

ANNALES HENRI LEBESGUE

MATEUSZ KWAŚNICKI

RANDOM WALKS ARE
 DETERMINED BY THEIR TRACE ON THE POSITIVE HALF-LINE les marches aléatoires sont déterminées par leur trace sur la demi-droite positive

Abstract

We prove that the law of a random walk X_{n} is determined by the onedimensional distributions of $\max \left(X_{n}, 0\right)$ for $n=1,2, \ldots$, as conjectured recently by Loïc Chaumont and Ron Doney. Equivalently, the law of X_{n} is determined by its upward spacetime Wiener-Hopf factor. Our methods are complex-analytic.

Résumé. - Nous démontrons que la loi d'une marche aléatoire X_{n} est déterminée par les distributions de $\max \left(X_{n}, 0\right)$ pour $n=1,2, \ldots$, comme l'avaient conjecturé récemment Loïc Chaumont et Ron Doney. De manière équivalente, la loi de X_{n} est déterminée par son facteur de Wiener-Hopf espace-temps ascendant. Nos méthodes relèvent de l'analyse complexe.

1. Introduction and main result

In this note we give an affirmative answer to a question posed by Loïc Chaumont and Ron Doney in [CD20], inspired by Vincent Vigon's conjecture in [Vig01]. The

[^0]main result was previously stated without proof in a more general form in [OU90], and an erroneous proof was given in [Ula92].
A random walk X_{n} is said to be non-degenerate if $\mathbb{P}\left(X_{n}>0\right) \neq 0$. Similarly, a finite signed Borel measure μ on \mathbb{R} is said to be non-degenerate if the restriction of μ to $(0, \infty)$ is a non-zero measure.

Theorem 1.1. - If X_{n} and Y_{n} are non-degenerate random walks such that $\max \left(X_{n}, 0\right)$ and $\max \left(Y_{n}, 0\right)$ are equal in distribution for all $n=1,2, \ldots$, then X_{n} and Y_{n} are equal in distribution for $n=1,2, \ldots$
More generally, if μ and ν are non-degenerate finite signed Borel measures and their n-fold convolutions $\mu^{* n}$ and $\nu^{* n}$ agree on $(0, \infty)$ for $n=1,2, \ldots$, then $\mu=\nu$.
Following [CD20], we remark that various reformulations of the above result are possible. A non-degenerate random walk X_{n} is determined by any of the following objects:

- The law of the ascending ladder process $\left(T_{k}, S_{k}\right)$; here $S_{k}=X_{T_{k}}$ is the $k^{\text {th }}$ running maximum of the random walk.
- The upward space-time Wiener-Hopf factor $\Phi_{+}(q, \xi)$, that is, the characteristic function of $\left(T_{1}, S_{1}\right)$.
- The distributions of the running maxima $\max \left(0, X_{1}, X_{2}, \ldots, X_{n}\right)$ for all $n=1,2, \ldots$
Theorem 1.1 clearly implies that a non-degenerate Lévy process X_{t} is determined by any of the following objects:
- The distributions of $\max \left(X_{t}, 0\right)$ for all $t>0$ (or even for $t=1,2, \ldots$).
- The law of the ascending ladder process $\left(T_{t}, S_{t}\right)$.
- The upward space-time Wiener-Hopf factor $\kappa_{+}(q, \xi)$, that is, the characteristic exponent of $\left(T_{t}, S_{t}\right)$.
- The distributions of the running suprema $\sup \left\{X_{s}: s \in[0, t]\right\}$ for all $t>0$.

For further discussion, we again refer to [CD20], where Theorem 1.1 was proved under various relatively mild additional conditions. For related research, see [CD20, LMS76, Ost85, OU90, Ula90, Ula92] and the references therein.

Theorem 1.1 was given without proof in [OU90] in a more general form: Theorem 4 therein claims that $\mu=\nu$ if μ and ν are non-degenerate finite Borel measures on \mathbb{R} and the restrictions of $\mu^{* n_{k}}$ and $\nu^{* n_{k}}$ to $(0, \infty)$ are equal for $k=1,2, \ldots$, where $n_{1}=1$ and $n_{2}-1, n_{3}-1, \ldots$ are distinct and have no common divisor other than 1 . Noteworthy, this result is stated for measures on the Euclidean space of arbitrary dimension, and their restrictions to the half-space. A proof is given in [Ula92] under the additional condition $n_{2}=2$, and only in dimension one. However, the argument in [Ula92] contains a gap, that we describe at the end of this article.

2. Proof

All measures considered below are finite, signed Borel measures. For a measure μ on \mathbb{R}, we denote the restrictions of μ to $(0, \infty)$ and $(-\infty, 0]$ by $\mu_{+}=\mathbb{1}_{(0, \infty)} \mu$ and $\mu_{-}=\mathbb{1}_{(-\infty, 0]} \mu$. This should not be confused with the Hahn decomposition of μ into
the positive and negative part. By $\mu^{* n}$ we denote the n-fold convolution of μ, and we define $\mu^{* 0}$ to be the Dirac measure δ_{0}. For brevity, we write $\mu_{ \pm}^{* n}=\left(\mu_{ \pm}\right)^{* n}$, as opposed to $\left(\mu^{* n}\right)_{ \pm}$. We record the following elementary identities: $\left(\bar{\delta}_{0} * \sigma_{-}\right)_{+}=\left(\sigma_{-}\right)_{+}=0$, $\left(\pi_{-} * \sigma_{-}\right)_{+}=0$, and $\left(\pi * \sigma_{-}\right)_{+}=\left(\pi_{+} * \sigma_{-}\right)_{+}$.

We denote the characteristic function of a measure μ by $\widehat{\mu}$:

$$
\widehat{\mu}(z)=\int_{\mathbb{R}} e^{i z x} \mu(d x)
$$

for $z \in \mathbb{R}$, and also for those $z \in \mathbb{C}$ for which the integral converges. We recall that $\widehat{\mu}_{+}$is a bounded holomorphic function in the upper complex half-plane $\mathbb{C}_{+}=$ $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, continuous on the boundary. Similarly, $\widehat{\mu}_{-}$is a bounded holomorphic function on the lower complex half-plane $\mathbb{C}_{-}=\{z \in \mathbb{C}: \operatorname{Im} z<0\}$.
Lemma 2.1. - Suppose that μ, ν are measures on \mathbb{R} satisfying

$$
\left(\mu^{* n}\right)_{+}=\left(\nu^{* n}\right)_{+} \quad \text { for } n=1,2, \ldots, N .
$$

Then $\mu_{+}=\nu_{+}$and

$$
\begin{equation*}
\left(\mu_{+}^{* n} * \mu_{-}^{* k}\right)_{+}=\left(\nu_{+}^{* n} * \nu_{-}^{* k}\right)_{+} \quad \text { for } n=0,1, \ldots, N-1 \text { and } k=1,2, \ldots \tag{2.1}
\end{equation*}
$$

Proof. - We proceed by induction with respect to N. For $N=1$ the result is trivial: we have $\mu_{+}=\left(\mu^{* 1}\right)_{+}=\left(\nu^{* 1}\right)_{+}=\nu_{+}$and $\left(\mu_{+}^{* 0} * \mu_{-}^{* k}\right)_{+}=\left(\delta_{0} * \mu_{-}^{* k}\right)_{+}=0$ $=\left(\delta_{0} * \nu_{-}^{* k}\right)_{+}=\left(\nu_{+}^{* 0} * \nu_{-}^{* k}\right)_{+}$for $k=1,2, \ldots$ Suppose that the assertion of Lemma 2.1 holds for some N, and suppose that $\left(\mu^{* n}\right)_{+}=\left(\nu^{* n}\right)_{+}$for $n=1,2, \ldots, N$, $N+1$. By the induction hypothesis, formula (2.1) holds for $n=0,1, \ldots, N-1$ and $k=1,2, \ldots$, and we have $\mu_{+}=\nu_{+}$. Therefore, we only need to prove (2.1) for $n=N$ and $k=1,2, \ldots$

By the binomial theorem,

$$
\begin{aligned}
0 & =\left(\mu^{* N+1}-\nu^{* N+1}\right)_{+}=\left(\left(\mu_{+}+\mu_{-}\right)^{* N+1}-\left(\nu_{+}+\nu_{-}\right)^{* N+1}\right)_{+} \\
& =\sum_{j=0}^{N+1}\binom{N+1}{j}\left(\mu_{+}^{* j} * \mu_{-}^{* N+1-j}-\nu_{+}^{* j} * \nu_{-}^{* N+1-j}\right)_{+} .
\end{aligned}
$$

We already know that $\mu_{+}^{* N+1}=\nu_{+}^{* N+1}$ and $\left(\mu_{+}^{* j} * \mu_{-}^{* N+1-j}\right)_{+}=\left(\nu_{+}^{* j} * \nu_{-}^{* N+1-j}\right)_{+}$for $j=1,2, \ldots, N-1$. Furthermore, $\left(\mu_{-}^{* N+1}\right)_{+}=0=\left(\nu_{-}^{* N+1}\right)_{+}$. It follows that all terms corresponding to $j \neq N$ in the above sum are zero. Thus,

$$
0=\binom{N+1}{N}\left(\mu_{+}^{* N} * \mu_{-}-\nu_{+}^{* N} * \nu_{-}\right)_{+}
$$

which proves (2.1) for $n=N$ and $k=1$. The proof for $n=N$ and $k>1$ proceeds again by induction. Suppose that (2.1) holds for $n=N$ and $k=1,2, \ldots, K$. By the identity $\left(\pi * \sigma_{-}\right)_{+}=\left(\pi_{+} * \sigma_{-}\right)_{+}$,

$$
\left(\mu_{+}^{* N} * \mu_{-}^{* K+1}\right)_{+}=\left(\mu_{+}^{* N} * \mu_{-}^{* K} * \mu_{-}\right)_{+}=\left(\left(\mu_{+}^{* N} * \mu_{-}^{* K}\right)_{+} * \mu_{-}\right)_{+}
$$

Applying (2.1), with $n=N$ and $k=K$, and then again the identity $\left(\pi * \sigma_{-}\right)_{+}$ $=\left(\pi_{+} * \sigma_{-}\right)_{+}$, we find that

$$
\left(\left(\mu_{+}^{* N} * \mu_{-}^{* K}\right)_{+} * \mu_{-}\right)_{+}=\left(\left(\nu_{+}^{* N} * \nu_{-}^{* K}\right)_{+} * \mu_{-}\right)_{+}=\left(\nu_{+}^{* N} * \nu_{-}^{* K} * \mu_{-}\right)_{+} .
$$

Recall that $\mu_{+}=\nu_{+}$, so that

$$
\left(\nu_{+}^{* N} * \nu_{-}^{* K} * \mu_{-}\right)_{+}=\left(\mu_{+}^{* N} * \mu_{-} * \nu_{-}^{* K}\right)_{+} .
$$

We use the identity $\left(\pi * \sigma_{-}\right)_{+}=\left(\pi_{+} * \sigma_{-}\right)_{+}$for the third time, and then we again apply (2.1), with $n=N$ and $k=1$:

$$
\left(\mu_{+}^{* N} * \mu_{-} * \nu_{-}^{* K}\right)_{+}=\left(\left(\mu_{+}^{* N} * \mu_{-}\right)_{+} * \nu_{-}^{* K}\right)_{+}=\left(\left(\nu_{+}^{* N} * \nu_{-}\right)_{+} * \nu_{-}^{* K}\right)_{+} .
$$

Finally, once again we apply the identity $\left(\pi * \sigma_{-}\right)_{+}=\left(\pi_{+} * \sigma_{-}\right)_{+}$:

$$
\left(\left(\nu_{+}^{* N} * \nu_{-}\right)_{+} * \nu_{-}^{* K}\right)_{+}=\left(\nu_{+}^{* N} * \nu_{-} * \nu_{-}^{* K}\right)_{+}=\left(\nu_{+}^{* N} * \nu_{-}^{* K+1}\right)_{+}
$$

The above chain of equalities implies that $\left(\mu_{+}^{* N} * \mu_{-}^{* K+1}\right)_{+}=\left(\nu_{+}^{* N} * \nu_{-}^{* K+1}\right)_{+}$, which is just (2.1) with $n=N$ and $k=K+1$. We conclude that (2.1) holds for $n=N$ and every $k=1,2, \ldots$, and the proof of Lemma 2.1 is complete.

A holomorphic function f on $\mathbb{C}_{\text {_ }}$ is said to be of bounded type (or belong to the Nevanlinna class) if $\log |f(x)|$ has a harmonic majorant on \mathbb{C}_{-}. Equivalently, f is of bounded type if it is a ratio of two bounded holomorphic functions on \mathbb{C}_{-}. We recall the following fundamental factorisation theorem for holomorphic functions on \mathbb{C}_{-} which are bounded or of bounded type, and we refer to [Gar07, Mas09] for further details.

Theorem 2.2. - [Gar07, Theorem II.5.5 and Corollary II.5.7]; [Mas09, Theorem 13.15]
Let f be a holomorphic function of bounded type on the lower complex half-plane, and suppose that f is not identically zero. Let α_{0} be the multiplicity of the zero of f at $z=-i$ (possibly $\alpha_{0}=0$), and let z_{1}, z_{2}, \ldots be the (finite or infinite) sequence of all zeros of f in the lower complex half-plane, with corresponding multiplicities $\alpha_{1}, \alpha_{2}, \ldots$ Then f admits a factorisation

$$
\begin{equation*}
f(z)=f_{\mathrm{b}}(z) f_{\mathrm{o}}(z) f_{\mathrm{s}}(z) \tag{2.2}
\end{equation*}
$$

(unique, up to multiplication of f_{o} and f_{s} by a constant of modulus 1), with the following factors. The function f_{b} is a Blaschke product, determined uniquely by the zeros of f :

$$
\begin{equation*}
f_{\mathrm{b}}(z)=\left(\frac{z+i}{z-i}\right)^{\alpha_{0}} \prod_{j}\left(\frac{\left|1+z_{j}^{2}\right|}{1+z_{j}^{2}} \frac{z-z_{j}}{z-\bar{z}_{j}}\right)^{\alpha_{j}} . \tag{2.3}
\end{equation*}
$$

The function f_{o} is an outer function, a holomorphic function determined uniquely up to multiplication by a constant of modulus 1 by the formula:

$$
\begin{equation*}
\left|f_{\mathrm{o}}(z)\right|=\exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^{2}} \log |f(x)| d x\right) \tag{2.4}
\end{equation*}
$$

Finally, the function f_{s} is a singular inner function, a holomorphic function determined uniquely up to multiplication by a constant of modulus 1 by the expression:

$$
\begin{equation*}
\left|f_{\mathrm{s}}(z)\right|=\exp \left(a \operatorname{Im} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z-x|^{2}} \sigma(d x)\right) \tag{2.5}
\end{equation*}
$$

where $a \in \mathbb{R}$ is a constant and σ is a signed measure, singular with respect to the Lebesgue measure.
Furthermore, for almost all $x \in \mathbb{R}$ with respect to both the Lebesgue measure and the measure σ, the limit $f(x)$ of $f(x+i y)$ as $y \rightarrow 0^{-}$exists. This boundary limit $f(x)$ is non-zero almost everywhere with respect to the Lebesgue measure and zero almost everywhere with respect to σ. The symbol $f(x)$ used in the definition of the outer function f_{0} refers precisely to this boundary limit. Additionally, we have

$$
\sum_{j} \alpha_{j}\left|\operatorname{Im} z_{j}\right|\left(1+\left|z_{j}\right|^{2}\right)^{-1}<\infty, \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-1}|\log | f(x)| | d x<\infty
$$

and

$$
\int_{\mathbb{R}}\left(1+x^{2}\right)^{-1}|\sigma|(d x)<\infty
$$

and any parameters $\alpha_{j}, z_{j}, a, \sigma$ and boundary values $|f(x)|, x \in \mathbb{R}$, which satisfy these conditions, correspond to some function f of bounded type.

Finally, f is a bounded holomorphic function in the lower complex half-plane if and only if $a \geqslant 0, \sigma$ is a non-negative measure and the boundary values $|f(x)|$ are bounded for $x \in \mathbb{R}$.

Lemma 2.3. - Suppose that μ is a measure on \mathbb{R} such that μ_{-}is a non-zero measure and $\left(\mu_{+} * \mu_{-}\right)_{+}=0$. Then $\widehat{\mu}_{+}$has a holomorphic extension φ to the connected open set

$$
D=\mathbb{C} \backslash\left\{z \in \mathbb{C}_{-} \cup \mathbb{R}: \widehat{\mu}_{-}(z)=0\right\}
$$

and φ is a meromorphic function on $\mathbb{C} \backslash\left\{z \in \mathbb{R}: \widehat{\mu}_{-}(z)=0\right\}$. Furthermore, $\varphi \widehat{\mu}_{-}$ extends to a function which is holomorphic on \mathbb{C}_{-}and continuous on $\mathbb{C}_{-} \cup \mathbb{R}$, namely, the characteristic function of $\mu_{+} * \mu_{-}$.
Proof. - Denote $\nu=\mu_{+} * \mu_{-}$; by the assumption, $\nu=\nu_{-}$. Let $f=\widehat{\mu}_{+}, g=\widehat{\mu}_{-}$ and $h=\widehat{\nu}=\widehat{\nu}_{-}$. Clearly, $h(z)=f(z) g(z)$ for $z \in \mathbb{R}$. Let

$$
A=\{z \in \mathbb{R}: g(z)=0\}, \quad B=\left\{z \in \mathbb{C}_{-}: g(z)=0\right\}
$$

so that $D=\mathbb{C} \backslash(A \cup B)$.
We note basic properties of A and B. By continuity of g, A and $A \cup B$ are closed sets, and D is an open set. Since g is holomorphic on \mathbb{C}_{-}(and not identically zero), B is a countable (possibly finite) set with no accumulation points on \mathbb{C}_{-}. By Theorem 2.2, A has zero Lebesgue measure (as a subset of \mathbb{R}). In particular, D is connected. Indeed: the sets $D \cap \mathbb{C}_{+}=\mathbb{C}_{+}$and $D \cap \mathbb{C}_{-}=\mathbb{C}_{-} \backslash B$ are clearly path-connected, the set $D \cap \mathbb{R}=\mathbb{R} \backslash A$ is non-empty, and since D is open, each point of $D \cap \mathbb{R}$ is path-connected with points from both $D \cap \mathbb{C}_{+}$and $D \cap \mathbb{C}_{\text {- }}$.
We define a function φ on D by the formula

$$
\varphi(z)= \begin{cases}f(z) & \text { if } z \in \mathbb{C}_{+} \cup(\mathbb{R} \backslash A) \\ \frac{h(z)}{g(z)} & \text { if } z \in \mathbb{C}_{-} \backslash B\end{cases}
$$

By definition, φ is holomorphic both on \mathbb{C}_{+}and on $\mathbb{C}_{-} \backslash B$, as well as meromorphic on \mathbb{C}_{-}. Furthermore, φ is continuous at each point $z \in \mathbb{R} \backslash A$, because both f (defined on $\left.\mathbb{C}_{+} \cup \mathbb{R}\right)$ and h / g (defined on $\left.\left(\mathbb{C}_{-} \backslash B\right) \cup(\mathbb{R} \backslash A)\right)$ are continuous at
z and $f(z)=h(z) / g(z)$. By a standard application of Morera's theorem (see [Con73, Theorem IV.5.10 and Exercise IV.5.9], or [Gar07, Exercise II.12]), φ is holomorphic in D. It remains to note that $\varphi(z) g(z)=h(z)$ for $z \in \mathbb{C}_{-} \backslash B$.

Lemma 2.4. - If μ is a measure on \mathbb{R} such that $\left(\mu_{+}^{* n} * \mu_{-}\right)_{+}=0$ for all $n=1,2, \ldots$, then either μ_{+}or μ_{-}is a zero measure.

Proof. - Let μ be such a measure, and suppose that both μ_{+}and μ_{-}are non-zero measures. Let $\varphi, f, g, h, A, B, D$ be as in the proof of Lemma 2.3. Clearly, φ^{n} is the holomorphic extension of f^{n}, the characteristic function of $\mu_{+}^{* n}$. An application of Lemma 2.3 to the measure $\mu_{+}^{* n}+\mu_{-}$implies that for all $n=1,2, \ldots$, the function $\varphi^{n} g$ extends from $\mathbb{C}_{-} \backslash B$ to a function h_{n} which is bounded and holomorphic on \mathbb{C}_{-} and continuous on $\mathbb{C}_{-} \cup \mathbb{R}$, namely, h_{n} is the characteristic function of $\mu_{+}^{* n} * \mu_{-}$.

Consider the factorisations $g=g_{\mathrm{b}} g_{\mathrm{o}} g_{\mathrm{s}}$ and $h_{n}=h_{n, \mathrm{~b}} h_{n, \mathrm{o}} h_{n, \mathrm{~s}}$ given in Theorem 2.2, and let σ_{g}, a_{g} and $\sigma_{h, n}, a_{h, n}$ denote the corresponding non-negative measures σ and constants a for g and h_{n}, respectively. Note that Theorem 2.2 applies both to g and to $h_{n}=\varphi^{n} g$, as these functions are not identically zero: f and g are characteristic functions of non-zero measures μ_{+}and μ_{-}, while h_{n} is the product of g and the holomorphic extension of f^{n}.
Recall that $\varphi^{n}=h_{n} / g$ on $\mathbb{C}_{-} \backslash B$. It follows that if $\varphi_{n, \mathrm{~b}}=h_{n, \mathrm{~b}} / g_{\mathrm{b}}, \varphi_{n, \mathrm{o}}=h_{n, \mathrm{o}} / g_{\mathrm{o}}$ and $\varphi_{n, \mathrm{~s}}=h_{n, \mathrm{~s}} / g$, then

$$
\varphi^{n}=\varphi_{n, \mathrm{~b}} \varphi_{n, \mathrm{o}} \varphi_{n, \mathrm{~s}}
$$

on $\mathbb{C}_{-} \backslash B$. Let us examine the above factors in more detail.
By definition, $\varphi_{n, \mathrm{o}}$ and $\varphi_{n, \mathrm{~s}}$ have no zeros in \mathbb{C}_{-}. This means that if $z_{0} \in \mathbb{C}_{-}$is a pole of φ of order α_{0}, then z_{0} is a pole of $\varphi_{n, \mathrm{~b}}=h_{n, \mathrm{~b}} / g_{\mathrm{b}}$ of order $n \alpha_{0}$, and therefore g_{b} has a zero at z_{0} of multiplicity at least $n \alpha_{0}$ for all $n=1,2, \ldots$. Since all zeroes of g_{b} have finite multiplicity, φ has no poles in \mathbb{C}_{-}. In particular, φ extends to a holomorphic function on $\mathbb{C} \backslash A$, which will be denoted again by φ, and $\varphi_{n, \mathrm{~b}}=h_{n, \mathrm{~b}} / g_{\mathrm{b}}$ has no poles in \mathbb{C}_{-}. Therefore, the zeros of $h_{n, \mathrm{~b}}$ must cancel the zeros of g_{b}, and $\varphi_{n, \mathrm{~b}}$ is a Blaschke product.

Since $h_{n}(x) / g(x)=(f(x))^{n}$ for $x \in \mathbb{R} \backslash A$ and A has Lebesgue measure zero, we have

$$
\begin{aligned}
\left|\varphi_{n, \mathrm{o}}(z)\right| & =\exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^{2}}\left(\log \left|h_{n}(x)\right|-\log |g(x)|\right) d x\right) \\
& =\exp \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^{2}} \log |f(x)|^{n} d x\right)
\end{aligned}
$$

In particular, $\varphi_{n, \mathrm{o}}$ is a bounded outer function, namely, the outer function in the factorisation of the bounded holomorphic function $(\overline{f(\bar{z})})^{n}$ on the lower complex half-plane.
Finally $\varphi_{n, s}$ is the ratio of two singular inner functions, and hence a singular inner function. If we denote $a_{\varphi, n}=a_{h, n}-a_{g}$ and $\sigma_{\varphi, n}=\sigma_{h, n}-\sigma_{g}$, then

$$
\left|\varphi_{n, \mathrm{~s}}(z)\right|=\exp \left(-a_{\varphi, n} \operatorname{Im} z-\frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z-x|^{2}} \sigma_{\varphi, n}(d x)\right)
$$

The above properties imply that φ^{n} is of bounded type, and therefore the factors $\varphi_{n, \mathrm{~b}}, \varphi_{n, \mathrm{o}}, \varphi_{n, \mathrm{~s}}$, the signed measure $\sigma_{\varphi, n}$ and the constant $a_{\varphi, n} \in \mathbb{R}$ are uniquely determined (up to multiplication by a constant of modulus 1 in case of $\varphi_{n, \mathrm{o}}$ and $\varphi_{n, \mathrm{~s}}$).
By comparing the factorisations of φ and φ^{n}, we find that $\varphi_{n, \mathrm{~s}}=c_{n}\left(\varphi_{1, \mathrm{~s}}\right)^{n}$ for some constant c_{n} with modulus 1. It follows that $a_{\varphi, n}=n a_{\varphi, 1}$ and $\sigma_{\varphi, n}=n \sigma_{\varphi, 1}$. This, however, implies that $a_{\varphi, 1}=\frac{1}{n} a_{\varphi, n} \geqslant-\frac{1}{n} a_{g}$ for all $n=1,2, \ldots$, and so $a_{\varphi, 1} \geqslant 0$. Similarly, the negative part of $\sigma_{\varphi, 1}=\frac{1}{n} \sigma_{\varphi, n}$ is dominated by $\frac{1}{n} \sigma_{g}$ for any $n=1,2, \ldots$ This is not possible if the negative part of $\sigma_{\varphi, 1}$ is non-zero, and therefore $\sigma_{\varphi, 1}$ is a non-negative measure. We conclude that $\varphi=\varphi_{1, \mathrm{~b}} \varphi_{1, \mathrm{o}} \varphi_{1, \mathrm{~s}}$ is a bounded holomorphic function on \mathbb{C}_{-}.
Since $\varphi=f$ on \mathbb{C}_{+}and f is a bounded holomorphic function on \mathbb{C}_{+}, we have proved that φ is a bounded holomorphic function on $\mathbb{C} \backslash A$. However, A has zero Lebesgue measure (as a subset of \mathbb{R}). By Painlevé's theorem (see [You15, Theorem 2.7]), φ extends to a bounded holomorphic function on \mathbb{C}. This, in turn, implies that φ is constant, and so $\widehat{\mu}_{+}$is constant, contradicting the assumption that μ_{+}is a non-zero measure on $(0, \infty)$.
Proof of Theorem 1.1. - Suppose that $\left(\mu^{* n}\right)_{+}=\left(\nu^{* n}\right)_{+}$for $n=1,2, \ldots$ for some measures μ and ν such that μ_{+}and ν_{+}are non-zero measures. By Lemma 2.1, $\mu_{+}=\nu_{+}$and $\left(\mu_{+}^{* n} * \mu_{-}\right)_{+}=\left(\nu_{+}^{* n} * \nu_{-}\right)_{+}$for $n=1,2, \ldots$ Let $\eta=\mu_{+}+\mu_{-}-\nu_{-}$, so that $\eta_{+}=\mu_{+}=\mu_{-}$and $\eta_{-}=\mu_{-}-\nu_{-}$. Then $\left(\eta_{+}^{* n} * \eta_{-}\right)_{+}=0$ for $n=1,2, \ldots$, and therefore, by Lemma 2.4, either η_{+}or η_{-}is a zero measure. Since $\eta_{+}=\mu_{+}$is a non-zero measure, we must have $\eta_{-}=0$, that is, $\mu_{-}=\nu_{-}$.

3. An error in [Ula92]

In [Ula92] an analogue of Theorem 1.1 is given, with equality of $\mu^{* n}$ and $\nu^{* n}$ on $(-\infty, 0)$ rather than on $(0, \infty)$. In [Ula92, Page 3001, line 16], it is claimed that the measures μ and ν satisfy [Ula92, condition (B) of Theorem A], as a consequence of the results of [LO77, Section 11.2]. This reasoning would have been correct if the holomorphic extensions of $\widehat{\mu}$ and $\widehat{\nu}$ to the upper complex half-plane had been known to be continuous on the boundary. However, this is not verified in [Ula92].
More precisely, it is observed in [Ula92] that $\widehat{\mu}=\left(\widehat{\chi}_{2}-\left(\widehat{\chi}_{1}\right)^{2}\right) /\left(2 \widehat{\chi}_{1}\right)$ almost everywhere on \mathbb{R}, where $\chi_{1}=\mu-\nu$ and $\chi_{2}=\mu^{* 2}-\nu^{* 2}$ are measures concentrated on $(0, \infty)$. Since $\widehat{\chi}_{1}$ and $\widehat{\chi}_{2}$ extend to holomorphic functions on $\mathbb{C}_{+}, \widehat{\mu}$ extends to a meromorphic function on \mathbb{C}_{+}. Equality of $\mu^{* n}$ and $\nu^{* n}$ on $(-\infty, 0)$ for $n \geqslant 3$ is used only to show that the extension of $\widehat{\mu}$ has no poles in \mathbb{C}_{+}. However, the extension of $\widehat{\mu}$ can have singularities near \mathbb{R} and thus fail to satisfy [Ula92, condition (B) of Theorem A].
To be specific, observe that $\widehat{\mu}(z)=z^{2}(z+i)^{-4} \exp (i / z)$ is the characteristic function of a measure μ on \mathbb{R}. Namely, μ is the convolution of $\frac{1}{6} x^{3} e^{-x} \mathbb{1}_{(0, \infty)}(x) d x$ and $\frac{1}{6}{ }_{0} F_{1}(4 ; x) \mathbb{1}_{(-\infty, 0)}(x) d x-\frac{1}{2} \delta_{0}(d x)-\delta_{0}^{\prime}(d x)-\delta_{0}^{\prime \prime}(d x)$ (in the sense of distributions; ${ }_{0} F_{1}$ is the hypergeometric function; we omit the details). Clearly, $\widehat{\mu}$ extends holomorphically to the upper complex half-plane, but this extension is not continuous on the
boundary, and thus μ does not satisfy [Ula92, condition (B) of Theorem A]. Furthermore, $\widehat{\mu}(z)$ is the ratio of two characteristic functions of finite measures supported in $[0, \infty): z^{4} /(z+i)^{8}$ and $z^{2}(z+i)^{-4} \exp (-i / z)$.
The author of the present article was not able to correct the error in [Ula92]. The proof given above uses a related, but essentially different idea.

Acknowledgments

I thank Loïc Chaumont for numerous discussions on the subject of the article and encouragement. I thank Jan Rosiński for letting me know about reference [OU90]. I thank Alexander Ulanovskiĭ for discussions on references [OU90, Ula92]. The main part of this article was written during the $39^{\text {th }}$ Conference on Stochastic Processes and their Applications in Moscow.

BIBLIOGRAPHY

[CD20] Loïc Chaumont and Ron Doney, On distributions determined by their upward, space-time Wiener-Hopf factor, J. Theor. Probab. 33 (2020), no. 2, 1011-1033. $\uparrow 1389,1390$
[Con73] John B. Conway, Functions of one complex variable, Graduate Texts in Mathematics, vol. 11, Springer, 1973. $\uparrow 1394$
[Gar07] John Brady Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, vol. 236, Springer, 2007. $\uparrow 1392$, 1394
[LMS76] Gérard G. Letac, Pierre Mazet, and Gérard Schiffman, A note on left-continuous random walks, J. Appl. Probab. 13 (1976), no. 4, 814-817. $\uparrow 1390$
[LO77] Yuriĭ V. Linnik and Iosif V. Ostrovskiŭ, Decomposition of random variables and vectors, Translations of Mathematical Monographs, vol. 48, American Mathematical Society, 1977. $\uparrow 1395$
[Mas09] Javad Mashreghi, Representation theorems in Hardy spaces, London Mathematical Society Student Texts, Cambridge University Press, 2009. $\uparrow 1392$
[Ost85] Iosif V. Ostrovskiŭ, Generalization of the Titchmarsh convolution theorem and the complexvalued measures uniquely determined by their restrictions to a half-line, Stability Problems for Stochastic Models (Uzhgorod, 1984), Lecture Notes in Mathematics, vol. 1155, Springer, 1985, pp. 256-283. $\uparrow 1390$
[OU90] Iosif V. Ostrovskiĭ and Alexander M. Ulanovskiĭ, Probability distributions and Borel measures uniquely determined by their restrictions to a half-space, Probability theory and mathematical statistics. Vol. II (Vilnius, 1989) (B. Grigelionos, Yu V. Prohorov, V. V. Sazonov, and V. Statulevičius, eds.), Mokslas, 1990, pp. 278-287. $\uparrow 1390$, 1396
[Ula90] Alexander M. Ulanovskiĭ, Unique determination of the convolutions of measures in R^{m}, $m \geqslant 2$, by their restriction to a set, J. Math. Sci. 49 (1990), no. 6, 1298-1301. $\uparrow 1390$
[Ula92] _ On the determination of a measure by the restriction of its n-fold convolutions to a massive set, Teor. Funkts. Funkts. Anal. Prilozh. 57 (1992), 102-109, English translation in: J. Math. Sci. 77(1) (1995): 2997-3002. $\uparrow 1390$, 1395, 1396
[Vig01] Vincent Vigon, Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf, Ph.D. thesis, INSA de Rouen, (France), 2001. $\uparrow 1389$
[You15] M. Younsi, On removable sets for holomorphic functions, EMS Surv. Math. Sci. 2 (2015), no. 2, 219-254. $\uparrow 1395$

Manuscript received on 13th March 2019, accepted on 19th February 2020.

Recommended by Editor L. Chaumont.
Published under license CC BY 4.0.

This journal is a member of Centre Mersenne.

MERSENNE

Mateusz KWAŚNICKI

Department of Pure Mathematics,
Wrocław University of Science and Technology,
Wybrzeże Wyspiańskiego 27,
50-370 Wrocław (Poland)
mateusz.kwasnicki@pwr.edu.pl

[^0]: Keywords: Random walk, Lévy process, Wiener-Hopf factorisation, Nevanlinna class.
 2020 Mathematics Subject Classification: 60G50, 60G51, 45E10, 30H15.
 DOI: https://doi.org/10.5802/ahl. 64
 $\left(^{*}\right)$ Work supported by the Polish National Science Centre (NCN) grant no. 2015/19/B/ST1/01457.

