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370 C. IMBERT & C. MOUHOT

Résumé. — Cet article traite de l’estimation de Schauder pour l’équation de Fokker–Planck
cinétique linéaire avec coefficients Hölder-continus. Cette équation a une structure hypoellip-
tique. Comme exemple d’application de cette estimation de Schauder, nous démontrons le
caractère bien posé globalement en temps d’un modéle jouet nonlinéaire en théorie cinétique.
Ce modèle nonlinéaire est une équation de Fokker–Planck cinétique dont les équilibres sont
maxwelliens mais dont la diffusion en la variable de vitesse est proportionnelle à la masse
locale de la solution.

1. Introduction
1.1. The Schauder estimate for linear kinetic Fokker–Planck equations

The first part of this paper deals with Schauder estimate for linear kinetic Fokker–
Planck equations of the form
(1.1) (∂t + v · ∇x) g =

∑
16 i, j 6 d

ai, j∂2
vi vj

g +
∑

16 i6 d
bi∂vig + cg + S in R×Rd ×Rd

for some given function S under the assumption that the diffusion matrix
A = (ai, j(t, x, v))i, j=1, ..., d satisfy a uniform ellipticity condition for some λ > 0:
(1.2) ∀ (t, x, v) ∈ R× Rd × Rd, ∀ ξ ∈ Rd,

∑
16 i, j 6 d

ai, j(t, x, v)ξiξj > λ|ξ|2.

The main result of this article is a Schauder estimate, that is to say an a priori
estimate for classical solutions to (1.1) controlling their second-order Hölder regular-
ity (in the sense of a “kinetic order” made precise below) by their supremum norm,
under the assumptions that the coefficients ai,j, bi, c are also Hölder continuous.
Theorem 1.1 (The Schauder estimate). — Given α ∈ (0, 1) and ai, j, bi, c ∈

Cα(R×Rd×Rd), i, j = 1, . . . , d, satisfying (1.2) and a function S ∈ Cα(R×Rd×Rd),
any classical solution g to (1.1) satisfies

(1.3) [∂tg + v · ∇xg]Cα(R×Rd×Rd) +
[
∇2
vg
]
Cα(R×Rd×Rd)

6 C
(

[S]Cα(R×Rd×Rd) + ‖g‖L∞(R×Rd×Rd)
)

where the constant C depends on dimension d, the constant λ from (1.2), the
exponent α and the [·]Cα semi-norm and L∞ norm of ai, j for i, j = 1, . . . , d, bi for
i = 1, . . . , d, and c. The semi-norm [·]Cα is the standard Hölder semi-norm for the
distance ‖(t, x, v)‖ = |t| 12 + |x| 13 + |v|.
Remark 1.2. — The left hand side can be understood as a Hölder regularity of

(kinetic) order 2 + α, according the specific definition of Hölder spaces Cβ` , β > 0,
given in the next section (Definition 2.2). We compare this result to the classical
Schauder estimate for parabolic equations in the next subsection.
Such a Schauder estimate is typically used to reach well-posedness of nonlinear

equations after the derivation of Hölder estimates on coefficients. In order to illustrate
this fact, we consider in the second half of this paper the equation
(1.4) (∂t + v · ∇x) f = ρ[f ]∇v · (∇vf + vf)
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The Schauder estimate in kinetic theory and application 371

for an unknown 0 6 f = f(t, x, v), supplemented with the initial condition f(0, x, v)
= fin(x, v) in Td × Rd, where ρ[f ](t, x) :=

∫
v f(t, x, v) dv and Td denotes the d- di-

mensional torus. We emphasize the fact that studying (1.4) with x ∈ Td is equivalent
to study it with x ∈ Rd with periodic initial data. The known a priori estimates that
are preserved in time for this equation are L1(Td×Rd) and C1µ 6 f 6 C2µ, where µ
denotes the Gaussian (2π)−d/2e−|v|2/2. They are not sufficient to derive uniqueness or
bootstrap higher regularity. The Schauder estimate from Theorem 1.1, together with
the Hölder regularity from [GIMV19] (see Theorem 4.3), allows us to prove global
well-posedness of Eq. (1.4) in Sobolev spaces. In the following statement Hk(Td×Rd)
denotes the standard L2-based Sobolev space.
Theorem 1.3 (Global well-posedness for a toy nonlinear model). — Given two

constants 0 < C1 6 C2, let fin be such that fin/
√
µ ∈ Hk(Td×Rd) with k > 2 + d/2

and satisfying C1µ 6 fin 6 C2µ. There then exists a unique global-in-time solution
f of (1.4) in (0,+∞) × Td × Rd satisfying f(0, x, v) = fin(x, v) everywhere in
Td × Rd and f(t)/√µ ∈ Hk(Td × Rd) for all time t > 0 and C1µ 6 f 6 C2µ in
[0,+∞)× Td × Rd.

1.2. Schauder estimates for kinetic equations

The Schauder estimate for solutions g(t, v) to parabolic equations of the form

(1.5) ∂tg =
∑

16 i, j 6 d
ai, Sj∂2

vivj
g +

∑
16 i6 d

bi∂vig + cg + S in R× Rd

takes the form [∂tg]Cα(R×Rd)+
[
D2
vg
]
Cα(R×Rd) 6 C

(
[S]Cα(R×Rd) + ‖g‖L∞(R×Rd)

)
where Cα(R× Rd) denotes the classical Hölder space with respect to the parabolic
distance ‖(t, v)‖ = |t| 12 + |v|. This distance accounts for the parabolic scaling (t, v)
7→ (r2t, rv).
Because we work with kinetic Fokker–Planck equations, the usual parabolic scaling

is replaced with the kinetic scaling (t, x, v) 7→ (r2t, r3x, rv). Moreover, parabolic
equations of the form (1.5) are translation invariant while kinetic Fokker–Planck
equations of the form (1.1) are translation invariant in the space variable x but not in
the velocity one v; the latter is replaced by theGalilean invariance. As already noticed
for instance in [GIMV19, Pol94], these two facts —kinetic scaling and Galilean
invariance— naturally require new definitions for cylinders, order of polynomials and
Hölder continuity. We therefore define (see Definition 2.2) the space Cβ` to be the set
of functions whose difference with any polynomial of (kinetic) degree smaller than
β decays at rate rβ in a cylinder of radius r > 0. Following [IS21], one can define
the kinetic degree that follows the kinetic scaling, as 2(degree in t) + 3(degree in x)
+ (degree in v). The subscript ` stands for “left” since the transformations leaving
the equation invariant are applied to the left, see the next section.
There exists a well-developed literature of Schauder estimates for ultraparabolic

equations, e.g. [Man97, Pol94], and so-called Kolmogorov or Hörmander type equa-
tions, see e.g. [BB07, DFP06, Lun97, Rad08] and references there in. Some of these
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372 C. IMBERT & C. MOUHOT

large classes of equations include the linear kinetic Fokker–Planck equations of the
form (1.1). Moreover, (1.1) is already considered in [HS20]. However in all these
works, either the choice of Hölder spaces is not appropriate to the study of kinetic
equations or the assumptions on the coefficients are too strong or the estimate is
too weak.
In [HS20], the authors use the same natural Hölder spaces Cα` for α ∈ (0, 1) but

make other choices for higher exponents α. For instance, following the aforementioned
classical Schauder estimate for parabolic equations, the semi-norm [·]2+α,Q in [HS20]
equals the sum of [D2u]α,Q, [∂tu]α,Q plus an additional semi-norm controlling x-
variations. Such a choice can be compared the equivalence of norms discussed in
Remark 2.9. The authors of [HS20] explain their choice by the fact that the natural
Schauder estimate (in the spirit of Theorem 1.1) only provides a regularity in the
x variable of order (2 + α)/3 < 1 while they aim at reaching complete smoothing
by bootstrap. Note that such bootstrap can nevertheless be achieved in our spaces
Cβ` , but this requires to work with difference derivatives in x of fractional order
(2 + α)/3 each time the Schauder estimate is applied. Due to the technical length
of this argument when providing full details and in order to keep this paper concise,
we defer this higher regularity bootstrap on the nonlinear model (1.4) to a future
study, and also note that such bootstrap techniques are being also implemented for
the Boltzmann equation in [IS19].
We also remark that our choice of norms —that measures regularity by estimating

the oscillations of a Taylor expansion remainder— is related to the proof of the
Schauder estimate. Indeed, we adapt the argument by Safonov [Saf84] in the parabolic
case, explained in Krylov’s book [Kry96]. In the latter argument, the oscillation of
the remainder of the second-order Taylor expansion of the solution is shown to decay
at rate r2+α in a cylinder of radius r, and a corrector is introduced to the second-
order Taylor polynomial to account for the contribution of the source term at large
distance. Compared with the parabolic argument in [Kry96], the main conceptual
difference is in the proof of the gradient bound, see Proposition 3.1. We combine
Bernstein’s method, as in [Kry96], with ideas and techniques borrowed from the
hypocoercivity theory [Vil09].

1.3. Motivation and background for the toy model

Equation (1.4) describes the evolution of the probability density function f of par-
ticles. The free transport translates the fact that the variable v is the velocity of the
particle at position x at time t. The operator ρ[f ]∇v · (∇vf +vf) takes into account
the interaction between particles. The diffusion coefficient ρ[f ] is proportional to
the total mass of particles lying at x at time t: diffusion is strong in regions where
local density is large and weak in regions where local density is small. The diffusion
operator ∇v · (∇vf + vf) is chosen so that the unique steady state of this equation
is the Gaussian µ(v) = (2π)−d/2e−|v|2/2.
Even if it has a substantially simpler structure, the nonlinear kinetic equation (1.4)

shares some similarities with the equation derived by Landau in 1936 [Lan36] as
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a diffusive limit, in the regime when grazing collisions dominate, of the (Maxwell)–
Boltzmann equation discovered in 1867–1872 [Bol72, Max67] for describing rarefied
gases. These latter equations are respectively referred to as the Landau (or Landau–
Coulomb) equation and the Boltzmann equation. Landau derived this equation in
order to describe plasmas made up of electrons and ions interacting by Coulombian
forces. The Boltzmann collision operator can describe long-range interactions less
singular than the Coulomb interactions but does not make sense for the Coulomb
interaction. The Landau collision operator is of the form ∇v · (Af∇vf +~bff) with
Af = A ? f and ~bf = ~b ? f (? stands for the convolution with respect to the velocity
variable) where A is the matrix 1

|v|(Id−
v⊗v
|v|2 ) and ~b = −∇v · A. The collision operator

in equation (1.4) corresponds to the (much simpler) case where coefficients are given
by Af = ρ[f ] Id and Bf = ρ[f ]v.
In the case of the Landau equation, both coefficients are defined by integral quanti-

ties involving the solution. Our simplified toy model (1.4) replaces these convolutions
crudely by their averages and neglects the issues of the various positive or negative
moments at large velocities. This explains the factor ρ[f ]. Our simplified toy model
also shares the same Gaussian steady state as the Landau collision operator.
This simplification respects the principle at the source of nonlinearity in bilinearity

collision operators: that the amount of collisions at a point is related to the local
density of particles. Note that replacing ρ[f ] by another v-moment of the solution, or
even having different v-moments in front respectively of the diffusion and drift terms,
could most likely be treated by variants of the method developed in this paper. It is
also likely that replacing ρ[f ] by F (ρ[f ]) where F : R∗+ → R∗+ is a smooth nonlinear
map could be treated by variants of the methods in this paper.
The model (1.4) was also studied in [KL06] (see [KL06, equation(9)], when keeping

only mass conservation) and the authors show how its spatially homogeneous version
arise as a mean-field limit of an N -particle Markov process in the spirit of Kac’s
process [Kac56]. It is also related to the gallery of nonlinear Fokker–Planck models
discussed for instance in [Cha08].
A recent line of research consists in extending methods from the elliptic and

parabolic theories to kinetic equations. Silvestre in particular made key progresses on
the Boltzmann equation without cut-off in [Sil16], and together with the first author
later obtained local Hölder estimate in [IS20] and a Schauder estimate for a class
of kinetic equations with integral fractional diffusion in [IS21]. In parallel, a similar
program was initiated for the Landau equation in [GIMV19], following up from an
earlier result in [WZ09]. The local Hölder estimate is obtained in [GIMV19, WZ09]
for essentially bounded solutions, the Harnack inequality is proved in [GIMV19] and
some Schauder estimates are derived in [HS20]. The results contained in the present
article are part of this emerging trend in kinetic theory.

1.4. Strategy of proof for global well-posedness

We explain here the various ingredients used in the proof of the global well-
posedness of equation (1.4). The proof proceeds in 5 steps.
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374 C. IMBERT & C. MOUHOT

(1) First, the maximum principle implies that if the initial datum fin lies between
C1µ and C2µ, then the corresponding solution f to (1.4) satisfies the same
property: as long as the solution f(t, x, v) is well-defined, we have C1µ(v)
6 f(t, x, v) 6 C2µ(v) for all (t, x, v) (see Lemma 4.1). In particular, this
ensures that the solution f has fast decay at large velocities and that the
diffusion coefficient ρ[f ] satisfies C1 6 ρ[f ](t, x) 6 C2 for all (t, x). Therefore,
the equation satisfies the uniform ellipticity condition in v as stated in (1.2).

(2) We deduce from the bound on ρ[f ] that the solution f satisfies an equation
of the form

(∂t + v · ∇x)f = ∇v · (A∇vf +~bf)
for a symmetric real matrix A whose eigenvalues all lie in [C1, C2]. In par-
ticular, we can use the local Hölder estimate from [GIMV19, WZ09], see
Theorem 4.3 from Subsection 4.2. The decay estimate from Step 1 and the
Hölder regularity Cα0

` for some small α0 are then combined with the Schauder
estimate from Theorem 1.1 to derive a higher-order Hölder estimate in C2+α0

`

(see Proposition 4.4).
(3) With such a higher order Hölder estimate at hand, we next study how Sobolev

norms in x and v grow as time increases and we derive a continuation criterion
(in the same spirit as the Beale–Kato–Majda blow-up criterion [BKM84]). We
prove then that the blow-up is prevented by the C2+α0

` Hölder estimate from
Step 2. This finally yields global well-posedness of equation (1.4) in Sobolev
spaces.

It is worth mentioning that a conditional global smoothing effect for the Landau
equation with moderately soft potentials has been recently obtained in [HS20] by
combining the ingredients listed in Steps 1 to Step 3 above. Moreover, establishing
such a global smoothing effect is in progress for the Boltzmann equation without
cut-off with moderately soft potentials [IS19]. These works however assume a priori
that some quantities such as mass, energy and entropy densities remain under control
along the flow. The a priori assumption is necessary to prove, among other things,
that the equations enjoy some uniform ellipticity and to establish good decay in
the velocity variable. The interest of the toy nonlinear model (1.4) lies in the fact
that it is a nontrivial and physically relevant model for which unconditional global
well-posedness can be proven following such a programme. The main simplification
of our model compared with the Landau equation is the lack of local conservation of
momentum and energy; therefore the fluid dynamics on the local density, momentum
and energy fields reduces to the heat flow in the fluid limit and avoids the difficulties
of the Euler and Navier–Stokes dynamics. The results of this paper hence provide
one more hint that the formation of singularities, if any, in the Cauchy problem for
non-linear kinetic equations is likely to come from (1) fluid mechanics, or (2) issues
with the decay at large velocities.

1.5. Perspectives

We conclude the introduction by mentioning that the well-posedness result for the
toy nonlinear model can be improved in two directions. First, more general initial
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data could be considered by constructing solutions directly in our Hölder spaces
rather than mixing Hölder and Sobolev spaces. Second, we previously mentioned
that C∞ regularization is expected for positive times by applying iteratively the
Schauder estimates.

1.6. Organisation of the article

Section 2 is devoted to the definition of Hölder spaces. The Schauder estimate from
Theorem 1.1 is proved in Section 3. We prove Theorem 1.3 in the final Section 4 by
constructing local solutions to the non-linear equation (1.4) in Sobolev spaces and
by using the Schauder estimate to extend these solutions globally in time.

1.7. Notation

We collect here the main notations for the convenience of the reader.

1.7.1. Euclidian space and torus

The d-dimensional Euclidian space is denoted by Rd and the d-dimensional torus
by Td. Throughout this article, the space variable x belongs to Rd, except in Section 4
where x ∈ Td.

1.7.2. Multi-indices

The order of m ∈ Nd is |m| := m1 + · · ·+md. Given a vector x ∈ Rd and m ∈ Nd,
we denote xm := ∏d

i=1 x
mi
i .

1.7.3. Balls and cylinders

Br denotes the open ball of Rd of radius r centered at the origin. Qr(z0) denotes a
cylinder in R×Rd×Rd centered at z0 of radius r following the kinetic scaling, see (2.2).
Qr simply denotes Qr((0, 0, 0)). The scaled variable is Sr(z) := (r2t, r3x, rv) for
z = (t, x, v), see (2.1). Radii of cylinders are denoted by r. Unless further constraints
are stated, this radius is an arbitrary positive real number. It is sometimes restricted
by the fact that a cylinder should not leak out of the domain of study of the
equation (in particular in time), sometimes chosen to be 1 or 2, or multiplied by a
given constant, e.g. 3/2 or K + 1.

1.7.4. Constants

We use the notation g1 . g2 when there exists a constant C > 0 independent
of the parameters of interest such that g1 6 Cg2. We analogously write g1 & g2.
We sometimes use the notation g1 .δ g2 if we want to emphasize that the implicit
constant depends on some parameter δ.
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1.7.5. Hölder spaces and exponents

Given an open set Q, Cα` (Q) denotes the set of α-Hölder continuous functions in
Q, see Definition 2.2. The subscript ` refers to “left”, it is not a parameter. The
letter α denotes an arbitrary positive exponent. This exponent will be fixed to some
value α0 in Section 4 after applying the local Hölder estimate from [GIMV19, WZ09]
recalled in Subsubsection 4.2.

1.7.6. Kolmogorov operator

The Green function of the operator LK := ∂t + v · ∇x −∆v is denoted by G.

2. Hölder spaces

2.1. Galilean invariance, scaling and cylinders

Given z := (t, x, v) ∈ R× Rd × Rd and r > 0 define

(2.1) Sr(z) :=
(
r2t, r3x, rv

)
.

The Galilean invariance of equations (1.1) and (1.4) is expressed with the non-
commutative product

(t1, x1, v1) ◦ (t2, x2, v2) := (t1 + t2, x1 + x2 + t2v1, v1 + v2)
with inverse element denoted z−1 := (−t,−x+ tv,−v) for z := (t, x, v).
Given z0 ∈ R × Rd × Rd and r > 0, we define the unit cylinder Q1 := Q1(0)

= (−1, 0]×B1×B1, then Qr := Qr(0) = Sr(Q1) and finally Qr(z0) = {z0◦z : z ∈ Qr}.
This results in

(2.2) Qr(z0)

:=
{

(t, x, v) : t0 − r2 < t 6 t0, |x− x0 − (t− t0)v0| < r3, |v − v0| < r
}
.

2.2. The Green function

Consider the Kolmogorov equation
(2.3) (∂t + v · ∇x)g = ∆vg + S

with a given source term S. The Green function G of the operator LK := ∂t + v ·
∇x −∆v was computed by Kolmogorov [Kol34]:

(2.4) G(z) =


( √

3
2πt2

)d
e−

3|x+ t
2 v|2
t3 e−

|v|2
4t if t > 0,

0 if t 6 0.
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Proposition 2.1 (Properties of the Green function). — Given S ∈ L∞(R×Rd×
Rd) with compact support in time, the function

g(t, x, v)

=
∫
R×Rd×Rd

G
(
z̃−1 ◦ z

)
S(z̃) dt̃ dx̃ dṽ

(
with z := (t, x, v) and z̃ :=

(
t̃, x̃, ṽ

))
=
∫
R×Rd×Rd

G
(
t− t̃, x− x̃−

(
t− t̃

)
ṽ, v − ṽ

)
S
(
t̃, x̃, ṽ

)
dt̃ dx̃ dṽ =: (G ? kin S)(z)

satisfies (2.3) in R × Rd × Rd (the “kinetic” convolution ? kin follows the Galilean
invariance).
Moreover, for all z0 = (t0, x0, v0) ∈ R× Rd × Rd and r > 0∥∥∥G ? kin 1Qr(z0)

∥∥∥
L∞(Qr(z0))

.d r
2.

Proof. — The argument of [Kry96, Lemma 8.4.1, p. 115] applies similarly: given
z ∈ Qr(z0), calculate

G ? kin 1Qr(z0)(z) =
∫
Qr(z0)

G
(
t− t̃, x− x̃−

(
t− t̃

)
ṽ, v − ṽ

)
dz̃

= r2
∫
Q1(z0)

G
(
t

r2 − t̄,
x

r3 − x̄−
(
t

r2 − t̄
)
v̄,
v

r
− v̄

)
dz̄

= r2G ? kin 1Q1(z0)
(
S 1
r
(z)
)

which yields the result. �

2.3. Hölder spaces

We now introduce Hölder spaces similar to that in [IS21].
Definition 2.2 (Hölder spaces). — The kinetic degree of a monomialm(t, x, v) =

tk0Πd
i=1x

ki
i v

li
i associated with the partial degrees k0, k1, . . . , kd ∈ N and l1, . . . , ld ∈ N

is defined as
deg kin m := 2k0 + 3

(
d∑
i=1

ki

)
+

d∑
i=1

li.

In particular, constants have zero kinetic degree. The kinetic degree deg kin p of a
polynomial p ∈ R[t, x, v] is defined as the largest kinetic degree of the monomials
mj appearing in p.
Given an open set Q ⊂ R×Rd×Rd and β > 0, we say that a function g : Q → R

is β-Hölder continuous at a point z0 ∈ Q if there is a polynomial p ∈ R[t, x, v] with
deg kin p < β and a constant C > 0 such that
(2.5) ∀ r > 0, ‖g − p‖L∞(Qr (z0)∩Q) 6 Crβ.

If this property holds true for all z0 ∈ Q, the function g is β-Hölder continuous in
Q and we write g ∈ Cβ` (Q). The smallest constant C such that the property (2.5)
holds true for all z0 ∈ Q is denoted by [g]Cβ(Q).
The Cβ` -norm of g is then ‖g‖Cβ

`
(Q) := ‖g‖L∞(Q) + [g]Cβ

`
(Q).
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Remark 2.3. —
(1) For β ∈ (0, 1), the semi-norm Cβ` is equivalent to the standard Hölder semi-

norm Cβ for the distance ‖(t, x, v)‖ = |t| 12 + |x| 13 + |v|.
(2) For a non-zero integer k ∈ N, the spaces Ck

` differ from the usual Ck spaces,
in that the highest-order derivatives are not continuous but merely L∞. For
instance C1

` functions are Lipschitz continuous in v but not continuously
differentiable in v.

(3) In [IS21], a Schauder estimate is obtained for kinetic equations with an
integral collision operator with fractional ellipticity in the velocity variable v.
A parameter s ∈ (0, 1), related to the order of differentiation of the integral
operator, plays a role in the definition of cylinders (through scaling) and,
in turn, in the definition of kinetic degree and Hölder spaces. The present
definition corresponds to the case s = 1.

(4) The subscript ` emphasizes the fact that this definition is based on the
non-commutative product ◦ defined above. The symbol ` stands for “left”:
because of Galilean invariance, the kinetic equations considered in [IS21] and
the present work are left invariant with respect to this product. See [IS21] for
further discussion.

(5) In [IS21], Hölder spaces are defined by using a kinetic distance d`. It is
pointed out that this distance satisfies 1

4‖z
−1
2 ◦ z1‖ 6 d`(z1, z2) 6 ‖z−1

2 ◦ z1‖
where ‖(t, x, v)‖ = |t| 12 + |x| 13 + |v|. This inequality justifies the fact that the
Definition 2.2 above coincides with [IS21, Definition 2.3] and that semi-norms
only differ by a factor 4β.

(6) When Q = R× Rd × Rd, we simply write [·]Cβ
`
, ‖ · ‖Cβ

`
, ‖ · ‖L∞ , etc.

2.4. Second order Taylor expansion

When β = 2+α ∈ (2, 3), we now prove that the polynomial p realizing the infimum
in the Cβ` -semi-norm is the Taylor expansion of kinetic degree 2:

(2.6) Tz0 [g](t, x, v) := g(z0) + (t− t0) [∂tg + v0 · ∇xg] (z0)

+ (v − v0) · ∇vg(z0) + 1
2(v − v0)T ·D2

vg(z0) · (v − v0).

Remark that the linear part in x does not appear since it is of kinetic degree 3.
We recall and denote

[g]C2+α
`

(Q) = sup
{

infp∈P ‖g − p‖L∞(Qr(z0)∩Q)

r2+α : z0 ∈ Q, r > 0
}

[g]C2+α
`, 0 (Q) := sup

{
‖g − Tz0 [g]‖L∞(Qr(z0)∩Q)

r2+α : z0 ∈ Q, r > 0
}

where P denotes the set of polynomials of kinetic degree smaller than or equal to 2.
Lemma 2.4. — Given α ∈ (0, 1), there exists C ∈ (0, 1) such that for all g ∈
C2+α
` (Q), the derivatives in Tz0 [g] exist for all z0 ∈ Q and

C[g]C2+α
`, 0 (Q) 6 [g]C2+α

`
(Q) 6 [g]C2+α

`, 0 (Q).
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Proof. — First reduce to z0 = 0 by the change of variables g](z) := g(z0 ◦ z). We
continue however to simply call the function g. We start by proving the first inequality.
One needs to identify the minimizer p ∈ R[t, x, v] realising infp∈R[t, x, v] ‖g− p‖L∞(Qr)
in the limit r → 0+. Let ε > 0 and consider rk = 2−k and pk ∈ P s.t. ‖g− pk‖L∞(Qrk )

6 r2+α
k ([g]C2+α

`
(Q) + ε). Write pk(t, v) =: ak + bkt+ qk · v + 1

2v
TMkv. By subtraction

one gets

‖pk+1 − pk‖L∞(Qrk+1) 6 2r2+α
k

(
[g]C2+α

`
(Q) + ε

)
which writes in terms of the coefficients∥∥∥∥(ak − ak+1) + (bk − bk+1) t+ (qk − qk+1) · v + 1

2v
T (Mk −Mk+1) v

∥∥∥∥
L∞(Qrk+1)

6 2r2+α
k

(
[g]C2+α

`
(Q) + ε

)
.

Testing for t = 0 and v = 0 gives |ak − ak+1| . r2+α
k ([g]C2+α

`
(Q) + ε). Using the

latter and testing for v = 0 and |t| = r2
k+1 gives

|bk − bk+1| . rαk
(
[g]C2+α

`
(Q) + ε

)
.

Testing for t = 0 and summing v and −v with |v| = rk+1 in all directions gives
|Mk −Mk+1| . rαk ([g]C2+α

`
(Q) + ε). Finally by difference and testing with t = 0 and

all directions of |v| = rk, one gets

|qk − qk+1| . r1+α
k

(
[g]C2+α

`
(Q) + ε

)
.

This shows that the coefficients are converging with

|ak − a∞| . r2+α
k

(
[g]C2+α

`
(Q) + ε

)
and |bk − b∞| . rαk

(
[g]C2+α

`
(Q) + ε

)
and |qk − q∞| . r1+α

k

(
[g]C2+α

`
(Q) + ε

)
and |Mk −M∞| . rαk

(
[g]C2+α

`
(Q) + ε

)
.

These convergences and estimates imply that

‖g − P∞‖L∞(Qrk) . r2+α
k

(
[g]C2+α

`
(Q) + ε

)
which in turn implies that a∞ = g(0, 0, 0) and b∞ = ∂tg(0, 0, 0) and q∞ = ∇vg(0, 0, 0)
andM∞ = D2

vg(0, 0, 0) (and proves the existence of such derivatives). We thus proved
that

‖g − T0[g]‖L∞(Qrk) . r2+α
k

(
[g]C2+α

`
(Q) + ε

)
where the constant does not depend on k. This in turn implies that same inequality
for any r > 0, with a constant at most multiplied by 2, which concludes the proof
since ε is arbitrarily small.
The proof of the second inequality [g]C2+α

`
(Q) 6 [g]C2+α

`, 0 (Q) then follows from the
existence of the derivatives appearing in T0[g] showed in the previous step, and the
fact that T0[g] is of kinetic degree strictly smaller than 2 + α. �
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2.5. Interpolation inequalities

Interpolation inequalities are needed in the proof of the Schauder estimate.

Lemma 2.5 (Interpolation inequalities). — Let Qint,Qext be two cylinders of the
form Qρ(zc) and QR(zc) with either ρ < R or ρ = R = +∞. There exist C, β > 0
depending only on d, α ∈ (0, 1) (and R− ρ if R is finite) such that for any ε ∈ (0, 1)
and any g ∈ C2+α

` (Qext),

[g]Cα
`

(Qint) 6 ε[g]C2+α
`

(Qext) + Cε−β‖g‖L∞(Qext)(2.7)

[∇vg]Cα
`

(Qint) 6 ε[g]C2+α
`

(Qext) + Cε−β‖g‖L∞(Qext)(2.8) [
D2
vg
]
Cα
` (R2d+1) 6 C[g]C2+α

` (R2d+1)(2.9)

[(∂t + v · ∇v) g]Cα
` (R2d+1) 6 C[g]C2+α

` (R2d+1).(2.10)

Note that the two last inequalities are only proved in the case of the whole space
ρ = R =∞.

Remark 2.6. — A similar result was also proved in [IS21, Lemma 2.7] by a different
argument and in the terminology of kinetic degree, see Definition 2.2. Denote D =
Id,∇v, D

2
v, (∂t + v · ∇x) and define k ∈ {0, 1, 2} the kinetic order of the differential

operator D, i.e. k = 0 for D = Id, k = 1 for D = ∇v and k = 2 for D = D2
v and

D = ∂t+v ·∇x (this is the kinetic degree of the polynomial naturally associated with
the differential operator). Then given for β ∈ {0, α}, and provided that k+β < 2+α,
we have

(2.11) ‖Dg‖Cβ
`

(Q) 6 ε(2+α)−(k+β)[g]C2+α
`

(Q) + Cε−(k+β)‖g‖L∞(Q)

where constant C only depends on dimension d, α and ‖ · ‖L∞(Q). Observe that the
restrictions imposed on k, β yield the same inequalities as in Lemma 2.5. The two
key steps in [IS21, Lemma 2.7] are the proof of the general interpolation inequality

[g]Ck+β
`

(Q) 6 ‖g‖
1− k+β

2+α
L∞(Q)[g]

k+β
2+α
C2+α
`

(Q) + C‖g‖L∞(Q)

and inequalities relating the Hölder semi-norms of derivatives of a given function to
its (higher order) semi-norm, as in (2.9)-(2.10) but more general.

Remark 2.7. — It is possible to get rid of the condition ρ < R when R < +∞
but this requires substantial modifications. In the following proof, a global estimate
(ρ = R = +∞) is derived and a local “interior” one is easily obtained by a localization
procedure. Since reaching ρ = R < +∞ is irrelevant for this work and the proof
below is different from the one contained in [IS21], we believe it can be useful to
restrict ourselves to this special case.

Proof of Lemma 2.5. — It is sufficient to prove the interpolation inequalities (2.7)-
(2.8) in the case where Qint = Qext = R2d+1. Indeed, it is then sufficient to apply
global estimates to g̃ = gφ for some cut-off function φ such that 0 6 φ 6 1, φ = 1
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in Qint and φ = 0 outside Qext to get the local ones. Indeed, in the case of (2.7),
[g]Cα

`
(Qint) 6 [gφ]Cα

` (R2d+1)
6 ε[gφ]C2+α

` (R2d+1) + Cε−β‖gφ‖L∞(R2d+1)

6 ε
(

[g]C2+α
`

(Qext) + ‖g‖L∞(Qext)[φ]C2+α
` (R2d+1)

)
+ Cε−β‖g‖L∞(Qext)

6 ε[g]C2+α
`

(Qext) + C̃ε−β‖g‖L∞(Qext)

where in the case 0 < ρ < R < +∞, the constant C̃ ∼ (R− ρ)−2−α depends on the
difference of radii. This localization is however not used in the proof of (2.9)-(2.10)
because it would add a term ‖g‖L∞(Qext) on the right hand side, which we want to
avoid for the application of Remark 2.9.
Since we now work in the whole space R2d+1, we do not specify the domain of

functions spaces in the remainder of the proof.
We next notice that a scaling argument allows us to only prove the inequalities

with ε = 1: scaling then shows that β = −α
2 in (2.7) and β = −1− α in (2.8).

Step 1. — L∞ bounds on derivatives.
One can perform the same argument as in the proof of the preceding Lemma 2.4

with ε = ‖g‖L∞ , a0 = 0, b0 = 0, M0 = 0 as admissible first terms in the sequence to
get

|ak − a∞| . r2+α
k

(
[g]C2+α

`
+ ‖g‖L∞

)
|bk − b∞| . rαk

(
[g]C2+α

`
+ ‖g‖L∞

)
|qk − q∞| . r1+α

k

(
[g]C2+α

`
+ ‖g‖L∞

)
|Mk −M∞| . rαk

(
[g]C2+α

`
+ ‖g‖L∞

)
.

This yields

|g(z0)| , |∂tg(z0) + v · ∇xg(z0)| , |∇vg(z0)| ,
∣∣∣∇2

vg(z0)
∣∣∣ . [g]C2+α

`
+ ‖g‖L∞

for any z0 ∈ Qext, which yields
‖∇vg‖L∞ . [g]C2+α

`
+ ‖g‖L∞(2.12) ∥∥∥D2

vg
∥∥∥
L∞
. [g]C2+α

`
+ ‖g‖L∞(2.13)

‖(∂t + v · ∇v) g‖L∞ . [g]C2+α
`

+ ‖g‖L∞ .(2.14)

Step 2. — Control of lower-order Hölder norms.
Using the previous L∞ bounds and Lemma 2.4,
‖g − g(z0)‖L∞(Qr(z0)) . ‖g − Tz0 [g]‖L∞(Qr(z0))

+r
(
‖∂tg(z0) + v · ∇xg(z0)‖L∞ + ‖∇vg(z0)‖L∞ +

∥∥∥∇2
vg(z0)

∥∥∥
L∞

)
. r2+α[g]C2+α

`
+ r

(
[g]C2+α

`
+ ‖g‖L∞

)
which yields (2.7) with ε = 1.
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Step 3. — Hölder regularity of first-order derivatives in v.
We are left with proving (2.8), that is to say that for all z0 ∈ R2d+1 and z1 ∈ Qr(z0),

we have
|∇vg(z1)−∇vg(z0)| . rα

(
[g]C2+α

`
+ ‖g‖L∞

)
.

In view of (2.13), it is enough to consider r ∈ (0, 1].
Define for z ∈ R2d+1 and u ∈ Sd−1 and r ∈ (0, 1],

σ1
r, u[g](z) := 1

r
[g(z ◦ (0, 0, ru))− g(z)] .

We make two observations about this function. First there exists θ = θ(z, r, u) ∈ (0, 1)
such that

σ1
r, u[g](z) = ∇vg(z ◦ (0, 0, θru)) · u.

Second, for p = Tz0g(z), we have

σ1
r, u[p](z1)− σ1

r, u[p](z0) = ruTD2
vg(z0)(v1 − v0).

Let z0 ∈ R2d+1, z1 ∈ Qr(z0) and u ∈ Sd−1 be fixed, and δ > 0 to be chosen later.
There then exists z̃0 ∈ Qδr(z0) and z̃1 ∈ Qδr(z1) such that

σ1
δr, u[g](zi) = ∇vg(z̃i) · u, for i = 0, 1.

Then we can write, using Lemma 2.4 to get the last inequality,

|(∇vg(z1)−∇vg(z0)) · u| 6
∣∣∣∇vg(z1) · u− σ1

δr, u[g](z1)
∣∣∣

+
∣∣∣σδr, u[g](z1)− σ1

δr, u[p](z1)
∣∣∣+ ∣∣∣σ1

δr, u[p](z1)− σ1
δr, u[p](z0)

∣∣∣
+
∣∣∣σ1
δr, u[p](z0)− σ1

δr, u[g](z0)
∣∣∣+ ∣∣∣∇vg(z0) · u− σ1

δr, u[g](z0)
∣∣∣

6 |∇vg(z1)−∇vg(z̃1)|+
∥∥∥∇2

vg
∥∥∥
L∞
|v1 − v0|+ |∇vg(z0)−∇vg(z̃0)|

+ r−1|(g − p)(z0 ◦ (0, 0, δru))|+ r−1|(g − p)(z0)|
+ r−1|(g − p)(z1 ◦ (0, 0, δru))|+ r−1|(g − p)(z1)|

62(δr)α[∇vg]Cα
`

+ r
∥∥∥∇2

vg
∥∥∥
L∞

+ 4r1+α[g]C2+α
`

.

Using the fact that r 6 1 and taking the supremum over z0, z1, u, we get,

[∇vg]Cα
`
6 2δα [∇vg]Cα

`
+ C

(∥∥∥∇2
vg
∥∥∥
L∞

+ [g]C2+α
`

)
.

We can now pick δ > 0 such that 2δα = 1
2 and conclude that (2.8) holds true.

Step 4. — Hölder regularity of second-order derivative in v.
We now prove (2.9) following a similar strategy as in the previous step: we prove

for all z0 ∈ R2d+1 and z1 ∈ Qr(z0) with r ∈ (0, 1]∣∣∣∇2
vg(z1)−∇2

vg(z0)
∣∣∣ . rα[g]C2+α

`
.

Define for z ∈ R2d+1 and u ∈ Sd−1 and r ∈ (0, 1],

σ2
r, u[g](z) := 1

r2 [g(z ◦ (0, 0, ru)) + g(z ◦ (0, 0,−ru))− 2g(z)] .
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This function satisfies for some θ = θ(z, r, u) ∈ (−1, 1) (and recalling p = Tz0 [g])

σ2
r, u[g](z) = uT∇2

vg(z ◦ (0, 0, θru))u and σ2
r, u[p](z1) = σ2

r, u[p](z0).

Let z0 ∈ R2d+1, z1 ∈ Qr(z0) and u ∈ Sd−1 be fixed, and δ > 0 to be chosen later.
There then exists z̃0 ∈ Qδr(z0) and z̃1 ∈ Qδr(z1) such that

σ2
δr, u[g](zi) = uT∇2

vg(z̃i)u, for i = 0, 1.

Then we can write, using Lemma 2.4 to get the last inequality,∣∣∣uT (∇2
vg(z1)−∇2

vg(z0)
)
u
∣∣∣ 6 ∣∣∣uT∇2

vg(z1)u− σ2
δr, u[g](z1)

∣∣∣
+
∣∣∣σ2
δr, u[g](z1)− σ2

δr,u[p](z1)
∣∣∣+ ∣∣∣σ2

δr, u[p](z1)− σ2
δr, u[p](z0)

∣∣∣
+
∣∣∣σ2
δr,u[p](z0)− σ2

δr, u[g](z0)
∣∣∣+ ∣∣∣uT∇2

vg(z0)u− σ2
δr, u[g](z0)

∣∣∣
6
∣∣∣∇2

vg(z1)−∇2
vg(z̃1)

∣∣∣+ +
∣∣∣∇2

vg(z0)−∇2
vg(z̃0)

∣∣∣
+ r−2|(g − p)(z0 ◦ (0, 0, δru))|+ r−2|(g − p)(z0 ◦ (0, 0,−δru))|
+ 2r−2|(g − p)(z0)|+ r−2|(g − p)(z1 ◦ (0, 0, δru))|
+ r−2|(g − p)(z1 ◦ (0, 0,−δru))|+ 2r−2|(g − p)(z1)|

6 2(δr)α
[
∇2
vg
]
Cα
`

+ 6rα[g]C2+α
`

.

Using the fact that r 6 1 and taking the supremum over z0, z1, u, we get,[
∇2
vg
]
Cα
`

6 2δα
[
∇2
vg
]
Cα
`

+ C[g]C2+α
`

which proves the inequality by choosing 2δα = 1
2 .

Step 5. — Hölder regularity of first-order transport derivative.
The proof of (2.10) follows the same strategy: we prove, denoting Y := ∂t + v · ∇x,

for all z0 ∈ R2d+1 and z1 ∈ Qr(z0) with r ∈ (0, 1]

|Y g(z1)− Y g(z0)| . rα[g]C2+α
`

.

Define for z ∈ R2d+1 and r ∈ (0, 1],

σ3
r [g](z) := 1

r2

[
g(z ◦ (r2, 0, 0))− g(z)

]
.

This function satisfies for some θ = θ(z, r) ∈ (0, 1)

σ3
r [g](z) = Y g(z ◦ (θr2, 0, 0) and σ3

r [p](z1) = σ3
r [p](z0).

Let z0 ∈ R2d+1, z1 ∈ Qr(z0), and δ > 0 to be chosen later. Then for some
z̃0 ∈ Qδr(z0), z̃1 ∈ Qδr(z1):

σ3
δr,u[g](zi) = Y g(z̃i), for i = 0, 1.
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Then we can write, using Lemma 2.4 to get the last inequality,

|Y g(z1)− Y g(z0)| 6
∣∣∣Y g(z1)− σ3

δr[g](z1)
∣∣∣

+
∣∣∣σ3
δr[g](z1)− σ3

δr[p](z1)
∣∣∣+ ∣∣∣σ3

δr[p](z1)− σ3
δr[p](z0)

∣∣∣
+
∣∣∣σ3
δr[p](z0)− σ3

δr[g](z0)
∣∣∣+ ∣∣∣Y g(z0)− σ3

δr[g](z0)
∣∣∣

6 |Y g(z1)− Y g(z̃1)|+ |Y g(z0)− Y g(z̃0)|
+ r−2|(g − p)(z0 ◦ (δ2r2, 0, 0))|+ r−2|(g − p)(z0)|
+ r−2|(g − p)(z1 ◦ (δ2r2, 0, 0))|+ r−2|(g − p)(z1)|
6 2(δr)α[Y g]Cα

`
+ 4rα[g]C2+α

`
.

Using the fact that r 6 1 and taking the supremum over z0, z1, u, we get,
[Y g]Cα

`
6 2δα[Y g]Cα

`
+ C[g]C2+α

`

which proves the inequality by choosing 2δα = 1
2 .

This achieves the proof of the Lemma 2.5. �

We will see below that (2.9) and (2.10) can be combined with the hypoelliptic
estimate contained in Lemma 2.8 below to derive an equivalent semi-norm for the
kinetic Hölder space C2+α

` , see Remark 2.9.

2.6. A hypoelliptic estimate

We investigate here how to recover the fact that a given function g lies in C2+α
`

only knowing that its free transport and its velocity second order derivatives lie in
Cα` . We remark that this fact is (almost) a consequence of the Schauder estimate
contained in Theorem 1.1 (as a matter of fact, it is closer to the local version of this
result, see Theorem 3.9). However we do not need here to control the L∞ norm of g.
The proof of the following lemma illustrates the hypoelliptic structure of the Hölder
spaces Cβ` and is consequently of independent interest.

Lemma 2.8 (Hypoelliptic Hölder estimate). — Let Q be an arbitrary cylinder
and g ∈ C2+α

` (R2d+1) then

(2.15) [g]C2+α
` (R2d+1) 6 C

(
[(∂t + v · ∇x) g]Cα

` (R2d+1) +
[
D2
vg
]
Cα
` (R2d+1)

)
for some constant C only depending on α.

Remark 2.9. — By combining (2.15) with (2.9) and (2.10), we deduce that

[(∂t + v · ∇x) g]Cα
` (R2d+1) +

[
D2
vg
]
Cα
` (R2d+1)

is a semi-norm equivalent to [·]C2+α
`

(R2d+1). In order words, although the semi-norm
[·]C2+α

`
(R2d+1) is defined by measuring oscillations around higher-order polynomials,

in the whole space it can be recovered with the more classical notion of Hölder
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regularity along the highest-order derivatives. We do not know if this equivalence is
true in a domain, as in

[(∂t + v · ∇x) g]Cα
`

(Q) +
[
D2
vg
]
Cα
`

(Q)
∼ [g]C2+α

`
(Q) .

Proof. — It is convenient to write Y for (∂t + v · ∇x). Moreover, since the domain
is the whole space R2d+1, we do not specify the domain in function spaces. Let
z0 ∈ R2d+1 and r > 0. We consider in particular h = (1, u, v) ∈ Q1 and we have
z0 ◦ Sr(h) ∈ Qr(z0).
Proving (2.15) for variations along free streaming is easy: for all z0 ∈ R2d+1 and

r > 0, we have

g
(
z0 ◦

(
r2, 0, 0

))
− g(z0)− Y g(z0)r2 = r2

∫ 1

0

[
Y g

(
z0 ◦

(
r2θ, 0, 0

))
− Y g(z0)

]
dθ

which implies

(2.16)
∣∣∣g (z0 ◦

(
r2, 0, 0

))
− g(z0)− Y g(z0)r2

∣∣∣ 6 [Y g]Cα
`
r2+α.

The proof of (2.15) for variations along the v variable is also straightforward: for
all z0 ∈ R2d+1 and r > 0,

(2.17)
∣∣∣∣∣g(z0 ◦ (0, 0, rv))− g(z0)−∇vg(z0) · (rv)− r2

2 v
TD2

vg(z0)v
∣∣∣∣∣ 6 [D2

vg
]
Cα
`

r2+α.

We then prove (2.15) but only for variations along x: we prove that for all z0 ∈ R2d+1

and u ∈ B1 and r > 0,

(2.18)
∣∣∣g (z0 ◦

(
0, r3u, 0

))
− g(z0)

∣∣∣ 6 C
(

[(∂t + v · ∇x)g]Cα
`

+
[
D2
vg
]
Cα
`

)
r2+α

for some constant C only depending on α. This is where a hypoelliptic argument is
used: ∇x is realized as the Lie bracket of ∇v and Y , along trajectories.

z1
forward along v

// z2
backward along transport

// z3

backward along v

��

z0

forward along x

ee

z4forward along transport
oo

Let z1 denote z0 ◦ (0, r3u, 0) and z2 = z1 ◦ (0, 0, ru) and z3 = z2 ◦ (−r2, 0, 0) and
z4 = z3 ◦ (0, 0,−ru). Remark that z0 = z4 ◦ (r2, 0, 0). Notice that all points remain
in Qr(z0). We now write

g(z0)− g(z1) =
[
g
(
z4 ◦

(
r2, 0, 0

))
− g(z4)

]
+ [g(z3 ◦ (0, 0,−ru))− g(z3)]

+
[
g
(
z2 ◦

(
−r2, 0, 0

))
− g(z2)

]
− [g(z2 ◦ (0, 0,−ru))− g(z2)] .

TOME 4 (2021)



386 C. IMBERT & C. MOUHOT

We now use (2.16) with z0 replaced successively by z2 and z4 and (2.17) with z0
replaced successively by z3 and z2, and we get, after summing the four resulting
inequalities,

(2.19)

|g(z0)− g(z1)| 62
(

[Y g]Cα
`

+
[
D2
vg
]
Cα
`

)
r2+α + |Y g(z4)− Y g(z2)| r2

+ r |(∇vg(z2)−∇vg(z3)) · u|+ r2

2
∣∣∣D2

vg(z3)−D2
vg(z2)

∣∣∣
|g(z0)− g(z1)| 63

(
[Y g]Cα

`
+
[
D2
vg
]
Cα
`

)
r2+α + |(∇vg(z2)−∇vg(z3)) · u|

We now estimate |(∇vg(z2)−∇vg(z3)) · u| in terms of

[g]C2+α
`, x

:= sup
z ∈R2d+1, u∈B1

|g(z ◦ (0, 0, ru))− g(z)|
r2+α .

We are going to prove that for all R > 0,

(2.20) |(∇vg(z2)−∇vg(z3)) · u|

6
[
D2
vg
]
Cα
`

(
2R1+α +Rrα

)
+ 3[Y g]Cα

`
R−1r2+α + [g]C2+α

`, x
R−1

(
r2R

) 2+α
3 .

In order to derive this estimate, we approximate ∇vg(z) · u by the finite difference
σ3
R, u[g](z) we already used above. Recall that

σ3
R, u[g](z) = |g(z ◦ (0, 0, Ru))− g(z)|

R
.

Remark that (2.17) implies

(2.21)
∣∣∣∣σ3
R, u[g](z)−∇vg(z) · u− R

2 D
2
vg(z)u · u

∣∣∣∣ 6 [D2
vg
]
Cα
`

R1+α.

Moreover, recalling that z3 = z2 ◦ (−r2, 0, 0) and using (2.16) twice,

(2.22) R
∣∣∣σ3
R, u[g](z2)− σ3

R, u[g](z3)
∣∣∣ =

∣∣∣g(z3)− g(z2)− Y g(z2)
(
−r2

)∣∣∣
+
∣∣∣g (z2 ◦ (0, 0, Ru) ◦ (−r2, 0, 0)

)
− g (z2 ◦ (0, 0, Ru))

−Y g (z2 ◦ (0, 0, Ru)) (−r2)
∣∣∣+ r2 |Y g(z2)− Y g (z2 ◦ (0, 0, Ru))|

+
∣∣∣g (z2 ◦ (0, 0, Ru) ◦ (−r2, 0, 0)

)
− g (z3 ◦ (0, 0, Ru))

∣∣∣
6 3[Y g]Cα

`
r2+α

+
∣∣∣g (t2 − r2, x2 − r2(v2 +Ru), v2 +Ru

)
− g

(
t2 − r2, x2 − r2v2, v2 +Ru

)∣∣∣
6 3[Y g]Cα

`
r2+α + [g]C2+α

`, x
(r2R)

2+α
3 .

Combining (2.21) and (2.22) yields (2.20).
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We now combine (2.19) and (2.20) and get

r−2−α |g(z0)− g(z1)| 6 3
(

[Y g]Cα
`

+
[
D2
vg
]
Cα
`

)
+
[
D2
vg
]
Cα
`

(
2(R/r)1+α + (R/r)

)
+ 3[Y g]Cα

`
(r/R) + [g]C2+α

`, x
(r/R)1−α.

We now pick R = δ−1r with δ1−α = 1/2 and get (2.18) for some constant only
depending on α. This concludes the proof. �

3. The Schauder estimate

This section is devoted to the proof of the Schauder estimate (Theorem 1.1). The
proof proceeds in mainly two steps: in the first step, the matrix A is constant. The
estimate is first obtained when A is the identity matrix (Theorem 3.5), then for an
arbitrary constant diffusion matrix (Corollary 3.7). Then the estimate is established
for variable coefficient by the procedure of freezing coefficients thanks to interpolation
inequalities.

3.1. A gradient bound for the Kolmogorov equation

We first establish a gradient bound for solutions of (1.1) when A is the identity
matrix and when there is no lower order terms (b = 0, c = 0). The equation is then
reduced to (2.3). Recall that Q1 = (−1, 0]×B1 ×B1 is the cylinder of radius 1.

Proposition 3.1 (Gradient bound). — Given S ∈ W 1,∞(Q1), consider g solution
to (2.3) in Q1, i.e.

(∂t + v · ∇x)g = ∆vg + S.

Then

∀ i = 1, . . . , d, |∂xig(0, 0, 0)|+ |∂vig(0, 0, 0)|
.d ‖g‖L∞(Q1) + ‖S‖L∞(Q1) + ‖∂xiS‖L∞(Q1) + ‖∂viS‖L∞(Q1).

Remark 3.2. — See also [Bau17, GW12] for related gradient estimates.

Proof. — We use Bernstein’s method as Krylov does in [Kry96] in the elliptic-
parabolic case, combined with methods from hypocoercivity theory (see for in-
stance [Vil09]) in order to control the full (x, v)-gradient of the solution: see the
construction of the quadratic form w in ∂xig and ∂vig below.
Denote the Kolmogorov operator LKg := ∂tg + v · ∇xg −∆vg and compute the

following defaults of distributivity of the operator (reminiscent of the so-called Γ-
calculus [BÉ85])
(3.1) LK(g1g2) = g1LKg2 +g2LKg1−2∇vg1 · ∇vg2, LK(g2) = 2gLKg−2 |∇vg|2 .
Consider a cut-off function 0 6 ζ ∈ C∞ such that ζ1/2 ∈ C∞, with support in

(−1, 0]×B1 ×B1 and such that ζ(0, 0, 0) = 1. In order to estimate the gradient of g
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in x and v at the origin, it is enough to find ν0, ν1 > 0 and 0 < a 6 b and 0 < c < ab
such that, for any i ∈ {1, . . . , d},

w = ν0g
2 − ν1t+

[
a2ζ4(∂xig)2 + cζ3(∂xig)(∂vig) + b2ζ2(∂vig)2

]
satisfies

−LKw > 0.
Indeed, the maximum principle for parabolic equations then implies that supQ1 w
= sup∂pQ1 w where ∂pQ1 = {−1}×B1×B1 ∪ [−1, 0]×S1×S1 (parabolic boundary).
Since ζ ≡ 0 in ∂pQ1 and ζ(0, 0, 0) = 1, we get

(3.2) a2
[
(∂xig)2 + (∂vig)2

]
(0, 0, 0)

6
[
a2(∂xig)2 + b2(∂vig)2

]
(0, 0, 0) + 2ν0g

2(0, 0, 0)

6 2
[
a2(∂xig)2 + c(∂xig∂vig) + b2(∂vig)2

]
(0, 0, 0) + 2ν0g

2(0, 0, 0)

6 2
[
a2ζ4(∂xig)2 + cζ3(∂xig)(∂vig) + b2ζ2(∂vig)2

]
(0, 0, 0) + 2ν0g

2(0, 0, 0)

6 2w(0, 0, 0) 6 2
(
ν0 sup

Q1

g2 + ν1

)
.

(i) Observe first that −LK(−ν1t) = ν1.
(ii) Compute second −LK(ν0g

2) using (3.1)
(3.3) − LK(ν0g

2) = 2ν0|∇vg|2 − 2Sν0g.

(iii) Compute third −LK(ζ4(∂xig)2) using that LK(∂xig) = ∂xiS and (3.1)

(3.4)

−LK
(
ζ4(∂xig)2

)
= 2ζ4 |∇v∂xig|

2 − (∂xig)2LK
(
ζ4
)

+ 2∇v(ζ4) · ∇v(∂xig)2 − 2ζ4∂xig∂xiS

> ζ4 |∇v∂xig|
2 + (∂xig)2

[
−LK(ζ4)− 4ζ−4

∣∣∣∇v(ζ4)
∣∣∣2]

− ζ3(∂xig)2 − ζ5(∂xiS)2.

(iv) Compute fourth, for some ε1 > 0, the term −LK(ζ2(∂vig)2) using
LK(∂vig) = ∂viS − ∂xig

and (3.1):

(3.5) − LK
(
ζ2(∂vig)2

)
= 2ζ2 |∇v∂vig|

2 + 2∇v(ζ2) · ∇v(∂vig)2

− (∂vig)2LK(ζ2) + 2ζ2∂vig∂xig − 2ζ2∂vig∂viS

> ζ2 |∇v∂vig|
2 + (∂vig)2

[
−1− ε−1

1 ζ − LK(ζ2)− 2ζ−2 |∇vζ|2
]

− ε1ζ3(∂xig)2 − ζ4(∂viS)2.

(v) Compute fifth, for some ε2 > 0, the term −LK [ζ3(∂xig)(∂vig)], with the
intermediate step
−LK [(∂xig)(∂vig)] = (∂xig)2 + 2∇v∂xig · ∇v∂vig − ∂xig∂viS − ∂vig∂xiS,
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(3.6) − LK
[
ζ3(∂xig) (∂vig)

]
=ζ3

[
(∂xig)2 + 2∇v∂xig · ∇v∂vig

]
− (∂xig) (∂vig)LK(ζ3)

+ 2∇v(ζ3) · ∇v [(∂xig)(∂vig)]− ζ3∂xig∂viS − ζ3∂vig∂xiS

>
1
2ζ

3 (∂xig)2 − ε2ζ4 |∇v∂xig|
2 − ε−1

2 ζ2 |∇v∂vig|
2 − (∂xig)(∂vig)LK(ζ3)

+ 2∇v(ζ3) · ∇v [(∂xig)] (∂vig) + 2∇v(ζ3) · ∇v [(∂vig)] (∂xig)

− 1
2ζ

3 (∂viS)2 − 1
2ζ

3 (∂vig)2 − 1
2ζ

3 (∂xiS)2 .

To clean a little the calculations, observe that
(1) error terms involving S are controlled by choosing ν1 larger enough, i.e. larger

than a multiple of ‖S‖L∞(Q1) + ‖∂xiS‖L∞(Q1) + ‖∂viS‖L∞(Q1),
(2) terms involving |∇vg|2 or ∇vg ·∇xg are controlled by choosing ν0 large enough

thanks to (3.3), with g controlled by its sup norm,
(3) Equation (3.3) is “free” (i.e. not involved in any constant dependency) as well

as equation (3.5) by choosing ε1 small enough so that the term −ε1ζ3(∂xig)3

is compensated by the positive term in (3.6),
(4) Equation (3.4) has an error term of the form −O(1)ζ3(∂xig)2 that is compen-

sated by the positive term in (3.6) again: we use | − LK(ζ4)− 2ζ−4|∇v(ζ4)|2|
. ζ3 (remember that ζ 1

2 ∈ C∞).
(5) In the last equation (3.6) we also split

− (∂xig)(∂vig)LK(ζ3) . 1
8(∂xig)2 +O(1)(∂vig)2,

2∇v(ζ3) · ∇v[(∂xig)](∂vig) . ε3ζ
4|∇v[(∂xig)]|2 + ε−1

3 O(1)(∂vig)2

2∇v(ζ3) · ∇v[(∂vig)](∂xig) . O(1)ζ2|∇v[(∂vig)](∂xig)|2 + 1
4ζ

3(∂xig)2,

where we have used again ζ 1
2 ∈ C∞, in the form |∇ζ| . ζ1/2.

These considerations result in the following calculations:

− LKw > 2ν0 |∇vg|2 + ν1 + a2ζ4 |∇v∂xig|
2 − a2O(1)ζ3 (∂xig)2 − a2O(1)(∂xiS)2

+ b2ζ2 |∇v∂vig|
2 − b2O(1) (∂vig)2 − b2ε1ζ

3 (∂xig)2 − b2O(1) (∂viS)2

+ c

4ζ
3 (∂xig)2 − c (ε2 + ε3) ζ4 |∇v∂xig|

2 − cO(1)ζ2 |∇v∂vig|
2

− cO(1) (∂xi, viS)2 − cO(1) (∂vig)2 .

We finally choose
(1) a = 1,
(2) c large enough so that the first term in the third line controls the fourth term

in the first line,
(3) ε2 and ε3 small enough so that the second term of the third line is controlled

by the second term in the right hand side of the first line,
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(4) b large enough so that the third term in the fourth line is controlled by the
first term in the third line and ab > c so that the quadratic form is strictly
positive,

(5) ε1 small enough so that the third term in the third line is controlled by the
first term in the third line,

(6) finally ν0 and ν1 large enough to control all the v-derivatives of g and all the
derivatives of S. Notice that
ν1 = O(1)

(
‖g‖L∞(Q1) + ‖S‖2

L∞(Q1) + ‖∂xiS‖2
L∞(Q1) + ‖∂viS‖2

L∞(Q1)

)
.

The conditions on the coefficients are:
ε2, ε3 << 1, c >> 1, b2 >> c, ε1 <<

c

b2 , ν0, ν1 >> b2, c

which is compatible with all requirements and has solutions. This proves that
−LKω > 0 and the desired inequality is thus obtained from (3.2) and the choice of
ν1 we made above, which concludes the proof of Proposition 3.1. �
A direct consequence of the gradient estimate from Proposition 3.1 is a bound

of derivatives of arbitrary order in any cylinder of radius r. We recall that Qr

= (−r2, 0]×Br3 ×Br.
Corollary 3.3 (Bounds on arbitrary derivatives around the origin). — Given

k ∈ N and r > 0, there exists a constant C depending on dimension d and k such
that any solution of (2.3) in Qr with zero source term S ≡ 0, i.e. (∂t+v ·∇x)g = ∆vg
in Qr, satisfies for all n ∈ N and α, β ∈ Nd with |β| = k,∣∣∣∂nt Dα

xD
β
v g(0, 0, 0)

∣∣∣ 6 C‖g‖L∞(Qr)

r2n+3|α|+|β| .

Remark 3.4. — Remark that 2n+3|α|+ |β| is the kinetic degree of the polynomial
associated with ∂nt Dα

xD
β
v .

Proof. — We reduce to the case r = 1 by rescaling: the function gr(t, x, v)
= g(r2t, r3x, rv) is a solution of (2.3) in Q1. If the result is true for r = 1, then we get
the desired estimate for arbitrary r’s. We then first treat the case n = 0 and argue by
induction on |β|. Proposition 3.1 yields the result for |β| 6 1 since Dα

xg solves (2.3)
with S ≡ 0 for an arbitrary multi-index α. Assuming the result true for n = 0, any α
and |β| 6 k, remark that Dα

xD
β
v g solves (2.3) with S = ∑

i=1, ..., d |βi>1D
α+δi
x Dβ−δi

v g.
Consider β ∈ Nd with |β| = k+ 1; the previous step yields controls of ∂xjS and ∂vjS
for the source term S in the equation for Dα

xD
β
v g. Proposition 3.1 then gives the

control ∂xi,viDα
xD

β
v g(0, 0, 0) which completes the induction. We finally get the result

for an arbitrary n > 1 by remarking that the equation allows us to control any time
derivatives by space and velocity derivatives. �

3.2. Proof of Schauder estimates

With such bounds on derivatives at hand, we can turn to the proof of the Schauder
estimate for the Kolmogorov equation, that is to say for equation (1.1) with A
replaced with the identity matrix and with no lower order terms (b = 0, c = 0),
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see (2.3). A change of variables will then yield the result for any constant matrix A
satisfying the ellipticity condition (1.2). Finally we shall classically approximate the
coefficients locally by constants to treat the general case.

3.2.1. The core estimate

The proof of the Schauder estimate for the Kolmogorov equation follows the
argument proposed by Safonov [Saf84], as explained in [Kry96].

Theorem 3.5 (The Schauder estimate for the Kolmogorov equation). — Given
α ∈ (0, 1) and S ∈ Cα` , let g ∈ C2+α

` be a solution to (2.3), i.e. (∂t+v ·∇x)g = ∆vg+S
in R× Rd × Rd. Then

[g]C2+α
`
.d, α [S]Cα

`
.

Remark 3.6. — This theorem is the hypoelliptic counterpart of [Kry96, Theo-
rem 8.6.1 & Lemma 8.7.1].

Proof. — We first reduce to the case where g ∈ C∞c (R×Rd×Rd) by mollification
and truncation (as for instance in the proof of [Kry96, Lemma 8.7.1, p. 122]). We then
reduce to the base point z0 = 0 by considering the change of unknown g](z) := g(z0◦z)
(we however keep on calling the unknown g). Given r > 0 and K > 1 to be
chosen later, consider Q(K+1)r and a cut-off function ζ ∈ C∞c such that ζ ≡ 1 in
Q(K+1)r. Recall again the Kolmogorov operator LK := ∂t + v · ∇x −∆v, and define
S̄ := LK(ζT0[g]) with the Taylor polynomial Tz0 [g] of g at (0, 0, 0), defined in (2.6).
Decompose in Q(K+1)r (where ζ = 1):

g − T0[g] = g − ζT0[g] = G ? kin(S − S̄) = h1 + h2

with


h1 := G ? kin

[
(S − S̄)1Q(K+1)r

]
h2 := G ? kin

[
(S − S̄)1Qc(K+1)r

] ,

where Qc
(K+1)r = R × Rd × Rd \ Q(K+1)r and G is the Green function studied in

Proposition 2.1.
Observe that h1 is the solution to ∂th1 + v · ∇xh1 −∆vh1 = S − S(0, 0, 0) since

S̄(z) = LK(ζT0[g])(z) = LK(T0[g])(z)
= (∂t + v · ∇xg) (0, 0, 0)−∆vg(0, 0, 0) = cst = S(0, 0, 0)

for z ∈ Q(K+1)r, and h2 is the solution to ∂th2 + v · ∇xh2 −∆vh2 = 0 in Q(K+1)r.
We next estimate

(3.7) ‖g − T0[g]− T0[h2]‖L∞(Qr) 6 ‖h2 − T0[h2]‖L∞(Qr) + ‖h1‖L∞(Qr).

Using Proposition 2.1 and S ∈ Cα` , we get

(3.8) ‖h1‖L∞(Qr) . (K + 1)2+αr2+α[S]Cα
` (Q(K+1)r).
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Now for z = (r2t, r3x, rv) ∈ Qr with (t, x, v) ∈ Q1. There exists θ1, θ2, θ3 ∈ (0, 1)
such that

h2(z) =h2
(
r2t, r3x, rv

)
=h2

(
r2t, 0, rv

)
+
(
r3x

)
· ∇xh2

(
r2t, r3θ1x, rv

)
=h2(0, 0, rv) +

(
r3x

)
· ∇xh2

(
r2t, r3θ1x, rv

)
+ r2t∂th2

(
θ2r

2t, 0, rv
)

=h2(0, 0, 0) +
(
r3x

)
· ∇xh2

(
r2t, r3θ1x, rv

)
+ r2t∂th2

(
θ2r

2t, 0, rv
)

+∇vh2(0, 0, 0) · (rv) + 1
2(rv)T ·D2

vh2(0, 0, rθ3v) · (rv).

As a consequence

‖h2 − T0[h2]‖L∞(Qr) 6 r2
[
r ‖∇xh2‖L∞(Q(K+1)r) + r2

∥∥∥∂2
t h2

∥∥∥
L∞(Q(K+1)r)

+ r ‖∂t∇vh2‖L∞(Q(K+1)r) + r
∥∥∥D3

vh2

∥∥∥
L∞(Q(K+1)r)

]
.

We remark that h2 satisfies (2.3) with S ≡ 0 in Q(K+1)r. We thus can apply
Corollary 3.3 and get

‖h2 − T0[h2]‖L∞(Qr) . r2‖h2‖L∞(Q(K+1)r)

×
[

r

((K + 1)r)3 + r2

((K + 1)r)4 + r

((K + 1)r)3 + r

((K + 1)r)3

]
. (K + 1)−3‖h2‖L∞(Q(K+1)r).

Since g − T0g = h1 + h2, we can estimate ‖h2‖L∞(Q(K+1)r) as follows

‖h2‖L∞(Q(K+1)r) 6 ‖h1‖L∞(Q(K+1)r) + ‖g − T0[g]‖L∞(Q(K+1)r)

. (K + 1)2+αr2+α
(

[S]Cα
` (Q(K+1)r) + [g]C2+α

` (Q(K+1)r)
)

(we used (3.8)) and get

(3.9) ‖h2 − T0[h2]‖L∞(Qr) 6 C
r2+α

(K + 1)1−α

(
[S]Cα

` (Q(K+1)r) + [g]C2+α
` (Q(K+1)r)

)
.

Combining (3.7), (3.8) and (3.9), we get

‖g − T0[g]− T0[h]2‖L∞(Qr)

6 ‖h2 − T0h2‖L∞(Qr) + ‖h1‖L∞(Qr)

6 C(K + 1)2+αr2+α[S]Cα
` (Q(K+1)r)

+ C
r2+α

(K + 1)1−α [S]Cα
` (Q(K+1)r) + C

r2+α

(K + 1)1−α [g]C2+α
` (Q(K+1)r)
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and by setting K large enough so that C(K + 1)−(1−α) 6 1
2 , it results into

[g]C2+α
`
6 sup

z0, r > 0

‖g − Tz0 [g]− Tz0 [h2]‖L∞(Qr)

r2+α 6 CK [S]Cα
`

where we have used that Tz0 [g] +Tz0 [h2] is a polynomial of kinetic order less or equal
to 2, which concludes the proof. Note the corrector Tz0 [h2] to the Taylor polynomial
Tz0 [g] used in this argument. �

The general constant coefficients case is reached through a change of variables.

Corollary 3.7 (Schauder estimates for constant diffusion coefficients). — Let
α ∈ (0, 1) and S ∈ Cα` and let A := (ai, j) be a constant real d × d matrix that
satisfies (1.2). Then for all solution g ∈ C2+α

` to

(∂t + v · ∇x)g =
∑

16 i, j 6 d
ai, j∂2

vivj
g in R× Rd × Rd

we have,
[g]C2+α

`
6 C[S]Cα

`

where the constant C depends on d, α, the norm of the (constant) matrix A and λ
in (1.2).

Remark 3.8. — This is the counterpart to [Kry96, Theorem 8.9.1, p. 127].

Proof. — Consider the change of variables

ḡ(t, x, v) := g(t, Bx,Bv)

with B2 = A−1. Then we have for (t, x, v) ∈ R× Rd × Rd,

(∂t + v · ∇x)ḡ(t, x, v)−∆vḡ(t, x, v)
= (∂t + v · ∇x)g(t, Bx,Bv)−

∑
16 i, j 6 d

ai, j∂2
vivj

g(t, Bx,Bv)

= S(t, Bx,Bv) =: S̄(t, x, v)

and the result follows from Theorem 3.5. �

3.2.2. Proof of Theorem 1.1

Proof of Theorem 1.1. — It is enough to treat the case where b ≡ 0 and c ≡ 0,
the general case is then treated by interpolation (using Lemma 2.5). We consider a
constant γ > 0 which will be fixed later, and pick z0, z1 ∈ R × Rd × Rd and r > 0
such that z1 ∈ Qr(z2) and

[g]C2+α
`
6 2 |g(z1)− Tz0 [g](z1)|

r2+α .
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Case 1. — r > γ We compute then

[g]C2+α
`

6 2
(

2γ−2−α‖g‖L∞ + ‖(∂t + v · ∇x) g‖L∞ γ−α+ ‖∇vg‖L∞γ−1−α+ 1
2
∥∥∥D2

vg
∥∥∥
L∞

γ−α
)

6
1
4[g]C2+α

`
+ C1(γ)‖g‖L∞

(using again Lemma 2.5) with C1(γ) > 0 depending on γ and d.
Case 2. — r 6 γ
Then z1 ∈ Qγ(z0) and we consider a C∞ cut-off function 0 6 ξ 6 1 that

is equal to 1 on Qγ(z0) and equal to zero outside Q2γ(z0). In particular, ξ(z1)
= ξ(z0) = 1. We now use Corollary 3.7 to get

[g]C2+α
`
6 2[gξ]C2+α

`
6 C

(∂t + v · ∇x)(gξ)−
∑
i, j

ai, j(z1)∂2
vivj

(gξ)

Cα
`

6 C

(∂t + v · ∇x)(gξ)−
∑
i, j

ai, j(·)∂2
vivj

(gξ)

Cα
`

+ C

∑
i, j

(
ai, j(·)− ai, j(z1)

)
∂2
vivj

(gξ)

Cα
`

(Q2γ(z2))

where we have added the restriction to the support of ξ in the last term. We estimate
successively the two terms of the right hand side. On the one hand, recalling that
(∂t + v · ∇x)g = ∑

i,j a
i, j∂2

vivj
g + S,(∂t + v · ∇x)(gξ)−

∑
i, j

ai, j∂2
vivj

(gξ)

Cα
`

6

(∂t + v · ∇x)g −
∑
i, j

ai, j∂2
vivj

g


Cα
`

+
g
(∂t + v · ∇x)(ξ)−

∑
i, j

ai, j∂2
vivj

ξ



Cα
`

+ [∇vg · ∇vξ]Cα
`

.γ [S]Cα
`

+ ‖g‖Cα
`

+ ‖∇vg‖Cα
`

6
1
4[g]C2+α

`
+ C2(γ)

(
[S]Cα

`
+ ‖g‖L∞

)
(using again Lemma 2.5) for a constant C2(γ) > 0 depending on d, ‖A‖Cα

`
, α. On

the other hand,∑
i, j

(
ai, j(·)− ai, j(z1)

)
∂2
vivj

(gξ)

Cα
`

(Q2γ(z2))

. γα
[
D2
vg
]
Cα
`

+
∥∥∥D2

vg
∥∥∥
L∞

6 C3γ
α[g]C2+α

`
+ C4(γ)‖g‖L∞
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using again Lemma 2.5, for some constants C3 > 0 and C4(γ) depending γ. Combin-
ing the last three estimates yields finally in the case r 6 γ:

[g]C2+α
`
6
(
C3γ

α + 1
4

)
[g]C2+α

`
+ (C2(γ) + C4(γ))

(
[S]Cα

`
+ ‖g‖L∞

)
.

We now pick γ such that Cγα + 1
4 6

1
2 and we thus get in both cases (r > γ and

r 6 γ) that

[g]C2+α
`
6

1
2[g]C2+α

`
+ C5(γ)

(
[S]Cα

`
+ ‖g‖L∞

)
for some constant C5(γ) > 0, which concludes the proof of (1.3) thanks to (2.9)
and (2.10). �

3.3. Localization of the Schauder estimate

Theorem 3.9 (Local Schauder estimate). — Given α ∈ (0, 1) and ai,j, bi, c, S ∈
Cα` satisfying (1.2) for some constant λ > 0, any solution g ∈ C2+α

` to (1.1) satisfies
for all z0 ∈ R× Rd × Rd

‖g‖C2+α
`

(Q1(z0)) 6 C
(
[S]Cα

`
(Q2(z0)) + ‖g‖L∞(Q2(z0))

)
where the constant C depends on d, λ and α and ‖ai,j‖Cα

`
, ‖bi‖Cα

`
, ‖c‖Cα

`
for i, j

= 1, . . . , d.

Proof. — We use the strategy of [Kry96, Theorem 8.11.1]. Consider z0 = 0 without
loss of generality and define Rn := ∑n

j=0 2−j for n > 0. Define a cutoff function ζn
that is smooth, one on QRn and zero outside QRn+1 . It satisfies the controls

‖ζn‖Cα
`
, ‖v · ∇xζn‖Cα

`
, ‖∇vζn‖Cα

`
,
∥∥∥∇2

vζn
∥∥∥
Cα
`

. ρ−n with ρ := 22+α.

Then apply the non-localized estimate of Theorem 1.1 to ζng. In order to do so,
it is convenient to consider the differential operator L = (∂t + v · ∇x)−

∑
i,j a

i,j∂2
vivj

−∑i b
i∂vi , recall Lg = S and write

An := [g]C2+α
`

(QRn ) 6 [ζng]C2+α
`
. [L(ζng)]Cα

`
+ ‖ζng‖L∞

. [ζnLg + gLζn + (A∇vg) · ∇vζn]Cα
`

+ ‖ζng‖L∞

.[S]Cα
`

(Q2) + ρ−n
(
‖g‖Cα

` (QRn+1) + ‖∇vg‖Cα
` (QRn+1)

)
+ ‖g‖L∞(QRn+1)

and use the interpolation inequalities from Lemma 2.5 to get for all εn > 0,

. [S]Cα
`

(Q2) + ρ−n
(
εnAn+1 + ε−βn ρ−n‖g‖L∞(Q2)

)
+ ‖g‖L∞(QRn+1)

for some β > 0 (note the additional factor ρ−n due to the dependency of the constant
C̃ in the difference of radii in Lemma 2.5). Choosing next εn := ε0ρ

n for ε0 ∈ (0, 1)
small enough yields

An . [S]Cα
`

(Q2) + ε0An+1 + ε−β0 ρ−(β+2)n‖g‖L∞(Q2)
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Consider then the geometric sum ∑
n> 0 ε

n
0An, and calculate

∑
n> 0

εn0An .

∑
n> 0

εn0

 [S]Cα
`

(Q2) +
∑
n> 0

εn+1
0 An+1 + ε−β0

∑
n> 0

(
ε0

ρβ+2

)n
‖g‖L∞(Q2).

Assuming ε0 < ρβ+2 < 1 and cancelling terms gives finally:
A0 . [S]Cα

`
(Q2) + ‖g‖L∞(Q2)

which concludes the proof. �

4. Global existence for the toy model

This section is devoted to the proof of Theorem 1.3. Equation (1.4) is rewritten
with the unknown function g := fµ−

1
2 , where µ denotes the Gaussian (2π)−d/2e−|v|2/2.

This new function satisfies
(4.1) ∂tg + v · ∇xg = R[g]U [g]

with R[g] :=
∫
v
g
√
µ dv

and U [g] := ∆vg +
(
d

2 −
|v|2

4

)
g = 1
√
µ
∇v

(
µ∇v

(
1
√
µ
g

))
.

After this rescaling the operator U is symmetric in L2( dx dv), without weight. In
contrast with (1.4), this operator has no first order term in the velocity variable. But
a (simpler) difficulty is created with the appearance of the unbounded zero order
term (d2 −

|v|2
4 )g. We overcome it using that g stays in between two Maxwellians

(see Lemma 4.1 below) and that, after rescaling, the Hölder estimate from [GIMV19,
WZ09] in Theorem 4.3 encodes decay in the v variable (Proposition 4.4).

4.1. Gaussian bounds

We first explain how to propagate in time the Gaussian bounds satisfied by the
initial data gin(x, v) = g(0, x, v).

Lemma 4.1 (Gaussian bounds). — Consider a strong solution g to (4.1) in
L∞t ([0, T ], H2(Td × Rd)) such that C1

√
µ 6 g(0, x, v) 6 C2

√
µ in Td × Rd, then

for almost all t ∈ [0, T ], we have

∀ (x, v) ∈ Td × Rd, C1

√
µ(v) 6 g(t, x, v) 6 C2

√
µ(v).

Remark 4.2. — The notion of strong solutions used in the latter lemma and the
rest of this section is standard: all the terms in the equation are defined almost
everywhere and the equation is satisfied almost everywhere and the solution is
continuous in time with value in L2. We could have considered weaker notions of
solutions but it was unnecessary since we are interested in constructing global strong
solutions.
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Proof. — For a ∈ R, we write a+ = max(0, a) and a− = max(0,−a). It is enough
to prove that, for any C > 0,∫

Td×Rd
(g(t, x, v)− C√µ(v))2

± dx dv

decreases along time. It follows from the fact that g̃ = g − C√µ satisfies
∂tg̃ + v · ∇xg̃ = R[g]U [g̃]

and, multiplying the previous equation by (g̃)+ = max(0, g̃) or (g̃)− = max(0,−g̃),
and integrating with respect to x and v yields for almost all t ∈ [0, T ],∫

Td×Rd
(g(t, x, v)− C√µ(v))2

± dx dv 6
∫
Td×Rd

(gin(x, v)− C√µ(v))2
± dx dv.

In particular, for almost all t ∈ [0, T ],∫
Td×Rd

(g(t, x, v)− C2
√
µ(v))2

+ dx dv 6
∫
Td×Rd

(gin(x, v)− C2
√
µ(v))2

+ dx dv = 0∫
Td×Rd

(g(t, x, v)− C1
√
µ(v))2

− dx dv 6
∫
Td×Rd

(gin(x, v)− C1
√
µ(v))2

− dx dv = 0.

We conclude that for almost all t ∈ [0, T ], C1
√
µ(v) 6 g(t, x, v) 6 C2

√
µ(v) in

Td × Rd. �

4.2. The local Hölder estimate for kinetic Fokker–Planck equations

We recall in this subsection the main result from [GIMV19, WZ09] as stated
in [GIMV19] and used in the proof of Theorem 1.3. Consider the equation
(4.2) ∂tg + v · ∇xg = ∇v(A∇vg) + S0 in Q2r(z0)
with A = A(t, x, v) real symmetric matrix whose eigenvalues lie in [λ,Λ] for 0 < λ
6 Λ.

Theorem 4.3 (Local Hölder estimate). — Given a cylinder Q2r(z0) ⊂ R×Rd×Rd

and a function S0 essentially bounded in Q2r(z0), any weak solution g of (4.2) in
Q2r(z0) such that g ∈ L∞t ([0, T ], L2

x, v(Rd × Rd)) ∩ L2
t, x([0, T ]× Rd, H1

v (Rd)) satisfies

‖g‖
Cα0
`

(
Q 3r

2
(z0)
) 6 Cr−α0‖g‖L2(Q2r(z0)) + Cr−2−α0‖S0‖L∞(Q2r(z0))

for some constants α0 ∈ (0, 1) and C > 0 only depending on d and λ,Λ.

4.3. The Schauder estimate for the toy model

The Schauder estimate follows from (1) the Hölder regularity established in
[GIMV19, WZ09], (2) the Schauder estimate from Section 3 and (3) the Gauss-
ian bounds from the previous subsection. Since the Hölder regularity only holds for
positive times, we consider some time interval [τ, T ] for some arbitrary but fixed
τ > 0.
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Proposition 4.4 (Higher order Hölder Estimates). — There exists α0 ∈ (0, 1),
only depending on the dimension d and C1, C2, and C > 0 only depending on
C1, C2, d, τ, δ such that for all solution g ∈ C2+α0

` to (4.1) that satisfies C1
√
µ 6 g 6

C2
√
µ, for all τ ∈ (0, T ) and δ ∈ (0, 1), we have

(4.3) ‖g‖C2+α0
`

(Qr(z0)) 6 Cµδ(v0).

for any Q2r(z0) ⊂ [τ, T ]× Td × Rd. In particular,

(4.4) ‖µ−δ∇vg‖L∞([τ, T ]×Rd×Rd) 6 C.

Proof. — We apply Theorem 4.3 with λ = C1, Λ = C2, A = R[g] Id and S0 =
R[g](d2 −

|v|2
4 )g and get

‖g‖
Cα0
`

(
Q 3r

2
(z0)
) 6 Cr−α0‖g‖L2(Q2r(z0)) + Cr−2−α0

∥∥∥∥∥
(
d

2 −
|v|2

4

)
g

∥∥∥∥∥
L∞(Q2r(z0))

for some α0 ∈ (0, 1). Apply now Lemma 4.1 to get for an arbitrary δ ∈ (0, 1)

‖g‖
Cα0
`

(
Q 3r

2
(z0)
) 6 Cδµ

δ(v0)

for some constant Cδ depending only on C1, C2, d, τ, δ. Note that the role of the time
τ > 0 is to ensure that the constant Cδ only depends on τ and not on r: it gives
some “room” around a point z0 ∈ [τ, T ]× Td × Rd.
This implies in turn that for all (t, x) ∈ [τ, T ]× Td,

|R[g](t, x)−R[g](s, y)| 6
∫
Rd
|g(t, x, v)− g(s, y, v)|µ 1

2 (v) dv

6 Cδ

∫
Rd

(
|t− s|

α0
2 + |x− y − (t− s)v|

α0
3
)
µ

1
2 +δ(v) dv

. Cδ
(
|t− s|

α0
2 + |x− y|

α0
3 + |t− s|

α0
3
)
.

This also implies for any δ′ ∈ (0, δ)∥∥∥∥∥
(
d

2 −
|v|2

4

)
g

∥∥∥∥∥
Cα0
`

(
Q 3r

2
(z0)
) 6 Cδµ

δ′(v0).

This ensures the Hölder regularity of the coefficients and source term, and we are
thus in a position to apply Theorem 3.9 in the cylinders Qr(z0) and deduce (4.3). To
get (4.4) from (4.3) and the decay of Lemma 4.1, apply Lemma 2.5 on a cylinder Q
to obtain ‖∇vg‖L∞(Q) 6 C‖g‖L∞(Q) +C[g]C2+α0

`
(Q) and argue as before. This achieves

the proof of the Lemma 4.1. �

4.4. Standard interpolation product inequality

We recall and prove an interpolation inequality tailored to our needs; it is folklore
knowledge.
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Lemma 4.5. — Consider k > d/2, two functions g1, g2 ∈ Hk(Td) and m̄,m ∈ Nd

such that |m̄|+ |m| = k then∥∥∥∂m̄x g1∂
m
x g2

∥∥∥
L2(Td)

.k ‖g1‖L∞(Td)‖g2‖Hk(Td) + ‖g1‖Hk(Td)‖g2‖L∞(Td).

Moreover whenever m̄ 6= 0, for any ε > 0 there is Cε > 0 s.t.
(4.5)

∥∥∥∂m̄x g1∂
m
x g2

∥∥∥
L2(Td)

6 ε‖g1‖L∞(Td)‖g2‖Hk(Td) + Cε‖g1‖Hk(Td)‖g2‖L∞(Td).

Proof. — The first inequality is clear when m̄ = 0. Use otherwise the Nash in-
equality: given h ∈ Hk(Td) with k > d/2 and any m̄ ∈ Nd, with 0 < |m̄| 6 k then
for p := 2k

|m̄| ∈ [1,+∞] one has∥∥∥∂m̄x h∥∥∥Lp(Td)
. ‖h‖1− |m̄|

k

L∞(Td)‖h‖
|m̄|
k

Hk(Td).

Apply successively the Hölder inequality with p := 2k
|m̄| and q := 2k

|m| , and Nash
inequality above:∥∥∥∂m̄x g1∂

m
x g2

∥∥∥
L2(Td)

6
∥∥∥∂m̄x g1

∥∥∥
Lp(Td)

∥∥∥∂m̄x g2

∥∥∥
Lq(Td)

. ‖g1‖
1− |m̄|

k

L∞(Td)‖g1‖
|m̄|
k

Hk(Td)‖g2‖
1− |m|

k

L∞(Td)‖g2‖
|m|
k

Hk(Td)

.
(
‖g1‖L∞(Td)‖g2‖Hk(Td)

)1− |m̄|
k
(
‖g1‖Hk(Td)‖g2‖L∞(Td)

) |m̄|
k .

Use finally a1−λbλ 6 (1− λ)a+ λb to deduce the two claimed inequalities. �

4.5. Local well-posedness in Sobolev spaces

We prove that equation (1.4) is locally well-posed in Hk(Td×Rd). It is convenient
to work with the following norm,

‖g‖2
Hk, k̄
x, v(Td×Rd) := ‖g‖2

L2(Td×Rd) +
∑

i=1, ..., d

∥∥∥∂kxih∥∥∥2

L2(Td×Rd) +
∑

i=1, ..., d

∥∥∥∂k̄vih∥∥∥2

L2(Td×Rd) .

Note that this norm agrees with the usual Hk norm in x and v when k = k̄: this is
clear from the Fourier-transformed definition of these norms. However for k 6= k̄ the
space Hk, k̄

x, v includes but differs from Hmin(k, k̄)
x, v . We use this intermediate definition

of norm solely to shorten some calculations.

Theorem 4.6 (Local well-posedness in Hk). — Consider gin ∈ Hk, k̄
x, v (Td × Rd)

with k, k̄ non-negative integers s.t. 2 6 k̄ 6 k and k > d/2, and C1
√
µ 6 gin 6 C2

√
µ

for 0 < C1 < C2. Then there is T > 0 depending only on C1, C2 and
‖gin‖Hk, k̄

x, v(Td×Rd)
such that there exists a unique strong solution

g ∈ C1
(
[0, T ], Hk, k̄

x, v

(
Td × Rd

))
to (4.1) with initial data gin, which furthermore satisfies C1

√
µ 6 g(t, ·, ·) 6 C2

√
µ

for almost all t ∈ [0, T ].
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Proof. — It is standard calculations that the two a priori estimates (4.11) and (4.12)
below imply the existence of solutions constructed through the iterative scheme

(4.6)


(∂t + v · ∇x)gn+1 = R[gn]U [gn+1],
gn+1(t = 0, ·, ·) = gin
Initialization: g0(t, x, v) := gin(x, v) ∀ t > 0.

We now focus on establishing the key a priori estimate. Consider a solution gn+1 ∈
C1([0, T ], Hk, k̄

x, v (Td × Rd)) to (4.6) and compute successively:

(4.7) L2 estimate: d
dt

1
2

∫
Td×Rd

|gn+1|2 dx dv 6 −C1

∫
Td×Rd

|hn+1|2 dx dv

where we denote hn+1 := µ1/2∇v(µ−1/2gn+1). Regarding the v-derivatives, for any
integer k̄ > 1,

d
dt

1
2

∫
Td×Rd

∣∣∣∂k̄vign+1

∣∣∣2 dx dv =− k̄
∫
Td×Rd

(
∂k̄−1
vi

∂xign+1
)
∂k̄vign+1 dx dv

−
∫
Td×Rd

R[gn]

∣∣∣∣∣∣∇v

∂k̄vign+1√
µ

∣∣∣∣∣∣
2

µ dx dv

+ 1
4

(
k̄

1

)∫
Td×Rd

R[gn]
∣∣∣∂k̄−1
vi

gn+1

∣∣∣2 dx dv

+ 1
2

(
k̄

2

)∫
Td×Rd

R[gn]
∣∣∣∂k̄−1
vi

gn+1

∣∣∣2 dx dv.

In the right hand side, the first term corresponds to the transport v · ∇x, the second
one to the operator U since R[gn] does not depend on v, the third term appears
when one v-derivative applies to |v|2 and the others apply to gn+1 in the product
|v|2gn+1 appearing in U [gn+1], the fourth term appears after deriving |v|2 twice.
Notice that integrations by parts are used either to further differentiate |v|2 or
to make appear |∂k̄−1

vi
gn+1|2. Discarding the negative term and using the fact that

R[gn] 6 C2 thanks to Lemma 4.1, we get after summing over i = 1, . . . , d and
combining with equation (4.7)

(4.8) Estimate of v-derivatives :
d
dt

1
2 ‖gn+1(t)‖2

H0, k̄
x,v (Td×Rd) .k̄, C2 ‖gn+1‖2

H k̄, k̄
x,v (Td×Rd) .

Regarding the x-derivatives, we write the equation on gn+1 as

(∂t + v · ∇x)gn+1 = R[gn]µ− 1
2∇v ·

(
µ

1
2∇vhn+1

)
with hn+1 := µ

1
2 ∇v

(
µ−

1
2 gn+1

)
.
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Since x-derivatives commute with the operators v · ∇x and U , we have for all
i = 1, . . . , d,

d
dt

1
2

∫
Td×Rd

∣∣∣∂kxign+1

∣∣∣2 dx dv = −
∫
Td×Rd

R[gn]
∣∣∣∂kxihn+1

∣∣∣2 dx dv

−
∑

06 q <k

(
k

q

)∫
Td×Rd

(
∂k−qxi
R[gn]

)
∂qxihn+1 · ∂kxihn+1 dx dv.

Use now R[gn] > C1 from Lemma 4.1:

d
dt

1
2

∫
Td×Rd

∣∣∣∂kxign+1

∣∣∣2 dx dv .k −C1

∫
Td×Rd

∣∣∣∂kxihn+1

∣∣∣2 dx dv

+
∑

06 q <k

∫
Td×Rd

∣∣∣∂k−qxi
R[gn]

∣∣∣·∣∣∣∂qxihn+1

∣∣∣·∣∣∣∂kxihn+1

∣∣∣ dx dv.

Observe that, given 0 6 q < k, the index p := k − q 6= 0 and the inequality (4.5) in
Lemma 4.5 can be applied (we use again below the upper bound R[gn] 6 C2):

∫
Td×Rd

∣∣∣∂k−qxi
R[gn]

∣∣∣ · ∣∣∣∂qxihn+1

∣∣∣ · ∣∣∣∂kxihn+1

∣∣∣ dx dv

=
∫
Rd

(∫
Td

∣∣∣∂pxiR[gn]
∣∣∣ · ∣∣∣∂qxihn+1

∣∣∣ · ∣∣∣∂kxihn+1

∣∣∣ dx
)

dv

6
∫
Rd

(∥∥∥∂pxiR[gn](t, ·)∂qxihn+1(t, ·, v)
∥∥∥
L2
x(Td)

∥∥∥∂kxihn+1(t, ·, v)
∥∥∥
L2
x(Td)

)
dv

6 ε
∫
Rd

(
‖R[gn](t, ·)‖L∞

x (Td) ‖hn+1(t, ·, v)‖2
Hk
x (Td)

)
dv

+ Cε

∫
Rd

(
‖R[gn](t, ·)‖Hk

x (Td) ‖hn+1(t, ·, v)‖L∞
x (Td) ‖hn+1(t, ·, v)‖Hk

x (Td)

)
dv

6 ε (C2 + 1) ‖hn+1(t, ·, ·)‖2
Hk,0
x,v(Td×Rd)

+ C ′ε ‖R[gn](t, ·)‖2
Hk
x (Td)

∫
Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv

for any ε > 0 and some corresponding constant Cε, C ′ε > 0. Use then

‖R[gn](t, ·)‖Hk
x (Td) 6 ‖gn(t, ·, ·)‖Hk, 0

x, v(Td×Rd)

and equation (4.7) to get

d
dt

1
2‖gn+1‖2

Hk, 0
x, v(Td×Rd)
.k,C2 −C1 ‖hn+1(t, ·, ·)‖2

Hk, 0
x, v(Td×Rd) + ε ‖hn+1(t, ·, ·)‖2

Hk, 0
x, v(Td×Rd)

+ C ′ε

(∫
Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv

)
‖gn(t, ·, ·)‖2

Hk, 0
x, v(Td×Rd) .
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Finally choose ε small enough (in terms of absolute constants, independently of the
solution) to get

(4.9) d
dt

1
2‖gn+1‖2

Hk, 0
x,v (Td×Rd)

.k,C1, C2

(∫
Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv

)
‖gn(t, ·, ·)‖2

Hk, 0
x, v(Td×Rd) .

The combination of equations (4.8) and (4.9) yields

(4.10) d
dt

1
2 ‖gn+1(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd) .k,C1, C2 ‖gn+1(t, ·, ·)‖2

H k̄, k̄
x,v (Td×Rd)

+
(∫

Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv

)
‖gn(t, ·, ·)‖2

Hk, 0
x, v(Td×Rd) .

Now observe that hn+1 = ∇vgn+1 + v
2gn+1 and use gn+1 6 C2

√
µ and k > d/2 and

k̄ > 1 and Sobolev embedding in Td to get∫
Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv . C2

2 +
∫
Rd
‖∇vgn+1‖2

L∞
x (Td) dv

. C2
2 + ‖gn+1‖2

Hk, k̄
x, v(Td×Rd)

and conclude finally that

(4.11) d
dt

1
2 ‖gn+1(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd)

.k,C1, C2

(
‖gn(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd) + 1

)
‖gn+1(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd)

which is the first main a priori estimate, that shows that the Hk, k̄
x, v (Td × Rd) norm

remains finite on a short time interval (whose length depends on the size of the
initial data) thanks to Gronwall’s lemma.
Regarding uniqueness, consider the difference of two solutions g, ḡ ∈ Hk, k̄

x, v (Td×Rd)
that satisfies

∂t(g − ḡ) + v · ∇x(g − ḡ) = R[g − ḡ]U [g] +R[ḡ]U [g − ḡ],
and perform similar energy estimates to get

(4.12) d
dt

1
2 ‖(g − ḡ)(t, ·, ·)‖2

Hk
xH

k̄
v (Td×Rd) .k,C1, C2 ‖(g − ḡ)(t, ·, ·)‖2

Hk, k̄
x,v (Td×Rd)

+
(
‖g(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd) + ‖ḡ(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd)

)
‖(g − ḡ)(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd)

which implies uniqueness in the space Hk, k̄
x, v (Td × Rd) and concludes the proof of

Theorem 4.6. �

4.6. From local-in-time to global-in-time

To continue the solutions for all times it is enough to prove that the Hk, k̄
x, v (Td×Rd)

norm remains finite over arbitrarily long times. Thanks to the local-in-time existence
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result in Theorem 4.6, we know that solutions exist at least on a time interval [0, 2τ ]
for some τ > 0. We now show that the Sobolev norm cannot explode after time τ
by using Proposition 4.4.
Consider again the a priori estimate (4.10),

d
dt

1
2 ‖gn+1(t, ·, ·)‖2

Hk, k̄
x,v (Td×Rd) .k,C1, C2 ‖gn+1(t, ·, ·)‖2

H k̄, k̄
x, v(Td×Rd)

+
(∫

Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv

)
‖gn(t, ·, ·)‖2

Hk, 0
x, v(Td×Rd) .

Recall that hn+1 = ∇vgn+1 + v
2gn+1 and use Lemma 4.1:(∫

Rd
‖hn+1(t, ·, v)‖2

L∞
x (Td) dv

)
.
(∫

Rd
‖∇vgn+1(t, ·, v)‖2

L∞
x (Td) dv

)
+ C2.

Apply finally Proposition 4.4:(∫
Rd
‖∇vgn+1(t, ·, v)‖2

L∞
x (Td) dv

)
.
∥∥∥µ−δ∇vgn+1

∥∥∥2

L∞([τ, T ]×Td×Rd) . 1.

It shows for t > τ , i.e. after some arbitrarily small time τ > 0:

d
dt

1
2 ‖gn+1(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd)
.k,C1, C2, τ ‖gn+1(t, ·, ·)‖2

Hk, k̄
x,v (Td×Rd) + ‖gn(t, ·, ·)‖2

Hk, k̄
x, v(Td×Rd) .

This proves that the norm remains finite by the Gronwall lemma and concludes the
proof.
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