
Annales Henri Lebesgue
4 (2021) 485-502

ALCIDES LINS-NETO

LOCAL TRANSVERSELY PRODUCT
SINGULARITIES
FEUILLETAGES À STRUCTURE PRODUIT
LE LONG DU LIEU SINGULIER

Abstract. — In the main result of this paper we prove that a codimension one foliation
of Pn, which is locally a product near every point of some codimension two component of the
singular set, has a Kupka component. In particular, we obtain a generalization of a known
result of Calvo Andrade and Brunella about foliations with a Kupka component.

Résumé. — Nous démontrons qu’un feuilletage de codimension un de Pn qui est localement
un produit autour de tous les points d’une composante de codimension 2 de l’ensemble singulier,
a une composante de Kupka. En particulier, nous obtenons une généralisation d’un résultat
déjà connu de Calvo Andrade et Brunella sur les feuilletages avec une composante de Kupka.

1. Basic definitions and results

It is known that a holomorphic codimension one foliation on Pn, n > 3, with a
Kupka component in the singular set has a rational first integral, which in homoge-
neous coordinates is of the form P k/Q`, where P and Q are generic homogeneous
polynomials with k. deg(P ) = `. deg(Q). The Kupka component for this specific
example is the set Π(P = Q = 0), where Π: Cn+1 \ {0} → Pn is the canonical
projection (cf. [Bru09, CA16, CA99]). The aim of this paper is to generalize this
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486 A. LINS-NETO

result for codimension one foliations with a local transversely product component in
the singular set. We will define this concept in a more general situation.
Let F be a holomorphic foliation of dimension k > 2 on a complex manifold M

of dimension n > k + 1, with singular set Sing(F). We say that F is a transversely
product at a point p ∈ Sing(F) if the germ Fp of F at p is holomorphically equivalent
to a product of a germ of singular foliation of dimension one with an isolated
singularity by a regular foliation of dimension k − 1. In other words, we can say
that there exists a germ of submersion ϕ : (M, p)→ (Cn−k+1, 0) and a germ of a one
dimensional foliation G at 0 ∈ Cn−k+1, with Sing(G) = {0}, such that Fp = ϕ∗(G).
In particular, the germ of the singular set of F at p is smooth of dimension k − 1:
Sing(Fp) = ϕ−1(0).
Definition 1.1. — We say that Γ is a local transversely product component

(briefly l.t.p component) of Sing(F) if Γ is an irreducible component of Sing(F)
and F is a transversely product at all points of Γ.
Remark 1.2. — If Γ is a l.t.p. component of Sing(F) then it follows from the

definition that:
(a) Γ is smooth. Let dimC(Γ) = m.
(b) There exists a singular one dimensional foliation G, on a polydisc V of Cn−m,

with an isolated zero at 0 ∈ V , such that for any p ∈ Γ there exists a local
chart (U, z) around p ∈ U satisfying the following conditions:
(b1) z = (x, y) : U → Cn−m × Cm with x(U) = V .
(b2) F|U = x∗(G).

In the chart z = (x, y) the submersion of the definition is ϕ = x : U → V and
the leaves of the non-singular foliation are the levels x−1(a), a ∈ V . Moreover,
Γ ∩ U = x−1(0).
The germ of G at 0 ∈ Q is called the normal type of F along Γ. Remark that, if T

is a germ at p ∈ Γ of n −m manifold transverse to Γ then the restricted foliation
F|T is holomorphically equivalent to the normal type of F along Γ.
Moreover, since G is one dimensional we can assume that it is defined by a holo-

morphic vector field X = ∑n−m
j=1 Aj(x) ∂

∂xj
, or by the (n−m− 1)-form

(1.1) η = iXdx1 ∧ · · · ∧ dxn−m =
n−m∑
j=1

(−1)j−1Aj(x) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn−m ,

where in (1.1) d̂xj means omission of dxj in the product. The form η, considered as
a form on U in the coordinates (x, y), defines F|U .
Let us see some examples:
Example 1.3. — Recall that a point p ∈M is a Kupka singularity of the foliation
F if p ∈ Sing(F) and F is represented in a neighborhood of p by an integrable (n−k)-
form η such that dη(p) 6= 0. The form dη defines a k + 1 distribution D = ker(dη)
in a neighborhood of p, where

D(q) = ker(dη(q)) := {v ∈ TqM | iv(dη(q)) = 0} .
The distribution D is integrable and defines a regular foliation of dimension

k − 1 in a neighborhood of p. There exists a local chart (U, z = (x, y)), where
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Local transversely product singularities 487

x = (x1, . . . , xn−k+1) : U → Cn−k+1, y : U → Ck−1 and z(p) = (0, 0), such that
dη = dx1 ∧ . . . ∧ dxn−k+1. In this case, the form η can be written as η = iXdx1 ∧
. . . ∧ dxn−k+1, where

X =
n−k+1∑
j=1

Aj(x) ∂

∂xj

defines the normal type of Fp.
Note that dη = ∆(X) dx1 ∧ · · · ∧ dxn−k+1, where

∆(X) = div(X) =
n−k+1∑
j=1

∂Aj
∂xj

,

so that ∆(X) ≡ 1.

Definition 1.4. — We say that K is a Kupka component of a foliation F (of
dimension k > 2) if K is a l.t.p. component of Sing(F) and the normal type of F
along K is of Kupka type.

Example 1.5. — Let P and Q be homogeneous polynomials on Cn+1, n > 3, where
deg(P ) = p and deg(Q) = q. The levels of the rational function f = P q

Qp
define a

singular foliation of Pn, that will be denoted by F(P,Q). We say that P and Q are
transverse if the set{

z ∈ Cn+1
∣∣∣P (z) = Q(z) = 0 and dP (z) ∧ dQ(z) = 0

}
is either {0}, or empty (if p = q = 1). If P and Q are transverse then the subset Γ
of Pn defined in homogeneous coordinates by (P = Q = 0) is a Kupka component
on F(P,Q). The normal type of F(P,Q) at the points of Γ is given by the linear
vector field X = p. x ∂

∂x
+ q. y ∂

∂y
.

In fact, the following result is known (cf. [Bru09, CA16, CA99, CLN94]):
Theorem 1.6. — Let F be a holomorphic foliation of codimension one on Pn,

n > 3. If F has a Kupka component then F = F(P,Q), where P and Q are
transverse polynomials.

Example 1.7. — Example 1.5 admits the following generalization: let P1, . . . , Pm
be homogeneous polynomials on Cn+1 with deg(Pj) = dj, 1 6 j 6 m. Assume that
n > m+ 1 > 4 and that P1, . . . , Pm are transverse; i.e. the set{

z ∈ Cn+1
∣∣∣P1(z) = · · · = Pm(z) = 0 and dP1(z) ∧ . . . ∧ dPm(z) = 0

}
is either {0}, or empty (if d1 = · · · = dm = 1). Let (k1, . . . , km) ∈ Nm be such
that gcd(k1, . . . , km) = 1 and k1. d1 = · · · = km. dm. The levels of the rational map
P : Pn → Pm−1, defined by

P :=
[
P k1

1 : . . . : P km
m

]
,

define a foliation of codimension m − 1 on Pn, denoted by F(P1, . . . , Pm). If
P1, . . . , Pm are transverse then the set Γ ⊂ Pn, defined in homogeneous coordi-
nates by (P1 = · · · = Pm = 0), is a Kupka component of F(P1, . . . , Pm). The
normal type of F(P1, . . . , Pm) at the points of Γ is given by the linear vector field
S = ∑m

j=1 dj xj
∂
∂xj

.
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A natural problem is the following:

Problem 1.8. — Let F be a holomorphic foliation of codimension m− 1 on Pn,
where n > m+1 > 4. Assume that F has a Kupka component Γ. Are there transverse
homogeneous polynomials P1, . . . , Pm on Cn+1 such that F = F(P1, . . . , Pm) and
Γ is defined by (P1 = · · · = Pm = 0)?

Some partial results about this problem were proved (see for instance [CA09,
CJCAFP14]).
In this paper we generalize Theorem 1.6:

Theorem 1.9. — Let F be a holomorphic foliation of codimension one on Pn,
n > 3. Assume that F has a l.t.p. component Γ. Then Γ is a Kupka component of
F . In particular, F is like in Example 1.5.

Let us state some consequences of Theorem 1.9.

Corollary 1.10. — Let F be a codimension one holomorphic foliation on Pn,
n > 4. Assume that there is a linear embedding i : P3 → Pn such that i∗(F) has a l.t.p
component. Then F has a rational first integral that can be written in homogeneous
coordinates as P q/Qp, where P and Q are homogeneous polynomials on Cn+1 with
deg(P ) = p and deg(Q) = q.

The proof of Corollary 1.10 is based in the fact that if there exists a linear embed-
ding i : P3 → Pn such that i∗(F) has a first integral then F has also a first integral
(see [CLN96]).

Corollary 1.11. — Let F be a codimension one foliation on Pn, n > 3. Assume
that all components of its singular set are l.t.p. Then F has degree zero: the first
integral of Corollary 1.10 is of the form L2/L1, where L1 and L2 are linear.

Corollary 1.12. — Let η be an integrable 2-form on Cn, n > 4, with homoge-
neous coefficients of the same degree d > 1. Then dimC(sing(η)) > 1.

Remark 1.13. — Corollary 1.12 was proved in [CLN19] in the case n = 4. We
would like to observe that the assertion is not true in the case of distributions of C4.
The following example, due to Krishanu and Nagaraj [DN13]: define a 2-form θ on
C4 by

θ = x2
3 dx2 ∧ dx3 − x2

1 dx3 ∧ dx1 + (x1 x2 + x3 x4) dx1 ∧ dx2+[
x2

4 dx1 + x2
2 dx2 + (x1 x2 − x3 x4) dx3

]
∧ dx4

has Sing(θ) = {0} and satisfies θ ∧ θ = 0. Hence, it generates a distribution of
codimension two on C4 \ {0}. This distribution is not integrable.

Theorem 1.9 motivates the following problem:

Problem 1.14. — Let F be a holomorphic foliation on Pn of codimension > 2
and dimension> 2. Assume that F has a l.t.p. component Γ. Is Γ a Kupka component
of F?
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Local transversely product singularities 489

A crucial point of our proof of Theorem 1.9 is the Camacho–Sad theorem on the
existence of a separatrix for germs of holomorphic vector fields on (C2, 0) [CS82].
The same type of argument cannot be used in the general case: there are examples
of germs of vector fields on (Cm, 0), m > 3, without separatrices [GML92].
The proof of Theorem 1.9 will be done in Section 2. Since this proof is technical,

in Section 2.1 we give an idea of the proof by stating the main objects and results
that will be used. In Sections 2.2 and 2.4 we will prove the main auxiliary results
used in the proof and stated in Section 2.1. Section 3 is dedicated to the proof of
Corollaries 1.11 and 1.12.

Acknowledgement
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me a simplification of the proof of Lemma 2.5.

2. Proof of Theorem 1.9
2.1. Preliminaries and idea of the proof

Let F be a codimension one foliation on Pn, n > 3, with a l.t.p. component Γ ⊂
Sing(F). The definition implies that codC(Γ) = 2, so that the transversal type of F
at the points of Γ is a germ of singular foliation at (C2, 0) with an isolated singularity
at 0 ∈ C2 (see Remark 1.2 and Example 1.3). We can assume that this transversal
type is given by germ at 0 ∈ C2 of vector field X = X1(x, y) ∂

∂x
+X2(x, y) ∂

∂y
, where

X1, X2 ∈ O2 and X1(0, 0) = X2(0, 0) = 0. Recall that Γ is a Kupka component if,
and only if, we have Tr(DX(0)) 6= 0, where

Tr(DX(0)) := ∂X1

∂x
(0) + ∂X2

∂y
(0)

is the trace of the linear part DX(0) of X at 0 ∈ C2. In this case, as we have pointed
out before, F is like in Example 1.5 (see Theorem 1.6).
Another useful ingredient is the normal Baum–Bott index of the component Γ, that

we will denote as BB(F ,Γ). Since Γ is a l.t.p. component of Sing(F) then BB(F ,Γ)
coincides with the Baum–Bott index of X at the singularity 0 of X, denoted by
BB(X, 0) (see [CLN13]) (for the definition of BB(X, 0) see [Bru00]). In [CLN13,
Lemma 3.4, Section 3.2] it is proven that if BB(F ,Γ) 6= 0 and DX(0) 6≡ 0 then Γ is
a Kupka component and we are done.
One of the tools used in the proof of [CLN13, Lemma 3.4] is the existence of a

smooth analytic separatrix along Γ. Below we define the concept of separatrix in a
way that will be used in the proof of Theorem 1.9.
Definition 2.1. — Let F be a holomorphic foliation of dimension k on a n

dimensional compact complex manifold, 2 6 k < n, and Γ be l.t.p. component of
F (recall that dim(Γ) = k − 1). A separatrix Σ of dimension ` along Γ of F , where
k 6 ` < n, is a germ of ` analytic manifold along Γ which is F -invariant in the sense
that:
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(a) Σ sup Γ.
(b) Σ \ Γ is contained in an union of leaves of F .

Remark 2.2. — Let Σ be a separatrix of F of dimension ` along Γ, as in Defini-
tion 2.1. Fix p ∈ Γ and (x, y) : U → Cn−k+1×Ck−1, a local coordinate system around
p as in Remark 1.2. It follows from the definition that x−1(x(Σ ∩ U)) = Σ ∩ U .
Let T be a germ at p of a n − k + 1 dimensional manifold transverse to Γ. As

we have observed before, F|T is equivalent to the normal type of F along Γ. In
particular, the intersection Σ ∩ T is invariant by F|T .
In the case of Theorem 1.9, where F has codimension one, then dim(T ) = 2 and

the normal type is a germ G of one dimensional foliation on (C2, 0). In this case
Σ ∩ T is a finite number of analytic separatrices of G as considered in [CS82]. The
next result will be used in proof of Theorem 1.9.

Lemma 2.3. — Let F be a holomorphic codimension one foliation on a compact
complex manifold M , where dim(M) = n > 3, and Γ be a l.t.p. component of
Sing(F). If the normal type of F along Γ is not equivalent to the radial foliation of
(C2, 0) then F admits an irreducible separatrix Σ along Γ with dim(Σ) = n− 1.

Recall that the radial foliation of C2 is defined by the form x dy − y dx and its
leaves are the straight lines through 0. Lemma 2.3 will be proved in Section 2.2.
From now on, in this section, we will assume that F is a codimension one holomor-

phic foliation on the compact manifold M , dimC(M) > 3, with a l.t.p. component Γ
and with a separatrix Σ along Γ, dim(Σ) = n−1. Next we will introduce the normal
bundle of Σ along Γ.
Since dim(Σ) = n − 1 we can find a Leray covering U = (Uα)α∈A of Γ by open

sets and two collections f = (fα)α∈A and g = (gαβ)Uα ∩Uβ 6= ∅ with the following
properties:

(a) fα ∈ O(Uα), ∀ α ∈ A, and fa = 0 is a reduced equation of Σ ∩ Uα.
(b) gαβ ∈ O∗(Uα ∩ Uβ) and fα = gαβ. fβ on Uα ∩ Uβ 6= ∅.
Of course g = (gαβ)Uα ∩Uβ 6=∅ is a multiplicative cocycle. We define the normal

bundle of Σ along Γ as the line bundle on Pic(Γ) induced on a tubular neighborhood
U ⊂ ⋃α Uα by the cocycle g = (gαβ)Uα ∩Uβ 6= ∅.
It will be denoted by NΣ. Let c1(NΣ) be the first Chern class of NΣ, considered as

an element of H2(U,R) via the homomorphism H2(U, Z) → H2(U, R) ' H2
DR(U)

induced by the inclusion Z→ R.
As we have seen in Remark 1.2, the normal type of F along Γ can be represented

by a germ at 0 ∈ C2 of holomorphic vector field X = A1(x, y) ∂
∂x

+ A2(x, y) ∂
∂y

with
an isolated at 0. When we intersect Σ with a germ of transversal section T ' (C2, 0)
we obtain a separatrix of X, say γ := Σ ∩ T (in general γ is not irreducible). Let
f ∈ O2 be a reduced analytic equation of γ. Since γ is X-invariant we can write

(2.1) X(f) = h. f, where h ∈ O2 .

Lemma 2.4. — In the above situation, if h(0) = 0 then c1(NΣ) = 0.

On the other hand, we have the following:
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Lemma 2.5. — If the ambient space is M = Pn, n > 3, then c1(NΣ) 6= 0. In
particular, if X(f) = h. f then h(0) 6= 0.
As a consequence of Lemma 2.5 we get the following:
Corollary 2.6. — If M = Pn, n > 3, then Σ is a Kupka component of F .
In particular, Theorem 1.6 will imply Theorem 1.9. Lemma 2.3 will be proved in

the next section.

2.2. Proof of Lemma 2.3.

Let F be a holomorphic codimension one foliation on a compact complex manifold
M with dim(M) > 3. Assume that F has a l.t.p. component Γ with normal type G,
where G is a germ of foliation on (C2, 0) with an isolated singularity at 0 ∈ C2. As
before, we will assume that G is the foliation defined by a germ at (C2, 0) of vector
field X = X1

∂
∂x

+X2
∂
∂y

with an isolated singularity at the origin of C2. The germ of
foliation G can be defined also by the 1-form

ω = iX(dx ∧ dy) = X1 dy −X2 dx ,

so that, dω(0) = Tr(DX(0)) dx ∧ dy. We can assume that ω has a representative,
denoted by ω̃, defined in the polydisc Q = D2 with an isolated singularity at 0 ∈ D2.
By the definition of l.t.p. component, we can find a covering U = (Uα)α∈A of Λ by

open sets biholomorphic to polydiscs, a collection of local charts ((zα, Uα))α∈A and
a multiplicative cocycle (kαβ)Uα ∩Uβ 6= ∅ with the following properties:

(1) zα = (xα, yα) : Uα → C2 × Cn−2, where xα(Uα) = Q and Γ ∩ Uα = x−1
α (0),

∀ α ∈ A.
(2) F|Uα is defined by the integrable 1-form ω̃α := x∗α(ω̃). The germ of ω̃α along

Γ ∩ Uα will be denoted by ωα.
(3) ω̃a = kαβ. ω̃β on Uα ∩ Uβ 6= ∅.

We will assume that U satisfies the following:
(4) If Uα ∩ Uβ 6= ∅ then Γ ∩ Uα ∩ Uβ 6= ∅ and connected.
Remark 2.7. — Given α, β ∈ A such that Γ ∩ Uα ∩ Uβ 6= ∅ we can construct

a germ fαβ ∈ Diff(C2, 0) as follows: fix p ∈ Γ ∩ Uα ∩ Uβ and a germ of plane
T = Tα, β ' (C2, p) transverse to Γ at p. Note that xα|T , xβ|T : (T, p) → (C2, 0) are
biholomorphisms. Therefore, we define

fαβ = xα ◦ (xβ|T )−1 = xα|T ◦ (xβ|T )−1 ∈ Diff
(
C2, 0

)
.

Since ωα|T = (xα|T )∗(ω), ωβ|T = (xβ|T )∗(ω) and ωa = kαβ. ωβ we get f ∗αβ(ω) = hαβ. ω,
where

hαβ = kαβ|T ◦ (xβ|T )−1 ∈ O∗2 .
The biholomorphism fαβ can be interpreted as the glueing map of F|Uβ with F|Uβ .
From now on, we fix a collection of germs (fαβ)Uα ∩Uβ 6= ∅ as above.
Lemma 2.8. — F admits a separatrix Σ along Γ if, and only if, X (or ω) has a

separatrix γ (not necessarily irreducible) such that fαβ(γ) = γ for all Γ∩Uα∩Uβ 6= ∅.
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Terminology

We will say that the separatrix γ of G generates the separatrix Σ of F .
Proof. — Assume that X has a separatrix γ such that fαβ(γ) = γ for all Γ∩Uα ∩

Uβ 6= ∅. Given α ∈ A define Σα := x−1
α (γ). We assert that if Uα ∩ Uβ 6= ∅ then

Σα ∩ Uβ = Σβ ∩ Uα. In fact, let (xα, yα), (xβ, yβ) and T be as before. Then
Σα ∩ T = x−1

α (γ) ∩ T = (xα|T )−1(γ) = (xα|T )−1(fαβ(γ)) = (xβ|T )−1(γ) = Σβ ∩ T .
This, of course, implies the assertion. In particular, the local separatrices Σa glue
together forming a global separatrix Σ along Γ such that Σ ∩ Uα = Σα, ∀ α ∈ A.
We leave the converse to the reader. �

Definition 2.9. — Let G be a germ of foliation at (C2, 0) with an isolated
singularity at 0. We say that a separatrix γ of G is distinguished if for any f ∈
Diff(C2, 0) such that f ∗(G) = G then f(γ) = γ.

Lemma 2.10. — Let G be a germ of foliation at (C2, 0) with an isolated singularity
at 0 which is not equivalent to the radial foliation. Then G has a distinguished
separatrix.

Proof. — In the proof we use Seidenberg’s resolution theorem [Sei68]. Let S be a
smooth complex surface and G be a foliation by curves on S. Given p ∈ Sing(G) ⊂ S
we denote Diff(S, p) the set of germs at p ∈ S of biholomorphisms f : (S, p)→ S with
a fixed point at p. Assume that the germ of G at p is defined by a germ of holomorphic
vector field X with an isolated singularity at p. We use also the notations

DiffG(S, p) = {f ∈ Diff(S, p) | f ∗(G) = G} .
and

Diff0
G(S, p) = {f ∈ DiffG(S, p) | f preserves the leaves of G} . �

Remark 2.11. — Note that:
(1) Given f ∈ DiffG(S, p), then f ∗(X) = hX . X, where hX ∈ O∗p.
(2) DiffG(S, p) is a sub-group of Diff(S, p).
(3) Given f ∈ DiffG(S, p) and an irreducible separatrix γ of G through p then

f(γ) is also a separatrix of G through p.

Let Sep(G) be the set of irreducible separatrices of G through p. By (3) of Re-
mark 2.11, DiffG(S, p) acts in Sep(G) as (f, δ) ∈ DiffG(S, p) × Sep(G) → f(δ) ∈
Sep(G). The idea of the proof is to find a finite subset Go := {γ1, . . . , γk} ⊂ Sep(G)
such that f(Go) ⊂ Go for all f ∈ DiffG(S, p). In this case, the set γ := {f(γ1) | f ∈
DiffG(S, p)} ⊂ Go contains finitely many irreducible separatrices of G through p
and can be considered as a germ of curve through p such that f(γ) = γ for all
f ∈ DiffG(S, p), and so γ is a distinguished separatrix of G through p. Let us prove
the existence of the finite set Go.
First of all, we observe that there are two possibilities for the foliation G:
(I) G has finitely many irreducible separatrices through p. This case is trivial

and the details are left to the reader.
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(II) G has infinitely many irreducible separatrices through p. Let us prove Lemma
2.10 in this case.

We will consider a blowing-up process used to resolve the foliation G (see [CS82]).
The first case, is when G has a simple singularity at p and no blowing-ups are needed
in the process. Let λ1 and λ2 be the eigenvalues of DX(p). The singularity is simple
if:

(a) λ1. λ2 6= 0 and λ2
λ1
/∈ Q+.

(b) λ1 6= 0 and λ2 = 0 (or vice-versa). In this case, p is a saddle-node.
In both cases G has one or two separatrices through p and so Lemma 2.10 is true.
When the singularity is not simple, Seidenberg’s theorem says that after a finite

process of blowing-ups Π: (S̃, E) → (S, p) then all the singularities of the strict
transform Π∗(G) in the exceptional divisor E are simple. The blowing-up process Π
can be considered as a composition blowing-ups of points

(2.2)
(
S̃, E

)
:=
(
S̃k, Ek

) Πk−→ (S̃k−1, Ek−1) Πk−1−→ . . .
Π2−→

(
S̃1, E1

) Π1−→
(
S̃0, E0

)
= (S, p)

where in the jth step Πj : (S̃j, Ej) → (S̃j−1, Ej−1), j > 2, we blow-up in a point
pj−1 ∈ Ej−1. The exceptional divisor obtained in this step will be denoted as P1 '
Ẽj ⊂ Ej, so that Πj(Ẽj) = pj−1. We use also the notation Π̃j := Π1 ◦ . . . ◦ Πj.
We will denote also G̃j := Π̃∗(G). The point pj−1 ∈ Ej−1 is chosen between the non
simple singularities of G̃j−1 on Ej−1. Seidenberg’s theorem can be stated as follows

Theorem 2.12. — It is possible to choose a blowing-up process as above in such
a way that all singularities of the strict transform G̃k = Π̃∗k(G) are simple.

Remark 2.13. — There are two possibilities in each step

Πj :
(
S̃j, Ẽj

)
→
(
S̃j−1, pj−1

)
.

We assume that pj−1 is a non simple singularity of G̃j−1. Let Xj−1 be a germ at
pj−1 of holomorphic vector field that represents the germ of G̃j−1 at pj−1. Let Xν

= Pν(x, y) ∂
∂x

+ Qν(x, y) ∂
∂y

be the first non-zero jet of Xj−1 at pj−1, where Pν and
Qν are homogeneous polynomials of degree ν > 1. Set Fν+1(x, y) = x.Qν(x, y) −
y Pν(x, y).

(i) If Fν+1 6≡ 0 then Fν+1 is homogeneous of degree ν + 1 and the blowing-up is
called non-dicritical. The divisor Ẽj is invariant for the foliation G̃j and the
singularities of G̃j on Ẽj are the directions correspondent to the directions
defined by Fν+1(x, y) = 0.

(ii) If Fν+1 ≡ 0 then Xν = Fν−1(x, y)R, where R = x ∂
∂x

+ y ∂
∂y

is the radial
vector field in C2 and Fν−1 is homogeneous of degree ν − 1. In this case, the
blowing-up is called dicritical. The divisor Ẽj is non-invariant for G̃j and it
is transverse to Ẽj outside the set Vj ⊂ Ẽj corresponding to the directions
defined by the equation Fν−1(x, y) = 0.
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If ν = 1 then G̃j−1 is equivalent to the radial foliation at pj−1. We will say
that pj−1 is a radial singularity of G̃j−1. If pj−1 is not radial for G̃j−1 then
Vj 6= ∅ and we can divide it into two disjoint subsets Vj = τj ∪ σj, where
• σj = Sing(G̃j) ∩ Ẽj.
• τj = Vj \ Sing(G̃j). We call τj the set of tangencies of G̃j with Ẽj.

Remark also that Sep(G) is finite if, and only if, all blowing-ups in the process are
non-dicritical.
Since in the blowing-up process, in each step, 1 6 j 6 k, we blow-up in some non-

simple singularity of G̃j−1, if Ẽj is dicritical, at the end the tangencies τj “survive”,
in the sense that there exists a set τ ⊂ Ek such that for any 1 6 j < k such that
τj 6= ∅ then

τj ⊂ Πk ◦ · · · ◦ Πj+1(τ)

For each 1 6 j 6 k denote by Diff(S̃j, Ej) the set of germs of biholomorphisms
f : (S̃j, Ej)→ (S̃j, Ej).

Definition 2.14. — We say that f ∈ Diff(S, p) can be lifted to Diff(S̃j, Ej) if
there exists a germ of biholomorphism f̃ j ∈ Diff(S̃j, Ej) such that the diagram below
commutes: (

S̃j, Ej
) f̃j //

Π̃j
��

(
S̃j, Ej

)
Π̃j
��

(S, p) f // (S, p)

Remark 2.15. — Observe that, if the lift f̃ j of f exists then it is unique. When
j = 1 (just one blowing-up) the lifting exists for any f ∈ Diff(S, p), but if j > 2
then there are germs f ∈ Diff(S, p) that cannot be lifted to Diff(S̃j, Ej). However,
we have the following:

Claim 2.16. — The blowing-up process can be done in such a way that any
f ∈ DiffG(S, p) can be lifted to the last step in an unique f̃ = f̃k ∈ Diff(S̃k, Ek).
Moreover, f̃ preserves G̃k in the sense that f̃ ∗(G̃k) = G̃k.

Proof. — We say that the jth step of the blowing-up process is admissible if any
f ∈ DiffG(S, p) has a lifting f̃ j ∈ Diff(S̃j, Ej). We will obtain by induction a blowing-
up process, as in (2.2), for which there are steps 1 = `1 < `2 < · · · < `r = k such
that the `th

j step is admissible, for any 1 6 j 6 r, and Π̃k : (S̃k, Ek) → (S, p) is a
resolution of the foliation G.
First of all, the first step is admissible, because any f ∈ Diff(S, p) admits a lifting

f̃ 1 ∈ Diff(S̃1, E1).
Assume that we have found some process for which the ` := `s step is admissible,

` > 1, so that any f ∈ DiffG(S, p) admits a lifting f̃ = f̃ ` ∈ Diff(S̃`, E`) satisfying
f̃ ∗(G̃`) = G̃`. Given f ∈ DiffG(S, p), with lifting f̃ , and q ∈ E` then f̃ is an equivalence
between the two germs of G̃` at q and at f̃(q). In particular, f̃ preserves the set of
non simple singularities of G̃`.
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If G̃` is not a resolution of G then it has at least one non simple singularity q1.
Let Sat(q1) = {f̃(q1) | f ∈ DiffG(S, p)} = {q1, . . . , qm}. We then blow-up once at all
points qj ∈ Sat(q1), passing from the ` = `s step to the `s+1 := `s +m step directly.
Let Êj be the divisor obtained by the blowing-up at qj.
Given f ∈ DiffG(S, p) and its lifting f̃ s, let f̃ s(qj) = qi(j), 1 6 j 6 m. Then we can

obtain a lifting f̃ s+1 of f̃ s such that f̃ s+1(Êj) = Êi(j), 1 6 j 6 m. By Seidenberg’s
theorem this process must end at some step, when the final foliation G̃k = Π̃∗k(G)
has all singularities simple. �

Proof of Lemma 2.10. — Let us finish the proof of the lemma. We will consider
two cases:

(1) There is q1 ∈ Sing(G̃k) ∩ Ek that has some separatrix γ̃ not contained in Ek.
(2) All the separatrices of the singularities of G̃k are contained in Ek.
In the first case, let Sat(q1) = {f̃(q1) | f ∈ DiffG(S, p)} = {q1, . . . , qm}. Given

f ∈ DiffG(S, p) and qj = f̃(q1) then f̃(γ̃) := γ̃f is a separatrix of G̃k not contained
in Ek. Since γ̃f is not contained in Ek, its image γf := Π̃k(γ̃f) is a separatrix
of G through p. Moreover, since q1, . . . , qm are simple singularities of G̃k the set
{γ̃f | f ∈ DiffG(S, p)} is finite. Therefore, if we set

(2.3) γ =
⋃

f ∈DiffG (S, p)
γf

then f(γ) = γ, ∀ f ∈ DiffG(S, p), and γ is a distinguished separatrix of G.
In the second case necessarily there are dicritical irreducible divisors of G̃k, say

Ẽ1, . . . , Ẽm, contained in Ek (by Camacho–Sad theorem). This case will be divided
into two sub-cases:

• (2.1) The set of tangencies τ is not empty.
• (2.2) τ = ∅.

In case (2.1) let qo ∈ τ and γ̃ id be the leaf of G̃k through qo. Then, for any
f ∈ DiffG(S, p) we have qf := f̃(qo) ∈ τ and γ̃f := f̃(γ̃ id) is the leaf of G̃k through
f̃(qo). Since qf ∈ Ek, but γ̃f is not contained in Ek, ∀ f ∈ DiffG(S, p), the image
Π̃k(γ̃f) := γf is an irreducible separatrix of G through p. Therefore, if we define γ
as in (2.3) then γ is a distinguished separatrix of G.
We will divide case (2.2) into two subcases:

(2.2.1) Ek \
⋃
j

Ẽj 6= ∅.

(2.2.2) Ek =
⋃
j

Ẽj.

In case (2.2.1), let Ê be a connected component of Ek \
⋃
j Ẽj. Let

⋃r
i=1Di be

decomposition of Ê into irreducible components, Di ' P1. Note that:
(i) The graph formed by the divisors Di is a tree.
(ii) The intersection matrix (Di . Dj)16 i, j 6 r is negative.
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(iii) If D is an irreducible divisor of Ek such that D 6⊂ Ê but D ∩ Ê 6= ∅ then
D = Ẽj for some j. In particular, D is dicritical.

In this case, Sing(G̃k) ∩ Ê 6= ∅ and contains a singularity q with a separatrix γ̃

not contained in Ê. This is a consequence of Sebastiani’s version of Camacho–Sad
theorem (see [Seb97]). In fact, γ̃ is not contained in Ek, for otherwise it would be
contained in some irreducible divisor D of Ek not contained in Ê, and D is non
dicritical, which contradicts (iii). Therefore, we reduce the problem to case (1).
In case (2.2.2) all irreducible divisors Ẽj of Ek are dicritical. We can assume

that Sing(G̃k) = ∅. In fact, if qo ∈ Sing(G̃k) then qo is simple and any of their
separatrices cannot be contained in Ek, for otherwise some of the divisors Ẽj would
be non-dicritical. Therefore, we are again in case (1). In particular, we can assume
that all divisors Ẽj are radial, in the sense that for any q ∈ Ẽj the leaf of G̃k
through q is transverse to Ẽj. Moreover, m > 2 because otherwise p would be a
radial singularity of G. In particular, we can assume that Ẽ1 ∩ Ẽ2 = {qo} 6= ∅. Let
γ̃ id be the leaf of G̃k through qo. Note that, for any f ∈ DiffG(S, p) then

qf := f̃(qo) = f̃(Ẽ1) ∩ f̃(Ẽ2) ∈ Ek ,

so that γ̃f := f̃(γ̃ id) is the leaf of G̃k through qf . For each f ∈ DiffG(S, p) the
projection γf := Π̃k(γ̃f ) is an irreducible separatrix of G. Since

A := {qf | f ∈ DiffG(S, p)} ⊂
⋃
i 6= j

Ẽi ∩ Ẽj

then A is finite. Therefore, we can construct a distinguished separatrix γ of G as
in (2.3). �

Finally, note that Lemma 2.3 is a consequence of Lemmas 2.8 and 2.10.

2.3. Proof of Lemma 2.4.

Since U is a tubular neighborhood of Γ the map Θ ∈ H2
Dr(U) 7→ Θ|Γ ∈ H2

Dr(Γ) is
an isomorphism. Therefore, it is sufficient to prove that c1(NΣ)|Γ = 0.
Recall that the germ of F at any q ∈ Γ is equivalent to a product of a singular

foliation by curves on (C2, 0) by a regular foliation of dimension n− 2. This implies
that there exist a local coordinate system around q, z = (x, y) : U → C2×Cn−2, x =
(x1, x2), y = (y1, . . . , yn−2), and a holomorphic vector field X = P (x) ∂

∂x1
+Q(x) ∂

∂x2
,

with an isolated singularity at 0 ∈ C2, such that
• F|U is generated by the n−1 commuting vector fields X, Y1 := ∂

∂y1
, . . . , Yn−2

:= ∂
∂yn−2

.
Moreover, the separatrix Σ of F along Γ is induced by a separatrix γ = (f(x1, x2) = 0)
of X, such that X(f) = h. f , where we have assumed h(0) = 0. It follows that we can
find a Leray covering U = (Uα)α∈A of Γ by open sets with the following properties:

(a) For each α ∈ A, there exists a coordinate system zα = (xα, yα) : Uα → C2 ×
Cn−2, where Σ ∩ Uα = (xα = 0), xα = (xα1, xα2) and yα = (yα1, . . . , yαn−2).
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(b) For each α ∈ A, F|Uα is generated by the n− 1 holomorphic vector fields

Xα = P (xα) ∂

∂xα1
+Q(xα) ∂

∂xα2
, Yαj = ∂

∂yαj
, j = 1, . . . , n− 2 .

(c) Σ ∩ Uα has the reduced equation fα = 0, where fα = f(xα). In particular, if
we set hα = h(xα) then

Xα(fα) = hα · fa , Yαj(fα) = 0, ∀ 1 6 j 6 n− 2 .

Consider the multiplicative cocycle g = (gαβ)Uα ∩Uβ 6= ∅ such that fα = gαβ. fβ on
Uα ∩ Uβ 6= ∅.

Claim 2.17. — If Uα ∩ Uβ 6= ∅ then gαβ is locally constant on Uα ∩ Uβ ∩ Γ :
dgαβ|Uα ∩Uβ ∩Σ ≡ 0. In particular c1(NΣ) = 0.

Proof. — Let Uα ∩ Uβ ∩ Σ 6= ∅. We assert that there exists a (n − 1) × (n − 1)
matrix Aαβ, with entries in

O(Uα ∩ Uβ), Aαβ =
(
aijαβ

)
06 i, j 6n−2

,

such that

(2.5)


Xα = a00

αβ. Xβ +
n−2∑
j=1

a0j
α β. Yβ j

Yαi = ai0αβ. Xβ +
n−2∑
j=1

aijα β. Yβ j, 1 6 i 6 n− 2

In fact, since F|Uα ∩Uβ is generated by both systems 〈Xα, Yα i | 1 6 i 6 n− 2〉 and
〈Xβ, Yβ i | 1 6 i 6 n− 2〉, we can find a matrix Aαβ with entries in O(Uα ∩ Uβ \ Σ)
as in (2.5). But since cod(Σ) = 2 the entries of Aαβ can be extended to Uα ∩ Uβ by
Hartog’s theorem.
Now, from (c) we get

0 = Yαi(fa) = Yαi(gαβ. fβ) = Yαi(gαβ). fβ + gαβ. Yαi(fβ)

and from (c) and (2.5)

Yα i(fβ) = ai0αβ. Xβ(fβ) +
n−2∑
j=1

aijαβ. Yβ j(fβ) = ai0αβ. hβ. fβ

=⇒
(
Yα i(gαβ) + ai0αβ. hβ

)
fβ = 0 =⇒ Yα i(gαβ) = −ai0αβ. hβ .

Now, hβ|Uα ∩Uβ ∩Σ = h(0) = 0 and so

Yα i(gαβ)|Uα ∩Uβ ∩Σ = ∂gαβ
∂yαi

(0, yα) = 0 , 1 6 i 6 n− 2 =⇒ dgαβ|Uα ∩Uβ ∩Σ = 0 .

This finishes the proof of Lemma 2.4. �

TOME 4 (2021)



498 A. LINS-NETO

2.4. Proof of Lemma 2.5.

The case in which Σ is smooth was proved in [CLN13]. Here we give a more general
proof (suggested by J. V. Pereira). Let us consider first the case n = 3: M = P3. In
this case, Γ is a compact algebraic curve so that H2

DR(Γ) ' R and the map

Θ ∈ H2
DR(Γ) 7→

∫
Γ

Θ ∈ R

is an isomorphism. In fact, we will prove that∫
Γ
c1(NΣ) ∈ N =⇒ c1(NΣ) 6= 0 .

We will see that
∫

Γ c1(NΣ) represents the intersection number of a small deformation
Γt of Γ with Σ.
Let X (P3) be the vector space of holomorphic vector fields on P3: dim(X (P3)) = 15.

Given Z ∈ X (P3) we will denote by (t, q) ∈ C × P3 7→ Zt(q) ∈ P3 its flow and
Γt := Zt(Γ). Let U be a tubular neighborhood U of Γ with U ⊂ ⋃α Uα.
Remark 2.18. — There exist Z ∈ X (P3) and ε > 0 with the following properties:
(a) If t ∈ Dε ⊂ C then Γt ⊂ U , where Dε = {t | |t| < ε}.
(b) If t ∈ D∗ε := Dε \ {0} then Γt ∩ Γ = ∅.
(c) The set B := {t ∈ Dε |Γt is not transverse to Σ} is discrete in D∗.
(d) There exists to ∈ D∗ \B such that Γto ∩ Σ 6= ∅.

We leave the proof of Remark 2.18 for the reader. Let us finish the proof of
Lemma 2.5 in the case of P3.
Proof of Lemma 2.5. — The idea is to prove that, if t ∈ D∗ε \B then

∫
Γ c1(NΣ) =

#(Γt∩Σ), the intersection number of Γt with Σ. By (d) of Remark 2.18 #(Γt∩Σ) > 0
and so c1(NΣ) 6= 0.
First of all, note that

Γt ∩ Σ = Zt (Γ ∩ Z−t(Σ)) =⇒ # [Γt ∩ Σ] = # [Γ ∩ Z−t(Σ)] .
On the other hand, Z−t(Σ) can be defined in the covering Ut := (Z−t(Uα))α∈A by
the divisor (fα ◦ Zt)α∈A, with associated cocycle gt := (gαβ ◦ Zt)Uα ∩Uβ 6= ∅. Since
t ∈ D∗ε \ B, Γ is transverse to Z−t(Σ) and so Γ ∩ Z−t(Σ) is finite and is defined by
the divisor(

fα ◦ Zt|Γ∩Z−t(Uα)
)
α∈A

with associated cocycle gt|Γ =
(
gαβ ◦ Zt|Γ∩Z−t(Uα ∩Uβ)

)
Uα ∩Uβ 6= ∅

.

This divisor can be interpreted as a holomorphic section of the line bundle induced
by gt|Γ on Pic(Γ). In particular, if c1(gt|Γ) is its first Chern class then its degree is
given by ∫

Γ
c1(gt|Σ) = # [Γ ∩ Z−t(Σ)] = # [Γt ∩ Σ] .

Since the map
t ∈ Dε 7→

∫
Γ
c1(gt|Γ)
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is continuous and constant in D∗ε \ B, we get
∫

Γ c1(g0|Σ) > 0 =⇒ c1(g0|Σ)
= c1(NΣ) 6= 0. This finishes the proof of Lemma 2.5 in the case of P3.
The case of Pn, n > 4, can be reduced to the previous by taking sections by generic

3-planes linearly embedded in Pn. We leave the details to the reader. �

2.5. Proof of Corollary 2.6.

Proof. — Recall that X(f) = h. f , where X represents the normal type G of F
along Γ and f ∈ O2 is reduced. By lemma 2.5 we have h(0) 6= 0. Let fµ and Xν be
the first non-zero jets of f and X at 0 ∈ C2, respectively. Then

X(f) = h. f =⇒ Xν(fµ) = h(0). fµ =⇒ ν = 1
and Xν = X1 is not nilpotent; has at least one non-zero eigenvalue. On the other
hand, we have seen that Γ is a Kupka component of F if, and only if, tr(X1) 6= 0.
If tr(X1) = 0 and X1 has a non-zero eigenvalue, then we can assume that X1
= λ (x1

∂
∂x1
− x2

∂
∂x2

), λ 6= 0. In this case, X has exactly two separatrices through
0 ∈ C2 which are smooth and tangent to x1 = 0 and x2 = 0. We can assume that
these separatrices have equations f1(x1, x2) = x1 + h.o.t and f2(x1, x2) = x2 + h.o.t.
Consider the separatrix γ = (f1. f2 = 0) ofX. Note that f(γ) = γ, ∀ f ∈ DiffG(C2, 0).
By Lemma 2.8 γ generates a separatrix Σ of F along Γ. However X(f1. f2) = h. f1. f2
where h(0) = 0, because X1(x1. x2) = 0. Therefore, we must have tr(X1) 6= 0 and Γ
is a Kupka component of F . �

3. Corollaries 1.11 and 1.12

3.1. Proof of Corollary 1.11.

A codimension one foliation G on Pn of degree zero has a rational first integral of
degree one. It is defined in some coordinate system (x1, . . . , xn+1) ∈ Cn+1 by a the
form ω = x1 dx2 − x2 dx1. In particular, Π−1(Sing(G)) = (x1 = x2 = 0), which is a
l.t.p component.
Conversely, let F be a codimension one foliation on Pn, n > 3. It is known that

Sing(F) has at least one irreducible component of codimension two [LN99]. Assume
that all components of Sing(F) are l.t.p. Let Ω be a 1-form on Cn+1 that represents
F in homogeneous coordinates: FΩ = Π∗(F). Then

(a) iRΩ = 0, where R is the radial vector field on Cn+1.
(b) The coefficients of Ω are homogeneous of degree d+ 1, where d = deg(F).
(c) iRdΩ = (d+ 2) Ω (see [CLN94]). In particular, Sing(dΩ) ⊂ Sing(Ω).

Claim 3.1. — Let q ∈ Sing(F) and p ∈ Π−1(q) ⊂ Cn+1 \ {0}. Then dΩp 6= 0. In
particular, Sing(dΩ) = ∅ and deg(F) = 0.

Proof. — Let ω be a holomorphic 1-form that represents F in a neighborhood of
q. The hypothesis and Theorem 1.9 imply that dω(q) 6= 0.
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On the other hand, Π∗(ω) represents FΩ in a neighborhood, say U , of p. It follows
that Π∗(ω) = ϕ.Ω on U , where ϕ ∈ O∗(U). Therefore,

Π∗(dω) = dΠ∗(ω) = dϕ ∧ Ω + ϕ. dΩ
=⇒ ∀ u, v ∈ TpCn+1 we get ϕ(p). dΩp(u, v) = Π∗(dω)p (u, v)

= dωq (dΠ(p).u, dΠ(p).v) .
Since Π is a submersion, it follows that dΩp 6= 0. Therefore, the coefficients of Ω
must be of degree one and F has degree zero, as asserted in Corollary 1.11. �

3.2. Proof of corollary 1.12.

The idea is to use Corollary 1.11. Assume that there exists an integrable 2-form
η on Cn, n > 4, with homogeneous coefficients of degree d > 1 and such that
Sing(η) = {0}. Denote by Fη the holomorphic codimension two foliation of Cn

generated by η. By assumption Sing(Fη) = {0}. Note also that the codimension two
distribution of Cn \ {0} tangent to Fη is given by

ker(η)(p) = {v ∈ TpCn | iv η(p) = 0} , ∀ p 6= 0 ,
where iv denotes the interior product. The fact that ker(η) has codimension two is
equivalent to
(3.1) η ∧ η = 0 .
Let ω = iRη, where R = ∑n

j=1 zj
∂
∂zj

is the radial vector field on Cn. We have two
possibilities: either ω ≡ 0, or ω 6≡ 0.
In the first case, η generates a codimension two foliation on Pn−1: there exists a

codimension two foliation F on Pn−1 such that Π∗(F) = Fη, where Π: Cn \ {0}
→ Pn−1 denotes the canonical projection. However, any codimension two foliation on
Pn−1, n > 4, has at least one singularity: if q ∈ Sing(F) then the line Π−1(q) ⊂ Cn

is contained in the singular set of η.
In the second case ω is a 1-form on Cn with homogeneous coefficients of degree

d+ 1.
Lemma 3.2. — The form ω is integrable: ω ∧ dω = 0.
Proof. — The following is equivalent to the integrability of the distribution ker(η):
(I) for any p ∈ Cn \ {0} there exists a germ coordinate system (x, y) : (Cn, p)→

(C2, 0)× (Cn−2, 0), with x = (x1, x2), such that ηp = ϕ(x, y) dx1 ∧ dx2, where
ηp is the germ of η at p and ϕ ∈ O∗p.

Since the coefficients of η are homogeneous of degree d we have LRη = (d + 2) η,
where LR denotes the Lie derivative in the direction of R. From this we get

(d+ 2) η = LRη = iRdη + d iRη = iRdη + dω

=⇒ ω ∧ dω = iRη ∧ dω = (d+ 2) iRη ∧ η − iRη ∧ iRdη .
Now, from (3.1) we get

0 = iR(η ∧ η) = 2 iRη ∧ η = 2ω ∧ η =⇒ ω ∧ dω = −iRη ∧ iRdη .
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If we consider a coordinate system as in (I) we have ηp = ϕdx1 ∧ dx2 and dηp
= dϕ∧dx1∧dx2 and this implies that iRηp∧ iRdηp = 0, as the reader can check. �
Write ω = φ. ω1, where φ is homogeneous and cod(Sing(ω1)) > 2.

Remark 3.3. — Note that:
(a) ω1 ∧ η = 0. This is a consequence of ω ∧ η = 0.
(b) ω1 ∧ dω1 = 0 and iRω1 = 0. This is a consequence of ω ∧ dω = 0 and iRω = 0.

Denote by Fω1 the foliation generated by ω1. It follows from (b) of Remark 3.3
that there exists a codimension one foliation F on Pn−1 such that Π∗(F) = Fω1 .

Lemma 3.4. — All irreducible components of Sing(F) are l.t.p.

Proof. — Fix q ∈ Sing(F) and p ∈ Cn \ {0} with Π(p) = q. Note that p ∈
Sing(Fω1), the foliation generated by ω1. Let (x, y) : (Cn, p)→ (C2, 0)× (Cn−2, 0) be
as in (I), so that η = ϕ. dx1 ∧ dx2, ϕ ∈ O∗p. It follows from ω1 ∧ η = 0 that in these
coordinates we have ω1 = A(x, y) dx1 +B(x, y) dx2 and from ω1 ∧ dω1 = 0 that
(AdB−B dA)∧dx1∧dx2 = 0 =⇒ ω1 = h(x, y). (C(x1, x2) dx1 +D(x1, x2) dx2) .
Since cod(Sing(ω1)) > 2 we get h ∈ O∗p and the germ of Sing(ω1) at p is defined by

(x1 = x2 = 0). Moreover, the germ of Fω1 at p is defined by the form C(x1, x2) dx1 +
D(x1, x2) dx2 and so Fω1 is a transversely product at p. Since p ∈ Π−1(q) and Π is a
submersion at p, F is a transversely product at q. �

Corollary 1.11 implies that ω1 has a linear rational first integral that we can assume
to be x2/x1, so that ω1 = x1 dx2−x2 dx1 = iR(dx1 ∧ dx2). Let η = ∑

i<j ηij dxi ∧ dxj,
where ηij is homogeneous of degree d, ∀ i < j. From ω1 ∧ η = 0 we get ηij = 0,
∀ j > i > 3. Therefore, we can write η = dx1 ∧ α + dx2 ∧ β + γ dx1 ∧ dx2, where
α = ∑

j>3 η1j dxj, β = ∑
j>3 η2j dxj and γ = η12. Hence,

0 = ω1 ∧ η = (x1 dx2 − x2 dx1) ∧ (α ∧ dx1 + β ∧ dx2 + γ dx1 ∧ dx2) =⇒
(x1 α + x2 β) ∧ dx1 ∧ dx2 = 0 =⇒ x1 α = −x2 β =⇒

there exists 1-form µ with homogeneous coefficients of degree d− 1 such that αα =
−x2 µ and β = x1 µ. In particular, we get

η = ω1 ∧ µ+ γ dx1 ∧ dx2 = (x1 dx2 − x2 dx1) ∧ µ+ γ dx1 ∧ dx2 =⇒
Sing(η) sup(x1 = x2 = γ = 0) =⇒

d = 0 and γ is a constant, for otherwise cod(Sing(η)) 6 3 and Sing(η) ) {0}. This
finishes the proof of Corollary 1.12. �
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