Annales Henri Lebesgue **3** (2020) 1389-1397

HENRI LEBESGUE

MATEUSZ KWAŚNICKI

RANDOM WALKS ARE DETERMINED BY THEIR TRACE ON THE POSITIVE HALF-LINE LES MARCHES ALÉATOIRES SONT DÉTERMINÉES PAR LEUR TRACE SUR LA DEMI-DROITE POSITIVE

ABSTRACT. — We prove that the law of a random walk X_n is determined by the onedimensional distributions of $\max(X_n, 0)$ for n = 1, 2, ..., as conjectured recently by Loïc Chaumont and Ron Doney. Equivalently, the law of X_n is determined by its upward spacetime Wiener-Hopf factor. Our methods are complex-analytic.

RÉSUMÉ. — Nous démontrons que la loi d'une marche aléatoire X_n est déterminée par les distributions de max $(X_n, 0)$ pour $n = 1, 2, \ldots$, comme l'avaient conjecturé récemment Loïc Chaumont et Ron Doney. De manière équivalente, la loi de X_n est déterminée par son facteur de Wiener-Hopf espace-temps ascendant. Nos méthodes relèvent de l'analyse complexe.

1. Introduction and main result

In this note we give an affirmative answer to a question posed by Loïc Chaumont and Ron Doney in [CD20], inspired by Vincent Vigon's conjecture in [Vig01]. The

Keywords: Random walk, Lévy process, Wiener-Hopf factorisation, Nevanlinna class.

²⁰²⁰ Mathematics Subject Classification: 60G50, 60G51, 45E10, 30H15.

DOI: https://doi.org/10.5802/ahl.64

^(*) Work supported by the Polish National Science Centre (NCN) grant no. 2015/19/B/ST1/01457.

main result was previously stated without proof in a more general form in [OU90], and an erroneous proof was given in [Ula92].

A random walk X_n is said to be *non-degenerate* if $\mathbb{P}(X_n > 0) \neq 0$. Similarly, a finite signed Borel measure μ on \mathbb{R} is said to be *non-degenerate* if the restriction of μ to $(0, \infty)$ is a non-zero measure.

THEOREM 1.1. — If X_n and Y_n are non-degenerate random walks such that $\max(X_n, 0)$ and $\max(Y_n, 0)$ are equal in distribution for all n = 1, 2, ..., then X_n and Y_n are equal in distribution for n = 1, 2, ...

More generally, if μ and ν are non-degenerate finite signed Borel measures and their *n*-fold convolutions μ^{*n} and ν^{*n} agree on $(0, \infty)$ for $n = 1, 2, \ldots$, then $\mu = \nu$.

Following [CD20], we remark that various reformulations of the above result are possible. A non-degenerate random walk X_n is determined by any of the following objects:

- The law of the ascending ladder process (T_k, S_k) ; here $S_k = X_{T_k}$ is the k^{th} running maximum of the random walk.
- The upward space-time Wiener-Hopf factor $\Phi_+(q,\xi)$, that is, the characteristic function of (T_1, S_1) .
- The distributions of the running maxima $\max(0, X_1, X_2, \ldots, X_n)$ for all $n = 1, 2, \ldots$

Theorem 1.1 clearly implies that a non-degenerate Lévy process X_t is determined by any of the following objects:

- The distributions of $\max(X_t, 0)$ for all t > 0 (or even for t = 1, 2, ...).
- The law of the ascending ladder process (T_t, S_t) .
- The upward space-time Wiener-Hopf factor $\kappa_+(q,\xi)$, that is, the characteristic exponent of (T_t, S_t) .
- The distributions of the running suprema $\sup\{X_s : s \in [0, t]\}$ for all t > 0.

For further discussion, we again refer to [CD20], where Theorem 1.1 was proved under various relatively mild additional conditions. For related research, see [CD20, LMS76, Ost85, OU90, Ula90, Ula92] and the references therein.

Theorem 1.1 was given without proof in [OU90] in a more general form: Theorem 4 therein claims that $\mu = \nu$ if μ and ν are non-degenerate finite Borel measures on \mathbb{R} and the restrictions of μ^{*n_k} and ν^{*n_k} to $(0, \infty)$ are equal for $k = 1, 2, \ldots$, where $n_1 = 1$ and $n_2 - 1, n_3 - 1, \ldots$ are distinct and have no common divisor other than 1. Noteworthy, this result is stated for measures on the Euclidean space of arbitrary dimension, and their restrictions to the half-space. A proof is given in [Ula92] under the additional condition $n_2 = 2$, and only in dimension one. However, the argument in [Ula92] contains a gap, that we describe at the end of this article.

2. Proof

All measures considered below are finite, signed Borel measures. For a measure μ on \mathbb{R} , we denote the restrictions of μ to $(0, \infty)$ and $(-\infty, 0]$ by $\mu_+ = \mathbb{1}_{(0,\infty)} \mu$ and $\mu_- = \mathbb{1}_{(-\infty,0]} \mu$. This should not be confused with the Hahn decomposition of μ into

the positive and negative part. By μ^{*n} we denote the *n*-fold convolution of μ , and we define μ^{*0} to be the Dirac measure δ_0 . For brevity, we write $\mu_{\pm}^{*n} = (\mu_{\pm})^{*n}$, as opposed to $(\mu^{*n})_{\pm}$. We record the following elementary identities: $(\delta_0 * \sigma_-)_+ = (\sigma_-)_+ = 0$, $(\pi_- * \sigma_-)_+ = 0$, and $(\pi * \sigma_-)_+ = (\pi_+ * \sigma_-)_+$.

We denote the characteristic function of a measure μ by $\hat{\mu}$:

$$\widehat{\mu}(z) = \int_{\mathbb{R}} e^{izx} \mu(dx)$$

for $z \in \mathbb{R}$, and also for those $z \in \mathbb{C}$ for which the integral converges. We recall that $\hat{\mu}_+$ is a bounded holomorphic function in the upper complex half-plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$, continuous on the boundary. Similarly, $\hat{\mu}_-$ is a bounded holomorphic function on the lower complex half-plane $\mathbb{C}_- = \{z \in \mathbb{C} : \operatorname{Im} z < 0\}$.

LEMMA 2.1. — Suppose that μ, ν are measures on \mathbb{R} satisfying

$$(\mu^{*n})_+ = (\nu^{*n})_+$$
 for $n = 1, 2, ..., N$

Then $\mu_+ = \nu_+$ and

(2.1)
$$\left(\mu_{+}^{*n}*\mu_{-}^{*k}\right)_{+} = \left(\nu_{+}^{*n}*\nu_{-}^{*k}\right)_{+}$$
 for $n = 0, 1, \dots, N-1$ and $k = 1, 2, \dots$

Proof. — We proceed by induction with respect to N. For N = 1 the result is trivial: we have $\mu_{+} = (\mu^{*1})_{+} = (\nu^{*1})_{+} = \nu_{+}$ and $(\mu^{*0}_{+} * \mu^{*k}_{-})_{+} = (\delta_{0} * \mu^{*k}_{-})_{+} = (\delta_{0} * \nu^{*k}_{-})_{+} = (\nu^{*0}_{+} * \nu^{*k}_{-})_{+}$ for k = 1, 2, ... Suppose that the assertion of Lemma 2.1 holds for some N, and suppose that $(\mu^{*n})_{+} = (\nu^{*n})_{+}$ for n = 1, 2, ..., N, N + 1. By the induction hypothesis, formula (2.1) holds for n = 0, 1, ..., N - 1and k = 1, 2, ..., and we have $\mu_{+} = \nu_{+}$. Therefore, we only need to prove (2.1) for n = N and k = 1, 2, ...

By the binomial theorem,

$$0 = \left(\mu^{*N+1} - \nu^{*N+1}\right)_{+} = \left(\left(\mu_{+} + \mu_{-}\right)^{*N+1} - \left(\nu_{+} + \nu_{-}\right)^{*N+1}\right)_{+}$$
$$= \sum_{j=0}^{N+1} \binom{N+1}{j} \left(\mu_{+}^{*j} * \mu_{-}^{*N+1-j} - \nu_{+}^{*j} * \nu_{-}^{*N+1-j}\right)_{+}.$$

We already know that $\mu_+^{*N+1} = \nu_+^{*N+1}$ and $(\mu_+^{*j} * \mu_-^{*N+1-j})_+ = (\nu_+^{*j} * \nu_-^{*N+1-j})_+$ for $j = 1, 2, \ldots, N-1$. Furthermore, $(\mu_-^{*N+1})_+ = 0 = (\nu_-^{*N+1})_+$. It follows that all terms corresponding to $j \neq N$ in the above sum are zero. Thus,

$$0 = \binom{N+1}{N} \left(\mu_{+}^{*N} * \mu_{-} - \nu_{+}^{*N} * \nu_{-} \right)_{+}$$

which proves (2.1) for n = N and k = 1. The proof for n = N and k > 1 proceeds again by induction. Suppose that (2.1) holds for n = N and k = 1, 2, ..., K. By the identity $(\pi * \sigma_{-})_{+} = (\pi_{+} * \sigma_{-})_{+}$,

$$\left(\mu_{+}^{*N}*\mu_{-}^{*K+1}\right)_{+} = \left(\mu_{+}^{*N}*\mu_{-}^{*K}*\mu_{-}\right)_{+} = \left(\left(\mu_{+}^{*N}*\mu_{-}^{*K}\right)_{+}*\mu_{-}\right)_{+}.$$

Applying (2.1), with n = N and k = K, and then again the identity $(\pi * \sigma_{-})_{+} = (\pi_{+} * \sigma_{-})_{+}$, we find that

$$\left(\left(\mu_{+}^{*N}*\mu_{-}^{*K}\right)_{+}*\mu_{-}\right)_{+}=\left(\left(\nu_{+}^{*N}*\nu_{-}^{*K}\right)_{+}*\mu_{-}\right)_{+}=\left(\nu_{+}^{*N}*\nu_{-}^{*K}*\mu_{-}\right)_{+}.$$

TOME 3 (2020)

Recall that $\mu_+ = \nu_+$, so that

$$\left(\nu_{+}^{*N} * \nu_{-}^{*K} * \mu_{-}\right)_{+} = \left(\mu_{+}^{*N} * \mu_{-} * \nu_{-}^{*K}\right)_{+}.$$

We use the identity $(\pi * \sigma_{-})_{+} = (\pi_{+} * \sigma_{-})_{+}$ for the third time, and then we again apply (2.1), with n = N and k = 1:

$$\left(\mu_{+}^{*N}*\mu_{-}*\nu_{-}^{*K}\right)_{+} = \left(\left(\mu_{+}^{*N}*\mu_{-}\right)_{+}*\nu_{-}^{*K}\right)_{+} = \left(\left(\nu_{+}^{*N}*\nu_{-}\right)_{+}*\nu_{-}^{*K}\right)_{+}$$

Finally, once again we apply the identity $(\pi * \sigma_{-})_{+} = (\pi_{+} * \sigma_{-})_{+}$:

$$\left(\left(\nu_{+}^{*N}*\nu_{-}\right)_{+}*\nu_{-}^{*K}\right)_{+}=\left(\nu_{+}^{*N}*\nu_{-}*\nu_{-}^{*K}\right)_{+}=\left(\nu_{+}^{*N}*\nu_{-}^{*K+1}\right)_{+}$$

The above chain of equalities implies that $(\mu_+^{*N} * \mu_-^{*K+1})_+ = (\nu_+^{*N} * \nu_-^{*K+1})_+$, which is just (2.1) with n = N and k = K + 1. We conclude that (2.1) holds for n = Nand every $k = 1, 2, \ldots$, and the proof of Lemma 2.1 is complete.

A holomorphic function f on \mathbb{C}_{-} is said to be of *bounded type* (or belong to the *Nevanlinna class*) if $\log |f(x)|$ has a harmonic majorant on \mathbb{C}_{-} . Equivalently, f is of bounded type if it is a ratio of two bounded holomorphic functions on \mathbb{C}_{-} . We recall the following fundamental factorisation theorem for holomorphic functions on \mathbb{C}_{-} which are bounded or of bounded type, and we refer to [Gar07, Mas09] for further details.

THEOREM 2.2. — [Gar07, Theorem II.5.5 and Corollary II.5.7]; [Mas09, Theorem 13.15]

Let f be a holomorphic function of bounded type on the lower complex half-plane, and suppose that f is not identically zero. Let α_0 be the multiplicity of the zero of f at z = -i (possibly $\alpha_0 = 0$), and let z_1, z_2, \ldots be the (finite or infinite) sequence of all zeros of f in the lower complex half-plane, with corresponding multiplicities $\alpha_1, \alpha_2, \ldots$ Then f admits a factorisation

(2.2)
$$f(z) = f_{\rm b}(z)f_{\rm o}(z)f_{\rm s}(z)$$

(unique, up to multiplication of $f_{\rm o}$ and $f_{\rm s}$ by a constant of modulus 1), with the following factors. The function $f_{\rm b}$ is a Blaschke product, determined uniquely by the zeros of f:

(2.3)
$$f_{\rm b}(z) = \left(\frac{z+i}{z-i}\right)^{\alpha_0} \prod_j \left(\frac{|1+z_j^2|}{1+z_j^2} \frac{z-z_j}{z-\bar{z}_j}\right)^{\alpha_j}.$$

The function f_0 is an outer function, a holomorphic function determined uniquely up to multiplication by a constant of modulus 1 by the formula:

(2.4)
$$|f_{o}(z)| = \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^{2}} \log|f(x)| \, dx\right).$$

Finally, the function f_s is a singular inner function, a holomorphic function determined uniquely up to multiplication by a constant of modulus 1 by the expression:

(2.5)
$$|f_{\rm s}(z)| = \exp\left(a\operatorname{Im} z - \frac{1}{\pi} \int_{\mathbb{R}} \frac{-\operatorname{Im} z}{|z - x|^2} \,\sigma(dx)\right),$$

ANNALES HENRI LEBESGUE

where $a \in \mathbb{R}$ is a constant and σ is a signed measure, singular with respect to the Lebesgue measure.

Furthermore, for almost all $x \in \mathbb{R}$ with respect to both the Lebesgue measure and the measure σ , the limit f(x) of f(x + iy) as $y \to 0^-$ exists. This boundary limit f(x) is non-zero almost everywhere with respect to the Lebesgue measure and zero almost everywhere with respect to σ . The symbol f(x) used in the definition of the outer function f_0 refers precisely to this boundary limit. Additionally, we have

$$\sum_{j} \alpha_{j} |\operatorname{Im} z_{j}| \left(1 + |z_{j}|^{2}\right)^{-1} < \infty, \int_{-\infty}^{\infty} \left(1 + x^{2}\right)^{-1} |\log|f(x)| |dx < \infty$$

and

$$\int_{\mathbb{R}} \left(1 + x^2 \right)^{-1} |\sigma|(dx) < \infty \,,$$

and any parameters α_j , z_j , a, σ and boundary values |f(x)|, $x \in \mathbb{R}$, which satisfy these conditions, correspond to some function f of bounded type.

Finally, f is a bounded holomorphic function in the lower complex half-plane if and only if $a \ge 0$, σ is a non-negative measure and the boundary values |f(x)| are bounded for $x \in \mathbb{R}$.

LEMMA 2.3. — Suppose that μ is a measure on \mathbb{R} such that μ_{-} is a non-zero measure and $(\mu_{+}*\mu_{-})_{+} = 0$. Then $\hat{\mu}_{+}$ has a holomorphic extension φ to the connected open set

$$D = \mathbb{C} \setminus \{ z \in \mathbb{C}_{-} \cup \mathbb{R} : \widehat{\mu}_{-}(z) = 0 \},\$$

and φ is a meromorphic function on $\mathbb{C} \setminus \{z \in \mathbb{R} : \hat{\mu}_{-}(z) = 0\}$. Furthermore, $\varphi \hat{\mu}_{-}$ extends to a function which is holomorphic on \mathbb{C}_{-} and continuous on $\mathbb{C}_{-} \cup \mathbb{R}$, namely, the characteristic function of $\mu_{+} * \mu_{-}$.

Proof. — Denote $\nu = \mu_+ * \mu_-$; by the assumption, $\nu = \nu_-$. Let $f = \hat{\mu}_+$, $g = \hat{\mu}_$ and $h = \hat{\nu} = \hat{\nu}_-$. Clearly, h(z) = f(z)g(z) for $z \in \mathbb{R}$. Let

$$A = \{ z \in \mathbb{R} : g(z) = 0 \}, \quad B = \{ z \in \mathbb{C}_{-} : g(z) = 0 \},\$$

so that $D = \mathbb{C} \setminus (A \cup B)$.

We note basic properties of A and B. By continuity of g, A and $A \cup B$ are closed sets, and D is an open set. Since g is holomorphic on \mathbb{C}_- (and not identically zero), B is a countable (possibly finite) set with no accumulation points on \mathbb{C}_- . By Theorem 2.2, A has zero Lebesgue measure (as a subset of \mathbb{R}). In particular, D is connected. Indeed: the sets $D \cap \mathbb{C}_+ = \mathbb{C}_+$ and $D \cap \mathbb{C}_- = \mathbb{C}_- \setminus B$ are clearly path-connected, the set $D \cap \mathbb{R} = \mathbb{R} \setminus A$ is non-empty, and since D is open, each point of $D \cap \mathbb{R}$ is path-connected with points from both $D \cap \mathbb{C}_+$ and $D \cap \mathbb{C}_-$.

We define a function φ on D by the formula

$$\varphi(z) = \begin{cases} f(z) & \text{if } z \in \mathbb{C}_+ \cup (\mathbb{R} \setminus A), \\ \frac{h(z)}{g(z)} & \text{if } z \in \mathbb{C}_- \setminus B. \end{cases}$$

By definition, φ is holomorphic both on \mathbb{C}_+ and on $\mathbb{C}_- \setminus B$, as well as meromorphic on \mathbb{C}_- . Furthermore, φ is continuous at each point $z \in \mathbb{R} \setminus A$, because both f(defined on $\mathbb{C}_+ \cup \mathbb{R}$) and h/g (defined on $(\mathbb{C}_- \setminus B) \cup (\mathbb{R} \setminus A)$) are continuous at z and f(z) = h(z)/g(z). By a standard application of Morera's theorem (see [Con73, Theorem IV.5.10 and Exercise IV.5.9], or [Gar07, Exercise II.12]), φ is holomorphic in D. It remains to note that $\varphi(z)g(z) = h(z)$ for $z \in \mathbb{C}_{-} \setminus B$.

LEMMA 2.4. — If μ is a measure on \mathbb{R} such that $(\mu_+^{*n} * \mu_-)_+ = 0$ for all $n = 1, 2, \ldots$, then either μ_+ or μ_- is a zero measure.

Proof. — Let μ be such a measure, and suppose that both μ_+ and μ_- are non-zero measures. Let φ , f, g, h, A, B, D be as in the proof of Lemma 2.3. Clearly, φ^n is the holomorphic extension of f^n , the characteristic function of μ_+^{*n} . An application of Lemma 2.3 to the measure $\mu_+^{*n} + \mu_-$ implies that for all $n = 1, 2, \ldots$, the function $\varphi^n g$ extends from $\mathbb{C}_- \setminus B$ to a function h_n which is bounded and holomorphic on \mathbb{C}_- and continuous on $\mathbb{C}_- \cup \mathbb{R}$, namely, h_n is the characteristic function of $\mu_+^{*n} * \mu_-$.

Consider the factorisations $g = g_b g_o g_s$ and $h_n = h_{n,b} h_{n,o} h_{n,s}$ given in Theorem 2.2, and let σ_g , a_g and $\sigma_{h,n}$, $a_{h,n}$ denote the corresponding non-negative measures σ and constants a for g and h_n , respectively. Note that Theorem 2.2 applies both to g and to $h_n = \varphi^n g$, as these functions are not identically zero: f and g are characteristic functions of non-zero measures μ_+ and μ_- , while h_n is the product of g and the holomorphic extension of f^n .

Recall that $\varphi^n = h_n/g$ on $\mathbb{C}_- \setminus B$. It follows that if $\varphi_{n,b} = h_{n,b}/g_b$, $\varphi_{n,o} = h_{n,o}/g_o$ and $\varphi_{n,s} = h_{n,s}/g$, then

$$\varphi^n = \varphi_{n,\mathrm{b}} \, \varphi_{n,\mathrm{o}} \, \varphi_{n,\mathrm{s}}$$

on $\mathbb{C}_{-} \setminus B$. Let us examine the above factors in more detail.

By definition, $\varphi_{n,o}$ and $\varphi_{n,s}$ have no zeros in \mathbb{C}_- . This means that if $z_0 \in \mathbb{C}_-$ is a pole of φ of order α_0 , then z_0 is a pole of $\varphi_{n,b} = h_{n,b}/g_b$ of order $n\alpha_0$, and therefore g_b has a zero at z_0 of multiplicity at least $n\alpha_0$ for all n = 1, 2, ... Since all zeroes of g_b have finite multiplicity, φ has no poles in \mathbb{C}_- . In particular, φ extends to a holomorphic function on $\mathbb{C} \setminus A$, which will be denoted again by φ , and $\varphi_{n,b} = h_{n,b}/g_b$ has no poles in \mathbb{C}_- . Therefore, the zeros of $h_{n,b}$ must cancel the zeros of g_b , and $\varphi_{n,b}$ is a Blaschke product.

Since $h_n(x)/g(x) = (f(x))^n$ for $x \in \mathbb{R} \setminus A$ and A has Lebesgue measure zero, we have

$$\begin{aligned} |\varphi_{n,o}(z)| &= \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^2} \left(\log|h_n(x)| - \log|g(x)|\right) dx\right) \\ &= \exp\left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-\operatorname{Im} z}{|z-x|^2} \log|f(x)|^n dx\right). \end{aligned}$$

In particular, $\varphi_{n,o}$ is a bounded outer function, namely, the outer function in the factorisation of the bounded holomorphic function $(\overline{f(\bar{z})})^n$ on the lower complex half-plane.

Finally $\varphi_{n,s}$ is the ratio of two singular inner functions, and hence a singular inner function. If we denote $a_{\varphi,n} = a_{h,n} - a_g$ and $\sigma_{\varphi,n} = \sigma_{h,n} - \sigma_g$, then

$$|\varphi_{n,\mathbf{s}}(z)| = \exp\left(-a_{\varphi,n}\operatorname{Im} z - \frac{1}{\pi}\int_{\mathbb{R}}\frac{-\operatorname{Im} z}{|z-x|^2}\,\sigma_{\varphi,n}(dx)\right).$$

ANNALES HENRI LEBESGUE

The above properties imply that φ^n is of bounded type, and therefore the factors $\varphi_{n,b}, \varphi_{n,o}, \varphi_{n,s}$, the signed measure $\sigma_{\varphi,n}$ and the constant $a_{\varphi,n} \in \mathbb{R}$ are uniquely determined (up to multiplication by a constant of modulus 1 in case of $\varphi_{n,o}$ and $\varphi_{n,s}$).

By comparing the factorisations of φ and φ^n , we find that $\varphi_{n,s} = c_n(\varphi_{1,s})^n$ for some constant c_n with modulus 1. It follows that $a_{\varphi,n} = na_{\varphi,1}$ and $\sigma_{\varphi,n} = n\sigma_{\varphi,1}$. This, however, implies that $a_{\varphi,1} = \frac{1}{n}a_{\varphi,n} \ge -\frac{1}{n}a_g$ for all $n = 1, 2, \ldots$, and so $a_{\varphi,1} \ge 0$. Similarly, the negative part of $\sigma_{\varphi,1} = \frac{1}{n}\sigma_{\varphi,n}$ is dominated by $\frac{1}{n}\sigma_g$ for any $n = 1, 2, \ldots$ This is not possible if the negative part of $\sigma_{\varphi,1}$ is non-zero, and therefore $\sigma_{\varphi,1}$ is a non-negative measure. We conclude that $\varphi = \varphi_{1,b} \varphi_{1,o} \varphi_{1,s}$ is a bounded holomorphic function on \mathbb{C}_- .

Since $\varphi = f$ on \mathbb{C}_+ and f is a bounded holomorphic function on \mathbb{C}_+ , we have proved that φ is a bounded holomorphic function on $\mathbb{C} \setminus A$. However, A has zero Lebesgue measure (as a subset of \mathbb{R}). By Painlevé's theorem (see [You15, Theorem 2.7]), φ extends to a bounded holomorphic function on \mathbb{C} . This, in turn, implies that φ is constant, and so $\hat{\mu}_+$ is constant, contradicting the assumption that μ_+ is a non-zero measure on $(0, \infty)$.

Proof of Theorem 1.1. — Suppose that $(\mu^{*n})_+ = (\nu^{*n})_+$ for n = 1, 2, ... for some measures μ and ν such that μ_+ and ν_+ are non-zero measures. By Lemma 2.1, $\mu_+ = \nu_+$ and $(\mu_+^{*n} * \mu_-)_+ = (\nu_+^{*n} * \nu_-)_+$ for n = 1, 2, ... Let $\eta = \mu_+ + \mu_- - \nu_-$, so that $\eta_+ = \mu_+ = \mu_-$ and $\eta_- = \mu_- - \nu_-$. Then $(\eta_+^{*n} * \eta_-)_+ = 0$ for n = 1, 2, ...,and therefore, by Lemma 2.4, either η_+ or η_- is a zero measure. Since $\eta_+ = \mu_+$ is a non-zero measure, we must have $\eta_- = 0$, that is, $\mu_- = \nu_-$.

3. An error in [Ula92]

In [Ula92] an analogue of Theorem 1.1 is given, with equality of μ^{*n} and ν^{*n} on $(-\infty, 0)$ rather than on $(0, \infty)$. In [Ula92, Page 3001, line 16], it is claimed that the measures μ and ν satisfy [Ula92, condition (B) of Theorem A], as a consequence of the results of [LO77, Section 11.2]. This reasoning would have been correct if the holomorphic extensions of $\hat{\mu}$ and $\hat{\nu}$ to the upper complex half-plane had been known to be continuous on the boundary. However, this is not verified in [Ula92].

More precisely, it is observed in [Ula92] that $\hat{\mu} = (\hat{\chi}_2 - (\hat{\chi}_1)^2)/(2\hat{\chi}_1)$ almost everywhere on \mathbb{R} , where $\chi_1 = \mu - \nu$ and $\chi_2 = \mu^{*2} - \nu^{*2}$ are measures concentrated on $(0, \infty)$. Since $\hat{\chi}_1$ and $\hat{\chi}_2$ extend to holomorphic functions on \mathbb{C}_+ , $\hat{\mu}$ extends to a meromorphic function on \mathbb{C}_+ . Equality of μ^{*n} and ν^{*n} on $(-\infty, 0)$ for $n \ge 3$ is used only to show that the extension of $\hat{\mu}$ has no poles in \mathbb{C}_+ . However, the extension of $\hat{\mu}$ can have singularities near \mathbb{R} and thus fail to satisfy [Ula92, condition (B) of Theorem A].

To be specific, observe that $\hat{\mu}(z) = z^2(z+i)^{-4} \exp(i/z)$ is the characteristic function of a measure μ on \mathbb{R} . Namely, μ is the convolution of $\frac{1}{6}x^3e^{-x}\mathbb{1}_{(0,\infty)}(x)dx$ and $\frac{1}{6}{}_0F_1(4;x)\mathbb{1}_{(-\infty,0)}(x)dx - \frac{1}{2}\delta_0(dx) - \delta'_0(dx) - \delta''_0(dx)$ (in the sense of distributions; ${}_0F_1$ is the hypergeometric function; we omit the details). Clearly, $\hat{\mu}$ extends holomorphically to the upper complex half-plane, but this extension is not continuous on the boundary, and thus μ does not satisfy [Ula92, condition (B) of Theorem A]. Furthermore, $\hat{\mu}(z)$ is the ratio of two characteristic functions of finite measures supported in $[0, \infty)$: $z^4/(z+i)^8$ and $z^2(z+i)^{-4} \exp(-i/z)$.

The author of the present article was not able to correct the error in [Ula92]. The proof given above uses a related, but essentially different idea.

Acknowledgments

I thank Loïc Chaumont for numerous discussions on the subject of the article and encouragement. I thank Jan Rosiński for letting me know about reference [OU90]. I thank Alexander Ulanovskiĭ for discussions on references [OU90, Ula92]. The main part of this article was written during the 39th Conference on Stochastic Processes and their Applications in Moscow.

BIBLIOGRAPHY

- [CD20] Loïc Chaumont and Ron Doney, On distributions determined by their upward, space-time Wiener-Hopf factor, J. Theor. Probab. 33 (2020), no. 2, 1011–1033. ↑1389, 1390
- [Con73] John B. Conway, Functions of one complex variable, Graduate Texts in Mathematics, vol. 11, Springer, 1973. ↑1394
- [Gar07] John Brady Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, vol. 236, Springer, 2007. ↑1392, 1394
- [LMS76] Gérard G. Letac, Pierre Mazet, and Gérard Schiffman, A note on left-continuous random walks, J. Appl. Probab. 13 (1976), no. 4, 814–817. ↑1390
- [LO77] Yuriĭ V. Linnik and Iosif V. Ostrovskiĭ, Decomposition of random variables and vectors, Translations of Mathematical Monographs, vol. 48, American Mathematical Society, 1977. ↑1395
- [Mas09] Javad Mashreghi, Representation theorems in Hardy spaces, London Mathematical Society Student Texts, Cambridge University Press, 2009. ↑1392
- [Ost85] Iosif V. Ostrovskiĭ, Generalization of the Titchmarsh convolution theorem and the complexvalued measures uniquely determined by their restrictions to a half-line, Stability Problems for Stochastic Models (Uzhgorod, 1984), Lecture Notes in Mathematics, vol. 1155, Springer, 1985, pp. 256–283. ↑1390
- [OU90] Iosif V. Ostrovskiĭ and Alexander M. Ulanovskiĭ, Probability distributions and Borel measures uniquely determined by their restrictions to a half-space, Probability theory and mathematical statistics. Vol. II (Vilnius, 1989) (B. Grigelionos, Yu V. Prohorov, V. V. Sazonov, and V. Statulevičius, eds.), Mokslas, 1990, pp. 278–287. ↑1390, 1396
- [Ula90] Alexander M. Ulanovskiĭ, Unique determination of the convolutions of measures in \mathbb{R}^m , $m \ge 2$, by their restriction to a set, J. Math. Sci. **49** (1990), no. 6, 1298–1301. \uparrow 1390
- [Ula92] _____, On the determination of a measure by the restriction of its n-fold convolutions to a massive set, Teor. Funkts. Funkts. Anal. Prilozh. 57 (1992), 102–109, English translation in: J. Math. Sci. 77(1) (1995): 2997–3002. ↑1390, 1395, 1396
- [Vig01] Vincent Vigon, Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf, Ph.D. thesis, INSA de Rouen, (France), 2001. ↑1389
- [You15] M. Younsi, On removable sets for holomorphic functions, EMS Surv. Math. Sci. 2 (2015), no. 2, 219–254. ↑1395

Manuscript received on 13th March 2019, accepted on 19th February 2020.

Recommended by Editor L. Chaumont. Published under license CC BY 4.0.

This journal is a member of Centre Mersenne.

Mateusz KWAŚNICKI Department of Pure Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland) mateusz.kwasnicki@pwr.edu.pl