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a combinatorial interpretation of the Ehrhart h∗–polynomials of some of these polytopes in
terms of descents of total cyclic orders. The Euler numbers, the Eulerian numbers and the
Narayana numbers appear as special cases.

Résumé. — Nous introduisons plusieurs classes de polytopes contenus dans [0, 1]n et définis
par des inégalités impliquant des sommes de coordonnées consécutives. Nous montrons que le
volume normalisé de ces polytopes énumère les extensions circulaires de certains ordres cycliques
partiels. Cela apporte entre autres un éclairage nouveau sur une question popularisée par
Stanley. Nous fournissons aussi une interprétation combinatoire des h∗–polynômes d’Ehrhart
de certains de ces polytopes en termes de descentes dans les ordres cycliques totaux. Les
nombres d’Euler, les nombres Eulériens et les nombres de Narayana apparaissent comme des
cas particuliers.

1. Introduction

Lattice polytopes, i.e. polytopes with vertices in Zn, have a volume which is an
integer multiple of 1/n!, which is the volume of the smallest simplex with vertices
in Zn. An important question is to find a combinatorial interpretation of the in-
tegers arising as the normalized volume (the volume multiplied by factorial of the
dimension) of some natural classes of lattice polytopes. The most celebrated instance
is probably the Chan–Robbins–Yuen polytope [CRY00], the normalized volume of
which was conjectured by [CRY00] and shown by Zeilberger [Zei99] to be equal to
a product of Catalan numbers. This was later generalized to flow polytopes, see for
example [CKM17] and the references therein. Another class of polytopes is that of
the poset polytopes [Sta86]: to any poset one can associate two polytopes, the order
polytope and the chain polytope of the poset, whose normalized volumes are equal
to the number of linear extensions of the poset.
Refined enumeration results involve the Ehrhart h∗–polynomial of the polytope,

which has the property that its coefficients are nonnegative integers which sum to
the normalized volume of the polytope [Sta80]. See [BR15] for some background
about Ehrhart theory.
In this article, we associate natural polytopes to partial cyclic orders in the spirit

of the chain polytopes construction [Sta86]. We define several classes of polytopes,
obtained as subsets of [0, 1]n and cut out by inequalities comparing the sum of some
consecutive coordinates to the value 1. Stanley asked for a formula of the normalized
volumes of some of these polytopes in [Sta12a, Exercise 4.56(d)]. We show that the
normalized volumes of these polytopes enumerate extensions of some partial cyclic
orders to total cyclic orders (see below for some background on cyclic orders). We
also find a combinatorial interpretation of the Ehrhart h∗–polynomials of some of
these polytopes in terms of descents in the total cyclic orders. Remarkably enough,
the Euler up/down numbers and the Eulerian numbers both arise, the former as the
volumes of some polytopes and the latter as the coefficients of the h∗–polynomials of
other polytopes. The Catalan and Narayana numbers also arise, as limiting values
for the volumes and coefficients of the h∗–polynomials of a certain class of polytopes.
Some of the polytopes we introduce belong to the class of Gorenstein polytopes (see
e.g. [BN08]).
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A cyclic order π on a set X is a subset of triples in X3 satisfying the following
three conditions, respectively called cyclicity, asymmetry and transitivity:

(1) ∀ x, y, z ∈ X, (x, y, z) ∈ π ⇒ (y, z, x) ∈ π;
(2) ∀ x, y, z ∈ X, (x, y, z) ∈ π ⇒ (z, y, x) 6∈ π;
(3) ∀ x, y, z, u ∈ X, (x, y, z) ∈ π and (x, z, u) ∈ π ⇒ (x, y, u) ∈ π.

A cyclic order π is called total if for every triple of distinct elements (x, y, z) ∈ X3,
either (x, y, z) ∈ π or (z, y, x) ∈ π. Otherwise, it is called partial. Intuitively a total
cyclic order π on X is a way of placing all the elements of X on a circle such that a
triple (x, y, z) lies in π whenever y lies on the cyclic interval from x to z when turning
around the circle in the clockwise direction. This provides a bijection between total
cyclic orders on X and cyclic permutations on X. See Figure 1.1 for an example.
This graphical representation is more intricate in the case of a partial cyclic order
π, where there are usually multiple “circles” and each element may lie on several
circles, as dictated by the triples belonging to π. Given a partial cyclic order π′ on
X and a total cyclic order π on X, π is called a circular extension of π′ if π′ ⊂ π.
In other words, a circular extension of a partial cyclic order is a total cyclic order
compatible with it.
In this article, we consider classes of total cyclic orders on {0, . . . , n} where we

prescribe the relative position on the circle of certain consecutive integers. This
amounts to looking at the set of all the circular extensions of a given partial cyclic
order. Although the set of total cyclic orders on {0, . . . , n} is naturally in bijection
with the set of permutations on {1, . . . , n}, the conditions defining the subsets under
consideration are expressed more naturally in terms of circular extensions. Not every
partial cyclic order admits a circular extension, as was shown by Megiddo [Meg76].
The classes of partial cyclic orders considered in this article build upon those intro-
duced in [Ram18], which are the first classes for which positive enumerative results
of circular extensions were obtained.
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Figure 1.1. An example of a graphical representation of a total cyclic order on
{0, . . . , 7}. The arrow indicates the clockwise direction of rotation on the circle.
This total cyclic order contains for example the triples (0, 4, 2) and (6, 1, 2) but
not the triple (7, 5, 4).
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Organization of the paper

In Section 2, we introduce several classes of polytopes and partial cyclic orders,
then state the main results relating the volumes and Ehrhart h∗–polynomials of the
former to the enumeration and refined enumeration of the circular extensions of the
latter. In Section 3 we prove that our polytopes are lattice polytopes. In Section 4
we introduce a transfer map which maps the original polytopes to sets whose volume
can be computed easily, from which we deduce the statement about their volumes.
Section 5 is mainly devoted to the interpretation of the coefficients of the Ehrhart
h∗–polynomials of some of the polytopes. We also show in that section that some
of these polynomials are palindromic. In Section 6 we show that a certain class of
these polynomials stabilizes to the Narayana polynomials. Finally in Section 7 we
explain how to use the multidimensional boustrophedon construction to compute
the volumes of the polytopes.

2. Main results

2.1. Volumes of polytopes

For n > 1, we denote by [n] the set {0, 1, . . . , n} and by Zn the set of total cyclic
orders on [n]. If m > 3 and π ∈ Zn, the m–tuple (x1, . . . , xm) of distinct elements
of [n] is called a π–chain if for 2 6 i 6 m− 1, we have (x1, xi, xi+ 1) ∈ π. In words,
this means that if we place all the numbers on a circle in the cyclic order prescribed
by π and turn around the circle in the clockwise direction starting at x1, we will
first see x2, then x3, etc., before coming back to x1. We extend this definition to
the case m = 2 by declaring that every pair (x1, x2) ∈ [n]2 with x1 6= x2 forms a
π–chain. For example, for the total cyclic order π depicted on Figure 1.1, (0, 1, 2, 3)
and (1, 5, 6, 3, 7) are π–chains but (1, 2, 3, 4) is not a π–chain.
For 1 6 k 6 n, define Âk,n to be the set of total cyclic orders π ∈ Zn such that for

0 6 i 6 n− k, the (k + 1)–tuple (i, i+ 1, . . . , i+ k) forms a π–chain. This can easily
be reformulated by saying that Âk,n is the set of all circular extensions of some given
partial cyclic order.
For 1 6 k 6 n, define the convex polytope B̂k,n as the set of all (x1, . . . , xn) ∈ [0, 1]n

such that
for 0 6 i 6 n− k, we have xi+ 1 + · · ·+ xi+ k 6 1.

These polytopes were introduced in [Sta12a, Exercise 4.56(c)] by Stanley. In the
solution to this exercise, he gives some discrete difference equations for polynomials
which can be used to compute the volumes of B̂k,n. He then asks for a formula for the
normalized volumes of B̂k,n [Sta12b], [Sta12a, Exercise 4.56(d)]. The polytopes B̂2, n

(resp. B̂3, n) seem to have been first considered in [SMN79] (resp. by Kirillov [Inc20,
Sequence A096402]). The polytopes B̂2,n were also extensively studied by Diaco-
nis and Wood [DW13], arising as spaces of random doubly stochastic tridiagonal
matrices.
Our first result relates the normalized volumes of B̂k,n to the enumeration of Âk,n.
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Theorem 2.1. — For 1 6 k 6 n, the polytope B̂k,n is a lattice polytope and we
have
(2.1) n! vol(B̂k,n) = #Âk,n.

Remark 2.2. — The cases k = 1 and k = 2 are already known. When k = 1,
Â1,n = Zn, which has cardinality n! and B̂1,n = [0, 1]n, which has volume 1. When
k = 2, it was shown in [Ram18] that #Â2,n is equal to the nth Euler up/down
number En. On the other hand, it follows from [Sta12a, Exercise 4.56(c)] that
n! vol(B̂2,n) = En (see also [SMN79]).

Theorem 2.1 admits a generalization where the lengths of the chains defining the
partial cyclic order (resp. the number of coordinates appearing in each inequality
defining the polytope) do not have to be all equal. For n > 1, let Pn be the set of all
pairs (i, j) ∈ [n]2 such that i < j. To every subset I ⊂ Pn, we associate the set AI,n
of all the total cyclic orders π ∈ Zn such that for (i, j) ∈ I, (i, i + 1, . . . , j) forms
a chain in π. The set AI,n can be seen as the set of all the circular extensions of a
given partial cyclic order. Furthermore, to every subset I ⊂ Pn, we associate the
polytope BI,n defined as the set of all (x1, . . . , xn) ∈ [0, 1]n such that

for (i, j) ∈ I, we have xi+1 + · · ·+ xj−1 + xj 6 1.
Then we have:

Theorem 2.3. — For n > 1 and I ⊂ Pn, the polytope BI,n is a lattice polytope
and we have
(2.2) n! vol(BI,n) = #AI,n.

If I = {(i, i + k)}06 i6n−k, we recover AI,n = Âk,n and BI,n = B̂k,n. Hence
Theorem 2.1 follows as a corollary of Theorem 2.3.

Remark 2.4. — If some pair (i, j) ∈ I is nested inside another pair (i′, j′) ∈ I,
then the condition on π-chains imposed by (i, j) (resp. the inequality imposed by
(i, j)) is redundant in the definition of AI,n (resp. BI,n). Without loss of generality, we
can thus restrict ourselves to considering sets I with no nested pairs, which provides
a minimal way of describing AI,n and BI,n.

The case k = 2 of Theorem 2.1 can be generalized in the following way. To every
word s = (s1, . . . , sn) ∈ {+,−}n with n > 0, following [Ram18], one can associate
the cyclic descent class Ãs, defined as the set of all π ∈ Zn+1 such that for 1 6 i 6 n,
we have (i− 1, i, i+ 1) ∈ π (resp. (i+ 1, i, i− 1) ∈ π) if si = + (resp. if si = −). The
set Ãs can again be seen as the set of all the circular extensions of a given partial
cyclic order. For example, if si = + for 1 6 i 6 n, then Ãs = Â2,n+1. On the other
hand, one can associate to every word s = (s1, . . . , sn) ∈ {+,−}n the polytope B̃s

defined as the set of all (x1, . . . , xn+ 1) ∈ [0, 1]n+ 1 such that:
• if 1 6 i 6 n and si = +, then we have xi + xi+ 1 6 1;
• if 1 6 i 6 n and si = −, then we have xi + xi+ 1 > 1.

For example, if si = + for 1 6 i 6 n, then B̃s = B̂2,n+ 1. We then have the
following result.
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Theorem 2.5. — For n > 0 and s = (s1, . . . , sn) ∈ {+,−}n, the polytope B̃s is
a lattice polytope and we have
(2.3) (n+ 1)! vol(B̃s) = #Ãs.

Remark 2.6. — The polytopes B̂2,n arise as the chain polytopes of zigzag
posets [Sta86]. For k 6 n 6 2k, the polytopes B̂k,n also arise as chain polytopes of
some posets. This corresponds to the Catalan/Narayana range of parameters (see
Theorem 2.12 and the paragraph following it). However we stress that in general, the
polytopes BI,n and B̃s do not arise as chain polytopes of some posets. For example,
one can show that B̂3,n is not a chain polytope whenever n > 7.

2.2. Ehrhart h∗–polynomials

One can refine Theorem 2.3 by considering the Ehrhart h∗–polynomials of the
polytopes BI,n, whose evaluations at 1 give the volumes of the polytopes. The
book [BR15] is a good reference for the basics of Ehrhart theory.
Definition 2.7. — If P ⊂ Rn is a lattice polytope, its Ehrhart function is defined

for every integer t > 0 by
E(P, t) := #(t · P ) ∩ Zn

where t · P is the dilation of P by a factor t, i.e. t · P = {t · v | v ∈ P}.

This function may in fact also be defined if P is an arbitrary bounded subset of
Rn and this point of view will be useful later. When P is a lattice polytope, the
function E(P, t) is actually a polynomial function of t. Hence it is called the Ehrhart
polynomial of P .
Definition 2.8. — If P ⊂ Rn is a lattice polytope, we set

E∗(P, z) := (1− z)n+1
∞∑
t= 0

E(P, t)zt.

The function E∗(P, z) is a polynomial in z, called the Ehrhart h∗–polynomial of P .
By a result of Stanley [Sta80], the coefficients of E∗(P, z) are nonnegative integers

whose sum equals the normalized volume of P . We provide a combinatorial inter-
pretation of the coefficients of the h∗–polynomial of BI,n in terms of descents in the
elements of AI,n.
To every total cyclic order π ∈ Zn we associate the word π of length n+1 obtained

by placing the elements of π on a circle in the cyclic order imposed by π and reading
them in the clockwise direction, starting from 0. For example, for the total cyclic
order π depicted on Figure 1.1, we have π = (0, 7, 1, 4, 5, 2, 6, 3). We denote by Wn

the set of words of length n+ 1 with letters in [n] that are all distinct and starting
with 0. Then π ∈ Zn 7→ π ∈ Wn is a bijection.
Given a word w = (w0, . . . , wn) ∈ Wn and an integer i such that 0 6 i 6 n− 1, we

say that w has a descent at position i if wi+ 1 < wi. We denote by des(w) the number
of positions at which w has a descent. For example, the word w = (0, 3, 4, 1, 5, 2)
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has two descents, at positions 2 and 4, and thus des(w) = 2. We have the following
generalization of Theorem 2.3.
Theorem 2.9. — For n > 1 and I ⊂ Pn, we have

(2.4) E∗(BI,n, z) =
∑
π∈AI,n

zdes(π).

In Table 5.1, we display the polynomials E∗(B̂k,n, z) for some small values of k
and n. These polynomials have several remarkable features: they are palindromic,
they contain the Eulerian polynomials and they stabilize in a certain limit to the
Narayana polynomials.
Recall that a polynomial R(z) = ∑d

h= 0 ahz
h of degree d is called palindromic if its

sequence of coefficients is symmetric, i.e. for 0 6 h 6 d, we have ah = ad−h.

Theorem 2.10. — For 1 6 k 6 n, the polynomial E∗(B̂k,n, z) is palindromic.

Note that in general, the polynomials E∗(BI,n, z) are not palindromic.

Remark 2.11. — In the case k = 1, B̂1,n is the unit hypercube [0, 1]n and its
h∗–polynomial is well-known to be the nth Eulerian polynomial, whose coefficients
enumerate the permutations of {1, . . . , n} refined by their number of descents (see
e.g. [HJV16]). This is consistent with the fact that Â1,n is in bijection with the set
of all permutations of {1, . . . , n}, arising upon removing the initial 0 from each word
π for π ∈ Â1,n.
For 1 6 k 6 n, define the Narayana numbers [Inc20, Sequence A001263]

N(n, k) := 1
n

(
n

k

)(
n

k − 1

)
,(2.5)

and the Narayana polynomials

Qn(z) :=
n∑

k= 1
N(n, k)zk− 1.(2.6)

The Narayana numbers are a well-known refinement of Catalan numbers, counting
for example the number of Dyck paths with prescribed length and number of peaks
(see e.g. [FS09, Example III.13]). We have the following stabilization result of the
Ehrhart h∗–polynomials of B̂k,n to the Narayana polynomials.

Theorem 2.12. — For 1 6 k 6 n 6 2k, we have E∗(B̂k, n, z) = Qn− k+ 1(z).

This result generalizes the fact that the normalized volume of B̂k,n when k 6 n 6 2k
is the (n− k + 1)st Catalan number [Sta12a, Exercise 4.56(e)].

3. Lattice polytopes

In this section we show that the polytopes BI,n and B̃s are lattice polytopes by
appealing to the theory of unimodular matrices. A rectangular matrix M is said to
be totally unimodular if every nonsingular square submatrix of M is unimodular, i.e.
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has determinant ±1. By [Sch86, Theorem 19.1], if M is totally unimodular then for
every integral vector c, the polyhedron defined by
(3.1) {x | x > 0,Mx 6 c}
is integral, i.e. it is equal to the convex hull of its integer points. In the case of
polytopes, which are bounded polyhedra, the integrality property is equivalent to a
polytope being a lattice polytope. Thus it suffices to realize the polytopes BI,n and
B̃s as a set of inequalities in the form of (3.1) involving a totally unimodular matrix
M to conclude that these polytopes are lattice polytopes. This is what we do now.
Lemma 3.1. — For n > 1 and I ⊂ Pn, there exists a totally unimodular matrix

MI,n and an integral vector cI,n such that
BI,n = {x | x > 0,MI,nx 6 cI,n}.

Proof. — Fix n > 1 and I ⊂ Pn. Write
I ={(i1, j1), . . . , (im, jm)},

where m > 1 is the cardinality of I. Define

M ′
I,n :=

(
1ip <q6 jp

)
16 p6m
16 q6n

.

In words, M ′
I,n is the m × n matrix such that for 1 6 p 6 m, the pth row of M ′

I,n

contains a 1 in positions located between ip + 1 and jp and 0 elsewhere. Set MI,n to
be the (m+ n)× n matrix whose first n rows consist of the identity and whose last
m rows consist of M ′

I, n. Let cI,n be the vector in Rm+n with all coordinates equal
to 1. Then

BI,n = {x | x > 0,MI,nx 6 cI,n}.
The matrix MI,n has the property that it is a matrix with entries in {0, 1} where the
1’s in each line are arranged consecutively. Such matrices are called interval matrices
and form a well-known class of totally unimodular matrices [Sch86, Chapter 19,
Example 7]. �

Lemma 3.2. — For n > 1 and s ∈ {+,−}n, there exists a totally unimodular
matrix Ms and an integral vector cs such that

B̃s = {x | x > 0,Msx 6 cs}.
Proof. — Fix n > 1 and s ∈ {+,−}n. DefineM ′

s to be the matrix of size n×(n+1)
such that for 1 6 i 6 n, the entries in positions (i, i) and (i, i+ 1) of M ′

s are equal
to 1 (resp. −1) if si = + (resp. si = −), and all the other entries of M ′

s are zero. Set
Ms to be the (2n+ 1)× (n+ 1) matrix whose n+ 1 first rows consist of the identity
matrix and whose last n rows consist of M ′

s. Set cs to be the vector in R2n+ 1 with
the (n + 1 + i)th coordinate equal to −1 if si = − for 1 6 i 6 n and all the other
coordinates equal to 1. Then

B̃s = {x | x > 0,Msx 6 cs}.
The matrix Ms can be realized as an interval matrix (with entries in {0, 1}) up to
multiplying some rows by −1. Since interval matrices are totally unimodular, the
matrix Ms is also totally unimodular. �
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4. The transfer map

In this section we prove Theorem 2.3 and Theorem 2.5 by introducing a transfer
map Fn from [0, 1]n to itself, which is piecewise linear, (Lebesgue) measure-preserving
and bijective outside of a set of measure 0. We will show that the images under Fn of
the polytopes of types BI,n for I ⊂ Pn and B̃s for s ∈ {+,−}n are some sets whose
normalized volumes are easily seen to enumerate the sets AI,n and Ãs.
For n > 1, we define the map

Fn : (x1, . . . , xn) ∈ [0, 1]n →
 i∑
j= 1

xj mod 1


16 i6n

∈ [0, 1)n.

In order to avoid confusion, we will denote the coordinates on the source (resp.
target) of Fn by (x1, . . . , xn) (resp. (y1, . . . , yn)).

Lemma 4.1. — The map Fn induces a piecewise linear measure-preserving bijec-
tion from [0, 1)n to itself.

Proof. — For n > 1, define the map
Gn : (y1, . . . , yn) ∈ [0, 1)n 7→ (x1, . . . , xn) ∈ [0, 1)n,

where x1 := y1 and for 2 6 i 6 n,

xi :=

yi − yi− 1 if yi > yi− 1,

1 + yi − yi− 1 if yi < yi− 1.

It is a straightforward check that Gn is a left- and right-inverse of Fn on [0, 1)n.
Recall that N denotes the set of all positive integers. For n > 1, define the set of
measure zero

X ′n :=
{

(x1, . . . , xn) ∈ [0, 1)n
∣∣∣∣∣ ∃ j ∈ {1, . . . , n} so that

j∑
i= 1

xi ∈ N
}
.

On each connected component of [0, 1)n \X ′n, the map Fn coincides with a translate
of the map

F ′n : (x1, . . . , xn) ∈ [0, 1)n →
 i∑
j= 1

xj


16 i6n

.

Since the matrix of F ′n in the canonical basis is upper triangular with 1 on
the diagonal, F ′n is a measure-preserving linear map and Fn is also measure-
preserving. �

Remark 4.2. — A map very similar to Gn was introduced in [Sta77] in order to
show that the volumes of hypersimplices are given by Eulerian numbers.

For 1 6 i 6 n, given a word w = (w0, . . . , wn) ∈ Wn, we define posw(i) (the
position of i in w) to be the unique j between 1 and n such that wj = i. We associate
to every element of [0, 1)n two words, its standardization (following [HJV16]) and
its cyclic standardization.
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Definition 4.3. — Let n > 1 and let y = (y1, . . . , yn) ∈ [0, 1)n.
(1) The standardization of y, denoted by std(y), is defined to be the unique

permutation σ ∈ Sn such that for 1 6 i < j 6 n, σ(i) > σ(j) if and only if
yi > yj. Using the one-line notation for permutations, the standardization of
y can also be seen as an n–letter word.

(2) The cyclic standardization of y, denoted by cs(y), is defined to be the unique
word w = (w0, . . . , wn) ∈ Wn such that for 1 6 i < j 6 n, posw(i) > posw(j)
if and only if yi > yj.

For example, if y = (0.2, 0.7, 0.2, 0.1, 0.2), then std(y) = (2, 5, 3, 1, 4) and cs(y) =
(0, 4, 1, 3, 5, 2). The following result is an immediate consequence of Definition 4.3.

Lemma 4.4. — Let n > 1 and let y = (y1, . . . , yn) ∈ [0, 1)n. Write σ = std(y) ∈
Sn. Then the word cs(y) is obtained by adding the letter 0 in front of the word
(σ−1(1), . . . , σ−1(n)) representing the permutation σ−1 in one-line notation.

For n > 1 and π ∈ Zn, we define Sπ to be the set of all y ∈ [0, 1)n whose cyclic
standardization is π:

Sπ := {y ∈ [0, 1)n | cs(y) = π} .
We have the following result about the sets Sπ.

Lemma 4.5. — Let n > 1 and let π 6= π′ ∈ Zn. The sets Sπ and Sπ′ have disjoint
interiors and

vol(Sπ) = 1
n! .

Proof. — It is not hard to see that for π ∈ Zn, the set Sπ is defined by n + 1
inequalities. For example, if π is such that π = (0, 4, 1, 3, 5, 2), then Sπ is defined by
the inequalities

0 6 y4 < y1 6 y3 6 y5 < y2 < 1.
The interior S̊π of Sπ is defined by making strict all the inequalities used to define
Sπ. It follows that if π 6= π′ ∈ Zn, then S̊π ∩ S̊π′ = ∅. Furthermore, by symmetry, all
the S̊π where π ranges over Zn have the same volume. Since

[0, 1)n =
⊔
π ∈Zn

Sπ,

we deduce that vol(Sπ) = vol(S̊π) = 1
n! for π ∈ Zn. �

For n > 1 we define the sets

Xn := {(x1, . . . , xn) ∈ (0, 1)n | ∀ 1 6 i 6 j 6 n, xi + · · ·+ xj /∈ Z}

and

Yn := {(y1, . . . , yn) ∈ (0, 1)n | ∀ 1 6 i < j 6 n, yi 6= yj} .

Both Xn and Yn have full Lebesgue measure as subsets of [0, 1]n. Furthermore,
Fn maps Xn to Yn.
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Proposition 4.6. — For n > 1 and I ⊂ Pn, we have
Fn(BI,n ∩Xn) =

⊔
π ∈AI,n

(Sπ ∩ Yn).(4.1)

For n > 0 and s ∈ {+,−}n, we have
Fn+ 1(B̃s ∩Xn+ 1) =

⊔
π ∈ Ãs

(Sπ ∩ Yn+ 1).(4.2)

Proof. — Let C denote the circle obtained by quotienting out the interval [0, 1] by
the relation 0 ∼ 1. The circle C comes naturally equipped with the standard cyclic
order. Fix n > 1 and (x1, . . . , xn) ∈ Xn. We set (y1, . . . , yn) = F (x1, . . . , xn) ∈ Yn
and we let π be the element of Zn such that cs(y) = π. Observe that each variable xi
measures the gap between yi− 1 and yi when turning in the clockwise direction on C
(where by convention y0 = 0). Thus, for 1 6 i < j 6 n, we have xi+ 1 + · · ·+ xj < 1
if and only if (yi, yi+ 1, . . . , yj) forms a C–chain. Furthermore, (yi, yi+ 1, . . . , yj) forms
a C–chain if and only if (i, i+ 1, . . . , j) forms a π–chain. It follows immediately that
for I ⊂ Pn, x ∈ BI,n if and only if π ∈ AI,n. Equality (4.1) follows from the fact that
Fn is a bijection from Xn to Yn.

y2 y3 y4y50 1

x3
x4

x5

Figure 4.1. The inequality x3 + x4 + x5 < 1 is equivalent to the fact that
(y2, y3, y4, y5) forms a chain in [0, 1]/ ∼ equipped with its standard cyclic order.

Equality (4.2) follows similarly, by observing that the knowledge of the sign of
xi + xi+ 1 − 1 is equivalent to the knowledge of the relative positions of yi− 1, yi and
yi+ 1 on C. �

Theorems 2.3 and 2.5 follow immediately from combining Lemma 4.1, Lemma 4.5
and Proposition 4.6. In order to compute the volumes of the polytopes BI,n and B̃s

we were able to work up to sets of measure zero, discarding the complementary of
the sets Xn and Yn. However we will need to take these sets of measure zero into
account to compute the h∗–polynomial of BI,n in the next section.

5. The Ehrhart h∗–polynomial

In this section, we first prove Theorem 2.9 about the combinatorial interpretation
of the h∗–polynomial of BI,n in terms of descents of elements in AI,n. Then we prove
Theorem 2.10 about the palindromicity of the h∗–polynomials of B̂k,n.
The first step of the proof of Theorem 2.9 consists in relating our polytope BI,n

with its “half-open” analog B′I,n, which we now define.
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Definition 5.1. — To every subset I ⊂ Pn, we associate the polytope B′I,n
defined as the set of all (x1, . . . , xn) ∈ [0, 1)n such that for (i, j) ∈ I, we have
xi+ 1 + · · ·+ xj− 1 + xj < 1.

Though B′I,n is not a polytope (it is obtained from the polytope BI,n by removing
some faces), we can define its Ehrhart polynomial in the usual way by

∀ t ∈ N, E(B′I,n, t) := #
(
t ·B′I,n ∩ Zn

)
and its h∗–polynomial by

E∗(B′I,n, z) = (1− z)n+1
∞∑
t= 1

E(B′I,n, t)zt.

Note that there is no general result to guarantee that E∗(B′I,n, z) is a polynomial
with nonnegative coefficients. However, in our setting we do have the following result.

Lemma 5.2. — If t ∈ N, then E(B′I,n, t) = E(BI,n, t− 1) and

(5.1) E∗(B′I,n, z) = z · E∗(BI,n, z).

Proof. — The first equality follows from the fact that for t ∈ N,(
t ·B′I,n

)
∩ Zn =

(
(t− 1) ·BI,n

)
∩ Zn.

To see why this is true, it suffices to notice that the condition xi+ 1+xi+ 2+· · ·+xj < t
is equivalent to xi+ 1 + xi+ 2 + · · · + xj 6 t − 1 when (xi)16 i6n ∈ Zn. The second
equality follows from the first one. �

It remains to show that E∗(B′I,n, z) is the descent generating function of AI,n (up
to this factor z). The first step is to understand the behavior of the transfer map on
some of the measure zero sets that were discarded in equality (4.1).

Proposition 5.3. — For n > 1 and I ⊂ Pn, we have

Fn(B′I,n) =
⊔
π ∈AI,n

Sπ.

The difference between the above proposition and Proposition 4.6 is that now we
need to take into account the cases when x is not in Xn, wherein two coordinates of
Fn(x) become equal. The idea of the proof is to deal with such potential equalities
by desingularizing, i.e. adding a small quantity to each coordinate of x to make the
coordinates of y all distinct and to show that this desingularization does not change
the cyclic standardization.
Proof. — Let x = (x1, . . . , xn) ∈ [0, 1)n and write y = Fn(x). For ε > 0, set

xε = (x1 + ε, . . . , xn + ε). There exists ε0 > 0 such that for 0 < ε 6 ε0, we have
xε ∈ Xn and

Fn(xε) = (y1 + ε, y2 + 2ε, . . . , yn + nε) ∈ Yn.
Moreover, there exists 0 < ε1 6 ε0 such that for 0 < ε 6 ε1 and for 1 6 i < j 6 n,
we have yi > yj if and only if yi + iε > yj + jε. Putting everything together, we
obtain that cs(Fn(x)) = cs(Fn(xε)) whenever ε > 0 is small enough.
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If x ∈ B′I,n, then xε ∈ BI,n ∩Xn for ε > 0 small enough. Hence, by Proposition 4.6,
we have

Fn(xε) ∈
⊔
π ∈AI,n

(Sπ ∩ Yn) ⊂
⊔
π ∈AI,n

Sπ,

and by the previous paragraph, we obtain that Fn(x) ∈ tπ ∈AI,n
Sπ.

Conversely, assume x /∈ B′I,n. Then there exists (i, j) ∈ I such that
(5.2) xi+ 1 + · · ·+ xj > 1.
The same inequality involving the coordinates i+ 1 to j as (5.2) holds for every xε

with ε > 0. Therefore, for ε > 0 small enough, we have xε ∈ Xn \BI,n. Taking ε small
enough so that xε ∈ Xn and cs(Fn(x)) = cs(Fn(xε)), we deduce from Proposition 4.6
that Fn(xε) ∈ Sπ ∩ Yn for some π /∈ AI,n, and hence Fn(x) /∈ tπ∈AI,n

Sπ. �
It follows from Proposition 5.3 that

E∗(Fn(B′I,n), z) =
∑
π ∈AI,n

E∗(Sπ, z).

Here Fn(B′I,n) is not a lattice polytope, but its h∗-polynomial is defined in the same
way as that of B′I,n. Note also that the transfer map preserves integrality. More
precisely, for v ∈ [0, 1)n and an integer t > 1, we have t · v ∈ Zn if and only if
t · Fn(v) ∈ Zn. Thus

E∗(B′I,n, z) = E∗(Fn(B′I,n), z).
To conclude the proof of Theorem 2.9, it suffices to know the h∗–polynomial of Sπ.
This is the content of the following lemma. Recall that for w ∈ Wn, des(w) counts
the number of descents of w.
Lemma 5.4. — Let n > 1 and let π ∈ Zn. Then

(5.3) E∗(Sπ, z) = zdes(π) + 1.

Proof. — By Lemma 4.4, all the elements in Sπ have the same standardization,
which we denote by σ ∈ Sn. Moreover, if we define

Tσ := {y ∈ [0, 1)n | std(y) = σ},
then Lemma 4.4 implies that Sπ = Tσ. It also implies that the word π has the
same number of descents as the word (σ−1(1), . . . , σ−1(n)), which is just the descent
number des(σ−1) of the permutation σ−1. We then appeal to [HJV16, Lemma 4],
which says exactly that

E∗(Tσ, z) = zdes(σ−1) + 1,

thereby concluding the proof. �
We conclude this section with a proof of Theorem 2.10 regarding the palindromicity

of the polynomials E∗(B̂k,n). For v, w ∈ Rn, let 〈v, w〉 denote the standard inner
product.
Definition 5.5. — If a lattice polytope P contains the origin in its interior, the

dual polytope is defined to be
P ∗ := {v ∈ Rn | 〈v, w〉 > −1 for all w ∈ P}.

We say that P is reflexive if P ∗ is also a lattice polytope.
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Table 5.1. Some values of the h∗–polynomial of B̂k,n. This illustrates in particular the stabilization property: the sequence
of polynomials in a particular column is stationary.

k

n− k 0 1 2 3 4 5

1 1 z + 1 z2 + 4z + 1 z3 + 11z2 + 11z + 1 z4 + 26z3 + 66z2 + 26z + 1 z5 + 57z4 + 302z3 + 302z2 + 57z + 1

2 1 z + 1 z2 + 3z + 1 z3 + 7z2 + 7z + 1 z4 + 14z3 + 31z2 + 14z + 1 z5 + 26z4 + 109z3 + 109z2 + 26z + 1

3 1 z + 1 z2 + 3z + 1 z3 + 6z2 + 6z + 1 z4 + 11z3 + 23z2 + 11z + 1 z5 + 19z4 + 71z3 + 71z2 + 19z + 1

4 1 z + 1 z2 + 3z + 1 z3 + 6z2 + 6z + 1 z4 + 10z3 + 20z2 + 10z + 1 z5 + 16z4 + 56z3 + 56z2 + 16z + 1

5 1 z + 1 z2 + 3z + 1 z3 + 6z2 + 6z + 1 z4 + 10z3 + 20z2 + 10z + 1 z5 + 15z4 + 50z3 + 50z2 + 15z + 1

6 1 z + 1 z2 + 3z + 1 z3 + 6z2 + 6z + 1 z4 + 10z3 + 20z2 + 10z + 1 z5 + 15z4 + 50z3 + 50z2 + 15z + 1

7 1 z + 1 z2 + 3z + 1 z3 + 6z2 + 6z + 1 z4 + 10z3 + 20z2 + 10z + 1 z5 + 15z4 + 50z3 + 50z2 + 15z + 1

k

n− k 6 7

1 z6 + 120z5 + 1191z4 + 2416z3 + 1191z2 + 120z + 1 z7 + 247z6 + 4293z5 + 15619z4 + 15619z3 + 4293z2 + 247z + 1

2 z6 + 46z5 + 334z4 + 623z3 + 334z2 + 46z + 1 z7 + 79z6 + 937z5 + 2951z4 + 2951z3 + 937z2 + 79z + 1

3 z6 + 31z5 + 191z4 + 340z3 + 191z2 + 31z + 1 z7 + 49z6 + 472z5 + 1365z4 + 1365z3 + 472z2 + 49z + 1

4 z6 + 25z5 + 140z4 + 242z3 + 140z2 + 25z + 1 z7 + 38z6 + 322z5 + 881z4 + 881z3 + 322z2 + 38z + 1

5 z6 + 22z5 + 115z4 + 195z3 + 115z2 + 22z + 1 z7 + 32z6 + 249z5 + 656z4 + 656z3 + 249z2 + 32z + 1

6 z6 + 21z5 + 105z4 + 175z3 + 105z2 + 21z + 1 z7 + 29z6 + 211z5 + 540z4 + 540z3 + 211z2 + 29z + 1

7 z6 + 21z5 + 105z4 + 175z3 + 105z2 + 21z + 1 z7 + 28z6 + 196z5 + 490z4 + 490z3 + 196z2 + 28z + 1

8 z6 + 21z5 + 105z4 + 175z3 + 105z2 + 21z + 1 z7 + 28z6 + 196z5 + 490z4 + 490z3 + 196z2 + 28z + 1

9 z6 + 21z5 + 105z4 + 175z3 + 105z2 + 21z + 1 z7 + 28z6 + 196z5 + 490z4 + 490z3 + 196z2 + 28z + 1
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Hibi’s palindromic theorem [Hib92] states that when a lattice polytope P contains
an integral interior point v, the polynomial E∗(P, z) has palindromic coefficients if
and only if P − v is reflexive. But in the present case the polytopes B̂k,n do not
contain any integral interior point, as their vertices are vectors only containing 0’s
and 1’s. However, we can resort to the more general theory of Gorenstein polytopes
(see e.g. [BN08]). A lattice polytope P is said to be Gorenstein if there exists an
integer t > 1 and an integer vector v, such that t ·P − v is reflexive. It is known that
a lattice polytope P is Gorenstein if and only if E∗(P, z) is palindromic [BN08].
Proof of Theorem 2.10. — Fix 1 6 k 6 n and denote by Pk,n the polytope

(k+ 1) · B̂k,n− (1, . . . , 1). The elements v ∈ Pk,n are characterized by the inequalities

vi > −1 for 1 6 i 6 n,(5.4)
vi+ 1 + · · ·+ vi+ k 6 1 for 0 6 i 6 n− k.(5.5)

Clearly Pk,n is a lattice polytope containing the origin as an interior point. Fur-
thermore, since there are 1’s and −1’s on the right-hand sides of inequalities (5.4)
and (5.5), the coefficients on the left-hand sides of (5.4) and (5.5) are the coordinates
of the vertices of P ∗k,n. Hence P ∗k,n is a lattice polytope. So Pk,n is reflexive and B̂k,n

is Gorenstein, thus E∗(B̂k,n) is palindromic. �

Remark 5.6. — The proof of Theorem 2.10 we provide is based on purely geo-
metric considerations involving B̂k,n. It would be interesting to understand this
palindromicity result on the combinatorial level, by finding an involution on Âk,n
sending an element π to an element π′ such that des(π) + des(π′) = degE∗(B̂k,n).

6. Stabilization to Narayana polynomials

In this section, we first prove Theorem 2.12 about the stabilization of the Ehrhart
h∗–polynomials of B̂k,n to the Narayana polynomials, as illustrated in Figure 5.1.
This is done combinatorially, using the connection with Âk,n. Then we provide some
geometric insight as to why the h∗–polynomials of B̂k,n stabilize.
Proof of Theorem 2.12. — We will first prove the result for Ân, 2n via a bijective

correspondence with nondecreasing parking functions. An (n+ 1)–tuple of nonnega-
tive integers (p0, . . . , pn) is called a nondecreasing parking function if the following
two conditions hold:

(1) for 0 6 i 6 n− 1, we have pi 6 pi+ 1;
(2) for 0 6 i 6 n, we have 0 6 pi 6 i.

We denote by Pn the set of all (n+1)–tuples that are nondecreasing parking functions.
It is well-known that the cardinality of Pn is the (n+1)st Catalan number; see [Sta99,
Exercise 6.19(s)], for example. A nondecreasing parking function (p0, . . . , pn) is said
to have an ascent at position 0 6 i 6 n − 1 if pi < pi+1. It follows from [Sch09,
Corollary A.3] that the number of nondecreasing parking functions in Pn with
k ascents is the Narayana number N(n + 1, k + 1). To complete the proof in the
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case of Ân,2n, we will define a bijection Hn from Ân,2n to Pn such that the number
of descents of π ∈ Ân,2n equals the number of ascents of Hn(π).
We term the numbers in {0, . . . , n} as “small numbers”. Given π ∈ Ân,2n, we set

Hn(π) to be the (n + 1)–tuple (p0, . . . , pn) defined as follows. For 0 6 i 6 n, pi is
defined to be the first small number to the right of n+ i in the word π if there exists
a small number to the right of n+ i. Otherwise pi is defined to be 0. In other words,
visualizing π as the placement of the numbers from 0 to 2n on a circle, pi is the next
small number after n+ i, turning in the clockwise direction. For example, if n = 3
and π = (0, 4, 5, 1, 2, 6, 3), then Hn(π) = (0, 1, 1, 3).
For π ∈ Ân, 2n, we first show that Hn(π) is in Pn. To begin with, note that the

entries 0, 1, . . . , n appear in that order in π, so n is the rightmost number in {1, . . . , n}
to appear. If 0 6 i 6 n, since (i, i+ 1, . . . , n+ i) forms a chain in π, then n+ i must
lie either to the right of n or to the left of i in π, hence pi 6 i. Let 0 6 i 6 n − 1.
If n + i lies to the right of n in π, then pi = 0 and pi 6 pi+ 1. Otherwise, n + i lies
to the left of i and from the fact that (i+ 1, . . . , n+ i, n+ i+ 1) forms a chain in π,
we deduce that n + i + 1 lies between n + i and i + 1. Thus pi 6 pi+ 1 again. This
concludes the proof that Hn(π) is in Pn.
Next, given p = (p0, . . . , pn) ∈ Pn, we define a total cyclic order H ′n(p) ∈ Z2n

as follows. First we place all the small numbers on the circle in such a way that
(0, 1, . . . , n) form a chain. Then we place each number n+i for 1 6 i 6 n in the cyclic
interval from pi − 1 to pi if pi > 1 and in the cyclic interval from n to 0 if pi = 0.
This determines for 1 6 i 6 n the position of each number n+ i with respect to the
small numbers. Since the sequence (p0, . . . , pn) is weakly increasing, it is possible to
arrange the numbers n+ i for 1 6 i 6 n in such a way that (n, n+ 1, . . . , 2n) forms
a chain. This determines uniquely the position of all the numbers on the circle and
yields (by definition) H ′n(p).
Now we need to check that π := H ′n(p) ∈ Ân, 2n. By construction, we already have

that (i, i + 1, . . . , n + i) are π-chains when i = 0 and i = n. Fix 1 6 i 6 n − 1.
Then (i, i+ 1, . . . , n) (resp. (n, n+ 1, . . . , n+ i)) forms a π–chain, as a subchain of
(0, 1, . . . , n) (resp. (n, n+ 1, . . . , 2n)). In the case when pi = 0 then for 1 6 j 6 i we
also have pj = 0, so all the numbers n + 1, n + 2, . . . n + i are to the right of n in
π and in this order. Hence (i, i+ 1, . . . , n + i) is a π-chain in this case. In the case
when pi > 0, then p0 6 p1 6 · · · 6 pi 6 i and all the numbers n+ 1, n+ 2, . . . n+ i
are to the left of i in π and in this order. Hence (i, i+ 1, . . . , n+ i) is a π–chain in
this case too. This concludes the proof that H ′n(p) belongs to Ân, 2n. Clearly, Hn and
H ′n are inverses to each other, so Hn is a bijection from Ân, 2n to Pn.
Let π ∈ Ân,2n and write p = Hn(π). Then for 0 6 i 6 n− 1, the two numbers n+ i

and n+ i+1 are consecutive in π if and only if pi = pi+ 1. The fact that descents in π
are in one-to-one correspondence with ascents in Hn(π) follows from the observation
that a descent in π is always from a number larger than n to a small number. This
concludes the proof of Theorem 2.12 for Ân, 2n.
As for Âk,n where k is bigger that n/2, the cycle conditions ensure that n−k, . . . , k

are consecutive elements in the list (the statement is nontrivial if n − k < k, i.e.
n < 2k). For π ∈ Âk, n, we obtain an element π′ ∈ Ân− k, 2n− 2k by replacing these
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consecutive entries by the number n− k and by replacing each entry i with k + 1 6
i 6 n by the number i + n − 2k. It is not difficult to see that this is a bijection
which preserves the number of descents. Finally we note that π′ ∈ Âm, 2m, where
m = n− k, and we appeal to the first part of the proof. �

We point out that it is possible to prove Theorem 2.12 differently, by noting that,
although the general polytopes B̂k,n do not arise as chain polytopes [Sta86], for
k 6 n 6 2k, the polytopes B̂k,n do arise as chain polytopes for posets associated
with skew Young diagrams. Associating a Dyck path to every linear extension of
such a poset yields another proof of Theorem 2.12.
It is worth observing that one can also see the stabilization property of the

h∗–polynomials geometrically.

Lemma 6.1. — If k > n− 1
2 , we have E∗(B̂k,n, z) = E∗(B̂k+ 1,n+ 1, z).

Proof. — First note that k > n− 1
2 is equivalent to k > n− k, and so there exists

an ` such that k > ` > n− k. Consider the map α : Zn+ 1 → Z× Zn defined by
α(v1, . . . , vn+1) = (v`, (v1, . . . , v̂`, . . . , vn+ 1)),

where v̂` means that v` is omitted in the sequence. It is clearly bijective. We claim
that for any integer t > 0, we have

(6.1) α
(
(t · B̂k+ 1,n+ 1) ∩ Zn+ 1

)
=

t⊔
u= 0
{t− u} ×

(
(u · B̂k,n) ∩ Zn

)
.

To see this, let v = (vi)16 i6n ∈ Zn+1. By definition of B̂k+1,n+1, we have
v ∈ t · B̂k+1,n+1 if and only if vi > 0 and
(6.2) vi+ 1 + · · ·+ vi+ k+ 1 6 t, for all 0 6 i 6 n− k.
Then, note that k > ` > n− k ensures that v` appears in all the sums in (6.2). So
the condition (6.2) is equivalent to
(6.3) vi+ 1 + · · ·+ v̂` + · · ·+ vi+ k+ 1 6 t− v`, for all 0 6 i 6 n− k.

These equations precisely say that (v1, . . . , v̂`, . . . , vn+1) ∈ (t− v`) · B̂k,n, (knowing
that vi > 0). Thus we get (6.1). Therefore, we have

E(B̂k+ 1,n+ 1, t) =
t∑

u= 0
E(B̂k,n, u).

By summing, we get
∞∑
t= 0

E(B̂k+ 1,n+ 1, t)zt =
∞∑
t= 0

t∑
u= 0

E(B̂k,n, u)zt =
∞∑
u= 0

E(B̂k,n, u) zu

1− z .

After multiplying by (1− z)n+1, we get E∗(B̂k,n, z) = E∗(B̂k+ 1,n+ 1, z). �

Note that in equation (6.1), u ranges among the integers between 0 and t. But the
argument in the proof also shows that

α(B̂k+1,n+1) =
⊔

06x6 1
{1− x} ×

(
x · B̂k,n

)
,
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where x runs through the real numbers between 0 and 1. This precisely says that
B̂k+1,n+1 is a cone over B̂k,n.

7. Enumerating Âk,n

In this section we show how to use the multidimensional boustrophedon construc-
tion introduced in [Ram18] to compute the cardinalities of Âk,n, which by Theorem 2.1
are equal to the normalized volumes of B̂k,n.
For every total cyclic order π ∈ Zn and for every two elements i 6= j of [n], define

the length of the arc from i to j in π to be
(7.1) Lπ(i, j) := 1 + # {h ∈ [n] | (i, h, j) ∈ π} .

Example 7.1. — Take n = 6 and take the cyclic order π associated with the cyclic
permutation (0, 3, 5, 1, 6, 2, 4). Then

Lπ(3, 5) = 1;
Lπ(3, 2) = 4;
Lπ(2, 3) = 3.

For d > 1 and N > d+ 1, define the simplex of dimension d and order N to be

(7.2) T dN :=
{

(i1, . . . , id+ 1) ∈ Nd+ 1
∣∣∣ i1 + · · ·+ id+ 1 = N

}
.

When d = 1, T 1
N is a row of N − 1 elements. When d = 2 (resp. d = 3), T dN is a

triangle (resp. tetrahedron) of side length N − 2 (resp. N − 3). In general, T dN is a
d-dimensional simplex of side length N − d.
For 2 6 k 6 n and i = (i1, . . . , ik) ∈ T k−1

n+1 , we define Ǎi to be the set of all π ∈ Âk,n
such that the following conditions hold:

• for 1 6 j 6 k − 1, we have Lπ(n+ j − k, n+ 1 + j − k) = ij;
• Lπ(n, n+ 1− k) = ik.

It is not hard to see that
(7.3) Âk,n =

⊔
i∈Tk− 1

n + 1

Ǎi.

Define ai := #Ǎi. We will provide linear recurrence relations for the (ai)i∈Tk− 1
n + 1

,
which are arrays of numbers indexed by some T dN . We first need to define linear
operators Ψ and Ω which transform one array of numbers indexed by some T dN into
another array of numbers, indexed by T dN + 1 in the case of Ψ and by T dN in the case
of Ω.
We define the map τ which to an element i = (i1, . . . , id+ 1) ∈ T dN + 1 associates the

subset of all the i′ = (i′1, . . . , i′d+ 1) ∈ T dN such that the following conditions hold:
• 1 6 i′1 6 i1 − 1;
• i′d+ 1 = id+ 1 + i1 − i′1 − 1;
• i′j = ij for 2 6 j 6 d.
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1 0 1

1 0 0 1 1

1 1 0 0 1 2 2

Ψ

Ψ

Ψ

Ω

Ω

Figure 7.1. The first four lines of the classical boustrophedon, obtained as the
case k = 2 of the multidimensional boustrophedon. Here the operator Ψ corre-
sponds to taking partial sums (starting from the empty partial sum) and the
operator Ω returns the mirror image.

Example 7.2. — Case d = 2, N = 6. Then

τ(1, 2, 4) = ∅(7.4)
τ(4, 2, 1) = {(1, 2, 3), (2, 2, 2), (3, 2, 1)}.(7.5)

Define the map Ψ which sends an array of numbers (bi)i∈T d
N
to the array of numbers

(ci)i∈T d
N + 1

, where for i ∈ T dN + 1, we have

(7.6) ci :=
∑
i′ ∈ τ(i)

bi′ .

Remark 7.3. — In the language of [Ram18], the map Ψ would be called Φ1, 1, d+ 1.
Note that the Φ operators of [Ram18] were acting on generating functions, while the
Ψ operator here acts on arrays of numbers. These two points of view are essentially
the same, since there is a natural correspondence between arrays of numbers and
their generating functions.

We also introduce the operator Ω, which sends an array of numbers (bi)i∈T d
N
to

the array of numbers (ci)i∈T d
N
, where for i ∈ T dN , we have

(7.7) c(i1, ..., id + 1) := b(id + 1, i1, i2, ..., id).

The operator Ω acts by cyclically permuting the indices.
We can now state the following recurrence relation for the arrays of numbers

(ai)i∈Tk−1
n+1

:

Theorem 7.4. — For n > 3 and 2 6 k 6 n− 1, we have

(7.8) (ai)i∈Tk− 1
n + 1

= Ω ◦Ψ(ai)i∈Tk− 1
n

.
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0
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0 1 1

0 1 1 1

0

1 0

1 1 0

1 1 0 0

0

0 0

0 1 1

0 1 2 2

0 1 2 2 2

Ψ

Ψ

Ψ

Ω

Ω

Ω

Ψ

Figure 7.2. The first five triangles of numbers of the case k = 3 of the multidi-
mensional boustrophedon. Here the operator Ψ takes the partial sums of each
row (starting with the empty partial sum) and adds a 0 at the tip of the triangle,
while the operator Ω rotates the triangle by 120 degrees clockwise.

1

0

2

4

3
6

5

7

1

0

2

4

3
6

5
∂

Figure 7.3. Illustration of the action of ∂ on a total order on [7], yielding a total
order on [6].

Proof. — Consider the map ∂ which to an element π ∈ Ǎi associates the element
π′ ∈ Âk, n− 1 obtained by deleting the number n from the circle. For π ∈ Ǎi with
i = (i1, . . . , ik), the element ∂(π) belongs to some Ǎj, where j = (j1, . . . , jk) satisfies
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the following conditions:
1 6 j1 6 ik − 1(7.9)

jk = ik−1 + ik − j1 − 1(7.10)
jm = im−1 for 2 6 m 6 k − 1.(7.11)

Furthermore, the map ∂ is a bijection between Ǎi and tjǍj, where the union is
taken over all the multi-indices j satisfying conditions (7.9)-(7.11), because starting
from any element π′ in some Ǎj with j satisfying conditions (7.9)-(7.11), there
is a unique way to add back the number n on the circle to obtain π such that
Lπ(n− 1, n) = ik− 1. This concludes the proof. �

We can use this to compute the cardinality of any Âk, n inductively on n. We start
at n = k − 1. In this case, the simplex T k−1

k has a single element, and we start with
the array consisting of a single entry equal to 1. Then we apply formula (7.8) to reach
the desired value of n, and we take the sum of all the entries in the corresponding
array of numbers.

Remark 7.5. — In the case k = 2, we recover the classical boustrophedon used
to compute the Entringer numbers, which are the numbers ai (see e.g. [Ram18]).
The appearance of the operator Ω explains why each line is read alternatively from
left to right or from right to left. See Figure 7.1 for the computation of the first
four lines of the classical boustrophedon. For k > 2, the numbers ai may be seen as
higher-dimensional versions of the Entringer numbers and the numbers
(7.12) ak,n :=

∑
i∈Tk− 1

n + 1

ai

may be seen as higher-dimensional Euler numbers (where the number k is the
dimension parameter). See Figure 7.2 for the computation of the first five triangles
of numbers in the case k = 3.
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