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CHOQUET SIMPLEXES WHOSE SET
OF EXTREME POINTS IS ) -ANALYTIC

Dedicated to Professor G. Choquet,
on his 70th birthday

by Michel TALAGRAND

Introduction.

When the author started research in mathematics, he asked
his advisor Professor Choquet a list of problems. This list consisted
of ten problems. On nine of them the author could make no
progress. The tenth was : If the set of extreme points of a convex
compact set is J-analytic, must it be a K 5 set (or more generally,
a JC-Borel set) ? Let us recall that a subset T of a compact set K
is called I -analytic if it is the image of the irrationals under an
upper continuous compact-valued map [1], [2]. The classes X,
of K-Borel sets of K are defined by induction over the ordinal
a in the following way. JC,(K) is the class of compact sets. When
a is even (resp. odd) K, ,, (K) consists of the countable intersections
(resp.unions) of sets of I, (K). Finally, if « is limit, K (K) is the
union of the classes e’KB(K) for B<a. A subset of K is called

~J-Borel if it belongs to some class K, . A J-Borel set is ZK-analytic.

It has been known for some time that the set of extreme points
& of a convex compact set K has a lot of structure. It is known
that & can be topologically very irregular [5], [6]. However, if one
assumes some regularity for &, then & often turns out to be very
regular. Along this line R. Haydon showed that if E is a continuous
image of a separable metric space, then K is metrizable, so E
is actually a G; set [3]. See also [4]. The hypothesis that & is a
continuous image of a separable metric space is an hypothesis of
smallness as well as of regularity, so it is of a fairly different nature
than the hypothesis that & is JC-analytic.

Mots-clés : Choquet simplex — J-analytic — Extreme point.
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In [8], the author showed that when & is J-analytic, it can be
written as & = N(U,UF,), where U, isopenin & and F, is closed.
So when & is K-analytic, it must be Borel of a very special type. So,
the problem of Choquet is connected to the following question asked
by Goullet de Rugy : If a subset X of a compact set is at the same
time K -analytic and Borel, must it be K-Borel? The answer is yes
when X is open, since thenitisa K  set.

A seemingly unrelated question is the following question
([2], 10-7, 10-8). If a topological space X is a Gz set in its
Stone-Cech compactification it is a G; set in every compactification.
But if X is a K,s; set in some compactification, is it a K,; setin
every compactification ? (If X isa K, ; setin each compactification,
it is called an absolute K_ 5 set). Our main construction will answer
these questions.

THEOREM A. — There exists a Choquet simplex K with the
following properties :

1) The set of extreme points & of K is K-analytic.

2) & isnot K-Borel in &.

3) & isa K5 set in its Stone-Cech compactification.

4) There is an open'set U of & and a point w of & such
that & = {w} U U.

5) &\ & is discrete.

So our construction provides a negative answer to the problems
of Choquet and Goullet de Rugy, as well as an example of a K_;
set that is not absolute.

2. Construction.

The construction will use ideas from [7]. Let & be a family
of subsets of NV that are closed and discrete for the usual topology.
Let w be a point which does not belong to NV, and let
T={w}V NN . We provide T with the topology that makes each
point of NV open, and such that the neighborhoods of w are
the sets of the type T\ B, where B is the union of a finite set
and finitely many elements of A. Then T is completely regular
and T\ {w} is open in any compactification of T.
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Let us fix some notations, that we will use through this paper.
Given a finite sequence s of integers, let |s| be its length, and let
A, be the subset of NN of sequences such that their |s| first
terms coincide with those of s.

Denote by S the Stone-Cech compactification of T. We show
that, (independently of the choice of &), T isa K, setin S,
and more precisely that

T={wjun U A,

Isl=n

where the closure is in S. This implies in particular that T is
HK-analytic.

First, the inclusion of T in the right hand side is obvious,
so we prove the reverse inclusion. Let s#s’_with— Is|=Is']. We
show first that A, NA; ={w}. If t€A NA, \{w}, then
tEA,NA,NT, and there is BEQ with tEBNA,, tEBNA,
But since B is discrete for the topology of T, and since
A, N A, N B =@ this is impossible. It follows that if

ten U A\{w}

Isl=n

then there exists 0 €NV such that for each n we have tE€EA,,,
where o|n denotes the sequence of the first n terms of o.
Since t# w, there is BEA such that t€BNA,, for each n.
Since B is closed discrete in NN , thereisa neighborhood of o
for the usual topology in NV which meets B in a finite set, that
is, there is n such that BN A, isfinite,so tE€T.

n

Given the family @, we denote by X(@) the compactification
of T such that the closen sets of X(X) can be identified to
the algebra generated by @ and the finite sets of NN . The closure
of the sets of extreme points of K will be identified to X(X)
for a suitably chosen family @& . Among other properties, &
must be chosen so that T is not a J-Borel set of X(@Q). Let
first describe a family & such that Tis not a K, set (this is the
family used in [7]). Let

@, ={BCNN,3n,Vo,pEB,oln=pln,cln+1#pln+1}.
0

Then each element of @, is closed and discrete. Suppose now
that T=UK, . Then there is n such that (for the usual topology),
n
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k‘,, # ¢; it is easily seen that this implies that there is an infinite
Bed, with BCK,. If x €B\B, then x€K,\T, so T is
nota K, set.

Let us now try to construct @&, such that T is not a K, s
in the corresponding compactification X(®,). A natural idea
is to use the family closed and discrete

& ={BCN",B=UB, ,Vn,B,€Q,,V0€EB, ,0(1)=n}.

Suppose that we have T C ﬂ U K,» where an is a compact subset
of X(&,).Let

A, ={0eN" ;0(1)=n}.

For each n, there is g, such that the closure of A, NK, . has
non-empty interior (for the usual topology). So there is B, C Kin n
with B, €d,,B, CA, It follows that ﬁB CﬁUK
Unfortunately, the set ﬂ B is empty since for each /] there is

C, €Q, such that C, N \ Bn) =B, . We shall however be able to

avoid this phenomenon by carefully restricting @, . Of course if
we use for & a subfamily of @,, T will be a K 5, of X(X),
so a construction of higher order is needed.

For two finite sequences s=(s,,... 8y, t=(t,....t,)
let s~t=(sy,...,8,.,¢,...,t,). Suppose that for each
n=1 we are given a map 1V, that associates a finite sequence
v,(B,,...,B,) to each n-uple (B,,...,B,) of countable
sets of finite sequences. The specific choice of ¥, will be described
in section 3. By induction over the countable ordinal a, we
construct families 3, of countable sets of finite sequences,
in the following manner. 3, consists of the sets containing one single
finite sequence. If @3, has been constructed for g < a, we define
03, as the union of ﬁga 035 and of the collection of the sets of type

B={u~(2n,2m)"y,_, B,,...,B,_,)"t;tEB, ,n>1}

n~-1

where u is a fixed finite sequence, and (B,),,, is a sequence of

U 63 (For n=1,¢, ,(B,,...,B,_,) 1is defined as the
< a

empty sequence). We set @ = ‘j@a .
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Recall that a set is called of first category if it is contained
in a countable union of closed sets of empty interior.

The motivation for this construction is the following :

LEMMA 1. —Let Z be a IJ{-Borel set of X(Q), so, say,
ZeXK, (X(Q). Let t bea finite sequence. Assume that for the usual
topology of NV » LNA, is not of first category. Then there is
BE®, and a family (L,),eB of compact sets of X(X), with
the following properties:

H NLCZ.

SEB

2) For each s€B, L, N A, is dense in A,~; for the usual

topology.

Proof. — It goes by induction over «. If a =0, Z is compact.
The hypothesis implies that the closure of Z N A, has nonempty
interior. So, there is a finite sequence s such that ZNA, ., is
densein A,.,. Wetake B = {r~s}, L, =Z.

Suppose now that the lemma has been proved for each < «.
If o is limit, then ZEKﬂ(X(a)) for some B < a and there is
nothing to prove. Suppose that o« = + 1, where B is odd. Then
Z=UZ,, with Z €Ky(X(@)). Since there exists n such
that Z, N A, is not of first category for the usual topology, the
conclusion follows by induction hypothesis. Suppose finally that
a=8+1, where 8 iseven,so Z = f;l Z, where Z, E.’}CB(X(CI))
Let u be a finite sequence such that (for the usual topology) Z
is not of first category in any nonempty subset of A,.,. By
induction over n we construct sets B, €0; and compact sets
(Ly)ep, - Let v, =r~u~(22). Then Z, is not of first
category in A, , so by induction hypothesis there exists B, SN

and a family (M sep, Of compact subsets of X() such that

ﬂB M)CZ, and for each sEBl,M;ﬂAul,s is dense in
SEB

A, ~s- Suppose now that B,,...,B,_, have been constructed.

Let
y =tu~(2n,2n)y,_,B,,...,B,_ -

Then Z, is not of first category in A, so by induction
. . Un n
hypothesis there exists B, €@, and a family (M, ),,EB of

compact subsets of X(Q) such that N M; CZ, and' that
SEB,



.200 M. TALAGRAND

for each s€B,, M’ N Av" ~g is dense in A"n ~s- This completes
the construction of the B, . By definition of @3, ,

B=hJ{u’>(2n,2n)"¢an B,,...,B,_;)"s;s€B,}

belongs to @, . For v €B, if v is of the type
uQ2n,2n)"y,_,B,,...,B,_|)"s,s€B,,

let L, = M7 . Then, by construction, A,~, "L, is dense in A, ~ .

Moreover

NLCNNMCNZCZ.
vEB n SEBy, s

Remark. — We shall apply lemma 1 when ¢ is the empty
sequence.

Each element of @3 is countable. We fix an enumeration
(s3), of each BE®. We also fix an enumeration (8,(n),6,(n))
of N?, where 0,(n)<n. Suppose that for each n, we are given
a map ¢, that associates a finite sequence ¢, (o, -+, 0,) to
each o, ,...,anENN. The explicit choice of ¢, will be
described in section 3. For a finite sequence s and ¢ € NN, write
s<o if s=oa|n for n = |s|. We then describe & as the family
of sets H for which there exists an enumeration (o,) of H and
B €@ such that for each n we have

6,(n) -
g "Q2n+1,2n+D"¢,_,(0,,...,0,_)<o0,.

We shall call this enumeration of H the defining enumeration
of H, and B therootof H.

N

LEMMA 2. —Each H €@ is closed discrete for the usual
topology.

Proof. — Suppose there is HE® that is not closed discrete.
Let (0,) be the defining enumeration of H and B the root of
H. There exists a one to one sequence n(k) and o €NV with
Opy — 0. Let m(k) = 6,(n(k)). We have

sp®a2n(k) + 1,2n(k) + 1) < 0,4, .

This shows that m(k) — oo. So we have found B in @B, a
sequence s, in B, kaNN with s, <p, and p —> 0. If
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a is the smallest ordinal for which B €@, , it is routine to show
by induction over « that this cannot happen.

LEMMA 3. —Let Z be a ®-Borel set of X(@), such that
ZNNN s not of first category for the usual topology. Then there
exists HEQ and a family (L,) of compact sets of X(&) such
that NL,CZ and HN L, isinfinite for each s.

Proof. —We use lemma 1 to find BE@® and for s€EB a
compact set L, of X(Q) such that L,NA, is dense in A,
and NL,CZ. By induction over n, we construct 0,€L,., ,
where u(n) = si‘ ™ , such that (3) holds. This is possible since
Ly NAy(n isdensein A, . '

u

The cornerstone of the construction is the following lemma,
that will be proved in section 3.

LEMMA 4. — It is possible to choose the maps ¢, and VY,
such that for H, ,H, €@ we have either H =H, or H, NH,
is finite.

We assume that & has this property, and we finish the proof
of theorem A.

For each H in @, the trace on H of the algebra genefated
by H and by the finite sets is the algebra of sets that are either
finite or cofinite. It follows that H\T (where the closure is in
X(Q)) consists of a single point ay , and that for each infinite
subset G of H, we have ay €G.

ProproSITION 5. — T is not JC-Borel in X(Q). Actually, if
ZCT is K-Borel, then ZN NV s of first category for the usual
topology.

Proof — Suppose Z is JK-Borel, but that ZNNV s not
of first category for the usual topology. Let H and (L,) be as
in lemma 3. Since HN L, is infinite for each s, we have ay €L,,
0 ay ENL,CZ. QED.

We note also that the set (gy)yeca is discrete, w is its
only cluster point. To prove theorem A, it remains only to
construct a Choquet simplex K such that & can be identified
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with T and & can be identified with X(X). Denote by R
the subset of NV of sequences o = (6(n)) such that o(m)+# o(n)
for m+#n. We note that by construction HNR is empty
for HEX. Since R and H both have the power of continuum,
we can find for HEQ points by, ¢y in R such that these
points are all distinct. Denote by Y the subspace of C(X(®))
consisting of those functions f such that

1
VHGa,f(aH)-‘-E(f(bH)Jrf(cH)). 4
Note that 1 €Y. Let
K={x*eY*;|Ix*|<1,x*(1)=1}.

Then, for the weak* topology, K 1is convex compact. Let M
denote the set of probability measures on X(&) (provided with
the weak* topology) and let 6 be the natural map 6 : M — K.
We identify X(@) to a subset of M. Let u€NV . If u is not
equal to by or cy for any HEX, then f=1{u}€Y. Since
fwy>fx) for x in X(@), x+u, 6(@u) is actually an
exposed point of K. If u is equal to by or ¢y for some HEQ,

1
then f= ly,3 +31HU{0H}€Y so again 6(u) is an exposed

point of K. This also shows that 0(w) is extreme. By the same
type of arguments, one gets that 6 is one to one, so is an
isomorphism on its image. Moreover, 6(ay) is not extreme since

0(aH)=—;-(0(bH)+6(cH)), and 0(by)#0(cy). It follows

that 6(T) =8, 6(X(X)=8&. It remains to show that K
is a Choquet simplex. It is enough to show that for u,» two
probability measureson T then

VIeEY u(f)=v(f)==u=v

(it will then follow that each point of K is barycenter of a
unique maximal measure). Note that u and v are atomic.

Let € > 0, and let F be a finite set with
p(NM\F)<e,v(NM\F)<e.

Let u€NN. Assume for example that u is of the type by .
Then if G = {ay }U (H\F) '
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1
f= l{u} +—2- I €Y

SO lJu({u}) —v({u})l <e. Letting e — 0, we  get
p({u}) =v({u}) for u €NV , so m=v., Theorem A is
proved.

3. Choice of Y, and ¢, .

The set & of countable sets of finite sequences has the power
of continuum, so there is a one to one map B — o(B) from &
to NV. We define ¢,(B,,...,B,) as the sequence of length
n? obtained by taking the first n terms of o(B,), then the
first n terms of o(B,), etc. The only two properties of Y, we
shall use is that [y,(B,,...,B,)| depends on n only, and

that if B,,...,B,,...,C,,...,C,,... are two sequences of

@3 such that.

v,B,,...,B,)=vy,C,,...,C)
for infinitely many integers n, then C, = B, for each i.

We define ¢,(6,,...,0,) as the sequence of length n?
obtained by taking the first n terms of ¢, then the first n terms
of o0,, etc. The only two properties of ¢, we shall use are
again that |¢,(0,,...,0,) depends on n only, and that if

Oy5...50, ,.0.3Pyse-2,P,,..., are two sequences in NN
such that

¢,(0,,...,0,)=0¢,0,,...,P,)

for infinitely many values of n, then o; = p; for each i.

LeEMMA 6. — Let BE®. and (s,) be a sequence of elements of
B with s, #s, for n#m. Then there is a subsequence (s;) of (s,),
there is a finite sequence t, there is a strictly increasing sequence
m(k) of integers, a sequence (Bp) of @ and a sequence x, €B,, )
such that for each k

1~2m(K) , 2mED Yy 1 By s+ -+ Bogey— 1™ X =5 -
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Proof. — Suppose B €@®,. The proof goes by induction over
a. It is obvious for o = 0. Suppose it has been proved for
B < a. By definition, there is a finite sequence u«, and a sequence

(C) of U 633 such that B is the set of sequences of the
f<a

type t,”v, for n€N, vEC,, where

n?

t, =u~2n,2m~y,_, (C,,...,C,_,).

If there exists a strictly increasing sequence n(k) such that
tney <Spxys the conclusion holds. Otherwise, there is n,
and a subsequence s,' of s, with #, <s/ for each k, so
v, for v €C, . The induction hypothesis implies
that there is a subsequence v, of v,, a finite sequence u,
a sequence (Bp) of (3, a strictly increasing sequence m(k) of
integers and a sequence x,€B, such that v, =u"w,"x,,
where

we = (2m(k), 2m KN Yy By 5 - -, Brgey).

" ’ -~ — ! .
If s =1,,"v,, we have ¢, “u"w,"z, =s,. The proof is
complete.

LEMMA 7. — Let BE®. If s,t€B,s <¢t, then s = ¢.

The obvious induction is left to the reader. As a consequence,
if cEHEX and B is the root of H, there is a unique s€B
with s <o.

We now start proving that if G,H€E€®@ have an infinite
intersection, then G = H. Let (o,) (resp.(p,)) be the defining
enumeration of G(resp. H) and B(resp. C) be the root of
G(resp. H). So, we assume that we have two sequences k(n), 2(n)
such that o0, = po(, for each n, and we want to prove that
G =H. Let s" (resp.?") be the unique element of B(resp.C)

such that s" <oy, (resp.t” <py,,). We have to distinguish
four cases.

Case 1. — There exists an infinite ICN, and s,¢ such that
s" =5, " =t for nel.

In this case, we have for each n €1
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57QRk(m) +1,2k(m) + Dy 1 (04 5+ - 0kmy— 1)< Opny

t~(28(n) +1,28%n) + l)'(bg(,,)_l By, Prn) - 1)<Pg(,,) .
It follows that s=1¢, and k() =82@#) for n€Il. Since the
length of ¢,(*,...,*) dependsonly of k, this forces

remy-1 (015 Oy 1) = Pomy—1 (P15 s Pomy—1)
for each n€1. This implies that o, = p; for each i, ie. G =H.
Case 2. There exists an infinite ICN and ¢, such that

th =1t for n€l, and s" #s" for n, m€l, n#m.

From lemma 6, by restricting I one can assume that there is a
finite sequence s, integers m(n) such that for n €1,

57(2m(n), 2m(n)) <s" < 04y, -
On the other hand
t~r2n)+ 1, 20m) + D Pon) = Okn) -

Since 2m(n) is even, while 2%(n) + 1 is odd, this is impossible.

Case 3. Same as Case 2, exchanging the role of G and H.

This case is impossible just as Case 2.

Case 4. There exists an infinite I CN such that for n, m€1,
n # m, we have s" Fs™ " F ™.

From lemma 6, by restricting I, one can assume that
there exists finite sequences s, ¢, strictly increasing sequences
m@®), ((@E(@m), sequences (Dp), (Fp) of (@3, sequences
anDm(n) s Vn EFp(n) such that for n €1 we have

s" =5°Q2mn) , 2m M) Vpy—1 Dy 5+ s Dy~ 1)7%,
t" =1*Q2p(m), 2pMN " Vpy—1 Frso o s Fpy - 1),

Since s" < 04y > 1" < Pgnys AN Op(yy = Poy » it follows first
that s =¢, and m@n) = p(n) for each n. It then follows that
for nel

lllm(n)-—-l (Dl LA Dm(n)— l) = ‘pm(n)-—l (Fl LI} Fm(n)— l)

since these sequences have the same length. This in turns implies that

D,=F, for each i. We have x,,y,€D Since either

m(n) *
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x, <y, or y, <Xx,, lemma 7 shows x, =y,. We have proved
that s” =t" for each n. By definition of &, we have for
nel:

sk + 1, 2k(m) + D7 oy (0, Oy 1) < Oy
720N +1,20n) + Doy 1 O1 55 Pemy—1) < Poay -
Since s" = ¢", this shows £(n) = k(n). This implies

‘l’k(n)—l (o,,... ’ok(n)—l) = ll’k(n)-l Pys s Prmy-1)

since these sequences have the same length. It follows that
o, = p; foreach i, so G = H. The proof is complete.
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