/N). An
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example of Rao, which we improve here, shows that (1) does not
necessarily implies /el(/i,.. .,/N) while for f2 the question seems
unsolved at the time of this writing (see again [4] for details).

In the spirit ofRao's example, consider Blaschke product Bi , B^ with
disjoint zero sets such that however

(2) inf(|B,(z)MB,(z)|)=0.
zeB

Fix an integer r ^ 2 and let /i = B\, f^ = B; and / = B^B^.
Then

1/^)1 < a(l/i (^)1+1/2(^)1) for z e B , defining cx(0 = A1"^).

We claim that / does not belong to I(/i,/2). Otherwise indeed, one
should have

(BAY-1 = g,B\ + g^; g,, ̂  e H00

hence, since B^ and B2 do not have common zero's

gi = W-1, g, = h^\-1; /ii, h, e H00

1 = ^iBi + ^282
which is contradicted by (2).

Our purpose is to prove following property, implying in particular that
in previous example / is in the closure of I(/i ,f^) for r ^ 3 (actually
already for r = 2 if we assume that the zero-set of either B^ or B^ forms
an interpolating sequence).

THEOREM. — Let [fj}\^j^ and f be H°°(D)-functions. Assume the
rv (i\

existence of a function a on R + , l i m — — = 0 such that
t-^O l

(3) |/(z)| < a(|/i(z)| + ... \Uz)\) for z e D.

Then f belongs to the norm closure of the ideal I(/i,.. .,/N).

Notice that the construction described above gives an example of a non-
closed ideal I(A,/2).

It will be improved later in order to show that condition (3) taking
a(() = C.t does not imply the conclusion of the theorem. This second
example will require some new ideas, such as the use of the Douglas-Rudin
approximation result.
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Recall that a positive measure n on D is a Carleson-measure
provided there is a constant C satisfying

(4) H(R(I)) ^ C|I|

whenever I is an interval in n = 8D = {zeC; | z |= l} , denoting |I| the
length of I and R(I) the region

^ z e D ' e I and |z|^l-|I|^.

Let Hullc stand for the smallest constant verifying (4).

Carleson measures will be exploited here in connection with following
result due to L. Carleson on existence of bounded solution to the ~S-
equation.

PROPOSITION 1. — If \i is a Carleson-measure on D, then the equation

3F = n, 3.= 818x + i(818y)

has a solution on D satisfying ||F||Loo(n) ^ CJInllc, "where C^ is numerical.
Of course, in proving the theorem, we will make use of the Koszul-

complex and 3-correction. The following two facts explain how Carleson
measures may arise.

The first is due to J. Garnett [4] (in a weaker form) and B. Dahlberg [3].
The second, I think, is new and improves on the « contour » construction
in Carleson original solution to the corona-problem.

PROPOSITION 2. — Let u be a 1-bounded harmonic function on D. For
each £ > 0, there exists a ^ oc-function v = v^ on D satisfying

(5) \v—u\ < e on D

(6) \\\Vu\dxdy\\c<cl-
b

PROPOSITION 3. — Assume B a Blaschke product on D. Given e > 0,
there exists an open set R in D such that 5R is a rectifiable curve and

|B(z)| < E if z e R
|B(z)|>5(e) if zeD\R

IMIc < Ca
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where 8(e) is a fixed function of e (independent of B) and ^R r^rs to the
arc-length-measure of the boundary of R.

This result should be compared with [4], p. 342. The new feature is the
estimate on \\'k^\\c independent of e.

In the next section, the theorem will be deduced from Props. 1, 2 and 3.
In section 3 we elaborate the example which was announced earlier.
Section 4 of the paper is devoted to the proof of Prop. 3.

The author is indebted to T. Wolff and J. Garnett for some valuable
discussions.

2. Proof of the theorem.

Assume {/,}^i and / in H°° satisfying |/(z)| < ocf ^ |/,(z)l) for
\1</<N /

/^\

z e D, where a : R+ -> R+ fulfils lim —— = 0. To be more explicit, we
t-^O t

give the argument for N = 2, the general case being completely analogue.
We use the letter C to denote numerical constants. It follows from our
hypothesis that in particular

1/^)1 ^C(|/i(z)|+|/,(z)|), z e D

for some constant C. Without restriction, we may take \\f\\^, ||/i||ao and
l l / 2 l l o o < l .

Writing /€ H00 as product / = B.F where B is a Blaschke product
and F a zero-free function on D(|F|^1), the approximation argument
given in [2] (p. 204, Lemma 3) permits to formulate Prop. 3 for functions in
the unit-ball of H°° as well.

Fix e > 0 and apply Prop. 3 to our function /, providing the region
R with boundary F = 9R satisfying the estimate on arc-length.

Let T > 0 to be defined later and apply Prop. 2 to each of the
functions /i, f^, giving C°°-functions i;i, v^ on D such that

(7) L/lOO-^lOOl < T, \f2(z)-V^(z)\ < T, (Z6D)

(8) \\\Vv,\dxdy\\c < CT-1; \\\^\dxdy\\c < Cr-1.

If we define for j = 1,2

gj = ^C/l^l-^/2l72)~l XD\R
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then

(9) 1 - (8ifi +^2/2) = XR hence f, ~Sg, + f^ ~Sg^ = - 3^.

Consider solutions 0^2 ? ^i ^d ^ i » ^2 °f Ae respective 3-equations

(10) f3ai2 = fg^ ~Sgz
1^21 = /^2 3gi

and

(11) 3fc, = fv^v^f^)-13xR O'=l,2)

with L°°-norm control on 3D. This will be realized with Prop. 1.
Postponing the estimations on Carleson-norm, put

(12) Pll = fgl + (^12-^2l)/2 + ^1

1^2 = fgl + (^21-^12)/1 + b^.

By construction and (9)

/ - (^1/1+^2/2) = /XR - fcl/1 - ^2/2

(13) ||/-(^/i+fc2/2)llL-(n) ^ £ + ll^illL-(n) + 11^11^^).

Next, we verify that hj (j= 1,2) are analytic. From (13) will then follow an
estimation on ||/—(/ll/l+^2/2)llLOO(D)• Consider h^ for instance. By (9),
(10), (11)

3^i = / ̂ i + /fei 3g2 -gi ^i)/2 + 3hi
= /(I -^2/2) ̂ i - /^(/i ̂ i +3/R) + 3b,
= -fvi^fiVi-^fiViV1^ + ̂ i = 0.

We now turn our attention to eqs. (10), (11). Choose T < — 8(e)2 where

8(e) refers to Prop. 3. Since by (7)

1/^1 ^ C(|/,|+|/2|)(|^|+T)(|/J2+|/2|2-2T)-1 XD\R

and
5(£)^ I/I ^Cd/i l+l/^l) outside the region R

it follows thus

(14) II/^IIL^D) ^ C, 0=1,2).



168 JEAN BOURGAIN

We have, letting 8 = 8 / 8 x - i ( 8 / 8 y )

^gj = ̂ (/l^l+^r'XDVR + ̂ (/l^l-h^^'^l^+^^XDYR

- ^C/iyi+^r^XR

implying by (14) for j = 1,2

\\fgj~Sg3-j\\c ^ S-^KlV^I+IV^D^^IIc + S-'IMc.

From (8) and Prop. 1, we may conclude the existence of solutions a^, ^21
to (10) satisfying

(15) II^S-A^D^CT-^-2.

Remains to analyze the right members in eqs. (11). Since 3^R is supported
by r and on r

/Wl+/2^2)~1 < 2{£A(X(|/J+|/2|)}(|/;.|+T)(|/J2+|/2|2)-1

< 2 sup {a(o A el + CT

fu(f\
the hypothesis l i m — — = 0 and numerical estimate H^rllc ^ const.,
imply

\\WiVi +/2^2)-l ^XRlIc -^ 0 taking e ̂  0.

Again by Prop. 1, this allows us to obtain bj satisfying (11) and H^-HL^D)
as small as desired. In particular, we proved, see (14), (15),

fc,eH°°(D); ||h,|L < C5(£)-4, 0=1,2).

As a consequence of (13), ||/—^i/i—/i2/2lloo can b6 made arbitrarily
small. Hence dist(/,I(/i,/2)) = 0, completing the proof.

H°°

Remark. — Estimations appearing above are not best possible. We did
not attempt to do so in order to avoid unnecessary complications.

3. An example.

The purpose of this section is to improve Rao's example of Blaschke
products Hi , B2 on D such that B^.B^ does not belong to the ideal
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I(B^,Bj). In this construction, / = Bi.B2 will not be in the uniform
closure of I(B2, Bj). The argument is particularly simple. Let us recall the
classical Douglas-Rudin theorem asserting that any unimodular function
a, |<j| = 1, on II can be uniformly approximated by a quotient of
Blaschke products [4], thus there are Blaschke products B^ , B^ s.t.

(16) |a(e)-Bl(^e)B[(?e)| < e .

Apply this property to the function <j(0) = sign sin 9. Assume g ^ ,
^2eH°°(D) such that for some y > 0

(17) IBA-^B2-^2! < 1 - Y

assuming e « y. Let for 0 < r < 1 the conjugate Poisson kernel
2r sin 6[1 - 2r cos 6 + r2] -1 be denoted by Q,(0). Recall that if g e H°°,
then

^ P^Q^dO = (^g)(r) = - i\g(r)-g(0)]

hence

8'Qr\< 2||^|L.
jn

Restricting (17) to 11 implies by (16)

\^-8i-g2\ < 1 - Y + e + 2||^|Le.

Therefore, clearly

IIQrIll = f QrCT ^ (l-y-h£+2||gJL£)||QJ|i + 2(||̂ ||, + ||^|loo)
Jn

and consequently

Halloo + ll^lloo ^^min^-SlogO-r)-1}.

Letting r -> 1, this implies the lower bound*

ll^llloo + Halloo ̂ -^

on any pair of H°°-functions satisfying (17).
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From this observation and a compactness-argument, whose details are
left to the reader, one can produce a pair Bi , B^ of Blaschke products
such that dist (B^, I(B? ,Bj)) = 1, In fact, the proof of the Douglas-

H°°

Rudin theorem given by P. Jones (see [4], p. 428) permits to construct
BI , B2 satisfying

lim IBi^B^O?10) - sign sin 9| = 0
)|-.0

which will have the desired property as a consequence of previous
reasoning.

4. Proof of proposition 3.

The argument does not require preliminaries from potential theory,

such as harmonic measures and Hall's lemma. Define p(a,&) = a for
\\-ab\

a,freD, i.e. the pseudo-hyperbolic distance. Following lemma is well-
known.

LEMMA 1. - Let B(z) = II.——an- be a (finite) Blaschke product andi — a^z
e > 0. Then

^(^a^s-•-'B<2''<2•o«^(•^^
provided infp(z,a^ > 8.

^_ ̂  • . , _ ( • -tf Ml -l̂ ),,,,
l-^l 11-M2

t < - log(l-0 ^ 2(log-)( if O ^ r ^ l - e . D
\ £/

If I is an interval in II, denote T the interval with same midpoint as I
and |T| = 2|I|.

LEMME 2. - Let a e D and \B(a)\ > e > 0. Let I be an interval in II

such that ^|I| < 1 - \a\ < |I| and .^-el, i.e. a belongs to the upperhalf

ofR(l).
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Given M < oo there exists a collection {Ijj of disjoint subintervals of T
satisfying

(18) SlIJ^C/log^M-1!!!.
\ °/

(19) If zeR(I ) \UR(Ik) and mfp(z ,^)>y,

then

log|B(z)|-1 ^ C4flog-!-yM+log-l-V
\ Y/\ £/

Proof. — Let {IjJ be the collection of maximal subintervals of T,
obtained by diadic splitting of T, satisfying

^ (l-|aJ)>M|IJ.
^6R(I,)

By lemma 1

M2|I,|< ^ (l-|aj) ^ CIIIZ0"^0"^^ ^ C| I | log ,—
a^R(I) |1 - aMn\2 |B(fl)|

implying (18).

Let now ze R(I)\ljR(Ifc). Let {Jji^( be the increasing sequence of
diadic subintervals of T containing z, where

1 - |z| < |JJ < 2(1-|z|) and J, = T.

By construction, for s = 1, . . . , (

^ (l-|aJ)<M|JJ
^^s)

and hence, as easily verified

po) s "-f'0-, '̂' < £ + E I
a^ e R(I) I A ^l ^ e R^) s = 2 ̂  e R(J.+ i)\R(J,)

< CM + ^ CM2-5 = CM.
s=2

If a^R(I), then clearly

(l-lzl^l-laj2)^ (l-|q|2)(i_|aj2)
|1-M2 -c |1-M2
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and so, by lemma 1 and hypothesis

^n V (l-I^Xl-kl2)^ 1
(21) ^~\^\~^clos~.

Adding (20), (21) and using again Lemma 1 gives (19).

LEMMA 3. — In the situation of Lemma 2 and given y > 0, there is a set
0(1) in R(I) with rectifiable boundary F(I) such that

(22) Mc^CsyrM+log^l

(23) |B(z) |<y if ze0(l)

(24) |B(z)| > exp (- C/log^yM+log-1))
\ \ V/\ £//

if
zeR(I) \{0(I )uUR(W.

Proof. - Define 0(1) = [R(I)\ U R(Ifc)] n U [P(^n)^Yl. Then
ay,6R(T)

(23) is trivial and (24) follows from (19). Also, again

(25) |r |<Cy S (l-|aj) ^ CY|I| S ̂ -l^1-^2)
^6R(T) |1-̂

^CYflog^|I|.

Suppose now J is a diadic subinterval of T contained in I. If J is
contained in (J 1^, then F n R(J) = 0. Otherwise, by construction of
the Ifc-intervals

^ (l-|aJ)^2M|J|.
a^eR(T)

Therefore

(26) |rnR(J)|^ ^ C(l-|aJ) ^ Cy ^ (1-1^1)
[p(z,^)<y]nR(J)^0 a, e R(J)

< CyM|J|

and (22) as consequence of (25), (26).
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The proof of Proposition 3 follows at this point by a standard
reasoning of constructing successive generations of intervals in n. Take

M = 100 €4 log ̂  y-^200 C^C, log ̂  and
£ 8

8(£) = exp f - 2CsM log -} = exp f - C log ̂  log log ~\).\ y/ \ ^ E//
Start with y (1) = {11}. Assume now the generation ^F (s) obtained and
J an interval in ^ (s). Let Q) (J) be the maximal diadic subintervals I of
J such that the upperhalf of R(I) contains a point a where |B(a)| > e.
Hence

|B| ^e on R(J)\ (J R(I).
l6^(J)

To each I e 2 (J), we apply lemma's 2 and 3, providing intervals {Ijj and
a region 0(1) of R(I). Define

^D= U U {I,;k=l,2,. .}
je^)le^(J)

where for each I e ̂  (J), by construction

(27) ^\<W^'

Let R,(J) be the union of R(J)\ [j R(I) and (J 0(1). Take
Ie@(J) Ie^(J)

^ = U ^W- Thus' ̂  (23) of Lemma 3, |B| ^ e on R,(J), hence
J6^)

on R,.
Also, by (24) of Lemma 3

|B(z)|>8(e) if ze U R(J) \ fR,u U P^V
Je^(^) \ J6^+1) /

Define R = [J R,. Our construction yields |B| ^ e on R and |B| ^ 8(e)
on D\R.

As a consequence of (22) and (27) and the choice of y,

ll^llc ^ 10

as the reader will easily check. This completes the proof.
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