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Abstract. — For general self-similar measures associated with contracting on average
affine IFS on the real line, we study the convergence to zero of the Fourier transform at infinity
(or Rajchman property) and the extension of results of Salem [Sal44] and Erdös [Erd39] on
Bernoulli convolutions. Revisiting in a first step a recent work of Li–Sahlsten [LS19], we show
that the parameters where the Rajchman property may not hold are very special and in close
connection with Pisot numbers. In these particular cases, the Rajchman character appears to
be equivalent to absolute continuity and, when the IFS consists of strict contractions, we show
that it is generically not true. We finally provide rather surprising numerical simulations and
an application to sets of multiplicity for trigonometric series.

Résumé. — Pour des mesures auto-similaires générales associées à des IFS affines et contrac-
tant en moyenne, nous étudions la convergence vers zéro à l’infini de la transformée de Fourier
(propriété de Rajchman) et l’extension de résultats de Salem [Sal44] et Erdös [Erd39] sur
les convolutions de Bernoulli. Reprenant dans une première étape des travaux récents de
Li–Sahlsten [LS19], nous montrons que les paramètres où la propriété de Rajchman pourrait
ne pas être vraie sont très spéciaux et en lien étroit avec les nombres de Pisot. Dans ces cas
particuliers, la propriété de Rajchman s’avère être équivalente à l’absolue continuité et, quand
l’IFS est constitué de contractions strictes, nous montrons qu’elle est génériquement fausse.
Nous terminons ce travail par d’assez surprenantes simulations numériques et une application
aux ensembles de multiplicité pour les séries trigonométriques.
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1. Introduction

1.1. Rajchman measures

In the present article we consider the question of extending some classical results
on Bernoulli convolutions to a more general context of self-similar measures. For a
Borel probability measure µ on R, define its Fourier transform as:

µ̂(t) =
∫
R
e2i π tx dµ(x), t ∈ R.

We say that µ is Rajchman, whenever µ̂(t)→ 0, as t→ +∞. When µ is a Borel
probability measure on the torus T = R\Z, we introduce its Fourier coefficients,
defined as:

µ̂(n) =
∫
T
e2i π nx dµ(x), n ∈ Z.

In this study, starting from a Borel probability measure µ on R, Borel probability
measures on T will naturally appear, quantifying the non-Rajchman character of µ.
For a Borel probability measure µ on R, the Rajchman property holds for example

if µ is absolutely continuous with respect to Lebesgue measure LR, by the Riemann–
Lebesgue lemma. The situation can be more subtle and for instance there exist
Cantor sets of zero Lebesgue measure and even of zero-Hausdorff dimension which
support a Rajchman measure; cf. Menshov [Men16], Bluhm [Blu00]. Questions on the
Rajchman property of a measure naturally arise in Harmonic Analysis, for example
when studying sets of multiplicity for trigonometric series; cf. Lyons [Lyo95] or
Zygmund [Zyg59]. We shall say a word on this topic at the end of the article. A
classical counter-example is the uniform measure µ on the standard middle-third
Cantor set, which is a continuous singular measure, not Rajchman (due to µ̂(3n)
= µ̂(n), n ∈ Z). As in this last example, the obstructions for a measure to be
Rajchman are often seen to be of arithmetical nature. The present work goes in this
direction.
As it concerns t → +∞, the Rajchman character of a measure µ on R is an

information of local regularity. As is well-known, it says for example that µ has no
atom; if µ̂ ∈ L2(R), then µ is absolutely continuous with respect to LR with an L2(R)
density; if µ̂ has some polynomial decay at infinity, one gets a lower bound on the
Hausdorff dimension of µ; etc. The Rajchman character can be reformulated as an
equidistribution property modulo 1. Since µ̂(t)→ 0 is equivalent to µ̂(mt)→ 0 for
any integer m 6= 0, if X is a real random variable with law µ, then µ is Rajchman if
and only if the law of tX mod 1 converges, as t → +∞, to Lebesgue measure LT
on T.

Self-similar measures

We now recall standard notions about self-similar measures on the real line R, with
a probabilistic point of view. We write L(X) for the law of a real random variable
X. Let N > 0 and real affine maps ϕk(x) = rkx + bk, with rk > 0, for 0 6 k 6 N ,
and at least one rk < 1. We shall talk of “strict contractions” in the case when
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Self-similar measures and the Rajchman property 975

0 < rk < 1, for all 0 6 k 6 N . This assumption will be considered principally in the
second half of the article. For the sequel, we introduce the vectors r = (rk)06 k6N
and b = (bk)06 k6N .
Notice for what follows that for n > 0, a composition ϕkn−1 ◦ · · · ◦ ϕk0 has the

explicit expression:

ϕkn−1 ◦ · · · ◦ ϕk0(x) = rkn−1 · · · rk0x+
n−1∑
l=0

bklrkn−1 · · · rkl+1 .

Consider the convex set CN = {p = (p0, · · · , pN) | ∀ j, pj > 0,∑j pj = 1}, open
for the topology of the affine hyperplane {∑j pj = 1}. We denote its closure by C̄N .
Define:

DN(r) =

p ∈ C̄N
∣∣∣∣∣∣
∑

06 j 6N
pj log rj < 0

 .
This is a non-empty open subset of C̄N , for the relative topology. Notice that
DN(r) = C̄N , in the case when the (ϕk)06 k6N are strict contractions.
Fixing a probability vector p ∈ DN(r), we now compose the contractions at

random, independently, according to p. Precisely, let X0 be any real random variable
and (εn)n> 0 be independent and identically distributed (i.i.d.) random variables,
independent from X0, and with law p, in other words P(ε0 = k) = pk, 0 6 k 6 N .
We consider the Markov chain (Xn)n> 0 on R defined by:

Xn = ϕεn−1 ◦ · · · ◦ ϕε0(X0), n > 0.

The condition p ∈ DN(r), of contraction on average, can be rewritten as E(log rε0)
< 0. It implies that (Xn)n> 0 has a unique stationary (time invariant) measure,
written as ν. This follows for example from the fact that L(Xn) = L(Yn), where:

Yn := ϕε0 ◦ · · · ◦ ϕεn−1(X0) = rε0 · · · rεn−1X0 +
n−1∑
l=0

bεlrε0 · · · rεl−1 .

As usual, (Yn) is more stable than (Xn). Since n−1 log(rε0 · · · rεn−1) → E(log rε0)
< 0, a.-s., as n → +∞, by the Law of Large Numbers, we get that Yn converges
a.-s., as n→ +∞, to:

X :=
∑
l> 0

bεlrε0 · · · rεl−1 .

Setting ν = L(X), we obtain that L(Xn) weakly converges to ν. By construction,
we have L(Xn+1) = ∑

06 j 6N pjL(Xn) ◦ ϕ−1
j . Taking the limit as n → +∞, the

measure ν verifies:

(1.1) ν =
∑

06 j 6N
pjν ◦ ϕ−1

j .

The previous convergence implies that the solution of this “stable fixed point
equation” is unique among Borel probability measures. Also, ν has to be of pure
type, i.e. either purely atomic or absolutely continuous with respect to LR or else
singular continuous, since each term in its Radon–Nikodym decomposition with
respect to LR verifies (1.1). A few remarks are in order:
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976 J. BRÉMONT

(i) If p ∈ CN , the measure ν is purely atomic if and only if the ϕj have a common
fixed point c, in which case ν is the Dirac mass at c. Indeed, consider the
necessity and suppose that ν has an atom. Let a > 0 be the maximal mass
of an atom and E the finite set of points having mass a. Fixing any c ∈ E,
the relation ν({c}) = ∑

j pjν({ϕ−1
j (c)}) furnishes ϕ−1

j (c) ∈ E, 0 6 j 6 N .
Hence ϕ−nj (c) ∈ E, n > 0, for all j. If ϕj 6= id, then ϕ−1

j (c) = c, the set
{ϕ−nj (c), n > 0} being infinite otherwise. If ϕj = id, it fixes all points.

(ii) The equation for a hypothetical density f of ν with respect to LR, coming
from (1.1), is:

f =
∑

06 j 6N
pjr
−1
j f ◦ ϕ−1

j .

This “unstable fixed point equation” is difficult to solve directly. It is equiva-
lently reformulated into the fact that ((r−1

εn−1 · · · r
−1
ε0 )f ◦ϕ−1

εn−1 · · · ◦ϕ
−1
ε0 (x))n> 0

is a non-negative martingale (for its natural filtration), for Lebesgue a.-e.
x ∈ R. Notice that when f exists and is bounded, then pj 6 rj for all j,
because pjr−1

j ‖f‖∞ = ‖pjr−1
j f ◦ ϕ−1

j ‖∞ 6 ‖f‖∞ and ‖f‖∞ 6= 0.
(iii) Let f(x) = ax + b be an affine map, with a 6= 0. With the same p ∈ DN(r),

consider the conjugate system (ψj)06 j 6N , with ψj(x) = f ◦ ϕj ◦ f−1(x) =
rjx+ b(1− rj) +abj. It has an invariant measure w = L(aX+ b) verifying the
relation ŵ(t) = ν̂(at)e2i π tb, t ∈ R. In particular, ν is Rajchman if and only if
w is Rajchman.

(iv) When supposing that the (ϕk)06 k6N are strict contractions, some self-similar
set F can be introduced, where F ⊂ R is the unique non-empty compact
set verifying the self-similarity relation F = ∪06 k6Nϕk(F ). See for ex-
ample Hutchinson [Hut81] for general properties of such sets. Introducing
N = {0, 1, · · · } and the compact S = {0, · · · , N}N, the hypothesis that the
(ϕk)06 k6N are strict contractions implies that F is a continuous (and even
hölderian) image of S, in other words we have the following description:

F =

∑
l> 0

bxlrx0 · · · rxl−1 , (x0, x1, · · · ) ∈ S

 .
Whereas in the general case a self-similar invariant measure can have R as topo-

logical support, when the (ϕk)06 k6N are strict contractions the compact self-similar
set F exists and supports any self-similar measure.

Background and content of the article

Coming back to the general case, we assume in the sequel that the (ϕj)06 j 6N
do not have a common fixed point (in particular N > 1), so that µ is a continuous
measure. A difficult problem is to characterize the absolute continuity of ν with
respect to LR in terms of the parameters r, b and p. An example with a long and
well-known history is that of Bernoulli convolutions, corresponding to N = 1, the
affine contractions ϕ0(x) = λx− 1, ϕ1(x) = λx+ 1, 0 < λ < 1, and the probability
vector p = (1/2, 1/2). Notice that when the ri are all equal (to some real in (0, 1)),
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the situation is a little simplified, as ν is an infinite convolution (this is not true in
general). Although we discuss below some works in this context, we will not present
here the vast subject of Bernoulli convolutions, addressing the reader to detailed
surveys, such as Peres–Schlag–Solomyak [PSS00] or Solomyak [Sol04].
For general self-similar measures, an important aspect of the problem, that we shall

not enter, and an active line of research, concerns the Hausdorff dimension of the
measure ν; cf. the recent fundamental work of Hochman [Hoc14] for example. In a
large generality, see Falconer [Fal03] and more recently Jaroszewska and Rams [JR08],
there is an “entropy/Lyapunov exponent” upper-bound:

DimH(ν) 6 min{1, s(p, r)}, where s(p, r) :=
−

N∑
i=0

pi log pi

−
N∑
i=0

pi log ri
.

The quantity s(p, r) is called the singularity dimension of the measure and can be
> 1. The equality DimH(ν) = 1 does not mean that ν is absolutely continuous, but
the inequality s(p, r) < 1 surely implies that ν is singular. The interesting domain
of parameters for the question of the absolute continuity of the invariant measure
therefore corresponds to s(p, r) > 1.
We focus in this work on another fundamental tool, the Fourier transform ν̂. If

ν is not Rajchman, the Riemann-Lebesgue lemma implies that ν is singular. This
property was used by Erdös [Erd39] in the context of Bernoulli convolutions. He
proved that if 1/2 < λ < 1 is such that 1/λ is a Pisot number, then ν is not Rajchman.
The reciprocal statement (for 1/2 < λ < 1) was next shown by Salem [Sal44]. As a
result, for Bernoulli convolutions the Rajchman property always holds, except for
a very particular set of parameters. Some works have next focused on the decay
on average of the Fourier transform for general self-similar measures associated to
strict contractions; cf. Strichartz [Str90, Str93], Tsuji [Tsu15]. In the same context,
the non-Rajchman character was recently shown to hold for only a very small set
of parameters by Li and Sahlsten [LS19], who showed that ν is Rajchman when
log ri/ log rj is irrational for some (i, j), with moreover some logarithmic decay of
ν̂ at infinity, under a Diophantine condition. Next, Solomyak [Sol19] proved that
outside a set of r of zero Hausdorff dimension, ν̂ even has a power decay at infinity.
The aim of the present article is to study for general self-similar measures the

exceptional set of parameters where the Rajchman property is not true, trying to
follow the line of [Erd39] and [Sal44]. We essentially show that r and b have to be
closely related to some fixed Pisot number, as for Bernoulli convolutions. We first
prove a general extension of the result of Salem [Sal44], reducing to a small island
the set of parameters where the Rajchman property may not hold. Focusing then
on this island of parameters, we provide a general characterization of the Rajchman
character, appearing in this particular case as equivalent to absolute continuity
with respect to LR. Next, supposing that the (ϕk)06 k6N are strict contractions, we
prove a partial extension of the theorem of Erdös [Erd39], showing that for most
parameters in the small island the Rajchman property is not true, with in general a
few exceptions. We finally give some complements, first rather surprising numerical
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simulations involving the Plastic number, then an application to sets of uniqueness
for trigonometric series.

2. Statement of the results

Let us place in the general context considered in the Introduction. Pisot numbers
will play a central role in the analysis. Let us introduce a few definitions concerning
Algebraic Number Theory; cf. for example Samuel [Sam70] for more details.

Definition 2.1. — A Pisot number is a real algebraic integer θ > 1, with
conjugates (the other roots of its minimal unitary polynomial) of modulus strictly
less than 1. Fixing such a θ > 1, denote its minimal polynomial as Q = Xs+1 +
asX

s + · · ·+a0 ∈ Z[X], of degree s+ 1, with s > 0. If s = 0, then θ is an integer > 2.
The images of µ ∈ Q[θ] by the s+ 1 Q-homomorphisms Q[θ]→ C are the conjugates
of µ corresponding to the field Q[θ], in general denoted by µ = µ(0), µ(1), · · · , µ(s).

(i) For α ∈ Q[θ], the trace Trθ(α) is the trace of the linear operator x 7−→ αx
of multiplication by α, considered from Q[θ] to itself. As a general fact,
Trθ(α) ∈ Q.

(ii) Let Z[θ] = Zθ0 + · · · + Zθs be the subring generated by θ of the ring of
algebraic integers of Q[θ]. We write D(θ) for its Z-dual (as a Z-lattice), i.e.:

D(θ) = {α ∈ Q[θ], T rθ(θnα) ∈ Z, for 0 6 n 6 s} .
It can be shown that D(θ) = (1/Q′(θ))Z[θ]. As a classical fact, Trθ(θnα) ∈ Z, for

all n > 0, if this holds for 0 6 n 6 s. Define:
T (θ) = {α ∈ Q[θ], T rθ(θnα) ∈ Z, for large n > 0} .

Then T (θ) = ∪n> 0θ
−nD(θ) = Z[θ, 1/θ]

Q′(θ) , with Z[θ, 1/θ] the subring of Q[θ] generated
by {θ, 1/θ}.

Remark 2.2. — In the context of the previous definition, introduce the integer-
valued (s+ 1)× (s+ 1)-companion matrix M of Q:

M =


0 1 · · · 0
... . . . . . . ...
... ... 0 1
−a0 · · · −as−1 −as

 .

One may show that for any µ ∈ Q[θ], setting V = (Trθ(θ0µ), · · · , T rθ(θsµ)), then
µ ∈ T (θ) if and only if there exists n > 0 such that VMn has integral entries.

We introduce special families of affine maps, that will play the role of canonical
models for the analysis of the Rajchman property.

Definition 2.3. — Let N > 1. A family of real affine maps (ϕk)06 k6N is said in
Pisot form, if there exist a Pisot number 1/λ > 1, relatively prime integers (nk)06 k6N
and µk ∈ T (1/λ), 0 6 k 6 N , such that ϕj(x) = λnjx+ µj, for all 0 6 j 6 N .

ANNALES HENRI LEBESGUE



Self-similar measures and the Rajchman property 979

Remark 2.4. — If (ϕj)06 j 6N is in Pisot form, then the (λ, (nj), (µj)) are uniquely
determined. Indeed, if the (λ′, (n′j), (µ′j)) also convene, we just need to show that
λ = λ′. Taking some collection of integers (aj) realizing a Bézout relation 1 = ∑

j ajnj,
we have:

λ = λ
∑

j
ajnj = λ′

∑
j
ajn
′
j = λ′p,

for some p > 1. Idem, λ′ = λq, for some q > 1. Hence pq = 1, giving p = q = 1 and
λ = λ′.

As a first result, extending [Sal44], the analysis of the non-Rajchman character of
the invariant measure requires to consider families in Pisot form.

Theorem 2.5. — Let N > 1, p ∈ CN and affine maps ϕk(x) = rkx+ bk, rk > 0,
for 0 6 k 6 N , with no common fixed point, and∑06 j 6N pj log rj < 0. The invariant
measure ν is not Rajchman if and only if there exists f(x) = ax+ b, a 6= 0, such that
the conjugate system (f ◦ ϕj ◦ f−1)06 j 6N is in Pisot form, for some Pisot number
1/λ > 1, with invariant measure w verifying ŵ(λ−k) 6→k+∞ 0.

In particular, one gets that rj = λnj , for all j, for some Pisot number 1/λ > 1 et
relatively prime integers (nk)06 k6N . Hence, up to an affine change of variables, the
non-Rajchman character of the invariant measure ν can be read on the sequence
(λ−k)k> 0, as in [Erd39]. In a second step, we provide a general analysis of families
in Pisot form.
We now fix a Pisot number 1/λ > 1, an integer N > 1, relatively prime inte-

gers (nk)06 k6N and (µk)06 k6N ∈ (T (1/λ))N+1, such that ϕk(x) = λnkx + µk, for
0 6 k 6 N . Let p ∈ CN be such that ∑06 j 6N pjnj > 0 and i.i.d. random variables
(εn)n∈Z, with P(ε0 = k) = pk, 0 6 k 6 N . We introduce cocycle notations (Sl)l∈Z,
where S0 = 0 and for l > 1:

Sl = nε0 + · · ·+ nεl−1 , S−l = −nε−l − · · · − nε−1 .

An important preliminary remark is that when µ ∈ T (1/λ) and k > 0 is large
enough, we have:

λ−kµ+
∑

16 j 6 s
αkjµ

(j) = Tr1/λ(λ−kµ) ∈ Z,

where the (αj)06 j 6 s are the conjugates of 1/λ =: α0 and the (µ(j))06 j 6 s that of
µ = µ(0), corresponding to the field Q[λ]. Since |αj| < 1, for 1 6 j 6 s, and (Sl)
is a.-s. transient with a non-zero linear speed to −∞, as l → −∞, by the Law of
Large Numbers, this ensures that for any k ∈ Z, the random variable ∑l∈Z µεlλ

k+Sl

mod 1 is well-defined as a T-valued random variable.
In the sequel we use standard inner products and Euclidean norms on all spaces

Rn.

Theorem 2.6. — Let 1/λ > 1 be a Pisot number of degree s + 1. Let N >
1, relatively prime integers (nk)06 k6N and (µk)06 k6N ∈ (T (1/λ))N+1, such that
ϕk(x) = λnkx + µk, 0 6 k 6 N . Let p ∈ CN be such that ∑06 j 6N pjnj > 0 and
i.i.d. random variables (εn)n∈Z, with law p. Let (Sl)l∈Z be the cocycle notations
associated to the (nεi)i∈Z. The real random variable X = ∑

l> 0 µεlλ
Sl has law ν.
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(i) Let the T-valued random variables Zk = ∑
l∈Z µεlλ

k+Sl , k ∈ Z. Then λ−nX
mod 1 converges in law, as n → +∞, to a probability measure m on T,
verifying, for all f ∈ C(T,R) and all k ∈ Z:∫

T
f(x) dm(x) = 1

E(nε0)
∑

06 r <n∗
E
[
f (Zk+r) 1S−u<−r, u> 1

]
,

where n∗ = max06 k6N nk. More generally, λ−n(X,λ−1X, · · · , λ−sX) mod
Zs+1 converges in law, as n → +∞, to a probability measure M on Ts+1,
with one-dimensional marginals m, verifying:∫

Ts+1
f(x) dM(x) = 1

E(nε0)
∑

06 r <n∗
E
[
f (Zk+r, Zk+r−1, · · · , Zk+r−s) 1S−u<−r, u> 1

]
,

for all f ∈ C(Ts+1,R) and all k ∈ Z.
(ii) If the (ϕk)06 k6N do not have a common fixed point (i.e. if ν is continuous),

denoting by Z a Ts+1-valued random variable with law M, then for any
0 6= n = (n0, · · · , ns)t ∈ Zs+1, 〈Z, n〉 has a continuous law; in particular, m
andM are continuous measures. If the (ϕk)06 k6N have a common fixed point,
there exists a rational number p/q such that m = δp/q andM = (δp/q)⊗(s+1).

(iii) Either M ⊥ LTs+1 or M = LTs+1 . Also, M = LTs+1 ⇔ ν is Rajchman ⇔
ν � LR.

In the context of the previous theorem, ν andM are always of the same nature,
with respect to the uniform measure of the space they live on. In particular,M is
also of pure type. We finally consider families in Pisot form, when supposing that
the (ϕk)06 k6N are strict contractions.
Theorem 2.7. — Let N > 1 and ϕk(x) = λnkx + µk, for 0 6 k 6 N , with

1/λ > 1 a Pisot number, relatively prime integers (nk)06 k6N , with nk > 1 and
µk ∈ T (1/λ), for 0 6 k 6 N . When p ∈ CN is fixed, we denote by m the measure
on T of Theorem 2.6(i).

(i) For any p ∈ CN , if the invariant measure ν is Rajchman, then it is absolutely
continuous with respect to LR, with a density bounded and with compact
support.

(ii) There exists 0 6= a ∈ Z such that for any k 6= 0, for any p ∈ CN outside
finitely many real-analytic graphs of dimension 6 N − 1 (points if N = 1),
we have m̂(ak) 6= 0. In this case, m 6= LT and ν is not Rajchman.

Remark 2.8. — In Theorem 2.7(ii), observe that when making k vary, we obtain
that for all p ∈ CN outside a countable number of real-analytic graphs of dimension
less than or equal to N − 1 (points if N = 1), then m̂(ak) 6= 0, for all k ∈ Z. Part (ii)
of Theorem 2.7 relies on an indirect argument, based on the analysis of the regularity
of m̂(n), for some fixed n ∈ Z, as a function of p ∈ CN .
Remark 2.9. — On the existence of singular measures in the non-homogeneous

case, we are essentially aware of the non-explicit examples, using algebraic curves,
of Neunhäuserer [Neu11]. As suggested by the referee, Theorem 2.7 allows to give
in the non-homogeneous case an explicit example of a continuous singular and
not Rajchman invariant measure ν with singularity dimension > 1. Indeed, take

ANNALES HENRI LEBESGUE



Self-similar measures and the Rajchman property 981

for 1/λ > 1 the Plastic number, i.e. the real root of X3 − X − 1. This is the
smallest Pisot number; cf. Siegel [Sie44]. We have 1/λ = 1.3247 . . . Let N = 1 and
ϕ0(x) = λx, ϕ1(x) = λ2x+1. For p = (p0, p1) ∈ C1, if ν is absolutely continuous with
respect to LR, then, by Theorem 2.7(i), the density has to be bounded. By remark (ii)
in the Introduction, this implies that p0 6 λ = 0.7548 . . . and p1 6 λ2. Now, as
detailed in the last section, the similarity dimension in this case is > 1 if and only
if 0, 203 . . . < p0 < 0, 907 . . . For example we can conclude that for p0 ∈ [0.76, 0.90],
the measure ν is continuous, singular with respect to LR, not Rajchman and with
similarity dimension > 1. Still for the system ϕ0(x) = λx, ϕ1(x) = λ2x + 1, we
will give in the last section a strong numerical support for the fact that ν is in fact
continuous singular and not Rajchman for all p ∈ C1.

Remark 2.10. — In the context of Theorem 2.7, it would be important to deter-
mine all the exceptional parameters where ν is absolutely with respect to LR. Let
us give some examples where the exceptional set in Theorem 2.7(ii) is non-empty:

(1) Let 1/λ = N > 1 and ϕk(x) = (x + k)/(N + 1), with pk = 1/(N + 1), for
0 6 k 6 N ; then ν is Lebesgue measure on [0, 1].

(2) Take for 1/λ > 1 the Plastic number, N = 1 and this time ϕ0(x)
= λ2x, ϕ1(x) = λ3x + 1. One may verify that the similarity dimension is
< 1 for all p ∈ C1, except for p = (λ2, λ3), where it equals one. Thus the
invariant measure ν is singular for p ∈ C1 with p 6= (λ2, λ3). Another way,
if ν is absolutely continuous with respect to LR, then its density has to be
bounded by Theorem 2.7. Therefore, p0 6 λ2 and p1 6 λ3, using remark (ii)
in the Introduction. Since λ2 + λ3 = 1, we have p0 = λ2 and p1 = λ3. As a
result, when p = (p0, p1) 6= (λ2, λ3) and p0 > 0, p1 > 0, then ν is continuous
singular and not Rajchman. When p = (λ2, λ3), set I = [0, 1 + λ] and notice
that ϕ0(I) = [0, 1], ϕ1(I) = [1, 1 + λ]. Hence, Lebesgue a.-e.:

1I = 1ϕ0(I) + 1ϕ1(I) = p0λ
−21ϕ0(I) + p1λ

−31ϕ1(I),

meaning that ν = 1
1+λLI . Taking for 1/λ the supergolden ratio (the real root

of X3−X2−1; the fourth Pisot number), one gets the same situation with the
system (λx + 1, λ3x), the exceptional parameters being then (λ, λ3), giving
for ν the uniform probability measure on [0, λ−3].

(3) When 1/λ > 1 is the Plastic number, N = 2, ϕ0(x) = λ2x, ϕ1(x) = λ3x+ 1,
ϕ2(x) = λ3x+ 1 and p0 = λ2, p1 = λ3α, p2 = λ3(1−α), then ν = 1

1+λL[0, 1+λ],
for all 0 < α < 1. This is an example, a little degenerated, of a one-dimensional
real-analytic graph where the corresponding invariant measure ν is absolutely
continuous with respect to LR.

It would be interesting to find more developed examples, where ν is absolutely
continuous with respect to LR. A difficulty is that a priori the probability vector p
has to be chosen in accordance with the polynomial equations verified by λ.
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3. Proof of Theorem 2.5

Proof of Theorem 2.5. — Let N > 1 and (ϕk)06 k6N , with ϕk(x) = rkx + bk,
where rk > 0, and having no common fixed point. Fixing p ∈ CN , introduce
i.i.d. random variables (εn)n> 0 with law p, to which P and E refer. By hypothe-
sis, E(log rε0) < 0. Recall that the invariant measure ν is the law of the random
variable ∑l> 0 bεlrε0 · · · rεl−1 and that ν is supposed to be non Rajchman. Without
loss of generality, we assume that 0 < r0 6 r1 6 · · · 6 rN , with therefore r0 < 1.
The proof has three parts. First we show that log ri/ log rj ∈ Q, for all 0 6 i 6=

j 6 N . From this, we will get that rj = λnj , for some 0 < λ < 1 and integers (nj).
We then show that the non Rajchman character of ν can be seen on a subsequence
of the form (αλ−k)k> 0. We finally prove that 1/λ is a Pisot number and the family
(ϕk)06 k6N is affinely conjugated with one in Pisot form.
Step 1. — Let us show that if ever log ri/ log rj 6∈ Q, for some 0 6 i 6= j 6 N ,

then ν is Rajchman. This is established in [LS19] for strict contractions. We simplify
their proof.
For n > 1, consider the random walk Sn = − log rε0 − · · · − log rεn−1 , with S0 = 0.

For a real s > 0, introduce the finite stopping time τs = min{n > 0, Sn > s} and
write Ts for the corresponding sub-σ-algebra of the underlying σ-algebra. Taking
α > 0 and s > 0:

ν̂(αes) = E
(
e2πiαes

∑
l> 0 bεle

−Sl
)

= E
(
e2πiαes

∑
0 6 l < τs

bεle
−Sl
e2πiαe−Sτs+s

∑
l> τs

bεle
−Sl+Sτs

)
.

In the expectation, the first exponential term is Ts-measurable. Also, the con-
ditional expectation of the second exponential term with respect to Ts is just
ν̂(αe−Sτs+s), as a consequence of the strong Markov property. It follows that:

ν̂(αes) = E
(
ν̂
(
αe−Sτs+s

)
e2π iα es

∑
0 6 l < τs

bεle
−Sl
)
.

This gives |ν̂(αes)| 6 E(|ν̂(αe−Sτs+s)|), so by the Cauchy–Schwarz inequality and
the Fubini theorem, which directly applies, consecutively:

|ν̂ (αes)|2 6 E
(∣∣∣ν̂ (αe−Sτs+s

)∣∣∣2) = E
(∫

R2
e2π iα e−Sτs+s(x−y) dν(x)dν(y)

)
=
∫
R2

E
(
e2π i α e−Sτs+s(x−y)

)
dν(x)dν(y)

6
∫
R2

∣∣∣E (e2π iα e−Sτs+s(x−y)
)∣∣∣ dν(x)dν(y).

Let Y := − log rε0 . The law of Y is non-lattice, since some log ri/ log rj 6∈ Q and
pk > 0 for all 0 6 k 6 N . As Y is integrable, with 0 < E(Y ) <∞, it is a well-known
consequence of the Blackwell theorem on the law of the overshoot that (see for
instance Woodroofe [Woo82, Chapter 2, Theorem 2.3]), that:

E (g(Sτs − s))→
1

E(Sτ0)

∫ +∞

0
g(x)P(Sτ0 > x) dx, as s→ +∞,
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for any Riemann-integrable g defined on R+. Here, all Sτs − s, for s > 0, (and in
particular Sτ0) have support in some [0, A]. Therefore, P(Sτ0 > x) = 0 for large
x > 0. For any α > 0, by dominated convergence (letting s→ +∞):

lim sup
t→+∞

|ν̂(t)|2 6 1
E(Sτ0)

∫
R2

∣∣∣∣∫ +∞

0
e2π i α e−u(x−y)P(Sτ0 > u)du

∣∣∣∣ dν(x)dν(y).

The inside term (in the modulus) is uniformly bounded with respect to (x, y) ∈ R2.
We shall use dominated convergence once more, this time with α → +∞. It is
sufficient to show that for ν⊗2-almost every (x, y), the inside term goes to zero. Since
the measure ν is non-atomic, ν⊗2-almost-surely, x 6= y. If for example x > y:∫ +∞

0
e2πiαe−u(x−y)P (Sτ0 > u) du =

∫ x−y

0
e2π i αtP (Sτ0 > log(x− y)/t) dt

t
,

making the change of variable t = e−u(x − y). The last integral now converges to
0, as α → +∞, by the Riemann-Lebesgue lemma. Hence, limt→+∞ ν̂(t) = 0. This
ends the proof of this step.
Step 2. — As ν is not Rajchman, from Step 1, log ri/ log rj ∈ Q, for all (i, j).

Hence rj = r
pj/qj
0 , with integers pj ∈ Z, qj > 1, for 1 6 j 6 N . Let:

n0 =
∏

16 l6N
ql > 1 and nj = pj

∏
16 l6N, l 6= j

ql ∈ Z, 1 6 j 6 N.

Recall that 0 < r0 < 1. Setting λ = r
1/n0
0 ∈ (0, 1), one has rj = λnj , 0 6 j 6 N . Up

to taking some positive integral power of λ, one can assume that gcd(n0, · · · , nN) = 1.
Recall in passing that the set of Pisot numbers is stable under positive integral powers.
The condition E(log rε0) < 0 rewrites into E(nε0) > 0 and we have nN 6 · · · 6 n0,
with n0 > 1.
Using some sub-harmonicity, we shall now show that one can reinforce the assump-

tion that ν̂(t) is not converging to 0, as t→ +∞.

Lemma 3.1. — There exists 1 6 α 6 1/λ and c > 0 such that ν̂(αλ−k) = cke
2i π θk ,

written in polar form, verifies ck → c, as k → +∞.

Proof of the Lemma 3.1. — Let us write this time Sn = nε0 + · · · + nεn−1 , for
n > 1, with S0 = 0. Since E(nε0) > 0, (Sn) is transient to +∞. Introduce the random
ladder epochs 0 = σ0 < σ1 < · · · , where inductively σk+1 is the first time n > 0
with Sn > Sσk . Let S ′k = Sσk . The (S ′k − S ′k−1)k> 1 are i.i.d. random variables with
law L(Sτ0) and support in {1, · · · , n0}. Since gcd(n0, · · · , nN) = 1, the support of
the law of Sτ0 generates Z as an additive group (cf. for example Woodroofe [Woo82,
Theorem 2.3, second part]). For an integer u > 1 large enough, we can fix integers
r > 1 and s > 1 such that the support of the law of S ′r contains u and that of S ′s
contains u + 1, both supports being included in some {1, · · · , M}, with therefore
1 6 u 6 u+ 1 6M . Proceeding as in Step 1, for any t ∈ R:

ν̂(t) = E
(
e2π it

∑
l> 0 bεlλ

Sl
)

= E
(
ν̂(tλS′r)e2π it

∑
0 6 l < σr

bεlλ
Sl
)
.

Doing the same thing with S ′s and taking modulus gives:

(3.1) |ν̂(t)| 6 E
(∣∣∣ν̂ (tλS′r)∣∣∣) and |ν̂(t)| 6 E

(∣∣∣ν̂ (tλS′s)∣∣∣) .
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In particular, |ν̂(t)| 6 max16 l6M |ν̂(λlt)|. We now set:

Vα(k) := max
k6 l < k+M

∣∣∣ν̂ (αλl)∣∣∣ , k ∈ Z, α > 0.

The previous remarks imply that Vα(k) 6 Vα(k + 1), k ∈ Z, α > 0.
Since ν is not Rajchman, |ν̂(tl)| > c′ > 0, along some sequence tl → +∞. Write

tl = αlλ
−kl , with 1 6 αl 6 1/λ and kl → +∞. Up to taking a subsequence,

αl → α ∈ [1, 1/λ]. Fixing k ∈ Z:

c′ 6 Vαl(−kl) 6 Vαl(−k),

as soon as l is large enough. By continuity, letting l → +∞, we get c′ 6 Vα(−k),
k ∈ Z. As k 7−→ Vα(−k) is non-increasing, Vα(−k)→ c > c′, as k → +∞. We now
show that necessarily |ν̂(αλ−k)| → c, as k → +∞.
If this were not true, there would exist ε > 0 and (mk)→ +∞, with |ν̂(αλ−mk)| 6

c− ε. Using Vα(−k)→ c and |ν̂(αλ−mk)| 6 c− ε, as k → +∞, consider (3.1) with r
and t = αλ−mk−u and next with s and t = αλ−mk−u−1. Since u is in the support of
the law of S ′r and u+ 1 is in the support of the law of S ′s, we obtain the existence of
some c1 < c such that for k large enough:

max
{∣∣∣ν̂ (αλ−mk−u)∣∣∣ , ∣∣∣ν̂ (αλ−mk−u−1

)∣∣∣} 6 c1 < c.

Again via (3.1), with successively r and t = αλ−mk−2u, next r and t = αλ−mk−2u−1

and finally s and t = αλ−mk−2u−2, still using that u is in the support of the law of
S ′r and u + 1 in the support of the law of S ′s, we get some c2 < c such that for k
large enough:

max
{∣∣∣ν̂ (αλ−mk−2u

)∣∣∣ , ∣∣∣ν̂ (αλ−mk−2u−1
)∣∣∣ , ∣∣∣ν̂ (αλ−mk−2u−2

)∣∣∣} 6 c2 < c.

Etc, for some cM−1 < c and k large enough:

max
{∣∣∣ν̂ (αλ−mk−(M−1)u

)∣∣∣ , · · · , ∣∣∣ν̂ (αλ−mk−(M−1)u−(M−1)
)∣∣∣} 6 cM−1 < c.

This contradicts the fact that Vα(−k) → c, as k → ∞. We conclude that
|ν̂(αλ−k)| → c, as k →∞, and this ends the proof of Lemma 3.1. �

Step 3. — We complete the proof of Theorem 2.5. In this part, introduce the
notation ‖x‖ = dist(x,Z), for x ∈ R. Let us consider any 1 6 α 6 1/λ, with
ν̂(αλ−k) = cke

2i π θk , verifying ck → c > 0, as k → +∞. The existence of such a α
was shown in Step 2. We start from the relation:

ν̂
(
αλ−k

)
=

∑
06 j 6N

pje
2i π αλ−kbj ν̂

(
αλ−k+nj

)
,

obtained when conditioning with respect to the value of ε0. This furnishes for k > 0:

ck =
∑

06 j 6N
pje

2i π(αλ−kbj + θk−nj−θk)ck−nj .
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We rewrite this as:∑
06 j 6N

pj

[
e2i π (αλ−k bj +θk−nj −θk) − 1

]
ck−nj = ck −

∑
06 j 6N

pjck−nj

=
∑

06 j 6N
pj(ck − ck−nj).

Let K > 0 be such that ck−nj > c/2 > 0, for k > K and all 0 6 j 6 N . For L > n∗,
where n∗ = max06 j 6N |nj|, we sum the previous equality on K 6 k 6 K + L:

∑
06 j 6N

pj
K+L∑
k=K

ck−nj

[
e2i π (αλ−kbj+θk−nj−θk) − 1

]
=

∑
06 j 6N

pj

K+L∑
k=K

ck −
K+L−nj∑
k=K−nj

ck

 .
Observe that the right-hand side involves a telescopic sum and is bounded by 2n∗

(using that |ck| 6 1), uniformly in K and L. In the left hand-hand side, we take the
real part and use that 1 − cos(2πx) = 2(sin πx)2, which, as is well-known, has the
same order as ‖x‖2. We obtain, for some constant C, that for K and L large enough:

c

2
∑

06 j 6N
pj

K+L∑
k=K

∥∥∥αλ−kbj + θk−nj − θk
∥∥∥2
6 C.

Introducing the constants p∗ = min06 j 6N pj > 0 and C ′ = 2C/(cp∗), we get that
for all 0 6 j 6 N and K,L large enough:

(3.2)
K+L∑
k=K
‖αλ−kbj + θk−nj − θk‖2 6 C ′.

In the sequel, we distinguish two cases : there exists a non-zero translation among
the (ϕk)06 k6N (case 1) or not (case 2).
Case 1. — For any non-zero-translation ϕj(x) = x+bj, we have nj = 0 and bj 6= 0.

Then (3.2) gives that for K,L large enough:
K+L∑
k=K

∥∥∥αλ−kbj∥∥∥2
6 C ′.

This implies that (‖αbjλ−k‖)k> 0 ∈ l2(N). By a classical theorem of Pisot, cf.
Cassels [Cas57, Chapter 8, Theorems I and II], we obtain that 1/λ is a Pisot number
and bj = (1/α)µj, with µj ∈ T (1/λ). Consider now the non-translations ϕj(x)
= λnjx+ bj, nj 6= 0. By (3.2), for any r > 0 and K,L large enough (depending on r):

K+L∑
k=K

∥∥∥αλ−k+rnjbj + θk−(r+1)nj − θk−rnj
∥∥∥2
6 C ′.

Fixing lj > 1 and summing over 0 6 r 6 lj − 1, making use of the triangular
inequality and of (x1 + · · ·+xn)2 6 n(x2

1 + · · ·+x2
n), we obtain, for K,L large enough

(depending on lj):

(3.3)
K+L∑
k=K

∥∥∥∥∥αλ−kbj
(

1− λljnj
1− λnj

)
+ θk−ljnj − θk

∥∥∥∥∥
2

6 ljC
′.
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Changing k into k + ljnj, we obtain, for K,L large enough (depending on lj):

(3.4)
K+L∑
k=K

∥∥∥∥∥αλ−kbj
(

1− λ−ljnj
1− λnj

)
+ θk+ljnj − θk

∥∥∥∥∥
2

6 ljC
′.

Let 1 = ∑
06 j 6N ljnj be a Bézout relation and J ⊂ {0, · · · , N} be the subset

of j where ljnj 6= 0, equipped with its natural order. Using successively for j ∈ J
either (3.3) or (3.4), according to the sign of lj, we obtain with:

(3.5) b :=
∑
j ∈ J

bjλ
∑

k∈ J, k < j lknk

(
1− λljnj
1− λnj

)
,

the following relation, for a new constant C ′ and all K,L large enough:
K+L∑
k=K

∥∥∥αλ−kb+ θk−1 − θk
∥∥∥2
6 C ′.

Now, for any nj 6= 0, whatever the sign of nj is, we arrive at, for some constant
C ′ and all K,L large enough:

K+L∑
k=K

∥∥∥∥∥αλ−kb
(

1− λnj
1− λ

)
+ θk−nj − θk

∥∥∥∥∥
2

6 C ′.

Set b′ = b/(1− λ). Hence, for any 0 6 j 6 N with nj 6= 0, for some new constant
C ′ and all K,L large enough, using (3.2):

K+L∑
k=K

∥∥∥αλ−k (bj − b′ (1− λnj))
∥∥∥2
6 C ′.

Let 0 6 j 6 N , with nj 6= 0. If bj 6= b′(1 − λnj), then we deduce again (still by
Cassels [Cas57, Chapter 8, Theorems I and II]) that 1/λ is a Pisot number and
bj = b′(1− λnj) + (1/α)µj, with µj ∈ T (1/λ). The other case is bj = b′(1− λnj). In
any case, we obtain that for all 0 6 j 6 N :
(3.6) ϕj(x) = b′ + λnj(x− b′) + (1/α)µj,
for some µj ∈ T (1/λ). Finally, remark that (3.6) says that the (ϕj)06 j 6N are
conjugated with the (ψj)06 j 6N , where ψj(x) = λnjx+µj. Precisely ϕj = f ◦ψj ◦f−1,
with f(x) = x/α + b′.
Case 2. — Any ϕj with nj = 0 is the identity. The conclusion is the same, because

there now necessarily exists some 0 6 j 6 N with nj 6= 0 and bj 6= b′(1 − λnj),
otherwise b′ is a common fixed point for all (ϕj)06 j 6N .
This ends the proof of Theorem 2.5. �

4. Proof of Theorem 2.6

Proof of Theorem 2.6. — Let N > 1 and affine maps ϕk(x) = λnkx + µk, for
0 6 k 6 N , with 1/λ > 1 a Pisot number, relatively prime integers (nk)06 k6N
and µk ∈ T (1/λ), for 0 6 k 6 N . Let p ∈ CN and denote by (εn)n∈Z a two-sided
family of i.i.d. random variables with law p, to which again the probability P and
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the expectation E refer. We suppose that E(nε0) > 0. Without loss of generality,
nN 6 · · · 6 n0 and in particular n0 > 1. For general background on Markov chains,
cf. Spitzer [Spi76].
Recall the cocycle notations for the (nεi)i∈Z introduced before the statement of

the theorem and denote by θ the formal shift such that θεl = εl+1, l ∈ Z. We have
for all k and l in Z:

Sk+l = Sk + θkSl.

Then ν is the law of X = ∑
l> 0 µεlλ

Sl . We write Q ∈ Z[X] for the minimal
polynomial of 1/λ, of degree s+ 1, with roots α0 = 1/λ, α1, · · · , αs, where |αk| < 1,
for 1 6 k 6 s. The case s = 0 corresponds to 1/λ an integer > 2 (using then usual
conventions regarding sums or products). Recall that for any k ∈ Z, ∑l∈Z µεlλ

k+Sl

mod 1 is a well-defined T-valued random variable.
Step 1. — In order to prove the convergence in law of (λ−nX,λ−n−1X, · · · , λ−n−s

X) mod Zs+1, as n→ +∞, it is enough to prove, for any (m0, · · · ,ms) ∈ Zs+1, the
convergence of:

E
(
e2iπ

∑
0 6u6 s

muλ−n−uX
)

= E
(
e2i π

∑
l> 0(αµεl )λ

−n+Sl
)
,

with α = ∑
06u6 smuλ

−u. Notice that αµj ∈ T (1/λ), for 0 6 j 6 N . We make the
proof when α = 1, the one for α being obtained by changing (µj) into (αµj).
Since ∑l < 0 µεlλ

−n+Sl mod 1 converges a.-s. to 0 in T, as n → +∞, it is enough
to consider expectations with ∑l∈Z µεlλ

−n+Sl mod 1 in the exponential. Let k ∈ Z
be a fixed integer. For n > 0, that will tend to +∞, consider (Sl)l∈Z and the first
q ∈ Z such that Sq > n. We have:

E
(
e2i π

∑
l∈ Z µεlλ

k−n+Sl
)

=
∑

06 r <n0

∑
q ∈Z

E
(
e2i π

∑
l∈ Z µεlλ

(k−n+Sq)+(Sl−Sq)1Sq−u<n, u> 1, Sq=n+r
)

=
∑

06 r <n0

∑
q ∈Z

E
(
e2i π

∑
l∈ Z µεlλ

k+r+θqSl−q1θqS−u<−r, u> 1, θqS−q=−n−r

)

=
∑

06 r <n0

∑
q ∈Z

E
(
e2i π

∑
l∈ Z µεl−qλ

k+r+Sl−q1S−u<−r, u> 1, S−q=−n−r

)
=

∑
06 r <n0

∑
q ∈Z

E
(
e2i π

∑
l∈ Z µεlλ

k+r+Sl1S−u<−r, u> 1, S−q=−n−r
)
.

For each 0 6 r < n0, we now observe that we can move the sum ∑
q∈Z inside the

expectation, using the theorem of Fubini, if we first show the finiteness of:
∑
q ∈Z

E
(
1S−q=−n−r

)
= E

∑
q> 0

1S−q=−n−r

+ E

∑
q> 1

1Sq=−n−r

 .
This is true, since, as soon as n is larger than some constant (because of the missing

term for q = 0 in the second sum), this equals G−(0,−n− r) +G+(0,−n− r) < +∞,
where G−(x, y) and G+(x, y) are the Green functions, finite for every integers x
and y, respectively associated to the i.i.d. transient random walks (S−q)q> 0 and
(Sq)q> 0. Let σ+

k , for k ∈ Z, be the first time > 0 when (Sq)q> 0 touches k. We
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have G+(x, y) = P0(σ+
y−x < ∞)G+(0, 0). With some symmetric quantities, one has

G−(x, y) = P0(σ−y−x <∞)G−(0, 0).
We therefore obtain:

E
(
e2i π

∑
l∈ Z µεlλ

k−n+Sl
)

=
∑

06 r <n0

E

e2i π
∑

l∈ Z µεlλ
k+r+Sl1S−u<−r, u> 1

∑
q ∈Z

1S−q=−n−r

 .
Let us now fix 0 6 r < n0 and consider the corresponding term of the right-hand

side. First of all, for n > 0 larger than some constant (so that S0 6= −n− r):

(4.1) E

∑
q < 0

1S−q=−n−r

 = P0
(
σ+
−n−r <∞

)
G+(0, 0)→ 0,

as n→ +∞, since (Sq)q> 0 is transient to the right. We thus only need to consider:

T (−n) := E
(
e2iπ

∑
l∈ Z µεlλ

k+r+Sl1S−u<−r, u> 1N(−n− r)
)
,

where N(−k− r) := ∑
q> 0 1S−q=−n−r. Consider an integer M0, that will tend to +∞

at the end. The difference of T (−n) with the following expression:

E
(
e

2iπ
∑

l>−M0
µεlλ

k+r+Sl1S−u<−r, 16u6M0N(−n− r)
)

is bounded by A+B, where, first:

A = E
[∣∣∣∣e2i π

∑
l∈ Z µεlλ

k+r+Sl − e2i π
∑

l>−M0
µεlλ

k+r+Sl
∣∣∣∣N(−n− r)

]
= E

[∣∣∣∣1− e2i π
∑

l <−M0
µεlλ

k+r+Sl
∣∣∣∣N(−n− r)

]

6

(
E
[∣∣∣∣1− e2i π

∑
l <−M0

µεlλ
k+r+Sl

∣∣∣∣2
])1/2 (

E
(
N(−n− r)2

))1/2

6

(
E
[∣∣∣∣1− e2i π

∑
l <−M0

µεlλ
k+r+Sl

∣∣∣∣2
])1/2 (

E
(
N(0)2

))1/2
,

because N(−n− r) is stochastically dominated by N(0). Notice that N(0) is square
integrable, as it has exponential tail. The first term on the right-hand side also goes
to 0, as M0 → +∞, by dominated convergence. The other term B is:

B = E
(
1S−u<−r, 16u6M0,∃ v >M0, S−v >−rN(−n− r)

)
6 P (∃ v > M0, S−v > −r)1/2

(
E
(
N(−n− r)2

))1/2

6 P (∃ v > M0, S−v > −r)1/2
(
E
(
N(0)2

))1/2
,

as before. The first term on the right-hand side goes to 0, as M0 → +∞, since (S−v)
is transient to −∞, as v → +∞. As a result:

T (−n) = E
(
e

2i π
∑

l>−M0
µεl λ

k+r+Sl1S−u<−r, 16u6M0N(−n− r)
)

+ oM0(1),
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where oM0(1) goes to 0, as M0 → +∞, uniformly in n. Now, when n > 0 is large
enough, N(−k − r) = ∑

q> 0 1S−q=−n−r = ∑
q>M0 1S−q=−n−r, for all ω. Taking inside

the expectation the conditional expectation with respect to the σ-algebra generated
by the (εl)l>−M0 , we obtain:

T (−n) = E
(
e

2i π
∑

l>−M0
µεlλ

k+r+Sl1S−u<−r, 16u6M0G
− (S−M0 ,−n− r)

)
+ oM0(1).

Now, things are simpler because G−(S−M0 ,−n − r) is bounded by the constant
G−(0, 0). Hence, for some new oM0(1), with the same properties:

T (−n) = E
(
e2i π

∑
l∈ Z µεl λ

k+r+Sl1S−u<−r, u> 1G
−(S−M0 ,−n− r)

)
+ oM0(1).

Since G−(S−M0 ,−n− r)→ 1/E(nε0), as n→∞, by renewal theory (since the (nj)
are relatively prime and pj > 0, for all 0 6 j 6 N ; cf. Woodroofe [Woo82, Chapter
2, Theorem 2.1]), staying bounded by G−(0, 0), we get by dominated convergence
and next M0 → +∞:

lim
n→+∞

T (−n) = 1
E(nε0) E

(
e2i π

∑
l∈ Z µεl λ

k+r+Sl 1S−u<−r, u> 1
)
.

From the initial expression, the limit, if existing, had to be independent on the
parameter k. So this gives the announced convergence and invariance, hence proving
item (i) in Theorem 2.6.
Step 2. — We now consider the proof of Theorem 2.6(ii) and suppose that ν

is continuous. We first show that m is a continuous measure. For a continuous
f : T→ R+ and any k ∈ R, we have:∫

T
f(x) dm(x) 6 1

E(nε0)
∑

06 r <n∗
E [f(Zk+r)] .

Letting k ∈ Z, we have Zk = ∑
l < 0 µεlλ

k+Sl + λkX mod 1. Since L(λkX) on R
is continuous, L(λkX mod 1) on T is continuous. Since ∑l < 0 µεlλ

k+Sl mod 1 and
λkX mod 1 are independent random variables, the law of Zk on T is continuous.
Thus m is a continuous measure (henceM).
More generally, if 0 6= n = (n0, · · · , ns)t ∈ Zs+1 and if Z is random variable

with lawM, then the law of 〈Z, n〉 on T is mα, measure corresponding to m when
replacing the (µj) by (αµj), thus the (ϕj) by the (ψj), with ψj(x) = λnjx + αµj,
where α = ∑

06u6 s nuλ
−u. Since α 6= 0, because (λ−u)06u6 s is a basis of Q[λ] over

Q, the (ψj) do not have a common fixed point and thus mα is continuous, by the
previous reasoning.
Suppose now that the (ϕj) have a common fixed point c. Hence µj = c(1− λnj),

0 6 j 6 N , and ν = δc. Necessarily c ∈ Q[λ], since the nj are not all zero. We shall
show that λ−nc mod 1 converges to a rational number in T, as n→ +∞. First of
all, for n large enough, for all 0 6 j 6 N :

Tr1/λ
(
cλ−n

)
− Tr1/λ

(
cλ−n+nj

)
= Tr1/λ

(
λ−nµj

)
∈ Z.

Hence, for any fixed sequence (kj)06 j 6N , for n large enough, for all 0 6 j 6 N :

Tr1/λ
(
cλ−n

)
− Tr1/λ

(
cλ−n+kjnj

)
∈ Z.

TOME 4 (2021)



990 J. BRÉMONT

Supposing that ∑06 j 6N kjnj = 1, using the previous expression successively with
n replaced by n, n − k0n0, · · · , n −

∑
06 j 6N−1 kjnj, respectively with j = 0, j =

1, · · · , j = N , and finally adding the results, we obtain that for some large K > 0,
for all n > K:

Tr1/λ
(
cλ−n

)
− Tr1/λ

(
cλ−n+1

)
∈ Z.

Let Tr1/λ(cλ−K) = p/q. For n > K, there exists an integer ln such that Tr1/λ(cλ−n)
= p/q+ ln. As a result, denoting by c = c0, c1, · · · , cs the conjugates of c correspond-
ing to Q[λ] (reminding that (αj)06 j 6 s are that of 1/λ = α0), we get:

cλ−n = p/q + ln −
∑

16 j 6 s
cjα

n
j .

Consequently λ−nc mod 1 converges to p/q in T, as n→ +∞, as announced.
Step 3. — Consider the proof of Theorem 2.6(iii). We show that when ν is

Rajchman, then M = LTs+1 . Fix any 0 6= (n0, · · · , ns)t ∈ Zs+1 and set β =∑
06u6 s nuλ

−u. Again β 6= 0. We have:∑
06u6 s

nu(λ−n−uX) = βλ−nX.

Since ν is Rajchman, E(e2i π βλ−nX) → 0, as n → +∞. As a result, the Fourier
coefficient of M corresponding to (n0, · · · , ns) is zero. Hence M = LTs+1 . This
implies that m = LT.
To complete the proof of (iii), we show that ν ⊥ LR impliesM ⊥ LTs+1 . Recall

that Zk = ∑
l∈Z µεl λ

k+Sl mod 1. For any f ∈ C(Ts+1,R) and k ∈ Z:

1
E(nε0)

∑
06 r <n∗

E
[
f (Z−k+r, Z−k+r−1, · · · , Z−k+r−s) 1S−v <−r, v> 1

]
=
∫
Ts+1

f(x) dM(x),

with n∗ = max06 j 6N nj. We now fix k > n∗ so that Tr1/λ(λ−lµj) ∈ Z, for 0 6 j 6 N ,
l > k − n∗.
For 0 6 j 6 N , denote by (µ(t)

j )06 t6 s the conjugates of µj = µ
(0)
j corresponding

to the field Q[λ]. Let 0 6 r < n∗. Taking any 0 6 u 6 s and l < 0, we have:

µεlλ
−u−k+r+Sl = Tr1/λ(µεl λ−u−k+r+Sl)−

∑
16 t6 s

µ(t)
εl
αu+k−r−Sl
t .

The role of the indicator function is now fundamental. On the event {S−v <
−r, v > 1}, we have Tr1/λ(µεlλ−u−k+r+Sl) ∈ Z, by our choice of k, since l 6 −1. As
a result, introducing the real random variables:

(4.2) Y (r)
u = λ−u

∑
l> 0

µεlλ
−k+r+Sl −

∑
16 t6 s

αu+k−r
t

∑
l < 0

µ(t)
εl
α−Slt ,

together with Y (r) = (Y (r)
0 , · · · , Y (r)

s ), we obtain that for any f ∈ C(Ts+1,R):

(4.3) 1
E(nε0)

∑
06 r <n∗

E
[
f(Y (r))1S−v <−r, v> 1

]
=
∫
Ts+1

f(x) dM(x).
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Hence, for any f ∈ C(Ts+1,R+):

(4.4)
∫
Ts+1

f(x) dM(x) 6 1
E(nε0)

∑
06 r <n∗

E
[
f
(
Y (r)

)]
.

Fix any 0 6 r < n∗ and let X0 = ∑
l> 0 µεlλ

−k+r+Sl and for 1 6 j 6 s,
Xj = −∑l < 0 µ

(j)
εl
αk−r−Slj . By definition, (Y (r))t = V (X0, · · · , Xs)t, where V is

the Vandermonde matrix:

V =


1 1 · · · 1
λ−1 α1 · · · αs
... ... ... ...
λ−s αs1 · · · αss

 .
The matrix V is invertible (since the roots of the minimal polynomial Q of 1/λ

are simple). By Cramer’s formula:

X0 =
∑

06 i6 s
γiY

(r)
i ,

with γi = det(V (i))/ det(V ), where V (i) is obtained from V by replacing the first
column by ei, denoting by (ei)06 i6 s the canonical basis of Rs+1.
Notice now that each γi is real (first of all, 1/λ is a real root of Q; next, regrouping

the other roots in conjugate pairs, when conjugating γi one gets permutations in the
numerator det(V (i)) and the denominator det(V ), the same ones, so γ̄i = γi). As V
is invertible, γ := (γi)06 i6 s 6= 0.
We have X0 = 〈Y (r), γ〉. Since ν is singular with respect to LR, we also have
L(X0) ⊥ LR, as X0 = λ−k+rX. As γ 6= 0, we get that L(Y (r)) ⊥ LRs+1 . As a
result, L(Y (r) mod Zs+1) ⊥ LTs+1 , for all 0 6 r < n∗. Finally, (4.4) implies that
M⊥ LTs+1 , as announced.
This ends the proof of Theorem 2.6. �

5. Proof of Theorem 2.7

Proof of Theorem 2.7. — The context is the same as that of Theorem 2.6, but now
the (ϕk)06 k6N are strict contractions. Precisely, letN > 1 and ϕk(x) = λnkx+µk, for
0 6 k 6 N , with 1/λ > 1 a fixed Pisot number, relatively prime integers (nk)06 k6N ,
with now n0 > · · · > nN > 1, without loss of generality, and µk ∈ T (1/λ), for
0 6 k 6 N .
Step 1. — We first show Theorem 2.7(i), using again the arguments appearing in

the previous section. If ν is absolutely continuous with respect to LR, thenM = LTs+1 .
The event {S−v < 0, v > 1} has this time probability one. Looking at (4.3) with
r = 0, we get that the law of Y (0) mod Zs+1 is absolutely continuous with respect to
LTs+1 , with a density bounded by E(nε0). Hence the law of Y (0) on Rs+1 is absolutely
continuous with respect to LRs+1 , with a density also bounded by E(nε0). Since the
(ϕk)06 k6N are strict contractions, the nj are > 1, so the random variable Y (0) is
evidently bounded, cf. (4.2). As a result the density of the law of Y (0) with respect
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to LRs+1 is bounded and with compact support in Rs+1. Hence this is also the case
of X0 = 〈Y (0), γ〉, where γ = (γi)06 i6 s 6= 0 is the first line of the inverse of the
Vandermonde matrix V . Therefore this is also verified for X = λk−rX0. This ends
the proof of Theorem 2.7(i).
We turn to the proof of Theorem 2.7(ii). We shall focus on some Fourier coefficient

m̂(n), thus for some fixed n ∈ Z, of the measure m appearing in Theorem 2.6(i). We
study its regularity as a function of p ∈ CN , showing its real-analytic character. We
then conclude the proof of Theorem 2.7(ii) using a theorem on the structure of the
set of zeros of a non constant real-analytic function.
Step 2. — Considering p ∈ CN , denote by (εn)n∈Z a sequence of i.i.d. random

variables with law p. Let us fix an integer n 6= 0, whose exact value will be specified
at the end of the proof. We focus on the Fourier coefficient m̂(n) of the measure m
introduced in Theorem 2.6(i). Let us write mp in place of m to mark the dependence
in p ∈ CN . As nj > 1, for 0 6 j 6 N , we have the simplified expression for this
Fourier coefficient:

m̂p(n) = 1
E(nε0)∆p, with ∆p = ∆p(k) =

∑
06 r <n0

E
(
e2i π n

∑
l∈ Z µεlλ

k+r+Sl1nε−1 >r

)
,

where this last quantity is independent on k ∈ Z, by Theorem 2.6(i). The expectation
E(nε0) also depends on p, but to study the zeros of p 7−→ m̂p(n) we just need to
focus on ∆p. We now consider the regularity of p 7−→ ∆p on the domain CN .
For any k ∈ Z, observe first that ∆p(k) is well-defined, with the same formula as

above, on the closure C̄N . Fixing k ∈ Z, the map p 7−→ ∆p(k) is continuous on C̄N ,
as this function is the uniform limit on C̄N , as L→ +∞, of the continuous maps:

p 7−→
∑

06 r <n0

E
(
e2iπn

∑
−L6 l6L

µεlλ
k+r+Sl1nε−1 >r

)
.

It follows that p 7−→ ∆p(k) = ∆p is well-defined on C̄N , continuous and independent
on k. We shall now prove using standard methods that it is in fact real-analytic
in a classical sense, precised below. Let us take k = 0 and fix 0 6 r < n0. Using
independence, write:

E
(
e2i π n

∑
l∈ Z µεlλ

r+Sl1nε−1 >r

)
= E

(
e2i π n

∑
l> 0 µεl λ

r+Sl
)
E
(
e2i π n

∑
l6−1 µεl λ

r+Sl1nε−1 >r

)
.

Call F (p) and G(p) respectively the terms appearing in the right-hand side. We
shall show that both functions are real-analytic functions of p. This property will
be inherited by p 7−→ ∆p. We treat the case of p 7−→ F (p), the case of G(p) needing
only to rewrite first the µεlλr+Sl , appearing in the definition of G(p), as soon as
l < 0 is large enough (depending only the (µj)06 j 6N , since nk > 1, for all k), as
−∑16 j 6 s α

−r−Sl
j µ(j)

εl
, quantity equal to µεlλr+Sl in T, where the (µ(j)

k )16 j 6 s are the
conjugates of µk corresponding to the field Q[λ].
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Fix now p ∈ C̄N . Let N = {0, 1, · · · } and the symbolic space S = {0, · · · , N}N,
equipped with the left shift σ. For x = (x0, x1, · · · ) ∈ S, we define:

g(x) = e
2iπn

(∑
l> 0 µxlλ

r+nx0 + ···+nxl−1
)
.

Introducing the product measure µp = (∑06 j 6N pjδj)⊗N on S, we can write:

F (p) =
∫
S
g dµp.

Denote by C(S) the space of continuous functions f : S → and introduce the
operator Pp : C(S)→ C(S) defined by:

(5.1) Pp(f)(x) =
∑

06 j 6N
pjf((j, x)), x ∈ S,

where (j, x) ∈ S is the word obtained by the left concatenation of the symbol j to x.
The operator Pp is Markovian, i.e. f > 0⇒ Pp(f) > 0 and verifies Pp1 = 1, where
1(x) = 1, x ∈ S. The measure µp has the invariance property

∫
S Pp(f) dµp =

∫
S f dµp,

f ∈ C(S). For f ∈ C(S) and k > 0, introduce the variation:

Vark(f) = sup
{
|f(x)− f(y)| , (x, y) ∈ S2, xi = yi, 0 6 i < k

}
.

For any 0 < α < 1, let |f |α = sup{α−k Vark(f), k > 0}, as well as ‖f‖α =
|f |α + ‖f‖∞. We denote by Fα the complex Banach space of functions f on S such
that ‖f‖α <∞. Any Fα is preserved by Pp. Observe now that g ∈ Fα for λ 6 α < 1.
We fix α = λ.
As a classical fact from Spectral Theory, cf. for example Baladi [Bal00], the operator

Pp : Fλ → Fλ satisfies a Perron–Frobenius theorem. Let us show this elementarily.
For f ∈ Fλ, we have:

P n
p f(x) =

∑
06 j1, ··· , jn 6N

pj1 · · · pjnf((j1, · · · , jn, x)).

This furnishes Vark(P n
p f − 1

∫
S f dµp) = Vark(P n

p f) 6 Vark+n(f). Therefore:∣∣∣∣P n
p (f)− 1

∫
S
f dµp

∣∣∣∣
λ
6 λn|f |λ.

In a similar way, we can write:(
P n
p f − 1

∫
S
f dµp

)
(x)

= P n
p (f)(x)− 1(x)

∫
S
P n
p (f) dµp

=
∑

06 j1, ··· , jn 6N
pj1 · · · pjn

∫
S

(
f((j1, · · · , jn, x))− f((j1, · · · , jn, y))

)
dµp(y).

Consequently, ‖P n
p f − 1

∫
S f dµp‖∞ 6 Varn(f) 6 λn|f |λ. Putting things together,

finally: ∥∥∥∥P n
p

(
f − 1

∫
S
f dµp

)∥∥∥∥
λ
6 2λn‖f‖λ.
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This shows that 1 is a simple eigenvalue and that the rest of the spectrum of Pp
is contained in the closed disk of radius λ < 1. Remark that this holds uniformly on
p ∈ C̄N .
Fix some circle Γ centered at 1 and with radius 0 < r < 1 − λ. By standard

functional holomorphic calculus, cf. Kato [Kat76], for any p ∈ C̄N , the following
operator, involving the resolvent, is a continuous (Riesz) projector on Vect(1):

(5.2) Πp =
∫

Γ
(zI − Pp)−1 dz.

Moreover Πp(Fλ) and (I − Πp)(Fλ) are closed Pp-invariant subspaces, with:
Fλ = Πp(Fλ)⊕ (I − Πp)(Fλ).

Also, in restriction to (I − Πp)(Fλ), the spectral radius of Pp is less than λ.
Recall that N > 1. We view a function of p ∈ C̄N in terms of the first N variables

(p0, · · · , pN−1) ∈ RN . Let η′ = (η0, · · · , ηN−1) and η = (η0, · · · , ηN−1,−(η0 + · · ·
+ ηN−1)). For any p ∈ C̄N and any η′ (even when p + η 6∈ C̄N), we can define the
continuous operator Pp+η : Fλ → Fλ by (5.1). It always verifies the relation:

Pp+η = Pp +
∑

06 j 6N−1
ηjQj,

where Qj(f)(x) = f(j, x)− f(N, x). Denote by BN(0, δ) the open Euclidean ball in
RN of radius δ. Let λ < λ′ < 1−r. For any p in C̄N , there exists δ > 0 such that when
η′ ∈ BN(0, δ), then 1 is still a simple eigenfunction of Pp+η, with Pp+η1 = 1, the
rest of the spectrum of Pp+η being contained in the disk of radius λ′ and Πp+η, also
defined by (5.2), is a continuous projector on Vect(1); this follows from the implicit
function theorem, cf. Rosenbloom [Ros55], Kato [Kat76]. By compactness of C̄N , we
can choose δ > 0 uniformly on p ∈ C̄N . This defines some open δ-neighborhood CδN
of C̄N .
When p ∈ C̄N , we have

∫
S f dµp = 0, for f ∈ (I − Πp)(Fλ). Thus for any f ∈ Fλ:

Πp(f) =
(∫

S
f dµp

)
1.

Applying this to the function g of interest to us, we obtain that when p ∈ C̄N :

F (p)1 =
∫

Γ
(zI − Pp)−1 (g)dz.

The function F is next extended to CδN by the previous formula. Recall the following
definition:

Definition 5.1. — A function h : CδN →, seen as a function of (p0, · · · , pN−1),
admits a development in series around p ∈ CδN , if there exists ε > 0 such that for
η′ = (η0, · · · , ηN−1) ∈ BN(0, ε) and writing η = (η′,−(η0 + · · ·+ηN−1)), then h(p+η)
is given by an absolutely converging series:

h(p+ η) =
∑

l0 > 0, ··· , lN−1 > 0
Al0, ··· , lN−1η

l0
0 · · · η

lN−1
N−1 .

A function is real-analytic in CδN if it admits a development in series around all
p ∈ CδN .
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Let us now check that p 7−→ F (p) is real-analytic on CδN in the previous sense. Let
p ∈ CδN . For z ∈ Γ and η′ small enough (and the corresponding η), we can write:

(zI − Pp+η)−1

=
I − (zI − Pp)−1 ∑

06 j 6N−1
ηjQj

−1

(zI − Pp)−1

=
∑
n> 0

∑
06 j1, ··· , jn 6N−1

ηj1 · · · ηjn (zI − Pp)−1Qj1 · · · (zI − Pp)−1Qjn (zI − Pp)−1 .

For small enough η′, uniformly in z ∈ Γ, this is absolutely convergent in the Banach
operator algebra. We rewrite it as:

(zI − Pp+η)−1 =
∑

l0 > 0, ··· , lN−1 > 0
Bl0, ··· , lN−1(z)ηl00 · · · η

lN−1
N−1 ,

converging for the operator norm, uniformly in z ∈ Γ. Hence, for small enough η′
(and thus η):

F (p+ η)1 =
∫

Γ
(zI − Pp+η)−1 (g) dz

=
∑

l0 > 0, ··· , lN−1 > 0
ηl00 · · · η

lN−1
N−1

∫
Γ
Bl0, ··· , lN−1(z)(g) dz.

Applying this equality at some particular x ∈ S, we obtain the desired development
in series around p. This completes this step.

Step 3. — Maybe restricting δ > 0, taking into account the finite number of
functions appearing in the expression of ∆p, we obtain that p 7−→ ∆p is real-analytic
on CδN . We shall show that if n 6= 0 has been appropriately chosen at the beginning,
then ∆p is not zero at some extremal points of C̄N . The point will be that if ever ∆p

has a zero on C̄N , then this will imply that either p 7−→ <(∆p) or p 7−→ =(∆p) is
non-constant on CδN .
Now if h : CδN → R is real-analytic and non-constant, Lojasiewicz’s stratification

theorem (cf. Krantz–Parks [KP92, Theorem 5.2.3]) says that the real-analytic set
{p ∈ CδN |h(p) = 0} is locally a finite union of real-analytic graphs of dimension
6 N − 1 (points if N = 1). By compactness of C̄N , the set {p ∈ C̄N |h(p) = 0} is
included in a finite union of real-analytic graphs of dimension 6 N − 1.
For the sequel, let us write x ≡ y for equality of x and y in T.

Lemma 5.2. — Let d > 1 and µ ∈ T (1/λ). The series ∑l∈Z µλ
ld mod 1, well-

defined as an element of T, equals a rational number modulo 1.
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Proof of Lemma 5.2. — Let l0 > 1 be such that Tr1/λ(λ−lµ) ∈ Z, for l > l0.
Denote by (µ(j))06 j 6 s the conjugates of µ, with µ(0) = µ, and α1, · · · , αs that of
α0 = 1/λ. We have the following equalities on the torus:

∑
l∈Z

µλld ≡ µλ−l0d

1− λd +
∑
l > l0

µλ−ld ≡ µλ−l0d

1− λd −
∑

16 i6 s
µ(i) ∑

l > l0

αldi

≡ µλ−l0d

1− λd −
∑

16 i6 s
µ(i)α

(l0+1)d
i

1− αdi

≡ −

µλ−(l0+1)d

1− λ−d +
∑

16 i6 s
µ(i)α

(l0+1)d
i

1− αdi

 = −Tr1/λ

(
µλ−(l0+1)d

1− λ−d

)
∈ Q. �

We complete the argument. Fixing 0 6 j 6 N and pj = (0, · · · , 0, 1, 0, · · · , 0),
where the 1 is at place j, we have for k ∈ Z, recalling that 1 6 nj 6 n0:

∆pj = ∆pj(k) =
∑

06 r<n0

e2i π n
∑

l∈ Z µjλ
k+r+lnj 1nj >r =

∑
06 r<nj

e2iπ n
∑

l∈ Z µjλ
k+r+lnj

.

Notice in passing that the invariance with respect to k is now obvious, as we sum
over r on a full period of length nj. Now, taking k = 0, we have:

∆pj =
∑

06 r <nj
e2i π n(Aj, r/Bj, r),

for rational numbers Aj, r/Bj, r, making use of the previous lemma, since λrµj ∈
T (1/λ), for any r. If for example n is a multiple of Bj, r for any 0 6 r < nj, we get
∆pj = nj > 1, which gives what was desired. This ends the proof of Theorem 2.7. �

Remark 5.3. — Lojasiewicz’s stratification theorem, giving the local structure of
{p ∈ CδN |h(p) = 0}, is a difficult theorem. In an elementary way, using the implicit
function theorem, one can show that the set of zeros of a real-valued real analytic non
constant function is locally included in a countable union of connected real-analytic
graphs of codimension one.

Remark 5.4. — In the general case, when the (ϕk)06 k6N are not all strict con-
tractions, the method seems to reach some limit. Using the notation DN(r) of the
Introduction, with r = (λnk)06 k6N , and considering as in Step 2 the regularity of
p 7−→ F (p) on DN(r), it is not difficult to show continuity, using some standard
coupling argument. The real-analytic character, if ever true, a priori requires more
work. Still setting S = {0, · · · , N}N and µp = (∑06 j 6N pjδj)⊗N on S, we again
have:

F (p) =
∫
S
g dµp,

with g(x) = e2i π n(
∑

l> 0 µxlλ
r+nx0 +···+nxl−1 ), but this function is only defined µp-almost-

everywhere.
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6. Complements

6.1. A numerical example

Considering an example as simple as possible which is not homogeneous, take
N = 1 and the two contractions ϕ0(x) = λx, ϕ1(x) = λ2x + 1, where 1/λ > 1 is
a Pisot number, with probability vector p = (p0, p1). Then n0 = 1, n1 = 2 and ν
is the law of ∑l>0 εlλ

nε0+···+nεl−1 , with (εn)n> 0 i.i.d., with common law Ber(p1), i.e.
P(ε0 = 1) = p1 and P(ε0 = 0) = 1− p1. We shall take 0 6 p1 6 1 as parameter for
simulations. Notice that E(nε0) = p0 + 2p1 = 1 + p1,
Taking n = 1, k ∈ Z and r ∈ {0, 1}, let us define:

Fp(k) = E
(
e2iπλk

∑
l> 0 εlλ

nε0 +···+nεl−1
)
,

Gp(k, r) = E
(
e2iπ

∑
l> 0 εlλ

k−(nε0 +···+nεl )
1nε0 >r

)
,

leading to ∆p = Fp(k)Gp(k, 0) + Fp(k + 1)Gp(k + 1, 1), for all k ∈ Z. Writing mp

in place of m for the measure on T in Theorem 2.6(i) (defined when 0 < p1 < 1),
we get m̂p(1) = ∆p/(1 + p1). Let us first discuss the choice of probability vector
p = (1− p1, p1) and Pisot number 1/λ.
A degenerated example (the invariant measure being automatically singular with

respect to LR) is for instance given by λ = (3 −
√

5)/2 < 1/2. Nevertheless, it is
interesting to notice that λ−n ≡ −λn, n > 0. Taking p1 = 1/2, one can check that
∆p = |Fp(1)|2 + |Fp(2)|2/2. Necessarily ∆p > 0. Indeed, k 7−→ Fp(k) verifying a linear
recurrence of order two, the equality ∆p = 0 would give Fp(k) = 0 for all k, but
Fp(k)→ 1, as k → +∞. Notice that (3−

√
5)/2 is the largest λ with this property

(it has to be a root of some X2 − aX + 1, for some integer a > 0). Mention that in
general ∆p is not real; cf. the pictures below.
To study an interesting example, we take into account the similarity dimension

s(p, r), rewritten here as s(p, λ):

s(p, λ) := (1− p1) ln(1− p1) + p1 ln p1

(1− p1) lnλ+ p1 ln(λ2) .

The condition s(p, λ) > 1 is equivalent to (1−p1) ln(1−p1)+p1 ln p1− (1+p1) ln λ
6 0. As a function of p1, the left-hand side has a minimum value − ln(λ + λ2),
attained at p1 = λ/(1 + λ). As a first attempt, taking for 1/λ the golden mean
(
√

5 + 1)/2 = 1, 618 . . . is in fact not interesting, as in this case λ + λ2 = 1, giving
s(p, λ) 6 1.
We instead take (as considered in Section 2) for 1/λ the Plastic number, i.e. the

unique real root of X3 −X − 1. Approximately, 1/λ = 1.324718 . . . . For this λ:
s(p, λ) > 1⇐⇒ 0, 203 · · · < p0 < 0, 907 . . . .

The other roots of X3−X−1 = 0 are conjugate numbers ρe±iθ. From the relations
1/λ+ 2ρ cos θ = 0 and (1/λ)ρ2 = 1, we deduce ρ =

√
λ and cos θ = −1/(2λ3/2), thus

θ = ±2.43 . . . rad. For computations, the relations λ−n+ρneinθ +ρne−inθ ∈ Z, n > 0,
furnish λ−n ≡ −2(

√
λ)n cos(nθ).
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Let us finally compute the extreme values of p1 7−→ m̂p(1), abusively written as
m̂(1, 0)(1) and m̂(0, 1)(1), since mp has only been defined for 0 < p1 < 1. We first
observe that m̂(1, 0)(1) = ∆(1, 0) = F(1, 0)(0)G(1, 0)(0, 0) = 1. At the other extremity:

∆(0, 1) = F(0, 1)(0)G(0, 1)(0, 0) + F(0, 1)(1)G(0, 1)(1, 1)

= e2i π
∑

l> 0 λ
2l
e2i π

∑
l> 0 λ

−2(l+1)
+ e2i π λ

∑
l> 0 λ

2l
e2i π

∑
l> 0 λ

1−2(l+1)

= e
2i π
(

1
1−λ2−2

∑
l> 0(

√
λ)2l

cos(2lθ)
)

+ e
2i π
(

λ
1−λ2−2

∑
l> 0(

√
λ)2l+1

cos((2l+1)θ)
)

= e
2i π
(

1
1−λ2−2<

(
λe2i θ

1−λe2iθ

))
+ e

2i π
(

λ
1−λ2−2<

( √
λeiθ

1−λe2iθ

))
.

A not difficult computation, shortened by the observation that (1 − λe2iθ)(1 −
λe−2iθ) = 1/λ, shows that the arguments in the exponential terms (after the 2iπ)
are respectively equal to 3 and 0, leading to ∆(0, 1) = 2 and therefore m̂(0, 1)(1) = 1.
Recalling that p = (1 − p1, p1), below (Figures 6.1(a), 6.1(b) and 6.1(c)) are

respectively drawn the real-analytic maps p1 7−→ <(m̂p(1)), p1 7−→ =(m̂p(1)) and
the parametric curve p1 7−→ m̂p(1), 0 6 p1 6 1.
The first two pictures indicate that p1 7−→ m̂p(1) spends a rather long time near

0, with <(m̂p(1)) and =(m̂p(1)) both around 10−4. Let us precise here that one can
exploit the product form (given by the exponential) inside the expectation appearing
in Fp(k) and Gp(k, r). Using a binomial tree, we make a deterministic numerical
computation of m̂p(1), with nearly an arbitrary precision. For example, one can
obtain the rather remarkable value:

m̂(1/2, 1/2)(1) = 0, 0001186 · · ·+ i0, 0000327 . . . ,

where all digits are exact. In this case, s((1/2, 1/2), λ) = 1, 64 . . . > 1. The above
pictures were drawn with 1000 points, each one determined with a sufficient precision.
This allows to safely zoom on the neighbourhood of 0 of p1 7−→ m̂p(1), the interesting
region. We obtain rather surprising pictures (Figures 6.2(a) and 6.2(b)), the second
one on the right-hand side containing around 500 points.
There are probably profound reasons behind these pictures, that would in particular

clarify the condition of non-nullity of the Fourier coefficient m̂p(1) and more generally
of m̂p(n), n ∈ Z. Further investigations are necessary, but we can conclude that the
curve p1 7−→ m̂p(1) is rather convincingly not touching 0. It may certainly be possible
to build a rigorous numerical proof of this fact, but this is not the purpose of the
present paper. We informally state:

Numerical Evidence 6.1. — Let N = 1, 0 < λ < 1, with 1/λ > 1 the Plastic
number, and ϕ0(x) = λx, ϕ1(x) = λ2x+1. Then for all p ∈ C1, the invariant measure
ν is continuous singular and not Rajchman.

Remark 6.2. — For the same system, but taking for 1/λ the supergolden ratio,
i.e. the fourth Pisot number (the real root of X3 −X2 − 1), one essentially gets the
same pictures.
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(a) (b)

(c)

Figure 6.1
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(a) (b)

Figure 6.2

Still taking for 1/λ the Plastic number, but for the system ϕ0(x) = λ2x and
ϕ1(x) = λ3x+ 1, already mentioned in Section 2, recall that the invariant measure
ν is continuous singular and not Rajchman for all p ∈ C1, except when p = (λ2, λ3),
in which case ν = 1

1+λL[0, 1+λ]. We have drawn below (Figures 6.3(a) and 6.3(b)) the
real analytic curve p1 7−→ m̂p(1), with next a zoom at 10−3 near the origin. This is
also interesting, since this time the curve is not self-intersecting, being almost linear
near zero and passing at zero exactly for the sole parameter p1 = λ3.

(a) (b)

Figure 6.3
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6.2. Applications to sets of uniqueness for trigonometric series

Let N > 1 and for 0 6 k 6 N affine contractions ϕk(x) = rkx + bk, with reals
(rk) and (bk) such that 0 < rk < 1 for all k. As a general fact, Theorem 2.5 has
some consequences in terms of sets of multiplicity for trigonometric series, cf. for
example Salem [Sal63] or Zygmund [Zyg59] for details. As in the Introduction, let
F ⊂ R be the unique non-empty compact set, verifying the self-similarity relation
F = ∪06 k6Nϕk(F ). With N = {0, 1, · · · } and S = {0, · · · , N}N, one has:

F =

∑
l> 0

bxlrx0 · · · rxl−1 , (x0, x1, · · · ) ∈ S

 .
Let us place on the torus T and consider trigonometric series. Recall that a

subset E of T is a set of uniqueness (U -set), if whenever a trigonometric series∑
n> 0(an cos(2πx) + bn sin(2 πx)), with complex numbers (an) and (bn), converges to

0 for all x 6∈ E, then an = bn = 0 for all n > 0. Otherwise E is said of multiplicity
(M -set).

Theorem 6.3. — Let N > 1 and for 0 6 k 6 N affine contractions ϕk(x) =
rkx+ bk, where 0 < rk < 1, with no common fixed point. Suppose that the system
(ϕk)06 k6N is not affinely conjugated to a family in Pisot form. Then F mod 1 ⊂ T
is a M -set.

Proof of the Theorem 6.3. — Any p ∈ CN gives a Rajchman invariant probability
measure ν supported by F ⊂ R. Hence F mod (1) ⊂ T supports the probability ν̃,
image of ν under the projection x 7−→ x mod 1, from R to T. Then ν̃ is a Rajchman
measure on T, so, cf. Salem [Sal63, Chapter V], F mod 1 is a M -set. �

In the other direction, in general more delicate, we shall simply apply existing
results. For the following statement, fixing 0 < λ < 1 and integers nk > 1, for 0 6 k 6
N , notice that for any (x0, x1, · · · ) ∈ S, we have ∑l> 0 λ

nx0+···+nxl−1 (1− λnxl ) = 1.

Theorem 6.4. — Let N > 1 and suppose that the (ϕk) are affine contractions
of the form ϕk(x) = λnkx+ bk, with bk = bak + c(1− λnk), for some 0 < λ < 1 with
1/λ a Pisot number > N + 2, relatively prime positive integers nk > 1, 0 6 ak ∈
Q[λ] and real numbers b > 0 and c. Then the non-empty compact self-similar set
F = ∪06 k6Nϕk(F ) ⊂ R can be written as F = bG+ c, where G is the compact set:

G =

∑
l> 0

axlλ
nx0+···+nxl−1 , (x0, x1, · · · ) ∈ S

 .
Assume that bG ⊂ [0, 1), so that bG and F can be seen as subsets of T. Then F

is U -set.

Proof of the Theorem 6.4. — Up to replacing b and the (ak) respectively by br
and (ak/r), for some r > 1 in Q, we may assume that 0 6 ak < 1/(1 − λ), for all
0 6 k 6 N . Then:

G ⊂ H :=

∑
l> 0

ηlλ
l, ηl ∈ {0, a0, · · · , aN}, l > 0

 ⊂ [0, 1).
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Since 1/λ > N + 2 is a Pisot number and all a0, · · · , aN are in Q[λ], it follows
from the Salem–Zygmund theorem, cf. Salem [Sal63, Chapter VII, Paragraph 3], on
perfect homogeneous sets, that H is a perfect U -set. Mention that in this theorem,
one also assumes that max06 k6N ak = 1/(1−λ) and that successive au < av in [0, 1)
verify av − au > λ. These conditions serve to give a geometrical description of the
perfect homogeneous set H in terms of dissection, without overlaps. They are in fact
not used in the proof, where only the above description of H is important (one can
indeed start reading Salem [Sal63, Chapter VII, Paragraph 3], directly from line 9
of the proof).
As a subset of a U -set, G is also a U -set. This is also the case of bG, by hypothesis

a subset of [0, 1), using Zygmund [Zyg59, Vol. I, Chapter IX, Theorem 6.18], (the
proof, not obvious, is in [Zyg59, Vol. II, Chapter XVI, 10.25] and relies on Fourier
integrals). Hence, F = bG+ c is also a U -set, as any translate on T of a U -set is a
U -set. This ends the proof of the Theorem 6.4. �

Remark 6.5. — As a general fact, the hypothesis 1/λ > N + 2 ensures that H
and F have zero Lebesgue measure, which is a necessary condition for a set to be a
U -set.
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