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Stein’s method. We give different types of bounds for different point processes. While some of
our bounds are given in terms of coupling of the point process with its Palm version, the others
are in terms of the local dependence structure formalized via the notion of stabilization. We
provide two supporting examples for our new framework – one is for Morse critical points of the
distance function, and the other is for large k-nearest neighbor balls. Our bounds considerably
extend the results in Barbour and Brown (1992), Decreusefond, Schulte and Thäle (2016) and
Otto (2020).

Résumé. — Nous présentons de nouveaux résultats d’approximation par des processus de
Poisson pour les fonctionnelles stabilisantes de processus de Poisson et binomiaux. Ces fonc-
tionnelles peuvent avoir des interactions non bornées, et recouvrent de nombreux exemples en
géométrie stochastique. Nous obtenons des bornes pour la distance de Kantorovich–Rubinstein
grâce par la méthode de Stein pour le générateur. Nous donnons différents types de bornes
pour différents processus ponctuels. Alors que certaines de nos bornes soient données en termes
de couplage du processus ponctuel avec sa version Palm, les autres sont exprimées en termes
de la structure de dépendance locale, formalisée par la notion de stabilisation. Nous donnons
deux exemples significatifs de ce nouveau cadre – l’un pour les points critiques Morse de la
fonction distance, l’autre pour les grandes boules pour les k voisins les plus proches. Nos bornes
étendent considérablement les résultats de Barbour et Brown (1992), Decreusefond, Schulte et
Thäle (2016) et Otto (2020).

1. Introduction

Poisson processes arise in many fields of probability theory and are arguably the
most prominent class of point processes. At the same time they are very convenient to
work with since they exhibit complete spatial independence (i.e., point configurations
within disjoint sets are independent). Therefore, approximating an involved point
process by a Poisson process is an important problem. This is also the crucial step
in establishing convergence in distribution to a Poisson process. This paper focuses
on Poisson process approximation for a large class of point processes that often
arise in stochastic geometry. The processes we study are functionals of Poisson
(or binomial) point processes, which are themselves not Poisson, and in particular
lack spatial independence. The results we present here significantly generalize recent
ones [DST16, Ott20] by either considering a stronger approximation distance or more
general functionals. Our approach is based on Stein’s method for Poisson process
approximation; see e.g. [Bar88, BB92, BHJ92, CX04, DST16, Xia05]. Now we shall
offer a quick preview of our setup, results and some background literature.

Let ν be either a Poisson process or a binomial point process (i.e., a collection of n
i.i.d. points) in some space X. We denote by NX the set of σ-finite point configurations
on X. For k ∈ N, a second space Y and measurable functions f : Xk × NX → Y and
g : Xk × NX → {0, 1} that are symmetric in the first k arguments, we consider the
following point process on Y,

(1.1) ξ:=ξ[ν]:= 1
k!

∑
x ∈ νk

̸=

g(x, ν)δf(x,ν),

where νk
̸= denotes the set of all k-tuples of distinct points of ν, and δy stands for the

Dirac measure concentrated at y ∈ Y. Point processes of the form (1.1) often arise
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Poisson approximation under stabilization 1491

in stochastic geometry (cf. [Ott20, PS22]). For example, consider the case X = Rd,
Y = R, k = 1, g ≡ 1 and f(x, ν) being the minimal distance from x to another point
of ν. The point process ξ is then the collection of all nearest neighbor distances of ν.

Our main results deal with the comparison of ξ with a Poisson process ζ on Y
with a finite intensity measure. We consider the Kantorovich–Rubinstein distance
between the distributions of the two processes ξ and ζ, defined as
(1.2) dKR(ξ, ζ):= sup

h ∈ LIP(Y)
|E {h(ξ)} − E {h(ζ)}| ,

where LIP(Y) is the class of measurable 1-Lipschitz functions with respect to the
total variation distance on the space of finite point configurations on Y (see (2.1)).
Note that convergence in Kantorovich–Rubinstein distance implies convergence in
distribution, and that the Kantorovich–Rubinstein distance dominates the total
variation distance
(1.3) dTV(ξ, ζ):= sup

A ∈ NY

|P (ξ ∈ A) − P (ζ ∈ A)| ,

where NY is the σ-field on the space NY. The Kantorovich–Rubinstein distance,
which is often studied in the context of optimal transport, is more sensitive to
differences between the compared point processes than the total variation distance
since the test functions can take larger values than only zero and one. Studying the
Kantorovich–Rubinstein distance goes in the opposite direction to many other works
on Poisson process approximation via Stein’s method, where weaker distances than
the total variation distance were considered, see e.g. [BB92, BHJ92, CX04, Sch05,
Sch09, Xia05].

In general, if the behaviour of ξ is close to that of a Poisson process, by taking
Y = R one gets an approximation for

max
{
f(x, ν) : x ∈ νk

̸=, g(x, ν) = 1
}

.

Thus, approximation results for the point process ξ can be a crucial tool to compute
the limiting distributions of some extreme values of ξ. In a similar fashion, we can
treat functionals of ξ other than the maximum, such as order statistics, sums of the
points or number of points in a certain region.

This paper continues the line of research initiated in [DST16]. There, processes
of the form (1.1) were studied, but for a special case where g and f depend only
on x and not on ν, i.e., f(x, ν) = f(x), g(x, ν) = g(x). In other words, the results
of [DST16] allow to deal with point processes that have the form of U -statistics.
However, this formulation excludes point processes that arise naturally such as the
nearest neighbor example mentioned above. This lacuna is addressed in the present
paper. We summarize our main results as follows.

• We establish a general Poisson process approximation result (Theorem 3.1),
which extends [BB92, Theorem 2.6] from the total variation distance to the
Kantorovich–Rubinstein distance. Here we do not assume any structure on
ξ and the bounds are given in terms of a coupling between ξ and its Palm
measure.

• A similar result is derived for ξ[ν] under the assumption that ν is a Poisson
process and that f in (1.1) depends only on x (see Theorem 3.3). This result
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already extends the Poisson process approximation result of [DST16, Theo-
rem 3.1] and may be considered as the process-level analogue of the Poisson
approximation result in [Pen18, Theorem 3.1]. Theorem 3.1 and Theorem 3.3
already cover many existing applications in the literature (see [DST16, Ott20]).

• We establish a Poisson process approximation result for ξ[ν] when ν is a
Poisson process and f(x, ν), g(x, ν) depend on random neighborhoods around
x (see Theorem 4.1). This is an important concept in stochastic geometry
known as stabilization. We elaborate on this in Remark 1.1. Here, our bounds
are given more explicitly in terms of g as well as the tail probabilities of the
random neighborhoods. This result in its full generality is one of the novel
contributions of this work and an analogous result even in total variation
distance is not available to the best of our knowledge. Under total variation
distance, approximation results are proven only for f(x, ν) = f(x) in [Ott20,
Theorem 3.3] and the bounds therein are same as ours (barring a factor of 2)
even though our bounds hold for more general functions f and in the stronger
Kantorovich–Rubinstein distance.

• For the binomial case, the lack of spatial independence leads to a more
restricted statement and more involved bounds. In particular, for k = 1
we can show a Poisson process approximation result under stabilization of
f(x, ν), g(x, ν) (see Theorem 5.1). The restriction to k = 1 here is more for
ease of stating the bounds, see Remark 5.2. We are not aware of such a
general approximation result even under weaker distances for point processes
driven by stabilizing functionals of binomial point processes. In fact, such
results are not known even for functionals with finite range of stabilization,
i.e., f(x, ν), g(x, ν) depend on fixed compact neighborhoods around x.

One point of difference between the four results is that the bounds in the first two
results do not assume any local dependence structure on f and g, and the bounds
are given in terms of a coupling. On the other hand, the latter two bounds are
given explicitly in terms of the functional g alone. As will be illustrated in Section 6,
our general bounds shall necessitate a few additional computations in applications
compared to those for a Poisson (non-functional) approximation result. Since a
marked point process with points in a space X′ and marks in a space M can be
seen as a point process on the larger space X′ × M, which one can choose as X or
Y, our results also apply to marked point processes, but we shall not develop any
applications to underlying marked point processes here.

Remark 1.1. — The notion of stabilization was introduced in the context of
proving laws of large numbers and central limit theorems for functionals of point
processes (see the surveys [Sch10, Yuk13]), and is meant to capture the spatial de-
pendence of the functionals. Apart from its extensive use in proving laws of large
numbers and central limit theorems, it has also been used to prove moderate de-
viations [ERS15] and normal approximation bounds [LRSY19]. Even though this
notion is implicitly used in some of the Poisson approximation results, to the best
of our knowledge there has not been a general Poisson process approximation result
for stabilizing functionals until the recent work [Ott20]. In this regards, our article
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makes an important contribution in furthering the usage of stabilization in Pois-
son process approximation. More detailed comparisons of our results with those in
the literature (especially [BB92, DST16, Ott20]) are provided after the respective
theorem statements.

Apart from extending total variation bounds in [Ott20] to Kantorovich–Rubinstein
distance and the applications therein, we further envisage that the general Poisson
process approximation result (Theorem 3.1) and the proof approach may be useful
for deriving similar bounds when ν is not a Poisson process as well. Our latter results
(Theorems 4.1 and 5.1), significantly enhance the scope of many applications and
also allow us to consider more general point processes than those investigated in the
literature so far.

In order to demonstrate the applicability and versatility of our results, we consider
two examples – one from the field of random topology and the other from stochastic
geometry:

(1) Morse critical points: For a homogeneous Poisson process on a flat torus, we
consider the distance function (from the points) and define critical points
together with their Morse index. Grouping together all critical points of the
same index, we have a point process for which we wish to prove Poisson
convergence under suitable scaling. This convergence statement has a signifi-
cant contribution to the analysis of the homological connectivity phenomenon
studied in [Bob22]. In particular, it yields the asymptotic behaviour of the
persistent homology in the critical window for homological connectivity (see
Remark 6.3).

(2) Large k-nearest neighbor balls: For an underlying Poisson or binomial point
process we put around each point a ball whose radius is the distance to its
k-nearest neighbor and establish that the scaled volumes (with respect to the
intensity measure) of these balls can be approximated by a Poisson process. In
both cases, our results yield explicit bounds for the rate of convergence (when
the point processes are restricted to suitable sets). Here, by a more careful
computation, we obtain better bounds than those in [Ott20, Theorem 4.2] for
underlying Poisson processes and we also obtain a new approximation result
when the underlying point process ν is a binomial point process. Comparisons
between our applications and those existing in the literature as well as more
potential applications are discussed in Section 6.

Before we end the introduction, we will say a quick word about our proofs. In
order to control the Kantorovich–Rubinstein distance between ξ and ζ, we employ
the same generator approach as in [DST16], see also [BB92]. To further bound the
resulting expressions we use two classical approaches from Stein’s method, coupling
and local dependence, which lead to slightly different results for the Poisson process
approximation of ξ.

This paper is organized as follows. After introducing some preliminaries in Sec-
tion 2 (including Stein’s method for Poisson process approximation), we present our
coupling approach in Section 3. Local dependence (and stabilization) is used for
underlying Poisson and binomial point processes in Sections 4 and 5, respectively.
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Finally, we provide two applications of our main results to random topology and
stochastic geometry in Section 6.

2. Preliminaries

2.1. Point processes

We shall adapt the notation from [DST16] and for more on point process theory,
we refer the reader to [BBK20, LP17]. Let (X, X ) be a locally compact second
countable Hausdorff space (lcscH space). We denote by NX the space of σ-finite
counting measures on X, and by N̂X the space of all finite counting measures on
X. We equip the spaces NX and N̂X with the corresponding σ-algebras NX and N̂X,
which are induced by the maps ω 7→ ω(B) for all B ∈ X .

By [LP17, Proposition 6.2], each ω ∈ NX can be written as ω = ∑
i ∈ I δxi

, where
(xi)i ∈ I is a countable collection of points in X and δx stands for the Dirac measure
concentrated at x ∈ X. Due to this representation we can think of counting measures
as multisets and treat them as such by abusing notation. Thus, we write ∑x ∈ ω for
the sum over all xi, i ∈ I, which is the same as the integral with respect to ω. More
generally, we define for k ∈ N,

ωk
̸= := {(xi1 , . . . , xik

) : i1, . . . , ik ∈ I, ij ̸= iℓ, j ̸= ℓ}
and denote by ∑(x1, ..., xk)∈ωk

̸=
the sum over all k-tuples of distinct points of ω, which

is the same as the integral with respect to the kth factorial measure of ω (see [LP17,
Subsection 4.2]). By ω ∩ S we mean the restriction of ω to S ∈ X . Moreover, we
write ω1 ⊂ ω2 for ω1, ω2 ∈ NX if ω1(A) ⩽ ω2(A) for all A ∈ X . In addition, for
ω1, ω2 ∈ NX such that ω1 = ∑

i ∈ I δxi
and ω2 = ∑

j ∈ J δyj
, we define

ω1 \ ω2 :=
∑

x ∈ {xi : i ∈ I}\{yj : j ∈ J}
δx.

The sets under the sum must be understood as multisets since ω1, ω2 and ω1 \ ω2
can have multiple points (i.e., points x ∈ X such that ω({x}) > 1). The symmetric
difference ω1△ω2 is defined as ω1△ω2 := ω1 \ ω2 + ω2 \ ω1.

The total variation distance between two measures µ1, µ2 on X is defined as
dT V (µ1, µ2) := sup

A ∈ X
µ1(A), µ2(A) < ∞

|µ1(A) − µ2(A)| .

We denote by Lip(X) the class of measurable functionals h : N̂X → R such that for
all ω1, ω2 ∈ N̂X,
(2.1) |h(ω1) − h(ω2)| ⩽ dT V (ω1, ω2).
In other words, Lip(X) is the class of measurable 1-Lipschitz functionals on N̂X
with respect to the total variation distance between measures. Let ∥ · ∥ denote the
total variation of a signed measure, i.e., ∥µ∥ = µ+(X) + µ−(X) where µ+, µ− are
the positive and negative parts of the signed measure µ. Note that if ω1, ω2 ∈ N̂X,
then dT V (ω1, ω2) = max{(ω1 \ ω2)(X), (ω2 \ ω1)(X)}. Hence, we have the following
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relation between the total variation distance and the total variation of the difference
between counting measures

dT V (ω1, ω2) ⩽ ∥ω1 − ω2∥ = (ω1△ω2) (X) ⩽ 2dT V (ω1, ω2).
The first inequality becomes an equality when ω1 ⊂ ω2. Thus, measuring distance be-
tween counting measures via total variation distance and total variation of measures
differs at most by a factor of 2.

Recall the definitions of Kantorovich–Rubinstein (KR) distance dKR and the clas-
sical total variation distance dTV in (1.2) and (1.3) respectively. We refer to [DST16,
Section 2.5] for a dual formulation as well as more details on the KR distance. Since,
for A ∈ N̂X, ω 7→ 1{ω ∈ A} is a function in Lip(X), we have that dTV(ζ1, ζ2) ⩽
dKR(ζ1, ζ2) for finite point processes ζ1 and ζ2. For an example of a sequence of point
processes that converges in dTV but not in dKR, see [DST16, Example 2.2].

Let ζ be a point process with σ-finite intensity measure M, i.e., E {ζ(A)} = M(A)
for all A ∈ X . The reduced Palm expectation of ζ at x denoted by E!

x is defined
via the Campbell–Mecke–Little formula [BBK20, Corollary 3.1.14], as follows. For a
measurable function f : X × NX → R+, it holds that

(2.2) E

∑
x ∈ ζ

f(x, ζ)

 =
∫
X
E!

x

{
f (x, ζ + δx)

}
M(dx).

The above formula can be extended to integrable real-valued functions by standard
measure-theoretic arguments. Strictly speaking, E!

x is defined only for M-a.e. x, but
this suffices for our purposes. The corresponding probability distribution is denoted
by P!

x and the point process with this probability distribution is denoted by ζ !
x.

An essential tool for studying Poisson processes is the multivariate Mecke equation
(see [LP17, Theorem 4.4]). For a Poisson process η on X with σ-finite intensity
measure K and a measurable function f : Xk × NX → R+, we have that

(2.3) E


∑

x ∈ ηk
̸=

f(x, η)

 =
∫
Xk

E {f (x, η + δx)} Kk(dx),

where x = (x1, . . . , xk) and δx := ∑k
i=1 δxi

. The Mecke equation for k = 1 character-
izes the Poisson process [LP17, Theorem 4.1] and by the definition of the reduced
Palm version of a point process, we can also rephrase this characterization as η!

x
d= η

for all x ∈ X, where d= denotes equality in distribution of the two random elements.
For two Poisson processes ζ1 and ζ2 with finite intensity measures M and L, it is

known (see [DST16, Remark 3.2(iv)]) that
(2.4) dKR(ζ1, ζ2) ⩽ dT V (M, L).
Thus, it follows from the triangle inequality for dKR that, for any finite point process
ξ,
(2.5) dKR(ξ, ζ1) ⩽ dT V (M, L) + dKR(ξ, ζ2).
Due to this inequality it is often sufficient to compare a finite point process with a
Poisson process with the same intensity measure.
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2.2. Stein’s method for Poisson process approximation

Stein’s method is used to compare the distributions of two random objects (cf.
[Ros11]). In our case we would like to compare a point process ξ to a given Poisson
process ζ. We will use the generator approach with respect to the KR distance as
in [DST16], using Glauber dynamics for Poisson process. See e.g. [BB92, BHJ92,
CX04, Sch05, Sch09, Xia05] for more on Poisson process approximation under other
metrics.

Let ζ be a Poisson process on (X, X ), with a finite intensity measure M. For
h : N̂X → R and ω ∈ N̂X, we define

(2.6) Lh(ω) :=
∫
X

Dxh(ω)M(dx) −
∫
X

Dxh(ω − δx)ω(dx),

where Dxh(ω) := h(ω + δx) − h(ω), and
∫
X f(x)ω(dx) = ∑

x ∈ ω f(x). It can be shown
(see [DVJ07, Proposition 10.4.VII] or [Pre75]) that the operator L is the generator
of a Markov process whose stationary distribution is the same as that of ζ. Further,
L satisfies the following equation (see [DST16, (4.3)])

(2.7) E {h(ζ)} − h(ω) =
∫ ∞

0
LPsh(ω)ds,

where Ps denotes the Markov semigroup (also known as the Ornstein–Uhlenbeck
semigroup) corresponding to the generator L, and P0h ≡ h. The Markov process
(ζs)s⩾ 0 corresponding to the generator L is called Glauber dynamics and is the
spatial birth-death process in continuous time described as follows. If ζs = ω at time
s, each particle in ω dies at rate 1 and new particles are born at rate M(X) with
their location chosen according to the probability measure M(·)/M(X). The new
particles also have an exponentially distributed (with mean 1) lifetime. With this
process representation, we can represent the semigroup Ps as follows. For h : N̂X → R
we have

Psh(ω) = E {h(ζs) | ζ0 = ω} .

An important property we will use later is that Ps satisfies the following Lipschitz
property with respect to the total variation of measures [DST16, Lemma 5.2],
(2.8) |Psh(ω1) − Psh(ω2)| ⩽ e−s (ω1△ω2) (X),
for ω1, ω2 ∈ N̂X and h ∈ Lip(X). The property is deduced using the above represen-
tation of the semigroup and the exponential lifetimes of the particles.

3. Approximation for point processes via Palm coupling

We present two results in this section that provide Poisson process approximation
bounds in the KR distance via suitable coupling between the original process and its
Palm measure. While our first theorem holds for general point processes, the second
theorem is specialized to the case of point processes driven by a Poisson process.
These two results already significantly generalize many of the existing bounds in the
literature. We shall discuss these connections in detail after the respective theorem
statements.
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Theorem 3.1. — Let ξ be a finite point process with intensity measure L on X,
such that L(X) < ∞. Let ζ be a Poisson process with a finite intensity measure M
on X. Suppose that for L-a.e. x ∈ X we have coupled point processes ξx, ξ̃x such that
ξx d= ξ, and ξ̃x d= ξ!

x, respectively (ξ!
x denotes the reduced Palm version of the point

process ξ at x). We also assume that x 7→ E{(ξx△ξ̃x)(X)} is measurable. Then

dKR(ξ, ζ) ⩽ dT V (L, M) + 2
∫
X
E
{(

ξx△ξ̃x
)

(X)
}

L(dx).

Remark 3.2. — Note that the couplings ξx and ξ̃x may be defined on differ-
ent probability spaces for different x. However, the measurability condition on
x 7→ E{(ξx△ξ̃x)(X)} is satisfied if the couplings ξx and ξ̃x are defined on the same
probability space for all x and the random function x 7→ (ξx, ξ̃x) is measurable.

A version of the above theorem for the total variation distance was proven in [BB92,
Theorem 2.6] without the factor of 2. The result of Barbour and Brown [BB92] was
used in [Ott20, Theorem 3.3] to derive total variation distance bounds for Poisson
approximation of stabilizing statistics of Euclidean Poisson processes. The above
theorem implies that the bounds in [Ott20, Theorem 3.3] hold also under the stronger
KR distance immediately, only with an additional factor of 2. We shall later state
a much more general theorem for stabilizing statistics in Section 4. Our proof of
Theorem 3.1 is similar in spirit to that of [BB92, Theorem 2.6], using Lipschitz
functions rather than bounded functions of the point processes.

Proof of Theorem 3.1. — Due to (2.5) we can assume that M ≡ L throughout the
proof. Let h ∈ Lip(X), and recall the definition of the generator L of the Glauber
dynamics in (2.6). Observe that Lh(ω) ⩽ L(X) + ω(X) for ω ∈ N̂X. Using the
finiteness of L(X) with Fubini–Tonelli Theorem, and the Campbell–Little–Mecke
formula (2.2), we have that

E {Lh(ξ)} =
∫
X
E {Dxh(ξ)} L(dx) −

∫
X
E!

x {Dxh(ξ)} L(dx)

=
∫
X

(
E {Dxh(ξ)} − E

{
Dxh

(
ξ!

x

)})
L(dx).

Using our coupling assumption and the Lipschitz assumption on h, we can bound
the absolute value of the last integrand by
E
{∣∣∣Dxh (ξx) − Dxh

(
ξ̃x
)∣∣∣} ⩽ E

{∣∣∣h (ξx + δx) − h
(
ξ̃x + δx

)∣∣∣+ ∣∣∣h (ξx) − h
(
ξ̃x
)∣∣∣}

⩽ 2E
{(

ξx△ξ̃x
)

(X)
}

for x ∈ X so that
|E {Lh(ξ)}| ⩽ 2

∫
X
E
{(

ξx△ξ̃x
)

(X)
}

L(dx) =: Rξ.

Similarly, replacing h by Psh and using (2.8), we have that
|E {LPsh(ξ)}| ⩽ e−sRξ.

Integrating over s yields

(3.1)
∫ ∞

0
|E {LPsh(ξ)}| ds ⩽ Rξ.
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Combining (2.6) with (2.8) leads to |LPsh(ξ)| ⩽ e−s(L(X) + ξ(X)). Using this
and the finiteness of L(X), we can apply the Fubini–Tonelli Theorem in the Stein
equation (2.7) to conclude that

(3.2) E {h(ζ)} − E {h(ξ)} = E
{∫ ∞

0
LPsh(ξ)ds

}
=
∫ ∞

0
E {LPsh(ξ)} ds.

Thus, from definition of KR distance (1.2), (3.2) and (3.1) we have that

dKR(ξ, ζ) = sup
h ∈ Lip(X)

∣∣∣∣∫ ∞

0
E {LPsh(ξ)} ds

∣∣∣∣ ⩽ sup
h ∈ Lip(X)

∫ ∞

0
|E {LPsh(ξ)}| ds ⩽ Rξ,

as required. □

Next, we want to apply the proof strategy of Theorem 3.1 in the specific case when
ξ is generated by statistics of a Poisson process. Let (X, X ) and (Y, Y) be lcscH spaces
and let f : Xk → Y be a symmetric measurable function. Let g : Xk ×NX → {0, 1} be
another measurable function that is also symmetric with respect to the x coordinates.
For ω ∈ NX, define

(3.3) ξ[ω] := 1
k!

∑
x ∈ ωk

̸=

g(x, ω)δf(x).

In other words, the function g is used as a “flag” indicating whether or not to include
a point at f(x) in our point process ξ[ω]. We will study the case ξ := ξ[η], where η
is a Poisson process on X with a σ-finite intensity measure K. A simple consequence
of the Mecke formula (2.3) is that the intensity measure L of ξ can be expressed as

(3.4) L(dy) = 1
k!

∫
Xk
1 {f(x) ∈ dy} p(x)Kk(dx),

where p(x) := E {g(x, η + δx)}.

Theorem 3.3. — Let η be a Poisson process on X with a σ-finite intensity
measure K. Let ξ := ξ[η] be as defined in (3.3) and such that L(Y) < ∞. Suppose
that for (almost) every x ∈ Xk with p(x) > 0, we have a pair of coupled point
processes ξx and ξ̃x, such that ξx d= ξ, and ξ̃x d= (ξ[η +δx]−δf(x))| {g(x, η + δx) = 1}
(i.e., the conditional distribution of ξ[η + δx] − δf(x) given g(x, η + δx) = 1). Assume
also that x 7→ E

{
(ξx△ξ̃x)(Y)

}
is measurable. Let ζ be a Poisson process on Y with

a finite intensity measure M. Then,

dKR(ξ, ζ) ⩽ dT V (L, M) + 2
k!

∫
Xk

E
{(

ξx△ξ̃x
)

(Y)
}

p(x)Kk(dx).

Remark 3.4. — Before proceeding to the proof, we show how the above theorem
includes the results in [Pen18, Theorem 3.1] and [DST16, Theorem 3.1] as special
cases.

(1) If g(x, ω) = g(x) we can set dom(f) = {x : g(x) = 1} and then p(x) =
1 {x ∈ dom(f)}. Further, there is a natural coupling where we take ξx =
ξ, ξ̃x = ξ + ξ̂[x, η+δx], where ξ̂[x, η+δx] := ξ[η+δx]−δf(x) −ξ[η] (see [DST16,
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(6.2)] for an explicit expression). By the assumptions on f and g we have that
ξ̂[x, η + δx] ∈ N̂Y. In this case, we have that(

ξx△ξ̃x
)

(Y) = ξ̂ [x, η + δx] (Y),

which is the same as the bound obtained for Rη in [DST16, page 2172]. Follow-
ing the arguments there, we recover the Poisson case of [DST16, Theorem 3.1],
which is one of the main theorems in that paper.

(2) In many cases, the bound achieved using the coupling in Theorem 3.3 is
very similar to the bound one often obtains when applying [Pen18, Theo-
rem 3.1]. This bound is merely the Poisson approximation for ξ(Y); see the
proof of [IY20, Theorem 2.8], for example. In some of these examples, the
bounds obtained for the approximation of the random variable ξ(Y) can be
extended to bounds for Poisson process approximation with a few additional
calculations.

(3) The above theorem suffices in order to extend the results of [Ott20] (see
Theorem 3.3 therein) under the KR distance. However, in Theorem 4.1 we
will present an extension to more general Poisson driven point processes.

Our proof combines ideas from the proof of Theorem 3.1 and those in the proof
of [Pen18, Theorem 3.1], for the case of ξ(Y). If we were to apply Theorem 3.1
directly, then we need a coupling of ξ and its Palm measure on the space Y. This is
not the coupling we have assumed in the above theorem.

Proof of Theorem 3.3. — Due to (2.5), it suffices to prove the statement for
the case L ≡ M. Let h ∈ Lip(Y). Recall that L is the generator of the Glauber
dynamics (2.6) as in the proof of Theorem 3.1. By (3.3), we obtain

Lh(ξ) =
∫
Y

Dyh(ξ)L(dy) −
∫
Y

Dyh (ξ − δy) ξ(dy)

=
∫
Y

Dyh(ξ)L(dy) − 1
k!

∑
x ∈ ηk

̸=

g(x, η)Df(x)
[
h
(
ξ − δf(x)

)]
.

Using Fubini–Tonelli, the finiteness of L(Y), the multivariate Mecke formula (2.3)
and the definition of L in (3.4), we have that

(3.5) E {Lh(ξ)} =
∫
Y
E {Dyh(ξ)} L(dy)

− 1
k!

∫
Xk

E
{
g (x, η + δx) Df(x)

[
h
(
ξ [η + δx] − δf(x)

)]}
Kk(dx)

= 1
k!

∫
Xk

(
E
{
Df(x) [h(ξ)]

}
−E

{
Df(x)

[
h
(
ξ [η + δx] − δf(x)

)]
| g (x, η + δx) = 1

})
p(x)Kk(dx).

From the above identity, the existence of coupled point processes ξx, ξ̃x and the
Lipschitz property (2.1), we can derive that
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|E {Lh(ξ)}| = 1
k!

∣∣∣∣∫
Xk

(
E
{
Df(x) [h (ξx)]

}
− E

{
Df(x)

[
h
(
ξ̃x
)]})

p(x)Kk(dx)
∣∣∣∣

⩽
1
k!

∫
Xk

E
{∣∣∣h (ξx + δf(x)

)
− h

(
ξ̃x + δf(x)

)∣∣∣} p(x)Kk(dx)

+ 1
k!

∫
Xk

E
{∣∣∣h (ξx) − h

(
ξ̃x
)∣∣∣} p(x)Kk(dx)

⩽
2
k!

∫
Xk

E
{(

ξx△ξ̃x
)

(Y)
}

p(x)Kk(dx).

Now, we can follow the proof of Theorem 3.1 by substituting the above bound instead
of Rξ therein and complete the proof as in Theorem 3.1. □

4. Stabilization for Poisson input

In this section, we consider the Poisson-driven point process ξ = ξ[η], and extend
the bound in Theorem 3.3 to the case where both f and g are locally dependent,
i.e., may depend not only on x but also on some (random) neighborhood around x.

Recall that (X, X ) and (Y, Y) are lcscH spaces. Let g : Xk × NX → {0, 1}, f :
Xk × NX → Y be measurable functions that are also symmetric in the x coordinates.
Let F := F(X) be the space of all closed subsets of X equipped with the smallest
σ-algebra containing {F ∈ F : F ∩ K ̸= ∅} for all compact K ⊂ X. This σ-algebra
is the Borel σ-algebra generated by the Fell topology (see [BBK20, Chapter 9]). Let
S : Xk × NX → F be a measurable function. In this section we assume that f and
g are localized to S, i.e., for all ω ∈ NX, for all x ∈ ωk

̸= and for all S ⊃ S(x, ω), we
have that

g(x, ω) = g(x, ω ∩ S), and
f(x, ω) = f(x, ω ∩ S), if g(x, ω) = 1,

(4.1)

where we use ω ∩ S as a multiset. We also assume that S(x, ω) is a stopping set, i.e.,
for every compact set S ⊂ X we have that

(4.2) {ω ∈ NX : S(x, ω) ⊂ S} = {ω ∈ NX : S(x, ω ∩ S) ⊂ S} .

The construction of a measurable S as above is not always obvious. Often, such an
S is constructed as a ball of random radius with the radius being called as radius
of stabilization. The justification for the measurability of the radius of stabilization
in the Euclidean case can be found in [Pen07, Definition 2.1 and below]. We also
refer the reader to [Ott20, Section 2] for more information on stopping sets (see
also [BL09, Appendix A] and [LPY21, Appendix A]). Finally, we point out that
more general regions than balls can occur as “localizing regions” S (see [BM22]).

Next, define

(4.3) ξ[ω] := 1
k!

∑
x ∈ ωk

̸=

g(x, ω)δf(x,ω),
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and consider ξ := ξ[η] where η is a Poisson process with a σ-finite intensity measure
K, as before. Using the multivariate Mecke formulae (2.3), we have that the intensity
measure L of ξ is given by

(4.4) L(dy) = 1
k!

∫
Xk

E {1 {f (x, η + δx) ∈ dy} g (x, η + δx)} Kk(dx).

For a set A ⊂ X and x = (x1, . . . , xk) ∈ Xk we write x ⊂ A to denote {x1, . . . , xk}
⊂ A.

Theorem 4.1. — Let ξ = ξ[η] be the point process defined as in (4.3) with
L(Y) < ∞ and f, g and S satisfying (4.1) and (4.2). Let ζ be a Poisson process
with a finite intensity measure M. Further, suppose that we are given a measurable
mapping x 7→ Sx from Xk to F satisfying x ⊂ Sx. Define

g̃(x, ω) := g(x, ω)1 {S(x, ω) ⊂ Sx}
for ω ∈ NX, and

ξtr := ξtr[η] := 1
k!

∑
x ∈ ηk

̸=

g̃(x, η)δf(x,η).

Then
dKR(ξ, ζ) ⩽ dT V (L, M) + 2 (Var(ξtr(Y)) − E{ξtr(Y)}) + E1 + 2E2

= dT V (L, M) + E1 + E2 + E3 + E4

with

E1:=
2
k!

∫
Xk

E {g (x, η + δx)1 {S (x, η + δx) ̸⊂ Sx}} Kk(dx),

E2:=
2

(k!)2

∫
Xk

∫
Xk
1 {Sx ∩ Sz ̸= ∅}E {g̃ (x, η + δx)}E {g̃ (z, η + δz)} Kk(dz)Kk(dx),

E3:=
2

(k!)2

∫
Xk

∫
Xk
1 {Sx ∩ Sz ̸= ∅}E {g̃ (x, η + δx + δz) g̃ (z, η + δx + δz)}

× Kk(dz)Kk(dx),

E4:=
2
k!

∑
∅⊊ I ⊊{1, ..., k}

1
(k − |I|)!

∫
Xk

∫
Xk−|I|

E {g̃ (x, η + δx + δz) g̃ ((xI , z) , η + δx + δz)}

× Kk−|I|(dz)Kk(dx),
where for I = {i1, . . . , im} we set xI = (xi1 , . . . , xim), and (xI , z) = (xi1 , . . . , xim ,
z1, . . . , zk−m).

Note that the bound is similar to that in [Ott20, Theorem 3.3] while it holds for a
more general class of point processes under the stronger KR distance and for a more
general notion of “localizing region” than balls. The proof of [Ott20, Theorem 3.3]
proceeds by constructing a coupling between ξ and ξ!

x and then using [BB92, Theo-
rem 2.6] (the total variation distance analogue of our Theorem 3.1). The proof here
is much simpler – we use the canonical truncation via Sx to reduce the proof to
Poisson approximation bounds for truncated point processes with bounded range
of dependence. We first prove the bound for the truncated point process and then
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use this result to complete the proof of Theorem 4.1. Our proof techniques have
been refined further in [Ott21, Theorem 8] and thereby leading to improved bounds.
These improved bounds are crucial for some applications; see [Ott21].

Proof. — As before, we assume that L = M, and use (2.5) otherwise. The proof
will proceed in two steps as described above.

Step 1. The case of bounded range of dependence. — We first assume that
for all x ∈ Xk and ω ∈ NX we have that S(x, ω) ⊂ Sx. This implies that g̃ = g,
ξ = ξtr and E1 = 0. Moreover, (4.1) leads to

(4.5) g(x, ω) = g (x, ω ∩ Sx) and if g(x, ω) = 1, f(x, ω) = f (x, ω ∩ Sx) .

Fix h ∈ Lip(Y). Similarly to the derivation in (3.5), we use (4.4) to obtain that

E {Lh(ξ)} = 1
k!

∫
Xk

E
{
g (x, η′ + δx) Df(x,η′+δx) [h (ξ[η])]

}
Kk(dx)

− 1
k!

∫
Xk

E
{
g (x, η + δx) Df(x,η+δx)

[
h
(
ξ [η + δx] − δf(x,η+δx)

)]}
Kk(dx),

where η′ is a Poisson process, independent of η and η′ d= η. Integrating over s as
in (3.2), yields

(4.6) E {h(ζ)} − E {h(ξ)}

= 1
k!

∫ ∞

0

∫
Xk

(
E
{
g (x, η′ + δx) Df(x,η′+δx) [Psh(ξ[η])]

}
− E

{
g (x, η + δx) Df(x,η+δx)

[
Psh

(
ξ [η + δx] − δf(x,η+δx)

)]})
Kk(dx)ds.

For x ∈ Xk define

ξx :=ξx[η]

= 1
k!

∑
z ∈ ηk

̸= : Sz ∩ Sx = ∅
g(z, η)δf(z,η)

= 1
k!

∑
z ∈ ηk

̸= : Sz ∩ Sx = ∅
g (z, η + δx) δf(z,η+δx)

= 1
k!

∑
z ∈ (η∩Sc

x)k
̸= : Sz ∩ Sx = ∅

g (z, η ∩ Sc
x) δf(z,η∩Sc

x),

(4.7)

where Ac stands for the complement of A. The second and third equalities follow
from the assumption (4.5) on f and g, and the fact that z ⊂ Sz ⊂ Sc

x. Now, it follows
from (2.8) that
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(4.8)
∣∣∣E{g (x, η′ + δx) Df(x,η′+δx) [Psh(ξ[η])]

}
− E

{
g (x, η′ + δx) Df(x,η′+δx) [Psh (ξx[η])]

} ∣∣∣
⩽

2
k!e

−sE

g (x, η′ + δx)
∑

z ∈ ηk
̸= : Sz ∩ Sx ̸= ∅

g(z, η)


⩽

2
k!e

−s
∫
Xk
1 {Sz ∩ Sx ̸= ∅}E {g (x, η + δx)}E {g (z, η + δz)} Kk(dz).

Observe that by definition (4.7) we have ξx[η] ⊂ ξ[η + δx] − g(x, η + δx)δf(x,η+δx) as
multisets. Thus, we can define the point process

ξ̂x := ξ̂x[η] := ξ [η + δx] − g (x, η + δx) δf(x,η+δx) − 1
k!

∑
z ∈ ηk

̸=

g (z, η + δx) δf(z,η+δx).

In other words, ξ̂x[η] contains the points of ξ[η + δx] that are generated by nonempty
strict subsets of x. Using (2.8) and the Mecke formula, we derive that

(4.9)
∣∣∣E{g (x, η + δx) Df(x,η+δx)

[
Psh

(
ξ [η + δx] − δf(x,η+δx)

)]}
− E

{
g (x, η + δx) Df(x,η+δx) [Psh (ξx[η])]

} ∣∣∣
⩽ 2e−s

E
g (x, η + δx) 1

k!
∑

z ∈ ηk
̸= : Sz ∩ Sx ̸= ∅

g (z, η + δx)


+ E

{
g (x, η + δx) ξ̂x[η](Y)

})
⩽

2
k!e

−s
∫
Xk
1 {Sz ∩ Sx ̸= ∅}E {g (x, η + δx + δz) g (z, η + δx + δz)} Kk(dz)

+ 2e−sE
{
g (x, η + δx) ξ̂x[η](Y)

}
.

By assumption (4.5), f(x, η + δx) and g(x, η + δx) depend only on η ∩ Sx, while ξx
is a functional of η ∩ Sc

x (see (4.7)). Together with the independence property of
Poisson processes, we obtain that

(4.10) E
{
g (x, η′ + δx) Df(x,η′+δx)Psh (ξx[η])

}
= E

{
g (x, η + δx) Df(x,η+δx)Psh (ξx[η])

}
.

Substituting (4.8), (4.9) and (4.10) into (4.6), using the triangle inequality and
integrating over s, yields
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∣∣∣E {h(ζ)} − E {h(ξ)}
∣∣∣

⩽
2

(k!)2

∫
Xk

∫
Xk
1 {Sz ∩ Sx ̸= ∅}E {g(x, η + δx)}E {g(z, η + δz)}

× Kk(dz)Kk(dx)

+ 2
(k!)2

∫
Xk

∫
Xk
1 {Sz ∩ Sx ̸= ∅}E {g(x, η + δx + δz)g(z, η + δx + δz)}

× Kk(dz)Kk(dx)

+ 2
k!

∫
Xk

E
{
g (x, η + δx) ξ̂x[η](Y)

}
Kk(dx).

Here, the first and the second term on the right-hand side are E2 and E3, respectively.
Notice that

2
k!

∫
Xk

E
{
g (x, η + δx) ξ̂x[η](Y)

}
Kk(dx)

= 2
k!

∑
∅⊊ I ⊊ {1, ..., k}

1
(k − |I|)!

∫
Xk

∫
Xk−|I|

E {g (x, η + δx + δz) g ((xI , z), η + δx + δz)}

× Kk−|I|(dz)Kk(dx),
which is equal to E4. Together with E1 = 0, this proves the second bound in the
theorem. A short computation shows that

E4 = 2E
{
ξ(Y)2

}
− 2E {ξ(Y)}

− 2
( 1

k!

)2 ∫
Xk

∫
Xk

E {g (x, η + δx + δz) g (z, η + δx + δz)} Kk(dz)Kk(dx).

From (4.5) and the independence property of η it follows that

2
( 1

k!

)2 ∫
Xk

∫
Xk

E {g (x, η + δx + δz) g (z, η + δx + δz)} Kk(dz)Kk(dx)

= 2E {ξ(Y)}2 + 2
( 1

k!

)2 ∫
Xk

∫
Xk

E {g (x, η + δx + δz) g (z, η + δx + δz)}

− E {g (x, η + δx + δz)}E {g (z, η + δx + δz)} Kk(dz)Kk(dx)

= 2E {ξ(Y)}2 + 2
( 1

k!

)2 ∫
Xk

∫
Xk
1 {Sx ∩ Sy ̸= ∅}

×
(
E {g (x, η + δx + δz) g (z, η + δx + δz)}

− E {g (x, η + δx + δz)}E {g (z, η + δx + δz)}
)
Kk(dz)Kk(dx)

= 2E {ξ(Y)}2 + E3 − E2.

Combining the previous identities yields that
E4 = 2 (Var(ξ(Y)) − E{ξ(Y)}) + E2 − E3,

which proves the first bound in the Theorem 4.1.
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Step 2. The general case. — We will use Step 1 to complete the proof of the
general result in the Theorem 4.1.

We denote by Ltr the intensity measure of the truncated point process ξtr, which
was defined in the statement of the theorem. It follows from the multivariate Mecke
equation (2.3) that

Ltr(dy)

= 1
k!

∫
Xk

E {g (x, η + δx)1 {S (x, η + δx) ⊂ Sx}1 {f (x, η + δx) ∈ dy}} Kk(dx).

Let ζtr be a Poisson process with intensity measure Ltr. From the triangle inequality
for the KR distance along with (2.1) and (2.4) we obtain

dKR(ξ, ζ) ⩽ dKR (ξ, ξtr) + dKR (ξtr, ζtr) + dKR (ζ, ζtr)
⩽ E {dT V (ξ, ξtr)} + dKR (ξtr, ζtr) + dT V (L, Ltr) .

Since Ltr(A) ⩽ L(A) and ξtr(A) ⩽ ξ(A) for all A ∈ Y , and using (4.4), we have
dT V (L, Ltr) = L(Y) − Ltr(Y)

= 1
k!

∫
Xk

E {g (x, η + δx)1 {S (x, η + δx) ̸⊂ Sx}} Kk(dx)

= E1

2 ,

and
E {dT V (ξ, ξtr)} = E {ξ(Y) − ξtr(Y)} = L(Y) − Ltr(Y) = E1

2 .

Thus, we have shown that
(4.11) dKR(ξ, ζ) ⩽ dKR (ξtr, ζtr) + E1.

Recall that g̃(x, η + δx) := g(x, η + δx)1 {S(x, η + δx) ⊂ Sx}, and observe that by
the stopping set property of S (4.2), both f and g̃ satisfy the local dependence
assumptions in (4.5). Hence, using Step 1 of the proof, we can derive the necessary
bounds for dKR(ξtr, ζtr) in (4.11) and complete the proof. □

5. Stabilization for binomial input

In this section we focus on the binomial point process βn (replacing the Poisson
process), i.e., a point process consisting of n independent points, distributed accord-
ing to some probability measure Q. In this case, we have that for any measurable
function h : Xk × NX → R+ and n ⩾ k,

(5.1) E


∑

x ∈ βk
n,̸=

h(x, βn)

 = (n)k

∫
Xk

E {h (x, βn−k + δx)} Qk(dx),

with (n)k := n · . . . · (n − k + 1). Note that (5.1) is the analogue for binomial point
processes of the multivariate Mecke formula (2.3).
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Let βn be a binomial point process, and let

ξ := ξ [βn] :=
∑

x ∈ βn

g(x, βn)δf(x,βn).

Here, g and f are as in Section 4 for an underlying Poisson process, but we allow
only k = 1 in the sequel. By (5.1), the point process ξ has an intensity measure

(5.2) L(dy) = n
∫
X
E {g (x, βn−1 + δx)1 {f (x, βn−1 + δx) ∈ dy}} Q(dx).

Theorem 5.1. — Let ξ and L be as above with f, g and a measurable function
S : X × NX → F satisfying (4.1) and (4.2) and let ζ be a Poisson process with a
finite intensity measure M. Further, suppose that we are given a measurable mapping
x 7→ Sx from X to F satisfying x ∈ Sx and Q(Sx) < 1 for all x ∈ X. For ω ∈ NX
and x ∈ ω, define

g̃(x, ω) := g(x, ω)1 {S(x, ω) ⊂ Sx} .

Then

dKR(ξ, ζ) ⩽ dT V (L, M) + E1 + E2 + E3 + E4 + E5 + E6,

where

E1 := 2n
∫
X
E {g (x, βn−1 + δx)1 {S (x, βn−1 + δx) ̸⊂ Sx}} Q(dx),

E2 := 2n2
∫
X2
1{Sx ∩ Sy ̸= ∅}E {g̃ (x, βn−1 + δx)}E {g̃ (y, βn−1 + δy)} Q2 (d(x, y)) ,

E3 := 2n2
∫
X2
1 {Sx ∩ Sy ̸= ∅}

× E {g̃ (x, βn−2 + δx + δy) g̃ (y, βn−2 + δx + δy)} Q2 (d(x, y)) ,

E4 := 2n
∫
X

(
(1 + nQ(Sx))E {g̃ (x, βn−1 + δx)}

+ n
∫

Sx

E {g̃ (x, βn−2 + δx + δz)} Q(dz)
)

×
(∫

X
1 {Sx ∩ Sy = ∅}E

{
g̃
(
y, β̃x,n−1 + δy

)}
Qx(dy)

+ n
∫
X2
1 {Sx ∩ Sy1 = ∅, y2 ∈ Sy1}

× E
{
g̃
(
y1, β̃x,n−2 + δy1 + δy2

)}
Q2

x (d (y1, y2))
)

Q(dx),

E5 := 2n3
∫
X2
1 {Sx ∩ Sy = ∅}E {g̃ (x, βn−1 + δx)}E {g̃ (y, βn−2 + δy)}

× Q(Sx)Qx(Sy)Q2(d(x, y)),
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E6 := 2n2
∫
X2
1 {Sx ∩ Sy = ∅}E {g̃ (x, βn−2 + δx) g̃ (y, βn−2 + δy)}

× Qx(Sy)Q2 (d(x, y))

+ 2n3
∫
X2

∫
Sx

1 {Sx ∩ Sy = ∅}E {g̃ (x, βn−3 + δx + δz) g̃ (y, βn−3 + δy)}

× Qx(Sy)Q(dz)Q2(d(x, y)),

and where β̃x,m is a binomial point process of m independent points distributed
according to Qx(·) := Q(· ∩ Sc

x)/Q(Sc
x).

Remark 5.2. — A few remarks are in place regarding the above theorem in relation
to the approximation results in the previous sections.

(1) The binomial point process does not possess the same spatial independence as
the Poisson process and hence the bounds are more complicated here. However,
we expect that in many applications, the computation of the bounds should
not be more difficult than in the Poisson case.

(2) Since the bounds are already quite involved, we have restricted ourselves to
only the case k = 1, i.e., to functions f, g that take x ∈ X as an input instead
of x ∈ Xk.

(3) Our proof shall follow the same strategy as in Theorem 4.1 but accounting for
the added complication due to the lack of spatial independence in the binomial
point process. In the special case where f(x, ω) = f(x) (as in Theorem 3.3)
we can use a coupling approach as in the proof of Theorem 3.3, but this shall
not significantly simplify the proof or the bounds in the above theorem.

Proof. — By (2.5), we can assume as before that L = M. Further, we shall prove
the theorem under the assumption that g̃ ≡ g and follow the arguments as in Step 2
in the proof of Theorem 4.1, to complete the proof of the general case. Observe that
in the case of g̃ ≡ g we have E1 = 0.

Assume from here onwards that g̃ ≡ g, i.e., S(x, ω) ⊂ Sx for all x ∈ X and ω ∈ NX.
For a Lipschitz function h, we have by (2.6) and (2.7) that

E {h(ζ)} − E {h(ξ)}

=
∫ ∞

0

∫
Y
E {DyPsh(ξ)} L(dy)ds −

∫ ∞

0
E

∑
y ∈ ξ

DyPsh (ξ − δy)

 ds.

Using (5.1) we have
∫ ∞

0
E

∑
y ∈ ξ

DyPsh (ξ − δy)

 ds

=
∫ ∞

0
E

 ∑
x ∈ βn

g (x, βn) Df(x,βn)Psh
(
ξ − δf(x,βn)

) ds

=n
∫ ∞

0

∫
X
E
{
g (x, βn−1 + δx) Df(x,βn−1+δx)Psh

(
ξ [βn−1 + δx] − δf(x,βn−1+δx)

)}
× Q(dx)ds.
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Denoting by β′
m an independent copy of βm, we obtain from (5.2) that∫ ∞

0

∫
Y
E {DyPsh(ξ)} L(dy)ds

= n
∫ ∞

0

∫
X
E
{

g
(
x, β′

n−1 + δx

)
Df(x,β′

n−1+δx)Psh (ξ [βn])
}

Q(dx)ds.

Combining the three previous identities leads to

E {h(ζ)} − E {h(ξ)}

=n
∫ ∞

0

∫
X
E
{

g
(
x, β′

n−1 + δx

)
Df(x,β′

n−1+δx)Psh (ξ [βn])
}

− E
{
g (x, βn−1 + δx) Df(x,βn−1+δx)Psh

(
ξ [βn−1 + δx] − δf(x,βn−1+δx)

)}
Q(dx)ds.

For x ∈ X and ω ∈ N we define
ξx[ω] =

∑
y ∈ ω, Sx ∩ Sy = ∅

g(y, ω)δf(y,ω).

For x ∈ X and s ⩾ 0 let

T1,x,s :=
∣∣∣E{g

(
x, β′

n−1 + δx

)
Df(x,β′

n−1+δx)Psh (ξ [βn])
}

− E
{

g
(
x, β′

n−1 + δx

)
Df(x,β′

n−1+δx)Psh (ξx [βn])
} ∣∣∣,

T2,x,s :=
∣∣∣E{g (x, βn−1 + δx) Df(x,βn−1+δx)Psh

(
ξ [βn−1 + δx] − δf(x,βn−1+δx)

)}
− E

{
g (x, βn−1 + δx) Df(x,βn−1+δx)Psh (ξx [βn−1])

} ∣∣∣,
T3,x,s =

∣∣∣E{g
(
x, β′

n−1 + δx

)
Df(x,β′

n−1+δx)Psh (ξx [βn])
}

− E
{
g (x, βn−1 + δx) Df(x,βn−1+δx)Psh (ξx [βn−1])

} ∣∣∣
so that by the triangle inequality

(5.3)
∣∣∣E {h(ζ)} − E {h(ξ)}

∣∣∣ ⩽ n
∫ ∞

0

∫
X

(T1,x,s + T2,x,s + T3,x,s) Q(dx)ds.

Fix x ∈ X and s ⩾ 0. It follows from (2.8) that

T1,x,s ⩽ 2e−sE
{
g
(
x, β′

n−1 + δx

)
dT V (ξ[βn], ξx[βn])

}
= 2e−sE

{
g
(
x, β′

n−1 + δx

)}
E {dT V (ξ[βn], ξx[βn])} ,

and
T2,x,s ⩽ 2e−sE

{
g (x, βn−1 + δx) dT V

(
ξ [βn−1 + δx] − δf(x,βn−1+δx), ξx [βn−1]

)}
.

By (5.1) we have

E {dT V (ξ [βn] , ξx [βn])} ⩽ E

 ∑
y ∈ βn, Sx ∩ Sy ̸= ∅

g (y, βn)


= n

∫
X
1 {Sx ∩ Sy ̸= ∅}E {g (y, βn−1 + δy)} Q(dy),
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so that

T1,x,s ⩽ 2e−sE
{
g
(
x, β′

n−1 + δx

)}
n
∫
X
1 {Sx ∩ Sy ̸= ∅}E {g (y, βn−1 + δy)} Q(dy).

The inequality

g (x, βn−1 + δx) dT V

(
ξ [βn−1 + δx] − δf(x,βn−1+δx), ξx [βn−1]

)
⩽ g (x, βn−1 + δx)

∑
y ∈ βn−1, Sx ∩ Sy ̸= ∅

g (y, βn−1 + δx) ,

where we used that by our assumptions g(y, βn−1 + δx) = g(y, βn−1) if Sx ∩ Sy = ∅,
and (5.1) lead to

T2,x,s

⩽ 2e−sn
∫
X
1 {Sx ∩ Sy ̸= ∅}E {g (x, βn−2 + δx + δy) g (y, βn−2 + δx + δy)} Q(dy).

Thus, we have shown that

(5.4) n
∫ ∞

0

∫
X

T1,x,s Q(dx)ds ⩽ E2 and n
∫ ∞

0

∫
X

T2,x,s Q(dx)ds ⩽ E3.

Next, we define Nm(x) = βm(Sx) and N ′
m(x) = β′

m(Sx). Recall from the statement of
the theorem that β̃x,m is a binomial point process of m independent points distributed
according to Qx(·) = Q(· ∩ Sc

x)/Q(Sc
x), which we assume to be independent from

(βℓ)ℓ ∈N and (β′
ℓ)ℓ ∈N. From (2.8) we obtain

T3,x,s =
∣∣∣E{g (x, βn−1 + δx) Df(x,βn−1+δx)Psh (ξx [β′

n])
}

− E
{
g (x, βn−1 + δx) Df(x,βn−1+δx)Psh (ξx [βn−1])

} ∣∣∣
=
∣∣∣E{g (x, βn−1 + δx) Df(x,βn−1+δx)Psh

(
ξx

[
β̃x,n−N ′

n(x)
])}

− E
{
g (x, βn−1 + δx) Df(x,βn−1+δx)Psh

(
ξx

[
β̃x,n−1−Nn−1(x)

])} ∣∣∣
⩽ 2e−sE

{
g (x, βn−1 + δx)

(
ξx

[
β̃x,n−N ′

n(x)
]

△ξx

[
β̃x,n−1−Nn−1(x)

])
(Y)

}
.

We denote the points of β̃x,m, by X̃1, . . . , X̃m. For ℓ ⩽ n we have

(5.5)
(
ξx

[
β̃x,n−ℓ

]
△ξx

[
β̃x,n

])
(Y)

⩽
n∑

i=n−ℓ+1
1

{
Sx ∩ S

X̃i
= ∅

}
g
(
X̃i, β̃x,n

)

+
n∑

i=n−ℓ+1

n−ℓ∑
j=1

1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n−ℓ

)
1

{
X̃i ∈ S

X̃j

}

+
n∑

i=n−ℓ+1

n−ℓ∑
j=1

1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n

)
1

{
X̃i ∈ S

X̃j

}
.

Here, the first sum on the right-hand side counts the points of ξx[β̃n,x] associated
with points from β̃x,n \ β̃x,n−ℓ, while the second and the third term bound the number
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of points that are present in ξx[β̃x,n−ℓ] or ξx[β̃x,n] and not present or different in the
other point process. We will use the triangle inequality(

ξx

[
β̃x,n−N ′

n(x)
]

△ξx

[
β̃x,n−1−Nn−1(x)

])
(Y)

⩽
(
ξx

[
β̃x,n−N ′

n(x)
]

△ξx

[
β̃x,n

])
(Y) +

(
ξx

[
β̃x,n

]
△ξx

[
β̃x,n−1−Nn−1(x)

])
(Y)

in the following. It follows from (5.5) with ℓ = N ′
n(x) that

E
{(

ξx

[
β̃x,n−N ′

n(x)
]

△ξx

[
β̃x,n

])
(Y)

}
⩽ E


n∑

i=n−N ′
n(x)+1

1

{
Sx ∩ S

X̃i
= ∅

}
g
(
X̃i, β̃x,n

)
+ E


n∑

i=n−N ′
n(x)+1

n−N ′
n(x)∑

j=1
1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n−N ′

n(x)
)
1

{
X̃i ∈ S

X̃j

}
+ E


n∑

i=n−N ′
n(x)+1

n−N ′
n(x)∑

j=1
1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n

)
1

{
X̃i ∈ S

X̃j

}
=: U ′

1,x + U ′
2,x + U ′

3,x.

We define Ui,x := E {g(x, βn−1 + δx)} U ′
i,x for i ∈ {1, 2, 3}. Applying once more (5.5)

with ℓ = Nn−1(x) + 1 leads to

E
{
g (x, βn−1 + δx)

(
ξx

[
β̃x,n

]
△ξx

[
β̃x,n−1−Nn−1(x)

])
(Y)

}
⩽ E

g (x, βn−1 + δx)
n∑

i=n−Nn−1(x)
1

{
Sx ∩ S

X̃i
= ∅

}
g
(
X̃i, β̃x,n

)
+ E

g (x, βn−1 + δx)

×
n∑

i=n−Nn−1(x)

n−1−Nn−1(x)∑
j=1

1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n−1−Nn−1(x)

)
1

{
X̃i ∈ S

X̃j

}
+ E

g (x, βn−1 + δx)
n∑

i=n−Nn−1(x)

n−1−Nn−1(x)∑
j=1

1

{
Sx ∩ S

X̃j
= ∅

}
× g

(
X̃j, β̃x,n

)
1

{
X̃i ∈ S

X̃j

}}
=: U4,x + U5,x + U6,x.

From (5.1), which can be adapted to the situation, where one sums only over a
fraction of the points, and the independence of N ′

n(x) and β̃n,x it follows that

U ′
1,x = E {N ′

n(x)}
∫
X
1 {Sx ∩ Sy = ∅}E

{
g
(
y, β̃x,n−1 + δy

)}
Qx(dy),
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while the independence of βn−1 and β̃n,x and (5.1) lead to

U4,x = E {g (x, βn−1 + δx) (1 + Nn−1(x))}
∫
X
1 {Sx ∩ Sy = ∅}

× E
{
g
(
y, β̃x,n−1 + δy

)}
Qx(dy)

=
(
E {g (x, βn−1 + δx)} + (n − 1)

∫
Sx

E {g (x, βn−2 + δx + δz)} Q(dz)
)

×
∫
X
1 {Sx ∩ Sy = ∅}E

{
g
(
y, β̃x,n−1 + δy

)}
Qx(dy).

Together with E {N ′
n(x)} = nQ(Sx) and U1,x = E {g(x, βn−1 + δx)} U ′

1,x we obtain

(5.6) U1,x + U4,x =(
(1 + nQ(Sx))E {g (x, βn−1 + δx)} + (n − 1)

∫
Sx

E {g (x, βn−2 + δx + δz)} Q(dz)
)

×
∫
X
1 {Sx ∩ Sy = ∅}E

{
g
(
y, β̃x,n−1 + δy

)}
Qx(dy).

By similar independence arguments as above and (5.1), we have

U ′
3,x ⩽ E


n∑

i=n−N ′
n(x)+1

n∑
j=1

1
{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n

)
1
{
X̃i ∈ S

X̃j

}
⩽ nE {N ′

n(x)}
∫
X2
1 {Sx ∩ Sy1 = ∅}1 {y2 ∈ Sy1}

× E
{
g
(
y1, β̃x,n−2 + δy1 + δy2

)}
Q2

x (d(y1, y2))

and

U6,x ⩽ nE {g (x, βn−1 + δx) (1 + Nn−1(x))}

×
∫
X2
1 {Sx ∩ Sy1 = ∅}1 {y2 ∈ Sy1}

× E
{
g
(
y1, β̃x,n−2 + δy1 + δy2

)}
Q2

x (d (y1, y2))

⩽ n
(
E {g (x, βn−1 + δx)} + n

∫
Sx

E {g (x, βn−2 + δx + δz)} Q(dz)
)

×
∫
X2
1 {Sx ∩ Sy1 = ∅}1 {y2 ∈ Sy1}

× E
{
g
(
y1, β̃x,n−2 + δy1 + δy2

)}
Q2

x (d(y1, y2)) .

From the definition of U3,x and E {N ′
n(x)} = nQ(Sx) we derive

(5.7) U3,x + U6,x

⩽ n

(
(1 + nQ (Sx))E {g (x, βn−1 + δx)} + n

∫
Sx

E {g (x, βn−2 + δx + δz)} Q(dz)
)

×
∫
X2
1 {Sx ∩ Sy1 = ∅}1 {y2 ∈ Sy1}E

{
g
(
y1, β̃x,n−2 + δy1 + δy2

)}
Q2

x (d(y1, y2)) .

TOME 5 (2022)



1512 O. BOBROWSKI, M. SCHULTE & D. YOGESHWARAN

Combining (5.6) and (5.7) yields

(5.8) 2n
∫
X

(U1,x + U3,x + U4,x + U6,x) Q(dx) ⩽ E4.

By (4.1) and the assumption S(z, ω) ⊂ Sz for all z ∈ X, ω ∈ NX, we obtain

(5.9) 1 {z1 /∈ Sz2} g (z2, ω + δz1) = 1 {z1 /∈ Sz2} g(z2, ω)

for z1, z2 ∈ X and ω ∈ NX with z2 ∈ ω. For x ∈ X we deduce from (5.1) and (5.9)
that

U ′
2,x = E

N ′
n(x)

n−N ′
n(x)∑

j=1
1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n−N ′

n(x)
)

Qx

(
S

X̃j

)
= E


∑

(x1,x2) ∈ β2
n,̸=

1 {x1 ∈ Sx}1 {Sx ∩ Sx2 = ∅} g (x2, βn) Qx (Sx2)


= n(n − 1)Q(Sx)

∫
X
1 {Sx ∩ Sy = ∅}E {g (y, βn−2 + δy)} Qx(Sy)Q(dy)

so that, with U2,x = E {g(x, βn−1 + δx)} U ′
2,x,

(5.10) 2n
∫
X

U2,x Q(dx) ⩽ E5.

Finally, applying again (5.1) and (5.9) leads to

U5,x = E
{

g (x, βn−1 + δx) (1 + Nn−1(x))
n−1−Nn−1(x)∑

j=1

× 1

{
Sx ∩ S

X̃j
= ∅

}
g
(
X̃j, β̃x,n−1−Nn−1(x)

)
Qx

(
S

X̃j

)}

= E

g (x, βn−1 + δx)
∑

y ∈ βn−1

1 {Sx ∩ Sy = ∅} g (y, βn−1) Qx(Sy)


+ E

g (x, βn−1 + δx)
∑

(y1,y2)∈β2
n−1,̸=

1 {y1 ∈ Sx}1 {Sx ∩ Sy2 = ∅}

× g (y2, βn−1) Qx (Sy2)


⩽ n

∫
X
1 {Sx ∩ Sy = ∅}E {g (x, βn−2 + δx) g (y, βn−2 + δy)} Qx (Sy) Q(dy)

+ n2
∫
X

∫
Sx

1 {Sx ∩ Sy = ∅}E {g (x, βn−3 + δx + δz) g (y, βn−3 + δy)}

× Qx(Sy)Q(dz)Q(dy)

for x ∈ X, which implies

(5.11) 2n
∫
X

U5,x Q(dx) ⩽ E6.
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Combining (5.8), (5.10) and (5.11) provides a bound for the integral over T3,x,s,
which together with (5.3) and (5.4) completes the proof of Theorem 5.1. □

6. Applications

In this section we present applications of our results to (a) the critical points
of a random distance function and (b) the volume (with respect to the intensity
measure) of large k-nearest neighbor balls. Though some Poisson approximation
results are known in both of these models, our results extend these in two ways.
Firstly, we consider more general point processes than those considered before and
secondly, we provide rates of convergence under a stronger metric. More details on
comparison with the existing literature for these specific applications will be given
in the respective subsections.

We wish to point out that these applications are to illustrate our generic results and
it is conceivable that many more such applications of our results would be possible.
For example, one may consider extremes of circum-radii and in-radii of Poisson–
Voronoi tessellations as in [CC14, Che14, PS22] and also other stabilizing statistics
as in [Ott20]. For example, we can deduce immediately from Theorem 4.1 and the
proofs in [Ott20] that [Ott20, Theorems 4.2, 5.5 and 6.5] hold under the stronger KR
distance. Using Theorems 3.3 or 4.1, we may extend many Poisson approximation
results to Poisson process approximation results. For example, a coupling similar to
that in Theorem 3.3 was used in [IY20, Theorem 2.8] to prove Poisson convergence
for the number of isolated faces in a Vietoris–Rips complex. We expect that other
Poisson approximation results in [Pen18] could also be extended using our framework
(see Remark 3.4). Also, we believe that Poisson convergence results (for example,
see [OA17, Theorem 2.1]) based on dependency graph method [AGG89] could be
extended to a Poisson process approximation using our Theorem 4.1. Another point to
emphasize is that most of the afore-mentioned articles consider only approximation
for point processes induced by Poisson point processes but our bounds will help
extending them to point processes induced by binomial point processes as well. For
example, see Theorem 6.5.

6.1. Critical points for the random distance function

Let ω be a point configuration in some metric space. In this section we are interested
in the space generated by the union of balls around ω,

Br(ω) :=
⋃

p ∈ ω

Br(p),

where Br(p) denotes the closed ball of radius r centred at p. In [Kah11] the theoretical
study of homology of Br(·) taken over random point processes was initiated. Briefly,
homology is an algebraic-topological structure representing information about cycles
in various dimensions, where 0-dimensional cycles correspond to connected compo-
nents, 1-dimensional cycles correspond to loops surrounding “holes”, 2-dimensional
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cycles correspond to surfaces enclosing “air pockets”, etc. (cf. [Hat02]). Increasing
the radius r, Morse Theory (cf. [GR97, Mil63]) states that changes in the homology
of Br(ω) occur at critical levels of the distance function

ρ(x; ω) := min
p ∈ ω

dist(x, p),

where dist(·, ·) is the distance under the corresponding metric. For every critical point,
Morse theory also assigns an index which, roughly speaking, counts the number of
independent directions around the critical point, along which the distance function is
decreasing. Critical points of index k can then affect the homology of Br(η) either in
dimension k (creating new k-dimensional cycles) or in dimension k − 1 (terminating
a (k −1)-dimensional cycle). Thus, the work in [BA14, Bob22] focused on the critical
points and their indexes, as a proxy to the homology. We shall define critical points
more formally below. Note that we will not elaborate more on the connection between
critical points and homology as this will involve introducing algebraic topology basics.
For more on the homology of Br(ω), we refer the reader to the survey [BK18].

The work in [Bob22] focused on a homogeneous Poisson process defined on a flat
torus X = Td = Rd/Zd (which can be thought of as the unit box [0, 1]d with a
periodic boundary). Specifically, it considered a Poisson process η = ηn on Td with
a fixed n. The main objective there was to characterize the phase transition for
homological connectivity, i.e., where the kth homology of the random union Br(ηn)
converges to the kth homology of the underlying torus Td. The main part of the
proof there, shows that the very last obstructions to the kth homological connectivity
are in one-to-one correspondence with critical points of index k. In fact, it is shown
in [Bob22, Section 8] that in terms of persistent homology these obstructions form
infinitesimally small persistence intervals that are the very last ones to appear in the
persistence barcode. The conditions for points to be critical, as presented in [Bob22,
Section 2.3] are localized in the sense of Section 4. Hence, we are interested in
providing a limit theorem for this process of obstructions.

Let rn be defined via

(6.1) an := ωdnrd
n = log n + (k − 1) log log n + α0,

where ωd is the volume of a d-dimensional unit ball, and α0 ∈ R is fixed. We call the
values of rn satisfying (6.1) the “k-homological connectivity” regime. Let Rn be any
value satisfying

(6.2) lim
n → ∞

Rn = 0, and lim
n → ∞

rn/Rn = 0.

The analysis in [Bob22] focused on the number of critical points c ∈ Td with Morse
index k, such that ρ(c; ηn) ∈ (rn, Rn]. Defining by Ck,n the number of such critical
points, in [Bob22, Proposition 4.1] the following was proved.

Proposition 6.1. — Let α0 ∈ R, and let rn, Rn satisfy (6.1) and (6.2), respec-
tively. Then

lim
n → ∞

E {Ck,n} = lim
n → ∞

Var (Ck,n) = Dke−α0 ,

where Dk is a known constant.
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Note that the limiting results are independent of the choice of Rn (provided
that (6.2) is satisfied). To prove Proposition 6.1, [Bob22] used the fact that critical
points of index k are generated by subsets x ∈ (ηn)k+1

̸= . Defining

(6.3) g(x, ηn)
:= 1 {x ⊂ ηn generates a critical point of index k, with ρ ∈ (rn, Rn]} ,

then we can write
Ck,n := 1

(k + 1)!
∑

x ∈ (ηn)k+1
̸=

g (x, ηn) .

Our goal here is not only to prove a Poisson limit for the random variable Ck,n but
to provide an elaborate point-process limit for the actual configuration of critical
points that appear in (rn, Rn]. To this end, we require a few more definitions.

We will consider subsets x ∈ (Td)k+1 that are (a) in general position, and (b)
contained in a ball of radius Rn. For such subsets we can define c(x) and ρ(x) as the
center and radius of the unique (k−1)-sphere containing x. In [Bob22, Lemma 2.3] it
was shown that every critical point of ρ(· ; ηn) with Morse index k, is of the form c(x)
for some x ∈ (ηn)k+1

̸= , and the corresponding critical value satisfies ρ(c(x); ηn) = ρ(x).
Next, following (6.1) we define

α(x) := ωdnρ(x)d − log n − (k − 1) log log n.

Our goal is to define a point process on Td × R representing pairs of the form
(c(x), α(x)) for those critical points in (rn, Rn], by defining

ξk = ξk[ηn] := 1
(k + 1)!

∑
x ∈ (ηn)k+1

̸=

g(x, ηn)δf(x),

where f(x) = (c(x), α(x)), and rn satisfies (6.1). In other words, the domain space
here is X = Td and the image space is Y := Td × R0, where R0 := [α0, ∞). From
Proposition 6.1 and noting that Ck,n = ξk(Y), we obtain that

(6.4) lim
n → ∞

E {ξk(Y)} = lim
n → ∞

Var (ξk(Y)) = Dke−α0 .

We will prove that ξk converges to a Poisson process on Y.

Theorem 6.2. — Let α0 ∈ R, and ξk as defined above. Then for n ⩾ 3 and
Rn = √

rn, we have

dKR(ξk, ζk) ⩽ Cα0(log log n)d(log n)− d−k
d+1 ,

for some Cα0 > 0, and where ζk is a Poisson process on Y = Td × R0, with intensity
Dke−αdαdc. In particular, this implies that ξk

KR−−→ ζk as n → ∞.

In other words, the process of all pairs (c, α) representing critical points and
critical values, has a limit of a Poisson process which is homogeneous in c and has
an exponentially decaying intensity in α.
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Remark 6.3. —
(1) [Bob22, Theorem 8.1] presents a weaker statement than Theorem 6.2 here.

The limiting point process in [Bob22] was only for the critical radii, while here
we show that a Poisson limit also extends to the combined location+radius
point process. Regarding the proofs, the calculations in [Bob22] provide all the
moment estimates needed to invoke Theorem 4.1. However, the key ingredient
needed to prove the Poisson limit in [Bob22] is in fact Theorem 4.1 which
appears here for the first time.

(2) We can also conclude from Theorem 6.2 the convergence of the entire point
process of critical points and distances (i.e., on Td × R). More precisely,
consider

ξ′
k[ηn] := 1

(k + 1)!
∑

x ∈ (ηn)k+1
̸=

1{x ⊂ ηn generates a critical point of index k with ρ(x) ⩽ Rn}δf(x),

where f(x), ρ(x) are as defined above. Since Theorem 6.2 holds for all α0 ∈
R, by the characterization of convergence in distribution of point processes
in [Kal02, Theorem 16.16], we have that ξ′

k[ηn] d→ ζ ′
k, where ζ ′

k is a Poisson
process on Y = Td × R, with intensity Dke−αdαdc.

(3) The choice of Rn = √
rn was required in order to get the bound presented

in Theorem 6.2. In terms of the homological connectivity phenomenon, this
choice has no practical consequence. In fact it can be shown that even at
radius r = 2rn with high probability Br(ηn) covers the torus Td completely.
This implies that homology exhibits no further changes, and the only changes
we expect to see are at radii smaller than 2rn ≪ √

rn. Choosing a larger Rn

leads to process convergence for a larger point process which is more desirable.

Proof of Theorem 6.2. — Following the notation above, we denote by L and M the
intensity measures of ξk and ζk, respectively. Denote X := Td, and note that since ηn

is a homogeneous Poisson process with rate n on X, we have that K(dx) = ndx. Also,
setting Sx = Bρ(x)(c(x)) then the definitions for the critical points in [Bob22] imply
that g(x, ηn) is indeed localized to Sx, i.e., condition (4.1) holds with S(x, ω) ≡ Sx.

Using Theorem 4.1 we have,

(6.5) dKR (ξk, ζk) ⩽ dT V (L, M)
+ 2 {Var (ξk(Y)) − E {ξk(Y)}}

+
(

2
(k + 1)!

)2 ∫
Xk+1

∫
Xk+1

1 {Sz ∩ Sx ̸= ∅}

× E {g (x, ηn + δx)}E {g (z, ηn + δz)} Kk+1(dz)Kk+1(dx).

First, recall that ζk is a Poisson process on Y = Td ×R0, with intensity Dke−αdαdc.
Then for any measurable A ⊂ Y,

M(A) = E {ζk(A)} = Dk

∫
A

e−αdαdc.
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Next, from Lemma A.1 we have

L(A) = E {ξk(A)} = Dkn
∫

Â
sk−1e−s

1

{
s ⩽ ωdnRd

n

}
dsdc,

where
Â := {(c, s):(c, α) ∈ A, s = log n + (k − 1) log log n + α} .

Therefore, defining In(α) := 1

{
log n + (k − 1) log log n + α ⩽ ωdnRd

n

}
, we have

(6.6) L(A)

= Dkn
∫

A
(log n + (k − 1) log log n + α)k−1 e−(log n+(k−1) log log n+α)In(α)dαdc

= Dk

∫
A

(
1 + (k − 1) log log n + α

log n

)k−1

e−αIn(α)dαdc.

If n is large enough, then α0 > − log log n, and we have

(6.7) |L(A) − M(A)|

= Dk

∣∣∣∣∣∣
∫

A

In(α)
(

1 + (k − 1) log log n + α

log n

)k−1

− 1
 e−αdαdc

∣∣∣∣∣∣
⩽ Dk

k−1∑
i=1

(
k − 1

i

)∫
A

(
(k − 1) log log n + α

log n

)i

e−αdαdc + Dk

∫
R
(1 − In(α))e−αdα

= Dk

k−1∑
i=1

i∑
j=0

(
k − 1

i

)(
i

j

)
((k − 1) log log n)i−j

(log n)i

∫
A

αje−αdαdc

+ Dke−ωdnRd
n+log n+(k−1) log log n

= O

(
log log n

log n

)
,

where we used the fact that
∫
R0

αje−αdα < ∞ and that Rn = √
rn.

The fact that Var (ξk(Y)) − E {ξk(Y)} → 0 is given by (6.4). Further, from
Lemma A.2, we have

(6.8) Var (ξk(Y)) − E {ξk(Y)} = O
(
(log log n)d(log n)− d−k

d+1
)

.

We are left now with bounding the last term in (6.5).
Fix x and note that if Sz ∩ Sx ̸= ∅, then |c(z) − c(x)| ⩽ ρ(z) + ρ(x) ⩽ 2Rn.

Therefore, using (6.6), we derive that

1
(k + 1)!

∫
Xk+1

1 {Sz ∩ Sx ̸= ∅}E {g (z, ηn + δz)} Kk+1(dz)

⩽
1

(k + 1)!

∫
Xk+1

E {1 {c(z) ∈ B2Rn(c(x))} g (z, ηn + δz)} Kk+1(dz)

= L(B2Rn (c(x)) × R0) = Vol (B2Rn(c(x)) · L
(
Td × R0

)
= ωd (2Rn)d Dke−α0 ,
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where we used the fact that Vol(Td) = 1. Finally, we can conclude that

(6.9) 1
((k + 1)!)2

∫
Xk+1

∫
Xk+1

1 {Sz ∩ Sx ̸= ∅}E {g (x, ηn + δx)}

× E {g (z, ηn + δz)} Kk+1(dz)Kk+1(dx)

⩽ ωd(2Rn)dDke−α0
1

(k + 1)!

∫
Xk+1

E {g (z, ηn + δz)} Kk+1(dx) = O
(
Rd

n

)
.

Since Rn = √
rn, we have Rd

n = O(
√

log n/n). Combining the bounds in (6.7)-(6.9)
completes the proof. □

6.2. Large k-nearest neighbor balls

We look at the point process of the scaled volumes of k-nearest neighbor balls.
We shall consider the setup as in [Ott20, Section 4]. This is a well-studied statistic
in computational and stochastic geometry with varied applications (see [Pen97,
Pg. 342]). It is also closely related to another important object, the minimal spanning
tree. We remark on this briefly in our discussion after Theorem 6.4.

Let X = Td, d ⩾ 2 as in the previous section and identify it with [0, 1]d, and let K
be a finite measure on (X, X ). Define for k ⩾ 1 and ω ∈ N̂X,

Rk(x, ω) := inf {r > 0 : ω (Br(x) \ {x})⩾k} ,

Kk(x, ω) := K
(
BRk(x,ω)(x)

)
,

where Br(x) is the closed ball of radius r around x. In other words, Rk is the k-nearest
neighbor distance of x, and Kk is the measure of the ball of radius Rk around x. Let
Y = X × R, and define

ξ[ω] :=
∑
x ∈ ω

δ(x,nKk(x,ω)−an),

where
an := log n + (k − 1) log log n − log(k − 1)!.(6.10)

In other words, for an underlying point process ν, ξ[ν] is a point process of pairs,
each pair consisting of a point and the scaled volume of its k-nearest neighbor ball.
The scaling is chosen such that we count only the extremal (maximal) ones.

Theorem 6.4. — Let d ⩾ 2 and k ⩾ 1. Let ηn be a Poisson process with
intensity measure nK and assume that K is a probability measure with a density
λ : X → (0, ∞) such that 0 < λ− ⩽ λ(x) ⩽ λ+ < ∞ for all x ∈ X. Let ζ be a Poisson
process with intensity measure M(dx, dt) = λ(x) dx e−t dt on X × R. Then, for any
b0 ∈ R, there exists a constant C ∈ (0, ∞) only depending on b0, k, d, λ+ and λ−
such that

(6.11) dKR
(
ξ[ηn] ∩ (X × (b0, ∞)) , ζ ∩ (X × (b0, ∞))

)
⩽ C

log log n

log n

for all n ⩾ 3. Moreover, ξ[ηn] d→ ζ as n → ∞.
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We have assumed λ− > 0 and λ+ < ∞ for technical reasons to simplify some
estimates involving K.

The constant C in the theorem can be deduced from the bounds in (6.12), (6.13),
(6.14), (6.15) and (6.16). The convergence of ξ[ηn] was obtained in [Pen97, Theo-
rem 2] in the case of homogeneous Poisson processes. Our above theorem considers
inhomogeneous Poisson processes as well. Further [Pen97, Theorem 2] is used to
prove Poisson process convergence of extremal edge lengths of the minimal spanning
tree built on the complete graph on ηn with Euclidean distances as the edge-weights
(see [Pen97, Theorem 3]). The proof technique of [Pen97, Theorem 2] is to discretize
and use the Chen–Stein bound of [AGG89].

[Ott20, Theorem 4.2] gives bounds under total variation distance for the projection
of ξ[ηn]∩ (X× (0, ∞)) to X. We will now show that using our Theorem 4.1 with some
additional computations compared to [Ott20, Theorem 4.2], we obtain improved
rates of convergence for the more general point process ξ[ηn] ∩ (X × (b0, ∞)) for any
b0 ∈ R.

Proof. — Let b0 ∈ R be fixed. Set g(x, ω) := 1 {nKk(x, ω) − an > b0} and f(x, ω)
:= (x, nKk(x, ω) − an). Define

ξ0[ω] :=
∑
x ∈ ω

g(x, ω)δf(x,ω), ω ∈ N̂X,

and observe that ξ0[ω] = ξ[ω] ∩ (X × (b0, ∞)). We put
rn(x, u) := inf {r : nK(Br(x)) ⩾ an + u} .

We will apply Theorem 4.1 with f and g as above to compare ξ0[ηn] with the
restriction of ζ to X × (b0, ∞). Denoting S(x, ω) = BRk(x,ω)(x), observe that f and
g are both localized to S, which is a stopping set. Further, we set Sx = Brn(x,b)(x)
for a fixed b ∈ (max{0, b0}, ∞), which will be chosen later as a function of n.

We shall compute one-by-one the terms in the KR distance bound provided by
Theorem 4.1. Observe that since we are summing over points, the last term E4 is
absent. Throughout this proof all inequalities are supposed to hold for all n ∈ N
such that an + b0 > 0.

Note that for x ∈ X, we have {nKk(x, ηn + δx) − an > u} = {ηn(Brn(x,u)(x)) < k}
(a.s.). Consider the first term in the bound of Theorem 4.1. Define ϱn := nλ−ωd/2d −
an, where ωd is the volume of the unit ball in Rd. Denote the intensity measure of
ξ0 by L. Then for B ∈ X and u ∈ (b0, ϱn) we have by the Mecke formula that

L (B × (u, ∞)) = n
∫

B
P (nKk (x, ηn + δx) − an > u) λ(x)dx

= n
∫

B
P
(
ηn

(
Brn(x,u)(x)

)
⩽ k − 1

)
λ(x)dx

= nK(B)
k−1∑
i=0

e−(an+u) (an + u)i

i! = e−uK(B)
k−1∑
i=0

(k − 1)!(an + u)i

i!(log n)k−1 ,

where we used (6.10) in the last equality. Thus, the density ℓ of L satisfies

ℓ(x, u) = λ(x)e−u (an + u)k−1

(log n)k−1
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for x ∈ X and u ∈ (b0, ϱn). Let M0 be the intensity measure of ζ0 := ζ ∩(X×(b0, ∞)).
Now we obtain

(6.12) dT V (L, M0)

⩽
∫ ∞

b0

∣∣∣∣∣e−u (an + u)k−1

(log n)k−1 − e−u

∣∣∣∣∣ du + L (X × (ϱn, ∞)) + M0 (X × (ϱn, ∞))

⩽ C0
log log n

log n

with a constant C0 ∈ (0, ∞) only depending on b0, k, d and λ−. Next, we compute
the integral in the second term of the bound in Theorem 4.1. Similar to the above
calculation, we can derive that

E1 ⩽ 2n
∫
X
P
(
ηn

(
Brn(x,b)(x)

)
⩽ k − 1

)
λ(x)dx

⩽ C1e
−b

(
1 + (k − 1) log log n + b

log n

)k−1(6.13)

for b < ϱn with C1 := 2k!.
Observing that {S(x, ω) ⊂ Sx} = {Rk(x, ω) ⩽ rn(x, b)} and using the definition

of g, the integral in the third term of the bound in Theorem 4.1 can be bounded
from above by

E2 ⩽ 2n2
∫
X

∫
X
P (Rk(x, ηn + δx) ∈ (rn(x, b0), rn(x, b)])

× P (Rk (z, ηn + δz) ∈ (rn(z, b0), rn(z, b)])
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} λ(x)λ(z) dx dz

⩽ 2n2
∫
X

∫
X
P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 1

)
P
(
ηn

(
Brn(z,b0)(z)

)
⩽ k − 1

)
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} λ(x)λ(z) dx dz,

⩽ 2
(

e−b0
k−1∑
i=0

(k − 1)! (an + b0)i

i!(log n)k−1

)2 ∫
X

∫
X
1 {|x − z| ⩽ rn(x, b) + rn(z, b)}

× λ(x)λ(z) dx dz

⩽ C2
an + b

n
,

(6.14)

where in the last bound we have used that

sup
x ∈X

ωdnrn(x, b)d ⩽ λ−1
− sup

x ∈X
nK

(
Brn(x,b)

)
= an + b

λ−
.

Note that the constant C2 ∈ (0, ∞) depends on b0, k, λ+ and λ−.
Similarly to the above bound, the fourth term in Theorem 4.1 can be bounded by
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E3 ⩽ 2n2
∫
X

∫
X
P
(
[ηn + δz]

(
Brn(x,b0)(x)

)
⩽ k − 1, [ηn + δx]

(
Brn(z,b0)(z)

)
⩽ k − 1

)
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} λ(x)λ(z) dx dz

⩽ 2n2λ2
+

∫
X

∫
X
P
(
[ηn + δz]

(
Brn(x,b0)(x)

)
⩽ k − 1, [ηn + δx]

(
Brn(z,b0)(z)

)
⩽ k − 1

)
× 1 {|x − z| ⩽ min {rn (x, b0) , rn (z, b0)}}
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz

+ 2n2λ2
+

∫
X

∫
X
P
(
[ηn + δz]

(
Brn(x,b0)(x)

)
⩽ k − 1, [ηn + δx]

(
Brn(z,b0)(z)

)
⩽ k − 1

)
× 1 {|x − z| > min {rn (x, b0) , rn (z, b0)}}
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz

=: E3,1 + E3,2.

We first consider E3,1. Since E3,1 = 0 for k = 1, we can assume k ⩾ 2 in the sequel.
We obtain that

E3,1 ⩽ 2n2λ2
+

∫
X

∫
X
P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 2, ηn

(
Brn(z,b0)(z)

)
⩽ k − 2

)
× 1 {|x − z| ⩽ min {rn (x, b0) , rn (z, b0)}}
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz

⩽ 4n2λ2
+

∫
X

∫
X
P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 2, ηn

(
Brn(z,b0)(z)

)
⩽ k − 2

)
× 1 {rn (x, b0) ⩽ rn (z, b0)}1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz

⩽ 4n2λ2
+

∫
X

∫
X
P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 2

)
× P

(
ηn

(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩽ k − 2

)
× 1 {rn (x, b0) ⩽ rn (z, b0)}1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz.

For x, z ∈ X we have

P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 2

)
=

k−2∑
i=0

(an + b0)i

i! e−(an+b0) ⩽
Cb0,k

n (an + b0)

with some constant Cb0,k ∈ (0, ∞) only depending on b0 and k and

P
(
ηn

(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩽ k − 2

)
=

k−2∑
i=0

(
nK

(
Brn(z,b0)(z) \ Brn(x,b0)(x)

))i

i! e−nK(Brn(z,b0)(z)\Brn(x,b0)(x))

⩽ Cke−nK(Brn(z,b0)(z)\Brn(x,b0)(x))/2
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with some constant Ck ∈ (0, ∞) only depending on k. By a short computation one
can establish that there exists a dimension dependent constant cd ∈ (0, ∞) such that

|B1(0) \ B1(v)| ⩾ cd|v|

for all v ∈ B(0, 2), see e.g. [PG10, Equation (7.5)]. From this and rn(x, b0) ⩽ rn(z, b0)
we deduce

K
(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩾ λ−

∣∣∣Brn(z,b0)(z) \ Brn(x,b0)(x)
∣∣∣

⩾ λ−

∣∣∣Brn(z,b0)(z) \ Brn(z,b0)(x)
∣∣∣ ⩾ λ−cdrn (z, b0)d−1 |x − z|.

Combining the previous estimates and using spherical coordinates we obtain

E3,1 ⩽ 4n2λ2
+

∫
X

∫
X

Cb0,kCk

n (an + b0)
e−nλ−cdrn(z,b0)d−1|x−z|/2

× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz

⩽ 4λ2
+Cb0,kCk

n

an + b0
dωd

∫
X

∫ ∞

0
e−nλ−cdrn(z,b0)d−1s/2sd−1 ds dz

⩽ 4λ2
+Cb0,kCkdωd

n

an + b0

∫
X

2d(
nλ−cdrn (z, b0)d−1

)d

∫ ∞

0
e−uud−1 du dz.

Since nλ+ωdrn(z, b0)d ⩾ nK(Brn(z,b0)(z)) = an + b0, we conclude that there exists a
constant C3,1 ∈ (0, ∞) only depending on b0, k, d, λ+ and λ− such that

(6.15) E3,1 ⩽
C3,1

(an + b0)d .

For E3,2 we obtain

E3,2 ⩽ 4n2λ2
+

∫
X

∫
X
P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 1, ηn

(
Brn(z,b0)(z)

)
⩽ k − 1

)
× 1 {|x − z| > rn (x, b0) , rn (z, b0) ⩾ rn (x, b0)}
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz

⩽ 4n2λ2
+

∫
X

∫
X
P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 1

)
× P

(
ηn

(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩽ k − 1

)
× 1 {|x − z| > rn (x, b0) , rn (z, b0) ⩾ rn (x, b0)}
× 1 {|x − z| ⩽ rn(x, b) + rn(z, b)} dx dz.

Let x, z ∈ X. There exists a constant C ′
b0,k ∈ (0, ∞) only depending on b0 and k such

that

P
(
ηn

(
Brn(x,b0)(x)

)
⩽ k − 1

)
⩽

k−1∑
i=0

(an + b0)i

i! e−(an+b0) ⩽
C ′

b0,k

n
.
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From |x − z| > rn(x, b0) and the assumptions on K it follows that

K
(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩾ λ−

∣∣∣Brn(z,b0)(z) \ Brn(x,b0)(x)
∣∣∣

⩾
λ−

2
∣∣∣Brn(z,b0)(z)

∣∣∣ ⩾ λ−

2λ+
K
(
Brn(z,b0)(z)

)
so that

nK
(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩾ γ (an + b0)

with γ := λ−/(2λ+). Consequently, we can choose a constant C ′′
b0,k ∈ (0, ∞) only

depending on b0 and k such that

P
(
ηn

(
Brn(z,b0)(z) \ Brn(x,b0)(x)

)
⩽ k − 1

)
⩽ C ′′

b0,k

(an + b0)k−1

nγ
.

Moreover, we have nλ−ωdrn(x, b)d ⩽ nK(Brn(x,b)(x)) = an + b and nλ−ωdrn(z, b)d

⩽ nK(Brn(z,b)(z)) = an + b. Combining all these estimates, we see that there exists
a constant C3,2 ∈ (0, ∞) only depending on b0, k, λ+ and λ− such that

(6.16) E3,2 ⩽ C3,2n
2 1
n

(an + b0)k−1

nγ

an + b

n
= C3,2

(an + b0)k−1 (an + b)
nγ

.

Combining (6.12), (6.13), (6.14), (6.15) and (6.16) with Theorem 4.1 yields that

dKR
(
ξ [ηn] ∩ (X × (b0, ∞)) , ζ ∩ (X × (b0, ∞))

)
⩽ C0

log log n

log n
+ C1e

−b

(
1 + (k − 1) log log n + b

log n

)k−1

+ C2
an + b

n
+ C3,1

1
(an + b0)d

+ C3,2
(an + b0)k−1(an + b)

nγ
.

Now the choice b = log n proves (6.11).
Since convergence in KR distance implies convergence in distribution, we have

ξ[ηn] ∩ (X × (b0, ∞)) d→ ζ ∩ (X × (b0, ∞)) as n → ∞.

By the characterization of convergence in distribution of point processes in [Kal02,
Theorem 16.16], this implies ξ[ηn] d→ ζ as n → ∞. □

In the next theorem, we consider the large k-nearest neighbor balls for an underly-
ing binomial point process under some assumptions on the density of the distribution
of the points. For an underlying homogeneous binomial point process Poisson pro-
cess convergence was established in [Pen97]. As mentioned before, we are not aware
of any quantitative result for binomial point processes even with a weaker rate of
convergence or under weaker approximation distance in the literature. For recent
Poisson approximation results concerning k-nearest neighbor balls of a binomial
point process in Rd see [CHO21] and (for k = 1) [GHW19]. The results of [CHO21]
are in total variation distance for marginal distributions of the point processes that
we consider and the convergence rates are the same.

Theorem 6.5. — Let d ⩾ 2 and k ⩾ 1. Let βn be a binomial point process of n
points distributed according to a probability measure K on X and assume that K
has a density λ : X → (0, ∞) such that 0 < λ− ⩽ λ(x) ⩽ λ+ < ∞ for all x ∈ X. Let
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ζ be a Poisson process with intensity measure M(dx, dt) = λ(x) dx e−t dt on X × R.
Then, for any b0 ∈ R, there exists a constant C ∈ (0, ∞) only depending on b0, k, d,
λ+ and λ− such that

(6.17) dKR
(
ξ [βn] ∩ (X × (b0, ∞)) , ζ ∩ (X × (b0, ∞))

)
⩽ C

log log n

log n

for all n ⩾ 3. Moreover, ξ[βn] d→ ζ as n → ∞.

Proof. — It suffices to prove (6.17) and the remaining statement follows as in
Theorem 6.4. The rest of the proof will be concerned about proving (6.17).

We define f , g, S, ξ0, rn and ϱn exactly as in the proof of Theorem 6.4. We also
define Sx = Brn(x,b)(x) for a fixed b ∈ (max{0, b0}, an], which will be chosen later.
Our goal is to apply Theorem 5.1.

Throughout this proof we use several times the observation that

(6.18) 0 ⩽ e−y − (1 − y/n)n ⩽ e−y y2

n

for y ∈ R and n ∈ N such that y/n ⩽ 1/2. From now on we assume that n is
sufficiently large so that

(6.19) 0 ⩽
an + b0

n
⩽

1
4 and 0 ⩽

2an

n
⩽

1
4 .

We denote by L the intensity measure of ξ[βn]. For B ∈ X and u ∈ (b0, min{ϱn, an})
we have

L(B × (u, ∞)) = n
∫

B
P
(
βn−1

(
Brn(x,u)(x)

)
⩽ k − 1

)
λ(x)dx

= nK(B)
k−1∑
i=0

(
n − 1

i

)
(an + u)i

ni

(
1 − an + u

n

)n−1−i

= nK(B)
k−1∑
i=0

(n − 1)i

ni

(an + u)i

i!

(
1 − an + u

n

)n−1−i

.

Thus L has the density

ℓ(x, u) = −nλ(x)
k−1∑
i=1

(n − 1)i

ni

(an + u)i−1

(i − 1)!

(
1 − an + u

n

)n−1−i

+ nλ(x)
k−1∑
i=0

(n − 1)i

ni

n − 1 − i

n

(an + u)i

i!

(
1 − an + u

n

)n−2−i

=: λ(x)q(u)
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for x ∈ X and u ∈ (b0, min{ϱn, an}), whence∣∣∣q(u) − e−u
∣∣∣

⩽ n
k−1∑
i=1

(an + u)i−1

(i − 1)!

(
1 − an + u

n

)n−1−i

+ n
k−2∑
i=0

(an + u)i

i!

(
1 − an + u

n

)n−2−i

+
∣∣∣∣∣n(n − 1)k−1

nk−1
n − k

n

(an + u)k−1

(k − 1)!

(
1 − an + u

n

)n−k−1
− e−u

∣∣∣∣∣
=: R1 + R2 + R3.

From (6.18) and (6.19) we deduce that

n
(

1 − an + u

n

)n−k−1
⩽

4k+1

3k+1 ne−(an+u) = 4k+1(k − 1)!
3k+1

e−u

(log n)k−1 .

Together with |an + u|j ⩽ 2j−1(|an|j + |u|j) and supv∈(b0,∞) |v|je−v/2 < ∞ for j ∈ N
this yields

R1 ⩽
c1e

−u/2

log n
and R2 ⩽

c2e
−u/2

log n
,

where c1, c2 ∈ (0, ∞) depend only on b0 and k. For R3 we have

R3 ⩽

∣∣∣∣∣(n − 1)k−1

nk−1
n − k

n
− 1

∣∣∣∣∣ n(an + u)k−1

(k − 1)!

(
1 − an + u

n

)n−k−1

+
∣∣∣∣∣n(an + u)k−1

(k − 1)! − nak−1
n

(k − 1)!

∣∣∣∣∣
(

1 − an + u

n

)n−k−1

+
∣∣∣∣∣1 −

(
1 − an + u

n

)k+1
∣∣∣∣∣ nak−1

n

(k − 1)!

(
1 − an + u

n

)n−k−1

+
∣∣∣∣∣ nak−1

n

(k − 1)!

(
1 − an + u

n

)n

− e−u

∣∣∣∣∣ .
By the same arguments as used for R1 and R2 and∣∣∣∣∣ nak−1

n

(k − 1)!

(
1 − an + u

n

)n

− e−u

∣∣∣∣∣
⩽

nak−1
n

(k − 1)!e
−an−u (an + u)2

n
+
∣∣∣∣∣ nak−1

n

(k − 1)!e
−an−u − e−u

∣∣∣∣∣ ,
which follows from (6.18), we obtain

R3 ⩽
c3e

−u/2

n
+ c4e

−u/2

log n
+ c5e

−u/2an

n
+ c6e

−ua2
n

n
+ c7e

−u log log n

log n
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with constants c3, c4, c5, c6, c7 ∈ (0, ∞) depending only on b0 and k. Let R(u) denote
the sum of the upper bounds for R1, R2 and R3 and let M0 be the intensity measure
of ζ ∩ (X × (b0, ∞)). The estimates above imply that

(6.20) dT V (L, M0)

⩽
∫ ∞

b0
R(u) du + L (X× (min {ϱn, an} , ∞)) + M0 (X× (min {ϱn, an} , ∞))

⩽ C ′
0
log log n

log n

with a constant C ′
0 ∈ (0, ∞) depending on b0, k, d and λ−.

In the following we compute the terms E1, . . . , E6 from Theorem 5.1. Using the
above expression for L, we obtain that

E1 ⩽ 2n
∫

B
P
(
βn−1

(
Brn(x,b)(x)

)
⩽ k − 1

)
λ(x)dx

⩽ C ′
1e

−b

(
1 + (k − 1) log log n + b

log n

)k−1(6.21)

with C ′
1 := 2k!(4

3)k+1. For n ∈ N and x ∈ X define Ux = Brn(x,b0)(x). It follows
from (6.18) and (6.19) that

(6.22) E {g (x, βn−1 + δx)} ⩽ P (βn−1(Ux) ⩽ k − 1)

=
k−1∑
i=0

(
n − 1

i

)(
an + b0

n

)i (
1 − an + b0

n

)n−1−i

⩽
4k

3k

k−1∑
i=0

(an + b0)i

i! e−(an+b0) ⩽
c̃1

n

with a constant c̃1 ∈ (0, ∞) depending only on b0 and k. For x, y, y1, y2 ∈ X with
Sx∩Uy1 = ∅ we obtain analogously that there exists a constant c̃2 ∈ (0, ∞) depending
only on b0 and k such that

E {g (x, βn−2 + δx + δy)} ⩽ E {g (x, βn−2 + δx)}(6.23)

⩽ P (βn−2(Ux) ⩽ k − 1) ⩽ c̃2

n
,

E
{
g
(
y1, β̃x,n−2 + δy1 + δy2

)}
⩽ P

(
β̃x,n−2 (Uy1) ⩽ k − 1

)
(6.24)

⩽ P (βn−2 (Uy1) ⩽ k − 1) ⩽ c̃2

n

and

E
{
g
(
y1, β̃x,n−1 + δy1

)}
⩽ P

(
β̃x,n−1 (Uy1) ⩽ k − 1

)
⩽ P

(
β̃x,n−2 (Uy1) ⩽ k − 1

)
⩽

c̃2

n
.

(6.25)
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For x, y ∈ X and i, j ∈ {0, 1, . . . , k − 1} we have

P (βn−2 (Ux) = i, βn−2 (Uy) = j)

=
min{i,j}∑

s=0
P
(
βn−2

(
Ux ∩ U c

y

)
= i − s, βn−2 (U c

x ∩ Uy) = j − s, βn−2 (Ux ∩ Uy) = s
)

=
min{i,j}∑

s=0

(n − 2)i+j−s

(i − s)!(j − s)!s!K
(
Ux ∩ U c

y

)i−s
K (U c

x ∩ Uy)j−s

× K (Ux ∩ Uy)s (1 − K (Ux ∪ Uy))n−2−i−j+s

⩽ 4k
min{i,j}∑

s=0

(
nK

(
Ux ∩ U c

y

))i−s

(i − s)!
(nK (U c

x ∩ Uy))j−s

(j − s)!

× (nK (Ux ∩ Uy))s

s! exp
(

− nK (Ux ∪ Uy)
)

= 4k
min{i,j}∑

s=0
P
(
ηn

(
Ux ∩ U c

y

)
= i − s, ηn (U c

x ∩ Uy) = j − s, ηn (Ux ∩ Uy) = s
)

= 4kP (ηn (Ux) = i, ηn (Uy) = j) ,

where the inequality follows from (6.18) and (6.19). This implies that

E {g (x, βn−2 + δx + δy) g (y, βn−2 + δx + δy)}
⩽ P ([βn−2 + δy] (Ux) ⩽ k − 1, [βn−2 + δx] (Uy) ⩽ k − 1)
⩽ 4kP ([ηn + δy] (Ux) ⩽ k − 1, [ηn + δx] (Uy) ⩽ k − 1)

(6.26)

and if Sx ∩ Sy = ∅,

(6.27) E {g (x, βn−2 + δx) g (y, βn−2 + δy)}
= E {g (x, βn−2 + δx + δy) g (y, βn−2 + δx + δy)}
⩽ 4kP ((ηn + δy) (Ux) ⩽ k − 1, (ηn + δx) (Uy) ⩽ k − 1)
⩽ 4kP (ηn (Ux) ⩽ k − 1, ηn (Uy) ⩽ k − 1)

= 4kP (ηn (Ux) ⩽ k − 1)P (ηn (Uy) ⩽ k − 1) ⩽ c̃3

n2

with a constant c̃3 ∈ (0, ∞) depending only on b0 and k. A similar computation
shows that there exists a constant c̃4 ∈ (0, ∞) depending only on b0 and k such that

(6.28) E {g (x, βn−3 + δx + δz) g (y, βn−3 + δy)}
⩽ E {g (x, βn−3 + δx) g (y, βn−3 + δy)}

⩽
c̃4

n2
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for x, y, z ∈ X with Sx ∩ Sy = ∅. In the sequel, we will use that g̃ ⩽ g. It follows
from (6.22) and

1 {Sx ∩ Sy ̸= ∅} ⩽ 1 {|x − y| ⩽ rn(x, b) + rn(y, b)}
⩽ 1 {|x − y| ⩽ 2rn(x, b)} + 1 {|x − y| ⩽ 2rn(y, b)}

that
E2 ⩽ 2c̃2

1

∫
X2
1 {Sx ∩ Sy ̸= ∅} K2 (d(x, y))

⩽ 4c̃2
1

∫
X

K
(
B2rn(x,b)(x)

)
K(dx)

⩽ 4c̃2
12d λ+

λ−

an + b

n
.

(6.29)

From (6.26) and the same arguments as in the Poisson case (see (6.15) and (6.16))
we obtain that

E3 ⩽ 2 · 4kn2
∫
X2
1 {Sx ∩ Sy ̸= ∅}P ([ηn + δy] (Ux)

⩽ k − 1, [ηn + δx] (Uy) ⩽ k − 1) K2 (d(x, y))

⩽ C ′
3,1

1
(an + b0)d + C ′

3,2
(an + b0)k−1 (an + b)

nγ

(6.30)

with constants C ′
3,1, C ′

3,2, γ ∈ (0, ∞) only depending on b0, k, d, λ+ and λ−. Because
of (6.22) and (6.23) we have, for x ∈ X,

(1 + nK (Sx))E {g (x, βn−1 + δx)} + n
∫

Sx

E {g (x, βn−2 + δx + δz)} K(dz)

⩽
c̃1 (1 + an + b)

n
+ c̃2 (an + b)

n
.

From b ⩽ an and (6.19) we derive for all x ∈ X that K(Sx) ⩽ 2an

n
⩽ 1

4 , whence for
Q = K the measure Qx in Theorem 5.1 is dominated by 4

3K. Together with (6.24)
and (6.25) this implies that

E4 ⩽ 2n

(
c̃1(1 + an + b)

n
+ c̃2(an + b)

n

)(4
3

c̃2

n
+ 16

9 n
c̃2

n

∫
X

K (Sy1) K (dy1)
)

⩽ 2 (c̃1(1 + an + b) + c̃2(an + b))
(

4
3

c̃2

n
+ 16

9 c̃2
an + b

n

)
.

(6.31)

By (6.22) and (6.23) we have

(6.32) E5 ⩽
8
3(an + b)2n

c̃1c̃2

n2 = 8
3 c̃1c̃2

(an + b)2

n
.

It follows from (6.27) and (6.28) that

(6.33) E6 ⩽ 2n2 c̃3

n2
4 (an + b)

3n
+ 2n3 c̃4

n2
4 (an + b)2

3n2 = 8
3
(
c̃3 + c̃4 (an + b)

)an + b

n
.

Choosing b = an and combining the bounds (6.20), (6.21), (6.29), (6.30), (6.31),
(6.32) and (6.33) with Theorem 5.1 proves (6.17). □
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Appendix A. Additional details for the proof of Theorem 6.2

Recall the definition of g(x, η) in (6.3),
g (x, η) := 1 {x ⊂ η generates a critical point of index k, with ρ ∈ (rn, Rn]} .

Next, recall that c(x) and ρ(x) are defined as the center and radius of the unique (k−
1)-dimensional sphere containing x. In addition, define σ(x) to be the k-dimensional
simplex spanned by x and let B(x) be the open ball with center c(x) and radius
r(x). Setting

hcrit(x) := 1 {c(x) ∈ σ(x)} ,

gcrit(x, η) := 1 {B(x) ∩ η = ∅} ,

then according to [BW17, Lemma 2.4], x generates a critical point of index k (for
the distance function from η) if and only if hcrit(x) = gcrit(x, η) = 1. Further defining

hr(x) := hcrit(x)1 {ρ(x) ∈ (r, Rn]} ,

we can write
g(x, η) = gcrit(x, η)hrn(x).(A.1)

Finally, recall the definition of ξk,

ξk = ξk [ηn] := 1
(k + 1)!

∑
x ∈ (ηn)k+1

̸=

g (x, ηn) δf(x),

where f(x) = (c(x), α(x)), and
α(x) := ωdnρ(x)d − log n − (k − 1) log log n.

Lemma A.1. — Let A ⊂ Y = Td × R0. Then,

L(A) = E {ξk(A)} = Dkn
∫

Â
sk−1e−s

1

{
s ⩽ ωdnRd

n

}
dsdc,

where
Â := {(c, s):(c, α) ∈ A, s = log n + (k − 1) log log n + α} .

Proof. — Recall that,

ξk(A) = 1
(k + 1)!

∑
x ∈ (ηn)k+1

̸=

g (x, ηn)1 {(c(x), α(x)) ∈ A} ,

and using Mecke’s formula and (A.1),

L(A) = nk+1

(k + 1)!

∫
(Td)k+1 hrn(x)1 {(c(x), α(x)) ∈ A}E {gcrit (x, ηn + δx)} dx

= nk+1

(k + 1)!

∫
(Td)k+1 hrn(x)1 {(c(x), α(x)) ∈ A} e−ωdnρd(x)dx.

(A.2)

In order to evaluate the last integral we will use the Blaschke–Petkantschin (BP)
formula, discussed in [Bob22, Appendix C]. The main idea is to use a generalized
polar-coordinate system, using the map x 7→ (c(x), ρ(x), Π(x), θ(x)), where c(x) and
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ρ(x) are defined above, Π(x) is the affine k-dimensional plane containing x, and
θ(x) are the coordinates of x on the sphere lying on Π(x) with center c(x) and
radius ρ(x). Notice that using these new variables, hcrit is independent of c, ρ, Π, and
therefore we will denote hcrit(x) = hcrit(θ). Thus, applying the BP-formula to the
integral in (A.2), yields

Dbp

∫
Td

∫ Rn

rn

1 {(c, α(ρ)) ∈ A} ρdk−1e−nωdρd dρ dc
∫
(Sk−1)k+1 hcrit(θ) (Vsimp(θ))d−k+1 dθ,

where Vsimp is the volume of the k-simplex spanned by θ, and abusing notation,
we set

α(ρ) := ωdnρd − log n − (k − 1) log log n.

Taking the change of variables ωdnρd → s we have∫
Td

∫ Rn

rn

1 {(c, α(ρ)) ∈ A} ρdk−1e−ωdnρd dρ dc

= 1
d (nωd)k

∫
Td

∫ ωdnRd
n

ωdnrd
n

1

{
(c, s) ∈ Â

}
sk−1e−s ds dc.

Defining
Dk := Dbp

(k + 1)!dωk
d

∫
(Sk−1)k+1 hcrit(θ) (Vsimp(θ))d−k+1 dθ,

and putting everything back into (A.2) completes the proof of Lemma A.1. □

Lemma A.2. —
Var (ξk(Y)) − E {ξk(Y)} = O

(
(log log n)d(log n)− d−k

d+1
)

.

Proof. — We start by evaluating the second moment,

E
{
(ξk(Y))2

}
= 1

((k + 1)!)2E


∑

x1,x2 ∈ (ηn)k+1
̸=

g (x1, ηn) g (x2, ηn)


= 1

((k + 1)!)2

k+1∑
j=0

E

 ∑
|x1 ∩ x2|=j

g (x1, ηn) g (x2, ηn)


= 1

((k + 1)!)2

k+1∑
j=0

Ij,

where by x1 ∩x2 we refer to the coordinates both tuples share in common. Therefore,
we have

Var (ξk(Y)) − E {ξk(Y)} =
k∑

j=1
Ij +

(
I0 − E {ξk(Y)}2

)
.

Recall the definition of an (6.1)
an := ωdnrd

n = log n + (k − 1) log log n + α0.

In [Bob22, Equation (8.15)] it is shown that for 1 ⩽ j ⩽ k, and for small enough
δj, ϵj we have

Ij ⩽ C1nak−1
n e−an

(
ϵk+2−j

j ak+1−j
n + (δj/ϵj)d−k (δjan)k+1−j + ak+1−j

n e−C2δjan

)
,
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and in [Bob22, Equation (8.17)] it is shown that
I0 − E {ξk(Y)}2 ⩽ C3nak−1

n e−an

(
ϵd+2

0 ak+1
n + ak+1

n e−C4ϵ0an

)
,

where C1, . . . , C4 are some positive constants. The choice of ϵj = a
−(1− 1

d+2−j
)

n and
δj = k+2−j

C2

log an

an
yields that for 1 ⩽ j ⩽ k

Ij ⩽ C1nak−1
n e−an

a
− d−k

d+2−j
n +

(
k + 2 − j

C2
log an

)d−j+1

a
− d−k

d+2−j
n + a−1

n


= O

(
(log an)d−j+1 a

− d−k
d+2−j

n

)
= O

(
(log log n)d(log n)− d−k

d+1
)

.

In addition, taking ϵ0 = k+2
C4

log an

an
yields

I0 − E {ξk(Y)}2 = O
(
a−1

n

)
= o

(
(log log n)d(log n)− d−k

d+1
)

.

This completes the proof of Lemma A.2. □
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