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1. Introduction

Consider an ergodic measure-preserving map T on the probability space (X,A, µ),
and a sequence (Al)l⩾ 1 of sets for which 0 < µ(Al) → 0. Let φAl

denote the first
hitting time function of Al. The asymptotic behavior of the distributions of the
rescaled hitting times µ(Al)φAl

as l → ∞ is a well-studied circle of questions. In
many interesting situations, mixing properties have been used to show that these
hitting time distributions converge to an exponential law,
(1.1) µ (µ(Al)φAl

⩽ t) −→ 1 − e−t as l → ∞ for t > 0,
and so do the corresponding return distributions,
(1.2) µAl

(µ(Al)φAl
⩽ t) −→ 1 − e−t as l → ∞ for t > 0,

where µAl
denotes the normalized restriction of µ to Al. In fact, (1.1) and (1.2) are

equivalent: as a consequence of [HSV99, Theorem 2.1] one has
Proposition 1.1 (Characterizing convergence to the exponential law). — Let

T be an ergodic measure-preserving map on the probability space (X,A, µ), and
(Al)l⩾ 1 a sequence in A such that 0 < µ(Al) → 0. Then each of (1.1) and (1.2) is
equivalent to
(1.3) µ (µ(Al)φAl

⩽ t) − µAl
(µ(Al)φAl

⩽ t) −→ 0 as l → ∞ for t > 0.
This fact leads to one standard approach (of many) to proving (1.1) and (1.2):

Checking condition (1.3) means to show that, asymptotically, changing µAl
to µ

does not affect the resulting distribution. This is not trivial, because the µAl
become

increasingly singular, being concentrated on smaller and smaller sets.
For many classes of concrete systems, strong results on the decay of correlations

(or mixing properties) provide information on how the system forgets the difference
between two initial probabilities over time. A basic form of this might state that
dN(ν ◦ T−n, µ) ⩽ cn for ν ∈ N and n ⩾ 0, where cn → 0, and N is a family of
normalized measures, typically rather small, and equipped with some metric dN.

We can then hope to establish (1.3) once we check it is possible to replace the
measures µAl

there by push-forwards µAl
◦ T−τl (with integers τl) which are nicer

in that they belong to N, and hence allow comparison to µ via the control of
dN(ν ◦ T−n, µ) on N. Taking the push-forward means to skip the first τl time steps,
and we need those to be negligible compared to the variable µ(Al)φAl

itself, meaning
that µ(Al)τl → 0. Also, one has to check that in skipping these steps, we do not
miss (with positive asymptotic probability) the awaited visit to Al, which amounts
to requiring that µAl

(φAl
⩽ τl) −→ 0.

Note that the existence of τl meeting the last two conditions is in fact necessary
for (1.2) (otherwise, the limit law contains an atom at the origin), and that this is
a property (“no short returns”) of the specific sequence (Al) of sets, which always
needs to be checked (since every system contains sequences for which it fails). The
correlation decay, on the other hand, is a feature of the whole system, and the two
are tied together by the requirement that µAl

◦ T−τl ∈ N for all l ⩾ 1.
The first purpose of the present paper is to point out that the same strategy can

be used, even for functional versions for the processes of consecutive hitting-times,
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without assuming any information on the decay of correlations (and without the
system being mixing). We only ask for a sequence of (not necessarily constant) delay
times τl satisfying the necessary conditions µ(Al)τl → 0 and µAl

(φAl
⩽ τl) −→ 0,

and such that the time-τl-measures µAl
◦ T−τl belong to some set K of probabilities

which is compact in total variation norm. This latter condition can be seen as a
short-time (since τl = o(1/µ(Al))) decorrelation property of (Al).

Second, we show that the same approach can be used to analyse distributional
limits of the sequences of consecutive positions, inside the Al, of orbits upon their
visits to these small sets, and of joint time-position processes. Such results on spa-
tiotemporal Poisson limits have recently been introduced in [PS20]. We also include a
general discussion of some aspects of spatial and spatio-temporal process limits in the
abstract setup, and illustrate our results in the context of some simple prototypical
systems.

There is a large body of literature devoted to the asymptotics of return- and
hitting-time distributions. While some sources directly relevant for the present work
are mentioned in the bibliography, we do not attempt to provide a complete overview.
A closer look at earlier articles which derive similar limit theorems on the basis of
mixing conditions or on correlation decay reveals that, effectively, these assumptions
are often only used to obtain control on the time scale mentioned above, see for
example [Aba04, AS11, CC13, FFT12, HP14, HY16, PS16, PS20]. The present paper
makes this more explicit, and emphasizes that in the presence of mere ergodicity a
comparatively weak form of short-time control suffices.

Acknowledgements

I am grateful to the refereree for comments and questions which helped to clarify
some points, and to Francoise Pène, Benoit Saussol and Max Auer for discussions
on related matters.

2. General setup and preparations

2.1. Hitting- and return-times. Inducing

Throughout, (X,A, µ) is a probability space, and T : X → X is an ergodic
µ-preserving map. Also, A and Al will always denote measurable sets of (strictly)
positive measure. By ergodicity and the Poincaré recurrence theorem, the measurable
(first) hitting time function of A, φA : X → N := {1, 2, . . . , ∞} with φA(x) :=
inf{n ⩾ 1 : T nx ∈ A}, is finite a.e. on X. When restricted to A it is called the
(first) return time function of the set. Define TAx := TφA(x)x for a.e. x ∈ X, which
gives the first entrance map TA : X → A. It is a standard fact that its restriction
to A, the first return map TA : A → A is an ergodic measure preserving map on
the probability space (A,A ∩ A, µA), where µA(B) := µ(A ∩ B)/µ(A), B ∈ A. By
Kac’ formula,

∫
A φA dµA = 1/µ(A). That is, when regarded as a random variable on
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1364 R. ZWEIMÜLLER

(A,A ∩A, µA), the return time has expectation 1/µ(A), and we will often normalize
these functions accordingly, thus considering µ(A)φA.

The focus of this work is on asymptotic distributions of such normalized hitting
(or return) times, and of the positions inside the target set at which an orbit hits.
We shall study processes of consecutive hitting times and hitting places in the limit
of very small sets. Call (Al)l⩾ 1 a sequence of asymptotically rare events (or an
asymptotically rare sequence) provided that Al ∈ A and 0 < µ(Al) → 0.

It will be natural to view various observables defined on (parts of) X through
different probability measures ν. In the present paper we shall focus on the family
P := {ν : probability measure on (X,A), ν ≪ µ}, equipped with the total variation
distance dP(ν, ν ′) := 2 supA∈ A | ν(A) − ν ′(A) |. This induces a topology so weak
that mere ergodicity ensures convergence of averages (via Theorem 6.2), but strong
enough for the latter to have substantial consequences. (The results below rely on
compactness conditions which clearly would not be sufficient if we used a w∗-topology
instead.)

The push-forward of a measure ν by T will be denoted T∗ν := ν ◦T−1, and likewise
for measurable maps other than T . Indeed, we shall use suitable times, that is,
measurable functions τ : B → N0 := {0, 1, . . .} with B ∈ A, to define auxiliary
induced maps T τ : B → X via T τx := T τ(x)x. Given ν ∈ P, the push-forward
T τ∗ ν := ν ◦ (T τ )−1 then is the distribution, at the (possibly random) time τ , of the
process (T n)n⩾ 0, all defined on the probability space (X,A, ν).

2.2. Distributional convergence

Let (E, dE) be a compact metric space with Borel σ-algebra BE. As usual, a sequence
(Ql)l⩾ 1 of probability measures on (E,BE) is said to converge weakly to the probability
measure Q on (E,BE), written Ql =⇒ Q, if the integrals of all continuous real
functions χ on E converge,

∫
χdQl −→

∫
χdQ as l → ∞ for χ ∈ C(E). This is

w∗-convergence in M(E), the set of Borel probabilities on E, regarded as a subset of
the space of all finite signed Borel measures on E (equipped with the total variation
norm), which by the Riesz representation theorem constitute the topological dual
space of C(E).

If Rl, l ⩾ 1, are measurable maps of (X,A) into (E,BE), νl are probability measures
on (X,A), and R is another random element of E (defined on some (Ω,F ,Pr)), then
we write
(2.1) Rl

νl=⇒ R as l → ∞
to indicate that lawνl

(Rl) := νl ◦ R−1
l =⇒ law(R) = Pr ◦R−1. This is distributional

convergence to R of the Rl when the latter functions are regarded as random variables
on the probability spaces (X,A, νl), respectively. This includes the case of a single
measure ν, where Rl

ν=⇒ R means that the distributions lawν(Rl) = ν ◦R−1
l of the

Rl under ν converge weakly to the law of R.
A sequence R = (R(0), R(1), . . .) of measurable functions R(j) : X → E can be

regarded as a single function into the (compact) sequence space EN0 = {(r(j))j ⩾ 0 :
r(j) ∈ E}, equipped with the product metric dEN0 (q, r) := ∑

j ⩾ 0 2−(j+1)dE(q(j), r(j)).
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Recall that weak convergence Ql =⇒ Q in M(EN0) of Borel probabilities on EN0

is equivalent to convergence of all finite-dimensional marginals, πd∗Ql =⇒ πd∗Q in
M(Ed) for d ⩾ 1, where πd : EN0 → Ed denotes the canonical projection onto the
first d factors.

3. When do orbits hit small sets?

3.1. Hitting-time and return-time processes

To accommodate normalized hitting times and their possible limits, we will use
the (compact) target space (E, dE) = ([0,∞], d[0,∞]) with d[0,∞](s, t) :=| e−s − e−t |.
The sequence space EN0 = [0,∞]N0 will be equipped with the corresponding product
metric d[0,∞]N0 as above.

We first study, for sets A as above, the random sequences of consecutive return-
and hitting-times, that is, we are going to consider the sequences ΦA : X → [0,∞]N0

of functions given by

(3.1) ΦA :=
(
φA, φA ◦ TA, φA ◦ T 2

A, . . .
)

on X.

When regarded as a random sequence defined on (X,A, ν), we shall call ΦA the
hitting-time process of A under ν. If no measure is mentioned, this means that
ν = µ. In case we restrict ΦA to A and view it through µA, we call it the return-time
process of A. From the properties of TA on (A,A ∩ A, µA) it is immediate that

(3.2) any return-time process ΦA is stationary and ergodic (under µA),

and by relating return-time processes to hitting-time processes with different initial
measures, stationarity often carries over to limits of the latter.

3.2. Asymptotic hitting-time and return-time processes for rare events

Assume now that (Al)l⩾ 1 is a sequence of asymptotically rare events. It is imme-
diate from (3.2) and Kac’ formula that for any random sequence Φ̃ = (φ̃(0), φ̃(1), . . .)
in [0,∞],

(3.3) if µ(Al)ΦAl

µAl=⇒ Φ̃ as l → ∞, then Φ̃ is stationary with E
[
φ̃(0)

]
⩽ 1.

Beyond that, little can be said about the general asymptotic return-time process
Φ̃. In fact, it has been shown in [Zwe16] that every stationary sequence Φ̃ with
E[φ̃(0)] ⩽ 1 does appear as the limit for a suitable asymptotically rare sequence (Al)
if only T acts on a nonatomic space (X,A, µ).

Turning to asymptotic hitting-time processes Φ, that is, distributional limits of
hitting-time processes under one fixed probability ν ∈ P, we first recall that these
do not depend on the particular choice of ν. (The following is [Zwe07b, Corollary 6].)
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1366 R. ZWEIMÜLLER

Proposition 3.1 (Strong distributional convergence of µ(Al)ΦAl
). — Suppose

that (X,A, µ, T ) is an ergodic probability preserving system, and (Al) an asymptot-
ically rare sequence in A. Let Φ be any random sequence in [0,∞]. Then
(3.4) µ(Al)ΦAl

ν=⇒ Φ for some ν ∈ P iff µ(Al)ΦAl

ν=⇒ Φ for all ν ∈ P.

Despite this, even if both exist, the asymptotic hitting-time process Φ for a given
sequence (Al) need not coincide with the asymptotic return-time process Φ̃ for that
very sequence. Indeed, the relation between the two types of limit processes will be
of central importance in what follows.

3.3. Relating limit processes under µAl
to limit processes under µ.

It is well known that for any asymptotically rare sequence (Al), limit laws for the
normalized first return-times, µ(Al)φAl

under µAl
, are intimately related to limit laws

of the normalized first hitting-times, µ(Al)φAl
under µ (see [AS11, HLV05]), and that

this leads to an efficient way of proving convergence (of both) to an exponential law.
In [Zwe16] we have extended the crucial duality to processes µ(Al)ΦAl

, see Section 7
below for more details.

A key ingredient of our present approach is the following generalization of Proposi-
tion 3.1 which provides conditions under which the processes µ(Al)ΦAl

, when started
with suitable measures νl, exhibit the same asymptotic distributional behaviour as
hitting time processes started with µ. The assumptions on the delay times τl below
are those already mentioned in the introduction, but we now allow non-constant τl.
Parallel to (2.1) we write, for measurable functions Rl, R : X → E,
(3.5) Rl

νl−→ R as l → ∞
provided that νl(dE(Rl, R) > ε) → 0 as l → ∞ whenever ε > 0. This includes the
case of a single measure, νl = ν, in which case Rl

ν−→ R is the usual convergence in
measure, ν(dE(Rl, R) > ε) → 0 for ε > 0. In the results to follow, compact subsets
K of (P, dP) play the role of families of measures which only differ from µ in a
controllable way, as one can always assume w.l.o.g. that µ ∈ K.

Theorem 3.2 (Asymptotic hitting-time process - νl versus µ). — Let (X,A, µ, T )
be an ergodic probability preserving system, (Al)l⩾1 a sequence of asymptotically
rare events, and (νl) a sequence in P. Assume that there are measurable functions
τl : X → N0 such that

µ(Al) τl
νl−→ 0 as l → ∞,(3.6)

and
νl (τl < φAl

) −→ 1 as l → ∞,(3.7)
while there is some compact subset K of (P, dP) such that
(3.8) T τl

∗ νl ∈ K for l ⩾ 1,
Then, for any random element Φ of [0,∞]N0 ,
(3.9) µ(Al)ΦAl

νl=⇒ Φ iff µ(Al)ΦAl

µ=⇒ Φ as l → ∞.

ANNALES HENRI LEBESGUE



Hitting Times and Positions in Rare Events 1367

Remark 3.3. — For a constant sequence (νl) = (ν) we can take τl := 0 for all l,
and obtain Proposition 3.1. Given any sequence (νl) in P, the τl = 0 case of the
theorem shows that (3.9) holds whenever all the νl belong to some compact subset
K of P.

3.4. Convergence to iid exponential limit processes

In the most prominent case the limit process is an iid sequence of normalized
exponentially distributed random variables, henceforth denoted by ΦExp. This is the
process of interarrival times of an elementary standard Poisson (counting) process,
and we shall say that (Al) exhibits Poisson asymptotics if

(3.10) µ(Al)ΦAl

µ=⇒ ΦExp and µ(Al)ΦAl

µAl=⇒ ΦExp.

This terminology is further justified by

Remark 3.4 (Convergence of associated counting processes). — Any set A ∈ A
of positive measure comes with an associated normalized counting process NA :
X → D[0,∞) (the collection of cadlag paths x = (xt)t⩾ 0 : [0,∞) → R) given by
NA = (NA,t)t⩾ 0 with

(3.11) NA,t :=
⌊t/µ(A)⌋∑
k=1

1A ◦ T k =
∑
j ⩾ 1

1[
µ(A)

j−1∑
i=0

φA◦T i
A,∞

)(t).

Observe then that for any probability measures νl on (X,A),

(3.12) µ(Al)ΦAl

νl=⇒ ΦExp implies NAl

νl=⇒ N in (D[0,∞),J1) ,

where N = (Nt)t⩾ 0 denotes a standard Poisson counting process. To see this, define
W := {(φ(i)) ∈ [0,∞)N0 : ∑j−1

i=0 φ
(i) ↗ ∞ as j → ∞}, and Υ : [0,∞]N0 → D[0,∞)

by
Υ
((
φ(i)

)
i⩾ 0

)
:=

∑
j ⩾ 1

1[j−1∑
i=0

φ(i),∞
)

for (φ(i))i⩾ 0 ∈ W , and Υ((φ(i))i⩾ 0) := 0 otherwise. An elementary argument shows
that Υ is continuous on W+ := W ∩ (0,∞)N0 for the Skorokhod J1-topology of
D[0,∞) (see [Bil99, Whi02]). Since Υ(ΦExp) has the same law as N, and ΦExp ∈ W+
almost surely, (3.12) thus follows by the “ extended continuous mapping theo-
rem” [Bil99, Theorem 2.7].

Remark 3.5 (Convergence of associated point processes). — Alternatively, consider
the associated normalized point process of visiting times, NA : X → Mp[0,∞) (the
collection of Radon point measures n : B[0,∞) → {0, 1, 2, . . . , ∞}, equipped with the
topology of vague convergence, see [Res08, Chapter 3]) given by

(3.13) NA :=
∑
j ⩾ 1

δ{
µ(A)

j−1∑
i=0

φA◦T i
A

},
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1368 R. ZWEIMÜLLER

where δ{s} denotes the unit point mass at s. That is, NA(x) has distribution function
t 7→ NA,t(x). Then, for arbitrary probability measures νl on (X,A),

(3.14) µ(Al)ΦAl

νl=⇒ ΦExp implies NAl

νl=⇒ PRM
(
λ1

[0,∞)

)
in Mp[0,∞),

with PRM(λ1
[0,∞)) denoting the Poisson random measure of intensity λ1 on [0,∞).

This, too, follows via the “ extended continuous mapping theorem” since it is easily
seen that the map

Θ : [0,∞]N0 → Mp[0,∞) with Θ
((
φ(i)

)
i⩾ 0

)
:=

∑
j ⩾ 1

δ{j−1∑
i=0

φ(i)

}
for (φ(i))i⩾ 0 ∈ W, and Θ((φ(i))i⩾ 0) := 0 otherwise, is continuous on W, while
Θ(ΦExp) has the same law as PRM(λ1

[0,∞)).

We will show that this happens in the νl = µAl
case of the previous theorem:

Theorem 3.6 (Convergence to an iid exponential sequence). — Let (X,A, µ, T )
be an ergodic probability preserving system, and (Al)l⩾1 a sequence of asymptotically
rare events. Let νl := µAl

and assume that there are measurable functions τl : X → N0
such that

µ(Al) τl
νl−→ 0 as l → ∞,(3.15)

and
νl (τl < φAl

) −→ 1 as l → ∞,(3.16)
while there is some compact subset K of (P, dP) such that
(3.17) T τl

∗ νl ∈ K for l ⩾ 1,
Then (Al) exhibits Poisson asymptotics,

(3.18) µ(Al)ΦAl

µAl=⇒ ΦExp and µ(Al)ΦAl

µ=⇒ ΦExp as l → ∞.

More generally, (3.18) follows provided that for every ε > 0 there are a sequence
(νl)l⩾ 1 in P with dP(νl, µAl

) < ε for all l, a compact set K ⊆ P, and measurable
functions τl : X → N0 such that (3.15)-(3.17) hold.

We shall see that this opens up a very easy way of proving Poisson asymptotics in
several interesting situations.

Remark 3.7. —
(a) An obvious necessary condition for the first component µ(Al)φAl

to have an
exponential limit law is the absence of a point mass at zero in the limit. That
is, for any sequence (τl) satisfying condition (3.15) we need to have (3.16).

(b) Note that condition (3.17) only uses information on what happens to Al
before the time τl which is of order o(1/µ(Al)) as l → ∞. We do not assume
mixing (let alone any quantitative mixing conditions), but only use what little
asymptotic information follows from ergodicity alone.

(c) The assumptions (3.15)-(3.17) make precise the condition that the system
should forget, sufficiently fast, whether or not it started in Al. We can re-
gard (3.15)-(3.17) as a short-time decorrelation (or mixing) condition.
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(d) Of course, mixing properties of specific systems can still be very useful for
validating conditions (3.15)-(3.17). However, in our discussion of examples in
Section 10, we make a point of not using any asymptotic mixing properties
for this purpose.

(e) Allowing measures νl more general than µAl
in the final statement of the

theorem sometimes enables us to replace the density µ(Al)−11Al
of µAl

by an
approximating density of higher regularity for which (3.15)-(3.17) are easier
to verify (e.g. if they belong to a space on which the transfer operator is well
understood).

(f) Another way of using this flexibility is to replace µAl
by µA′

l
for nicer sets

A′
l ∈ A. This works if, for every ε̃ > 0, one can pick a sequence (A′

l) such
that µAl

(Al △ A′
l) < ε̃ for all l ⩾ 1 while the νl := µA′

l
admit K and τl

satisfying (3.15)-(3.17).

3.5. Allowing immediate returns

While for many important classes of concrete dynamical systems one typically
observes Poisson asymptotics for natural families of rare events (cylinders or general
ε-balls shrinking to a typical point x∗), there are often distinguished exceptional
points x∗, like the periodic points of the system, to which a positive proportion 1 − θ
with θ ∈ (0, 1) of a neighbourhood can return after a fixed number of steps. This
will result in a point mass at zero in the limit of return time distributions. If the
situation is nice otherwise, the part which did escape in the first step may return
after a rescaled exponential time, so that

µ(Al)φAl

µAl=⇒ φ̃,

where the limit variable φ̃ is characterized by the distribution function
(3.19) F̃(Exp,θ)(t) := (1 − θ) + θ

(
1 − e−θt

)
, t ⩾ 0.

Turning to processes, for any θ ∈ (0, 1) we let Φ̃(Exp,θ) denote an iid sequence of
random variables, each distributed according to F̃(Exp,θ).

The following complement to Theorem 3.6 covers such situations. Here and later,
when given a sequence (νl) of probabilities on (X,A) and some B ∈ A, we shall
simply write νl,B for the normalized restriction given by νl,B(A) := νl(B)−1νl(B∩A),
A ∈ A.

Theorem 3.8 (Convergence to an iid F̃(Exp,θ) sequence). — Let (X,A, µ, T ) be
an ergodic probability preserving system, (Al)l⩾ 1 a sequence of asymptotically rare
events. Let νl := µAl

and suppose that Al = A•
l ∪ A◦

l (disjoint) with
(3.20) νl(A◦

l ) −→ θ ∈ (0, 1) as l → ∞.

Set ν◦
l := νl,A◦

l
and ν•

l := νl,A•
l

(the normalized restrictions of νl to A◦
l and A•

l ,
respectively). Assume further that there are measurable functions τl : X → N0,
l ⩾ 1, such that

µ(Al) τl
νl−→ 0 as l → ∞,(3.21)
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and
ν◦
l (τl < φAl

) −→ 1 as l → ∞,(3.22)
while there is some compact subset K of (P, dP) such that
(3.23) T τl

∗ ν
◦
l ∈ K for l ⩾ 1,

whereas
(3.24) ν•

l (τl ⩾ φAl
) −→ 1 as l → ∞,

and
(3.25) dP

(
(TAl

)∗ ν
•
l , νl

)
−→ 0 as l → ∞.

Then,

(3.26) µ(Al)ΦAl

µAl=⇒ Φ̃(Exp,θ) as l → ∞.

More generally, (3.26) follows provided that for every ε > 0 there are a sequence
(νl)l⩾ 1 in P with dP(νl, µAl

) < ε for all l, a compact set K ⊆ P, and measurable
functions τl : X → N0 such that (3.21)-(3.25) hold.

In Section 10 we illustrate how this can be used very easily in some standard
situations.

4. Where do orbits hit small sets?

4.1. Local observables and local processes

Let (X,A, µ, T ) be an ergodic probability preserving system. We introduce a large
class of random processes associated to the visits of orbits to a given small set A ∈ A.
The idea is to focus on what exactly happens upon each visit, and record the position
inside A by means of some function ψA on this set. As we are interested in small
sets and, ultimately, in limits as the size of the sets tends to zero, it is natural to
consider functions encoding the relative position inside A, thus effectively rescaling
the set.

For instance, if the relevant sets A are subintervals of some larger interval X,
the normalizing interval charts ψA : A → [0, 1] with ψA(x) := (x − a)/(b − a) for
A = [a, b], are a natural choice. This is the prototypical example to keep in mind, but
for the general theory we simply allow measurable maps ψA : A → Z, not necessarily
invertible, into some space Z which does not depend on A.

In the following we fix some compact metric space (Z, dZ) with Borel σ-algebra BZ

to represent the relative positions (or some other relevant aspect) of points inside the
distinguished small sets we wish to study. Any A-BZ-measurable map ψA : A → Z
will be called an (Z-valued) local observable on A, and we shall use the uppercase
ΨA to denote the sequence of consecutive local observations of an orbit which starts
anywhere in X,
(4.1) ΨA : X → ZN, ΨA :=

(
ψA ◦ TA, ψA ◦ T 2

A, . . .
)
.
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Equip ZN with its compact Polish product topology, induced by the product metric
dZN , then ΨA is A-BZN-measurable (and can thus be regarded as a single ZN-valued
local observable on A). We can include the local observable at time zero provided
that the orbit starts in A. To this end, define

(4.2) Ψ̃A : A → ZN0 , Ψ̃A :=
(
ψA, ψA ◦ TA, ψA ◦ T 2

A, . . .
)
.

Given any probability measure ν on (X,A), we can view ΨA as a random process
on the probability space (X,A, ν). If ν is concentrated on A, the same is true for
Ψ̃A. We shall refer to either variant as a local process under ν. Again, the properties
of TA on (A,A ∩ A, µA) entail that

(4.3) any local process Ψ̃A is stationary and ergodic under µA,
and we shall exploit this by linking local processes with different initial measures
to this particular version. By (4.3), lawµA

(Ψ̃A) = lawµA
(ΨA), so that we need not

distinguish between the two variants as far as the laws of individual processes under
the corresponding measures µA are concerned.

Remark 4.1 (Normalized return times and processes as local observables and
processes). — The normalized return times µ(A)φA : A → [0,∞] studied in the
previous section also define local observables, somewhat special in that they are
defined in terms of the dynamics. Moreover, the processes µ(A)ΦA : A → [0,∞]N0 are
particular local processes: using the notation introduced above, we have µ(A)ΦA =
Ψ̃A for ψA := µ(A)φA.

Remark 4.2 (Warning regarding normalized hitting processes). — In contrast,
the normalized hitting time process µ(A)ΦA : X → [0,∞]N0 with ΦA as defined
in (3.1) is not a local process ΨA as in (4.1). Indeed, ΦA is not constant on
{x, Tx, . . . , TφA(x)−1x} for x ∈ Ac. This is why we do not need an analogue of
condition (3.6) in Theorem 4.7 below.

4.2. Local processes for asymptotically rare events

Assume now that (Al)l⩾ 1 is a sequence of asymptotically rare events, and that
for each Al we are given a local observable ψAl

: A → Z. Our goal is to provide
useful conditions under which the sequence of local processes (Ψ̃Al

)l⩾ 1 or (ΨAl
)l⩾ 1

converges in distribution as l → ∞. Here, again, it makes sense to study these
random variables either through one fixed initial probability ν (in case of (ΨAl

)l⩾ 1),
say ν = µ, or to view them through the sequence (µAl

) of normalized restrictions to
these sets.

We first look at the Ψ̃Al
under the measures µAl

. Due to (4.3) we see that for any
random sequence Ψ̃ in Z,

(4.4) if Ψ̃Al

µAl=⇒ Ψ̃ as l → ∞, then Ψ̃ is stationary.

Beyond that, little can be said about the general asymptotic local process Ψ̃. In fact,
we are going to show that unless the system acts on a discrete space (and hence

TOME 5 (2022)



1372 R. ZWEIMÜLLER

is essentially a cyclic permutation), every Z-valued stationary sequence arises as
the limit of local processes for any given sequence (Al) if only we use suitable local
observables ψAl

. (This is parallel to [Zwe16, Theorem 2.1].) In particular, Ψ̃ need
not be independent, and doesn’t even have to be ergodic.

Theorem 4.3 (Prescribing the asymptotic internal state process). — Let T be
an ergodic measure preserving map on the nonatomic probability space (X,A, µ), let
(Al) be an asymptotically rare sequence in A, and let Ψ̃ be any Z-valued stationary
sequence. Then there is a sequence (ψAl

) of local observables for the Al such that

(4.5) Ψ̃Al

µAl=⇒ Ψ̃ as l → ∞.

Observe that the distributions lawµAl
(ψAl

) of the first components of the Ψ̃Al

may not involve any dynamics, but their convergence is of course necessary for
convergence of the processes as in (4.5). For the abstract theory we will therefore
take the assumption

(4.6) ψAl

µAl=⇒ ψ as l → ∞,

that they converge to the law of some particular random element ψ of Z, as our
starting point. (Note that this is not particularly restrictive. By compactness of
M(Z), every sequence contains a subsequence along which (4.6) is satisfied.) The
question will then be under what conditions (4.6) entails convergence of the processes
ΨAl

to some (or some particular) random sequence Ψ.
In some natural situations, condition (4.6) relates the local observables ψAl

to the
local regularity of µ on the Al:

Example 4.4 (Normalizing interval charts). — Assume that X is an interval,
and µ is absolutely continuous w.r.t. Lebesgue measure λ. Suppose that the Al are
subintervals which shrink to a distinguished point x∗ ∈ X at which (a suitable version
of) the density dµ/dλ is continuous and strictly positive. Define ψAl

: Al → [0, 1]
to be the normalizing interval chart from the previous subsection. Then (4.6) holds,
with the limit variable ψ uniformly distributed on Z = [0, 1].

Considering a sequence of local processes under one probability measure ν which
doesn’t depend on l, we usually lose stationarity, but gain the possibility of freely
switching measures.

Proposition 4.5 (Strong distributional convergence of ΨAl
). — Let (X,A, µ, T )

be an ergodic probability preserving system, (Al) an asymptotically rare sequence
in A, with (ΨAl

)l⩾1 a sequence of Z-valued local processes for the Al. Then
(4.7) ΨAl

ν=⇒ Ψ for some ν ∈ P iff ΨAl

ν=⇒ Ψ for all ν ∈ P.

This is an immediate consequence of [Zwe07b], see the start of Section 8 for details.
Variations on this theme will be the key to the limit theorems below.

4.3. Relating limit processes under µAl
to limit processes under µ

As mentioned before, the intimate relation between return- and hitting times, that
is, the relation between the laws of φA under µA and µ respectively, is often crucial
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for the analysis of these variables. For general local observables there is no such
principle:

(4.8) In general, ψAl

µAl=⇒ ψ does not imply convergence of ψAl
◦ TAl

under µ.
Example 4.6. — Let (X,A, µ, T ) be an ergodic probability preserving system,

(A′
l) an asymptotically rare sequence in A such that A′

l ∩ T−1A′
l = ∅ for l ⩾ 1. Set

Al := T−1A′
l ∪ A′

l, and ψAl
: Al → {0, 1}

with
ψA2l−1 := 1A′

l
while ψA2l

:= 1T−1A′
l
.

Then ψAl

µAl=⇒ ψ, with ψ denoting a fair coin, while ψA2l−1 ◦ TAl

µ=⇒ 0 and ψA2l
◦

TAl

µ=⇒ 1 since TAl
= TT−1A′

l
outside T−1A′

l.

Nonetheless, we can provide a very useful condition which ensures that possibly
localized measures νl can be replaced by any fixed probability ν ∈ P.

Theorem 4.7 (Asymptotic local process - νl versus µ). — Let (X,A, µ, T ) be
an ergodic probability preserving system, (Al) an asymptotically rare sequence in A,
and (ψAl

)l⩾ 1 a sequence of Z-valued local observables for the Al, with corresponding
local processes ΨAl

. Let (νl) be a sequence in P.
Assume that there are measurable τl : X → N0 such that

(4.9) νl (τl < φAl
) −→ 1 as l → ∞,

while there is some compact subset K of (P, dP) such that
(4.10) T τl

∗ νl ∈ K for l ⩾ 1,
Then, for any random sequence Ψ in Z,
(4.11) ΨAl

νl=⇒ Ψ iff ΨAl

µ=⇒ Ψ as l → ∞.

Of course, the most important case will be that of νl = µAl
.

4.4. Convergence to iid limit processes

A variant of the above assumption in which we now take νl to be µAl
conditioned

on suitable subsets of Al actually allows us to prove (under the necessary assump-
tion (4.6) discussed above) convergence of the local processes to an independent
stationary sequence.

Theorem 4.8 (Convergence to an iid local process). — Let (X,A, µ, T ) be an
ergodic probability preserving system, (Al) an asymptotically rare sequence in A,
and (ψAl

)l⩾ 1 a sequence of Z-valued local observables for the Al such that

(4.12) ψAl

µAl=⇒ ψ as l → ∞,

for some random element ψ of Z. Let ΨAl
be the corresponding local processes.

Suppose that Bπ
Z ⊆ BZ is a π-system generating BZ with Z ∈ Bπ

Z , while Pr[ψ ∈ ∂F ]
= 0 for all F ∈ Bπ

Z .

TOME 5 (2022)



1374 R. ZWEIMÜLLER

Set νl := µAl
, and assume further that for every F ∈ Bπ

Z with Pr[ψ ∈ F ] > 0 there
are measurable τl,F : X → N0, l ⩾ 1, such that, letting νl,F denote the normalized
restriction νl,{ψAl

∈F} of νl to {ψAl
∈ F}, we have

(4.13) νl,F (τl < φAl
) −→ 1 as l → ∞,

while there is some compact subset KF of (P, dP) such that
(4.14) T τl,F

∗ (νl,F ) ∈ KF for l ⩾ 1,
Then
(4.15) Ψ̃Al

µAl=⇒ Ψ∗ and ΨAl

µ=⇒ Ψ∗ as l → ∞,

where Ψ∗ = (ψ∗(j))j ⩾ 0 is an iid sequence in Z with law(ψ∗(0)) = law(ψ).
More generally, (4.15) follows if every ε > 0 there are a sequence (νl)l⩾ 1 in P with

dP(νl, µAl
) < ε for all l, and, for every F ∈ Bπ

Z with Pr[ψ ∈ F ] > 0, a compact set
KF ⊆ P, measures νl,F ∈ P with dP(νl,F , νl,{ψAl

∈F}) → 0, and τl,F such that (4.13)
and (4.14) hold.

Remark 4.9 (Using rich generating families of conditioning events). — Note that
there are natural situations in which the condition Pr[ψ ∈ ∂F ] = 0 for all F ∈ Bπ

Z

need not be checked explicitly. For instance, if Z = [a, b], then G := {(s, b] : s ∈ [a, b)}
is a collection of sets with pairwise disjoint boundaries. Thus, the requirement
Pr[ψ ∈ ∂F ] = 0 only rules out countably many F ∈ G, and the remaining family
Bπ
Z := {F ∈ G : Pr[ψ ∈ ∂F ] = 0} still is a generating π-system.
Therefore, if we can check the other conditions (4.13) and (4.14) for all F ∈ G,

then there is automatically a suitable collection Bπ
Z .

4.5. Robustness of the asymptotic behaviour

It will also be useful to know that asymptotic local processes do not change if the
sets Al are replaced by sets A′

l which are asymptotically equivalent (mod µ) in that
µ(Al △ A′

l) = o(µ(Al)), and if the local observables ψAl
are replaced by ψ′

A′
l

which
are close in measure.

Theorem 4.10 (Robustness of asymptotic local processes). — Let (X,A, µ, T )
be an ergodic probability preserving system, (Al) and (A′

l) two asymptotically rare
sequences in A, and (ψAl

), (ψ′
A′

l
) two sequences of Z-valued local observables for the

sets Al and A′
l, respectively. Assume that

µ (Al △ A′
l) = o (µ(Al)) as l → ∞,(4.16)

and

dZ
(
ψAl

, ψ′
A′

l

) µAl∩A′
l−→ 0 as l → ∞.(4.17)

Then, for any random sequence Ψ̃ in Z,

(4.18) Ψ̃Al

µAl=⇒ Ψ̃ iff Ψ̃′
A′

l

µA′
l=⇒ Ψ̃,

where Ψ̃Al
and Ψ̃′

A′
l

are the local processes given by ψAl
and ψ′

A′
l
, respectively.
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For basic situations in which this applies consider the following.

Example 4.11 (Normalizing interval charts). — Let X be an interval containing
the sets Al = [al, bl], A′

l = [a′
l, b

′
l], and let ψAl

and ψ′
A′

l
be the corresponding normal-

izing interval charts. It is immediate that supAl∩A′
l
d[0,1](ψAl

, ψ′
A′

l
) → 0 provided that

λ(Al △ A′
l) = o(λ(Al)) as l → ∞. In this case, assumptions (4.16) and (4.17) of the

theorem are satisfied if cλ ⩽ µ ⩽ c−1λ for some constant c > 0.

Example 4.12 (Normalized return times). — Let (X,A, µ, T ) be ergodic and
probability preserving, (Al), (A′

l) two asymptotically rare sequences, and consider
the [0,∞]-valued local observables ψAl

:= µ(Al)φAl
|Al

, ψ′
A′

l
:= µ(A′

l)φA′
l

|A′
l
. Then,

(4.19) µ (Al △ A′
l) = o (µ(Al)) implies d[0,∞]

(
ψAl

, ψ′
A′

l

) µAl∩A′
l−→ 0.

In particular, [Zwe16, Theorem 2.2] is a special case of Theorem 4.10 above.
(To check (4.19), assume w.l.o.g. that A′

l ⊆ Al, take η > 0, and note that due to
d[0,∞](s, t) ⩽| s− t | it suffices to control the measure of {| µ(Al)φAl

− µ(A′
l)φA′

l
|⩾

η} ⊆ {µ(A′
l) | φAl

− φA′
l

|⩾ η/2} ∪ {µ(Al \ A′
l)φAl

⩾ η/2} which is easy since
(Al ∪ A′

l) ∩ {φAl
̸= φA′

l
} = T−1

Al∪A′
l
(Al △ A′

l) and
∫
µ(A′

l)φA′
l
dµA′

l
= 1 for all l.)

5. Joint limit processes

Again, the space for local observables will be a compact metric space (Z, dZ). Given
an asymptotically rare sequence (Al) for (X,A, µ, T ) and local observables ψAl

we
now consider the joint distribution of µ(Al)ΦAl

and Ψ̃Al
under µAl

, and that of
µ(Al)ΦAl

and ΨAl
under µ (or some other fixed probability ν ∈ P). For the second

variant we find, as expected:

Proposition 5.1 (Strong distributional convergence of (µ(Al)ΦAl
,ΨAl

)). — Let
(X,A, µ, T ) be an ergodic probability preserving system, (Al) an asymptotically rare
sequence in A, with (ΨAl

)l⩾ 1 a sequence of Z-valued local processes for the Al. Let
(Φ,Ψ) be any random sequence in [0,∞] × Z. Then (µ(Al)ΦAl

,ΨAl
) ν=⇒ (Ψ,Φ) for

some ν ∈ P iff (µ(Al)ΦAl
ΨAl

) ν=⇒ (Ψ,Φ) for all ν ∈ P.

The main result of this section, Theorem 5.3 below, gives sufficient conditions for
convergence to an independent pair of iid sequences. Before stating it, we record
that, in certain situations, this takes place under the measure µ iff it takes place
under the measures µAl

. Recall (4.8), which shows that the latter statement can
only be correct under some extra condition. We will use the same assumption, (5.1)
and (5.2) below, which already appeared in Theorem 4.7.

Theorem 5.2 (Independent joint limit processes - µAl
\ versus µ). — Suppose

(X,A, µ, T ) is an ergodic probability preserving system, (Al) an asymptotically rare
sequence in A, and (ψAl

)l⩾ 1 a sequence of Z-valued local observables for the Al with
corresponding local processes ΨAl

. Assume there are measurable τl : X → N0 s.t.
(5.1) µAl

(τl < φAl
) −→ 1 as l → ∞,
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while there is some compact subset K of (P, dP) such that

(5.2) T τl
∗ µAl

∈ K for l ⩾ 1,

Let (ΦExp,Ψ∗) be an independent pair of iid sequences. Then

(5.3) (µ(Al)ΦAl
,ΨAl

) µ=⇒ (ΦExp,Ψ∗) as l → ∞,

iff

(5.4)
(
µ(Al)ΦAl

, Ψ̃Al

) µAl=⇒ (ΦExp,Ψ∗) as l → ∞.

We can then formulate our abstract spatiotemporal Poisson limit theorem.

Theorem 5.3 (Joint iid limit processes). — Let (X,A, µ, T ) be an ergodic prob-
ability preserving system, (Al) an asymptotically rare sequence in A, and (ψAl

)l⩾1 a
sequence of Z-valued local observables for the Al such that

(5.5) ψAl

µAl=⇒ ψ as l → ∞,

for some random element ψ of Z. Let ΨAl
be the corresponding local processes.

Moreover, assume that
(A) for every s ∈ [0 ,∞) there are a compact subset Ks of (P, dP), measures

νl,s ∈ P with dP(νl,s, µAl ∩ {µ(Al)φAl
>s}) → 0, and measurable τl,s : X → N0

s.t.

(5.6) νl,s (τl,s < φAl
) −→ 1 as l → ∞,

while T τl,s
∗ νl,s ∈ Ks for l ⩾ 1, and

(B) there is some π-system Bπ
Z generating BZ with Z ∈ Bπ

Z , while Pr[ψ ∈ ∂F ] = 0
for all F ∈ Bπ

Z ; in addition, for every F ∈ Bπ
Z with Pr[ψ ∈ F ] > 0 there are a

compact subset KF of (P, dP), measures νl,F ∈ P with dP(νl,F , µAl ∩ {ψAl
∈F})

→ 0, and measurable τl,F : X → N0 such that

µ(Al) τl,F
νl,F−→ 0 as l → ∞,(5.7)

and

νl,F (τl,F < φAl
) −→ 1 as l → ∞,(5.8)

while T τl,F
∗ νl,F ∈ KF for l ⩾ 1.

Then,

(µ(Al)ΦAl
,ΨAl

) µ=⇒ (ΦExp,Ψ∗) as l → ∞,(5.9)

and (
µ(Al)ΦAl

, Ψ̃Al

) µAl=⇒ (ΦExp,Ψ∗) as l → ∞,(5.10)

where ( ΦExp,Ψ∗) is an independent pair of iid processes.
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Remark 5.4 (Convergence of associated spatiotemporal point processes). —
Generalizing Remark 3.5 we can interpret the above as a result about convergence
of associated spatiotemporal point processes NA,ψA

: X → Mp([0,∞) × Z) (the
collection of Radon point measures n : B[0,∞)×Z → {0, 1, 2, . . . , ∞} with the topology
of vague convergence, [Res08]) defined by

(5.11) NA,ψA
:=

∑
j ⩾ 1

δ{(
µ(A)

j−1∑
i=0

φA◦T i
A,ψA◦T j

A

)}.
Parallel to our earlier remarks, for ( ΦExp,Ψ∗) an independent pair of iid processes
and arbitrary probabilities νl on (X,A),

(µ(Al)ΦAl
,ΨAl

) νl=⇒ ( ΦExp,Ψ∗) implies
NAl,ψAl

νl=⇒ PRM(λ1
[0,∞) ⊗ law(ψ)) in Mp([0,∞) × Z),

(5.12)

and ΨAl
may be replaced by Ψ̃Al

if for each l ⩾ 1, νl is supported on Al. As before,
this merely requires an application of the “extended continuous mapping theorem”
([Bil99, Theorem 2.7]), because the map Θ× : [0,∞]N0 × ZN → Mp([0,∞) × Z) with

Θ×
((
φ(i)

)
i⩾ 0

,
(
ψ(i)

)
i⩾ 1

)
:=

∑
j ⩾ 1

δ{(j−1∑
i=0

φ(i),ψ(j)

)}
for (φ(i))i⩾ 0 ∈ W, and Θ×((φ(i))i⩾ 0, (ψ(i))i⩾ 1) := 0 otherwise, is continuous on
W × ZN.

Remark 5.5 (Robustness of joint limit processes). — The conclusion in (5.10) is a
statement about the (µ(Al)ΦAl

, Ψ̃Al
) which can be regarded as local processes taking

values in [0,∞] × Z. Recalling Example 4.12 we can therefore use Theorem 4.10 to
see that (5.10) is equivalent to(

µ (A′
l) ΦA′

l
, Ψ̃′

A′
l

) µA′
l=⇒ (ΦExp,Ψ∗) as l → ∞,

whenever µ(Al △ A′
l) = o(µ(Al)) and dZ(ψAl

, ψ′
A′

l
)
µAl∩A′

l−→ 0. This sometimes allows
us to replace the original sequence by one for which the conditions of the present
theorem can be verified more easily.

6. Mean ergodic theory and distributions under varying
measures

The present section discusses the abstract core of our approach. (It is based on ideas
which arose in the study of probabilistic properties of infinite measure preserving
systems, see [PSZ17, RZ20, Zwe07a].) Throughout, (E, dE) is a compact metric space
with Borel σ-algebra BE. For a Lipschitz function κ : E → R we let Lip(κ) denote
its (optimal) Lipschitz constant.
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6.1. More on distributional convergence

Recall that weak convergence of probabilities on (E,BE) is metrisable: There are
various metrics DE on M(E) such that DE(Ql, Q) → 0 iff Ql =⇒ Q. For instance, it
is well known that C(E) is separable, and by a standard argument for w∗-topologies,
every dense sequence (ϑj)j⩾1 in C(E) allows us to define a suitable metric with
DE ⩽ 1 by setting

(6.1) DE(Q,Q′) :=
∑
j ⩾ 1

2−(j+1)
∣∣∣∣∫ χj dQ−

∫
χj dQ

′
∣∣∣∣ , Q,Q′ ∈ M(E),

where χj := c−1
j ϑj for constants cj ⩾ sup |ϑj| (so that |χj| ⩽ 1). By the Stone-

Weierstrass theorem, Lipschitz functions are dense in C(E). As a consequence, we
can define DE as in (6.1) using a particular dense sequence (ϑj), henceforth fixed,
of Lipschitz functions ϑj : E → R, and cj := max(sup |ϑj| ,Lip(ϑj)), which ensures
that Lip(κj) ⩽ 1 for all j ⩾ 1.

Observe that for any convex combinations Q = θQ△ + (1 − θ)Q▽ and Q′ =
θQ′

△ + (1 − θ)Q′
▽ in M(E) with the same θ ∈ [0, 1], we have

DE (Q,Q′) ⩽ θDE

(
Q△, Q

′
△

)
+ (1 − θ)DE (Q▽, Q

′
▽)

⩽ DE

(
Q△, Q

′
△

)
+ (1 − θ).

(6.2)

It is straightforward that for ν, ν̃ ∈ P, and Borel measurable R : X → E,
(6.3) DE (lawν(R), lawν̃(R)) ⩽ dP (ν, ν̃) ,
so that for any sequences (νl) and (ν̃l) in P, and Borel measurable Rl : X → E,
(6.4) dP(νl, ν̃l) → 0 implies DE

(
lawνl

(Rl), lawν̃l
(Rl)

)
→ 0.

Also, for further measurable R′
l : X → E,

(6.5) dE (Rl, R
′
l)

νl−→ 0 implies DE (lawνl
(Rl) , lawνl

(R′
l)) → 0,

because DE(lawνl
(Rl), lawνl

(R′
l)) ⩽

∑J
j=1Lip(χj)

∫
dE(Rl, R

′
l) dνl+2−J for each J ⩾ 1,

and
∫
dE(Rl, R

′
l) dνl → 0 as E is bounded. Finally, note that

(6.6) R = R′ on A ∈ A implies DE (lawν(R), lawν (R′)) ⩽ ν (Ac) .

6.2. Strong distributional convergence

If (X,A, µ, T ) is an ergodic probability preserving system, distributional limit
theorems for dynamically defined quantities are often stated in terms of the distin-
guished measure ν := µ. Since the latter is not the only potentially relevant initial
distribution for the process, it is both interesting and useful to observe that in many
cases such a limit theorem automatically carries over to all probability measures ν
absolutely continuous with respect to µ.

For measurable maps Rl, l ⩾ 1, of a probability space (X,A, µ) into (E,BE), strong
distributional convergence to a random element R of E, written

(6.7) Rl
L(µ)=⇒ R as l → ∞,
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means that Rl
ν=⇒ R for all probability measures ν ≪ µ. (This is equivalent to

Rl
µ=⇒ R (mixing), meaning that Rl

µE=⇒ R for every fixed E ∈ A with µ(E) > 0.
The latter concept dates back to [Rén58], see also [Eag76].)

A property often responsible for this sort of behaviour is that the sequence (Rl) be
T -invariant in the long run. Let T be a measure-preserving map on the probability
space (X,A, µ). For Borel measurable maps Rl : X → E, we call the sequence (Rl)
asymptotically T -invariant in (µ-)measure in case
(6.8) dE (Rl ◦ T,Rl)

µ−→ 0 as l → ∞
(with µ−→ indicating convergence in measure, recall (3.5)). Note that this is equivalent
to convergence in distribution, dE(Rl ◦ T,Rl)

µ=⇒ 0, because the limit is constant.
The important role of this concept becomes clear through

Theorem 6.1 (Strong distributional convergence of asymptotically invariant
sequences). — Let T be an ergodic measure-preserving map on the probability space
(X,A, µ). Suppose that the sequence (Rl) of Borel measurable maps Rl : X → E into
the compact metric space (E, dE) is asymptotically T -invariant in measure. Then
(6.9) DE (lawν(Rl), lawν(Rl)) −→ 0 as l → ∞ for ν, ν ∈ P.

Hence, for R a random element of E, and any ν, ν ∈ P,

(6.10) Rl
ν=⇒ R implies Rl

ν=⇒ R as l → ∞.

Proof. — It is clear that (6.9) entails (6.10). The implication (6.10) is the con-
tent of [Zwe07b, Theorem 1]. A stronger version of assertion (6.9) is contained in
Theorem 6.3 below, whose proof does not use the present theorem.

Alternatively, it is not hard to check directly that (6.10) implies (6.9): Suppose
that (6.9) fails, meaning that there are ν, ν ∈ P with δ > 0 and lj ↗ ∞ such that

(6.11) DE

(
lawν

(
Rlj

)
, lawν

(
Rlj

))
⩾ δ for j ⩾ 1.

By Alaoglu’s theorem, the metric space (M(E), DE) is compact, which allows us
to select a further subsequence l′i = lji ↗ ∞ of indices such that lawν(Rl′i

) =⇒ Q
for some Q ∈ M(E). But then (6.10) shows that lawν(Rl′i

) =⇒ Q as well, which
contradicts (6.11). □

6.3. The transfer operator and mean ergodic theory

Since we shall improve on the above result, we review the main ingredient of its
proof. Recall the transfer operator T̂ : L1(µ) → L1(µ) of T on (X,A, µ) which
describes the evolution of probability densities under T . That is, if ν has density
u w.r.t. µ, u = dν/dµ, then T̂ u := d(ν ◦ T−1)/dµ. Equivalently,

∫
(g ◦ T ) · u dµ =∫

g · T̂ u dµ for all u ∈ L1(µ) and g ∈ L∞(µ), i.e. T̂ is dual to g 7−→ g ◦ T . We let
D(µ) denote the set of probability densities w.r.t. µ.

The following classical companion of the mean ergodic theorem is essentially due
to Yosida [Yos38] (see also [Kre85, Theorem 2.1.3], or [Zwe07b, Theorem 2]). State-
ments (6.12) and (6.13) below are equivalent since we can identify (P, dP) with
(D(µ), ∥�∥L1(µ)) via ν 7→ dν/dµ, where ∥dν/dµ− dν/dµ∥L1(µ) = dP(ν, ν) for ν, ν ∈ P.
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Theorem 6.2 (Characterization of ergodicity). — Let T be a measure-preserving
map on a probability space (X,A, µ). Then T is ergodic if and only if

(6.12)
∥∥∥∥∥ 1
n

n−1∑
k=0

T̂ k(u− u)
∥∥∥∥∥
L1(µ)

−→ 0 as l → ∞ for all u, u ∈ D(µ),

which is equivalent to

(6.13) dP

(
1
n

n−1∑
k=0

T k∗ ν,
1
n

n−1∑
k=0

T k∗ ν

)
−→ 0 as l → ∞ for all ν, ν ∈ P.

6.4. Uniform distributional convergence

At the heart of the present paper is a uniform version of the principle of strong dis-
tributional convergence for asymptotically invariant sequences of observables quoted
above. We capture the key point in the following result.

Theorem 6.3 (Uniform distributional convergence of asymptotically invariant
sequences). — Let (X,A, µ, T ) be an ergodic probability preserving system and
(Rl)l⩾ 1 a sequence of Borel measurable maps Rl : X → E, asymptotically T -invariant
in measure, into a compact metric space (E, dE). Let K be a compact set in (P, dP).
Then,

(6.14) DE (lawν(Rl), lawν(Rl)) −→ 0
as l → ∞,

uniformly in ν, ν ∈ K.

Hence, for R a random element of E, and any two sequences (νl), (νl) in K,

(6.15) Rl
νl=⇒ R implies Rl

νl=⇒ R as l → ∞.

The key to this refinement of Theorem 6.1 is the following basic principle.

Remark 6.4 (Uniform convergence by equicontinuity). — Let (P, dP) be any
metric space and γM : P → P, M ⩾ 1, a sequence of maps which converges
pointwise to the continuous map γ : P → P. If (γM)M ⩾ 1 is equicontinuous, then

γM −→ γ uniformly on K as M → ∞
whenever K is a compact subset of P. (Indeed, for every ε > 0 there is some δ > 0
such that dP(ν, ν̃) < δ implies dP(γM(ν), γM(ν̃)) < ε for all M ⩾ 1. But the compact
set K contains a finite δ-dense subset, and on the latter γM −→ γ uniformly as
M → ∞.)

Proof of Theorem 6.3. —
(i) The second assertion, implication (6.15), is immediate from (6.14), so we focus
on proving the latter. In steps (6.4)-(6.4) below we are going to show that for every
ε > 0, there is some l′ = l′(ε) such that for any χ : E → R with |χ| ⩽ 1 and
Lip(κ) ⩽ 1,

(6.16)
∣∣∣∣∫ χ ◦Rl dν −

∫
χ ◦Rl dν

∣∣∣∣ < ε for l ⩾ l′ and ν, ν ∈ K.
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To see that this implies (6.14), recall the definition (6.1) of DE via our specific
sequence (χj), and that the χj satisfy the above assumptions on χ. Therefore (6.14)
follows, since

DE (lawν(Rl), lawν(Rl)) =
∑
j ⩾ 1

2−(j+1)
∣∣∣∣∫ χj ◦Rl dν −

∫
χj ◦Rl dν

∣∣∣∣
<
∑
j ⩾ 1

2−(j+1)ε = ε for ν, ν ∈ K if l ⩾ l′.

(ii) Consider the maps γM : P → P with γM(ν) := M−1∑M−1
m=0T

m
∗ ν. By ergodicity

and Theorem 6.2, (γM) converges pointwise to the constant map γ(ν) := µ, as
γM(ν) → µ for every ν ∈ P. But (γM)M ⩾ 1 is equicontinuous. Indeed, due to the
identification of the ν with their densities, it suffices to observe that all the operators
M−1∑M−1

m=0 T̂
m have norm equal to 1 on L1(µ). Hence, compactness of K entails

uniform convergence (see Remark 6.4),

dP

(
1
M

M−1∑
m=0

Tm∗ ν,
1
M

M−1∑
m=0

Tm∗ ν

)
−→ 0

as M → ∞,
uniformly in ν, ν ∈ K.

Therefore there is some Mε ⩾ 1 (henceforth fixed) such that

dP

(
1
Mε

Mε−1∑
m=0

Tm∗ ν,
1
Mε

Mε−1∑
m=0

Tm∗ ν

)
<
ε

4 for ν, ν ∈ K.

Consequently (as |χ| ⩽ 1), for every l and all ν, ν ∈ K,

(6.17)
∣∣∣∣∣
∫
χ ◦Rl d

(
1
Mε

Mε−1∑
m=0

Tm∗ ν

)
−
∫
χ ◦Rl d

(
1
Mε

Mε−1∑
m=0

Tm∗ ν

)∣∣∣∣∣ < ε

4 .

(iii) As K is compact in (P, dP), the family {dν/dµ : ν ∈ K} is compact in L1(µ),
and hence uniformly integrable. Thus, there is some δ = δ(ε) > 0 such that

(6.18) ν(A) =
∫
A

dν

dµ
dµ <

ε

16Mε

for ν ∈ K and A ∈ A with µ(A) < δ.

Set η := (8Mε)−1ε > 0 and define sequences (Ξi,l)l⩾ 1 via Ξi,l := χ ◦ Rl ◦ T i, i ⩾ 0.
We claim that there is some l′ = l′(ε) s.t.

(6.19) µ (|Ξi,l − Ξi,l ◦ T | > η) < δ for i ⩾ 0 and l ⩾ l′.

Indeed, using asymptotic T -invariance in measure of (Rl) we see that there is some
l′ such that

µ (dE(Rl, Rl ◦ T ) > η) < δ for l ⩾ l′.

Due to T -invariance of µ and Lip(κ) ⩽ 1 we then find that

µ (|Ξi,l − Ξi,l ◦ T | > η) = µ (|χ ◦Rl − χ ◦Rl ◦ T | > η)
⩽ µ (dE(Rl, Rl ◦ T ) > η) < δ for i ⩾ 0 and l ⩾ l′,
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as required. Using |Ξi,l| ⩽ 1 and (6.18) we then see that∫
|Ξi,l − Ξi,l ◦ T | dν ⩽ η +

∫
{|Ξi,l−Ξi,l◦T |>η}

|Ξi,l − Ξi,l ◦ T | dν

<
ε

4Mε

for i ⩾ 0, l ⩾ l′ and ν ∈ K.
(6.20)

(iv) Note that by duality and (6.20),

(6.21)
∣∣∣∣∣
∫
χ ◦Rl dν −

∫
χ ◦Rl d

(
1
Mε

Mε−1∑
m=0

Tm∗ ν

)∣∣∣∣∣
⩽

1
Mε

Mε−1∑
m=0

∣∣∣∣∫ (χ ◦Rl − χ ◦Rl ◦ Tm) dν
∣∣∣∣

⩽
1
Mε

Mε−1∑
m=0

m−1∑
i=0

∫
|Ξi,l − Ξi,l ◦ T | dν

<
1
Mε

Mε−1∑
m=0

m−1∑
i=0

ε

4Mε

⩽
ε

4 for l ⩾ l′ and ν ∈ K.

Now take any ν, ν ∈ K, and combine (6.17) with an application of (6.21) to ν and
another application of (6.21) to ν to obtain (6.16). □

6.5. Waiting for good measure(s)

We shall say that the measurable functions τl : X → N0 form an admissible delay
sequence (τl)l⩾ 1 for (Rl) and (νl) if
(6.22) DE (lawνl

(Rl), lawνl
(Rl ◦ T τl)) −→ 0 as l → ∞.

An easy sufficient condition for this is that
(6.23) dE(Rl ◦ T τl , Rl)

νl−→ 0 as l → ∞.

(By compactness of M(E) it suffices to show that for any subsequence lj ↗ ∞ of
indices and any random element R of E, Rlj

νlj=⇒ R implies Rlj ◦ T τl
νlj=⇒ R, which

follows from (6.23) by a standard (Slutsky) argument, see [Bil99, Theorem 3.1]).
Since lawνl

(Rl◦T τl) = lawνl
(Rl) where νl := T τl

∗ νl, we can efficiently use admissible
delays in situations where the sequence (νl) of these push-forwards allows for better
control than (νl). The latter phrase will mean that νl ∈ K for all l, where K ⊆ P
is compact, in which case we can use the following straightforward consequence of
Theorem 6.3.

Proposition 6.5 (Asymptotically invariant sequences - νl versus µ). — Let
(X,A, µ, T ) be an ergodic probability preserving system, (Rl)l⩾ 1 a sequence of
Borel measurable maps Rl : X → E, asymptotically T -invariant in measure, into a
compact metric space (E, dE), and (νl)l⩾ 1 a sequence in P. Suppose that (τl)l⩾ 1 is
an admissible delay sequence for (Rl) and (νl) such that there is some compact set
K in (P, dP) for which
(6.24) T τl

∗ νl ∈ K for l ⩾ 1.
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Then
(6.25) DE (lawνl

(Rl), lawµ(Rl)) −→ 0 as l → ∞.

Proof. — Letting νl := T τl
∗ νl we have DE(lawνl

(Rl), lawνl
(Rl)) → 0 due to admissi-

bility of (τl), but also DE(lawνl
(Rl), lawµ(Rl)) → 0 by Theorem 6.3 (We can assume

w.l.o.g. that µ ∈ K). □

In the specific situation of Theorems 3.6, 4.8, and 5.3 above, the νl = µAl
concen-

trate on ever smaller sets, and hence can never stay inside a single compact set K,
while suitable push-forwards νl sometimes do.

6.6. Independent limits for pairs of asymptotically invariant sequences

To facilitate the analysis of distributional limits of processes involving several
asymptotically invariant sequences, we provide a natural method of checking asymp-
totic independence. It relies on the following easy probability fact.

Lemma 6.6 (Independence of limit variables by conditioning). — Let (νl)l⩾ 1 be
probability measures on (X,A), and Rl : X → E, R′

l : X → E′, l ⩾ 1, Borel maps
into the compact metric spaces E and E′. Let (R,R′) be a random element of E×E′

such that
(6.26) (Rl, R

′
l)

νl=⇒ (R,R′) as l → ∞.
Assume that there is some π-system Bπ

E generating BE such that for all E ∈ Bπ
E we

have Pr[R ∈ ∂E] = 0, and, in case Pr[R ∈ E] > 0, convergence in law holds under
the νl conditioned on {Rl ∈ E},

(6.27) R′
l

νl,{Rl ∈ E}=⇒ R′ as l → ∞.

Then R and R′ are independent.

Proof. — By [Bil99, Theorem 2.8], our assumption (6.26) is equivalent to

(6.28)
νl (Rl ∈ E,R′

l ∈ E ′) −→ Pr[R ∈ E,R′ ∈ E ′] as l → ∞
whenever Pr [R ∈ ∂E] = Pr [R′ ∈ ∂E ′] = 0.

We show that for any such (E,E ′) this limit coincides with Pr[R ∈ E] Pr[R′ ∈ E ′].
Applying the same theorem from [Bil99] again, then proves that (Rl, R

′
l) converges

to an independent pair with marginals R, R′.
Take any E ∈ Bπ

E. If Pr[R ∈ E] = 0, the assertion is trivial. Assume therefore that
Pr[R ∈ E] > 0. Pick any E ′ ∈ BE′ with Pr[R′ ∈ ∂E ′] = 0. Due to (6.27),

νl (Rl ∈ E,R′
l ∈ E ′) −→ Pr[R ∈ E] Pr [R′ ∈ E ′] as l → ∞,

and therefore
Pr [R ∈ E,R′ ∈ E ′] = Pr[R ∈ E] Pr [R′ ∈ E ′] .

Fixing such an E ′, the standard uniqueness theorem for measures shows that
Pr [R ∈ B,R′ ∈ E ′] = Pr[R ∈ B] Pr [R′ ∈ E ′] for all B ∈ BE.

In particular, this is true for all B ∈ BE with Pr[R ∈ ∂B] = 0. □
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Combining this with the uniform distributional convergence principle, and the idea
that admissible time delays may result in good measures, we obtain

Theorem 6.7 (Asymptotic independence of two sequences). — Let (X,A, µ, T )
be an ergodic probability preserving system and (Rl)l⩾ 1, (R′

l)l⩾ 1 sequences of Borel
measurable maps, (R′

l) asymptotically T -invariant in measure, into compact metric
spaces (E, dE) and (E′, dE′), respectively. Suppose that νl, l ⩾ 1, are probabilities on
(X,A) such that
(6.29) (Rl, R

′
l)

νl=⇒ (R,R′) as l → ∞
for some random element (R,R′) of E×E′, and let Bπ

E be some π-system generating
BE such that E ∈ Bπ

E while Pr[R ∈ ∂E] = 0 for all E ∈ Bπ
E.

Assume that for every E ∈ Bπ
E with Pr[R ∈ E] > 0 there is some compact set KE

in (P, dP), a sequence (νl,E)l⩾ 1 in P with dP(νl,E, νl, {Rl ∈E}) → 0, and a sequence
(τl,E)l⩾ 1 of admissible delays for (R′

l)l⩾ 1 and (νl,E)l⩾ 1 such that νl,E := T
τl,E
∗ νl,E ∈

KE for l ⩾ 1. Then R and R′ are independent.
(Note that (Rl) is not required to be asymptotically T -invariant.)
Proof. — By Lemma 6.6 it suffices to show that for every E ∈ Bπ

E with Pr[R ∈
E] > 0,

R′
l

νl,{Rl ∈ E}=⇒ R′ as l → ∞,

which, due to dP(νl,E, νl,{Rl ∈E}) → 0 and (6.4), is equivalent to

(6.30) R′
l

νl,E=⇒ R′ as l → ∞.

Take any such E. Since νl,E ∈ KE for all l, an application of Theorem 6.3 shows that
DE(lawµ(R′

l), lawνl,E
(R′

l)) → 0, and since the τl,E are admissible delays for (R′
l)l⩾ 1

and (νl,E)l⩾ 1, we conclude that

(6.31) DE

(
lawµ (R′

l) , lawνl,E
(R′

l)
)

−→ 0 as l → ∞.

The case E := E yields DE(lawµ(R′
l), lawνl

(R′
l)) → 0. Together with R′

l

νl=⇒ R′

and (6.31) this gives (6.30). □

Remark 6.8 (The auxiliary measures νl,E). — In the simplest cases, we can take
νl,E := νl,{Rl ∈E}. However, constructing suitable τl,E is sometimes easier if we use a
slightly different sequence of measures, obtained as follows.

It is easily seen that if (Bl) and (B′
l) are sequences in A with µ(Bl△B′

l) = o(µ(Bl)),
then dP(µBl

, µB′
l
) → 0. Therefore, if νl = µAl

and the sets B′
l,E ∈ A are such that

µ(B′
l,E △ (Al ∩ {Rl ∈ E})) = o(µ(Al ∩ {Rl ∈ E})), then the measures νl,E := µB′

l,E

satisfy dP(νl,E, νl,{Rl ∈E}) → 0.

7. Proofs for return- and hitting-time processes

7.1. Asymptotic invariance of hitting time processes

A sequence of hitting time processes for rare events, that is, a sequence (Rl) of
variables Rl = µ(Al)ΦAl

, viewed through the single measure µ, is asymptotically
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T -invariant in measure [Zwe07b, Corollary 6]. We provide a more precise statement
in the next proposition.

Proposition 7.1 (Asymptotic invariance in measure of hitting-time processes).
Let (X,A, µ, T ) be a probability preserving system.

(a) For every set A ∈ A and integer m ⩾ 0,
(7.1) d[0,∞]N0 (µ(A)ΦA ◦ Tm, µ(A)ΦA) ⩽ mµ(A) on {φA > m}.

(b) Suppose that (Al)l⩾ 1 is a sequence of asymptotically rare events, and set
Rl := µ(Al)ΦAl

: X → [0,∞]N0 . Then (Rl) is asymptotically T -invariant in
measure.

(c) Likewise, if φAl
< ∞ a.e. and Rl := µ(Al)ΦAl

◦ TAl
: X → [0,∞]N, then (Rl)

is asymptotically T -invariant in measure.

Proof. —
(a) For any A ∈ A and integer m ⩾ 0,

(7.2) ΦA = ΦA ◦ Tm + (m, 0, 0, . . .) on {φA > m},
and hence d[0,∞]N0 (µ(A)ΦA ◦ Tm, µ(A)ΦA) = d[0,∞](µ(A)(φA −m), µ(A)φA) on that
set. Since d[0,∞](s, s+ δ) = e−s(1 − e−δ) ⩽ δ for all s, δ ∈ [0,∞), (7.1) follows.

(b) Whenever (Al)l⩾ 1 is a sequence of asymptotically rare events, the Rl satisfy
(7.3) d[0,∞]N0 (Rl ◦ T,Rl) ⩽ µ(Al) outside{φAl

⩽ 1} = T−1Al.

By assumption this upper bound for the distance tends to zero, and since µ(φAl

⩽ 1) = µ(Al), so does the measure of the set on which the bound fails to apply.
(c) Analogous, using that Rl ◦ T = Rl outside T−1Al. □

The simple estimate (7.1) immediately leads to sufficient conditions for time delays
τl to be admissible for a given sequence (νl) of initial densities.

Proposition 7.2 (Admissible time delays for return or hitting processes). — Let
T be a measure-preserving map on the probability space (X,A, µ), (Al) a sequence of
asymptotically rare events, (νl) a sequence in P, and τl : X → N0, l ⩾ 1, measurable
functions.

(a) (τl)l⩾ 1 is an admissible delay sequence for the variables Rl : X → [0,∞]N0

given by Rl := µ(Al)ΦAl
and the measures νl provided that

µ(Al) τl
νl−→ 0 as l → ∞,(7.4)

and
νl (τl < φAl

) −→ 1 as l → ∞.(7.5)
(b) Condition (7.5) alone is sufficient for (τl)l⩾ 1 to be an admissible delay sequence

for the variables Rl : X → [0,∞]N given by Rl := µ(Al)ΦAl
◦ TAl

and the νl.

Proof. —
(a) For arbitrary A ∈ A and any measurable τ : X → N0, we can apply (7.1) on
each set {τ = m}, m ⩾ 0, to see that
(7.6) d[0,∞]N0 (µ(A)ΦA ◦ T τ , µ(A)ΦA) ⩽ τµ(A) on {φA > τ}.

TOME 5 (2022)



1386 R. ZWEIMÜLLER

Now take any ε > 0. By the above we find that for every l,
d[0,∞]N0 (Rl ◦ T τl , Rl) ⩽ τl µ(Al) on {φAl

> τl}
< ε on {φAl

> τl} ∩ {µ(Al) τl < ε}.(7.7)
But (7.4) and (7.5) ensure that νl({φAl

> τl}∩{µ(Al) τl < ε}) → 1 as l → ∞, which
proves our claim via the sufficient condition (6.23).
(b) Since, for any A and measurable τ we have TA ◦ T τ = TA on {τ < φA}, we see
that Rl ◦ T τl = Rl on {τl < φAl

}, and the result follows. □
We can thus establish the first theorem advertised in this paper.
Proof of Theorem 3.2. — Conditions (3.6) and (3.7) guarantee, via Proposi-

tions 7.1(b) and 7.2(a), that (Rl) is asymptotically T -invariant in measure, and
that (τl) is an admissible delay sequence for (Rl) := (µ(Al)ΦAl

) and (νl). Now (3.8)
allows us to apply Proposition 6.5. □

7.2. Finite-dimensional marginals and distributional convergence

A sequence s ∈ [0,∞]N0 will be called finite-valued in case s ∈ [0,∞)N0 . Let Φ =
(φ(j))j ⩾ 0 be a random sequence in [0,∞], that is, a random element of [0,∞]N0 . We
let Φ[d] := (φ(0), . . . , φ(d−1)) denote its initial piece of length d, d ⩾ 1. The (possibly
degenerate) distribution function of the random vector Φ[d] is F [d] : [0,∞)d → [0, 1],
F [d](t0, . . . , td−1) := Pr[φ(0) ⩽ t0, . . . , φ

(d−1) ⩽ td−1].
Assume that each Φl, l ⩾ 1, is a random sequence in [0,∞) with finite-dimensional

distribution functions F [d]
l : [0,∞)d → [0, 1], d ⩾ 1. Abbreviating {F [d]

l } := {F [d]
l }d⩾ 1

we shall write
(7.8)

{
F

[d]
l

}
=⇒

{
F [d]

}
as l → ∞,

if all F [d]
l converge weakly, as l → ∞, to the corresponding distribution functions

F [d] of Φ, that is, for every d ⩾ 1 we have F [d]
l (t0, . . . , td−1) → F [d](t0, . . . , td−1) at

all continuity points (t0, . . . , td−1) of F [d].
Remark 7.3. — This is the mode of convergence studied in [Zwe16], where it

was denoted by Φl =⇒ Φ. It is closely related to the present meaning of Φl =⇒ Φ
(distributional convergence of random elements of [0,∞]N0), which clearly implies
{F [d]

l } =⇒ {F [d]}. In fact, the two notions coincide in case the Φl and Φ are a.s.
finite-valued, which is always the case for return-time processes ΦAl

viewed through
µAl

, and their limits Φ̃ (recall (3.3)).

7.3. The general duality between return- and hitting-time processes

It is a basic fact that for any sequence (Al)l⩾ 1 of asymptotically rare events, its
return-time statistics and its hitting-time statistics are intimately related to each
other, as established in [HLV05]. This result has been extended to the level of
processes in [Zwe16] (see also [Mar17]), where we proved
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Theorem 7.4 (Hitting-time process versus return-time process [Zwe16]). — Let
(X,A, µ, T ) be an ergodic probability-preserving system, and (Al)l⩾ 1 a sequence
of asymptotically rare events. Let {F [d]

l } and {F̃ [d]
l } be the collections of finite-

dimensional distribution functions of µ(Al)ΦAl
under µ and the µAl

, respectively.
Then {

F
[d]
l

}
=⇒

{
F [d]

}
for some process Φ in [0,∞] with d.f.s

{
F [d]

}
(7.9)

iff {
F̃

[d]
l

}
=⇒

{
F̃ [d]

}
for some process Φ̃ in [0,∞] with d.f.s

{
F̃ [d]

}
.(7.10)

In this case, the sub-probability distribution functions F [d] and F̃ [d] of Φ[d] and
Φ̃[d] satisfy, for any d ⩾ 0 (where F̃ [0] := 1) and tj ⩾ 0,

(7.11)
∫ t0

0

[
F̃ [d] (t1, . . . , td) − F̃ [d+1] (s, t1, . . . , td)

]
ds = F [d+1] (t0, t1, . . . , td) .

Through (7.11), the families {F [d]} and {F̃ [d]} uniquely determine each other.

We will heavily rely on this duality.

7.4. The case of Poisson asymptotics

Below we will primarily be interested in the particular case where the limit process
is an iid sequence of normalized exponentially distributed random variables ΦExp. If
this particular limit occurs, then it automatically occurs both for the hitting-times
and for the return times, because of Theorem 7.4 and

Proposition 7.5 (Characterizing ΦExp [Zwe16]). — Let Φ be some stationary
random sequence in [0,∞). Then Φ = ΦExp iff the finite-dimensional marginals have
distribution functions F [d] satisfying

(7.12) F [d+1] (t0, t1, . . . , td) =
∫ t0

0

[
F [d] (t1, . . . , td) − F [d+1] (s, t1, . . . , td)

]
ds

whenever d ⩾ 0 and tj ⩾ 0.

Combining the above with Theorem 3.2 we can now prove the abstract temporal
Poisson limit theorem.

Proof of Theorem 3.6. —
(i) Let Rl := µ(Al)ΦAl

, l ⩾ 1, which gives an asymptotically invariant sequence of
Borel measurable maps Rl : X → [0,∞]N0 . Due to compactness of M([0,∞]N0), it
suffices to show that for every subsequence of indices lj ↗ ∞ along which

Rlj

µAlj=⇒ Φ̃ and Rlj

µ=⇒ Φ

for some random elements Φ̃,Φ of [0,∞]N0 , both limits are iid with marginal F̃Exp.
Focusing on such a subsequence, we thus assume that

(7.13) Rl

µAl=⇒ Φ̃ and Rl
µ=⇒ Φ as l → ∞.
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We need to show that

(7.14) law(Φ̃) = law(Φ) = law
(
Φ̃Exp

)
.

(ii) Take any ε > 0 and choose (νl)l⩾ 1 in P with dP(νl, µAl
) < ε for all l, a compact

set K ⊆ P, and measurable functions τl : X → N0 such that (3.15)-(3.17) hold. By
Theorem 3.2 we have D[0,∞]N0 (lawνl

(Rl), lawµ(Rl)) → 0, so that

(7.15) Rl
νl=⇒ Φ as l → ∞.

(iii) In view of (6.3), however, D[0,∞]N0 (lawνl
(Rl), lawµAl

(Rl)) < ε for all l, and letting
l → ∞, (7.13) and (7.15) allow us to conclude that D[0,∞]N0 (law(Φ),
law(Φ̃)) ⩽ ε. But ε > 0 was arbitrary, and therefore

(7.16) law(Φ) = law
(
Φ̃
)
.

For the finite dimensional distribution functions {F [d]} and {F̃ [d]} of Φ and Φ̃ this
means that {F [d]} = {F̃ [d]}. Together with the fact that {F [d]} and {F̃ [d]} are
related to each other as in (7.4) of Theorem 7.4, this shows that {F [d]} satisfies
condition (7.12), and (7.14) follows by Proposition 7.5. □

7.5. Including a point mass at zero

The argument for convergence to Φ̃(Exp,θ) is similar to that for Φ̃Exp. As a warm-
up we characterize the one-dimensional distribution function F̃(Exp,θ) through a
generalization of the fixed point equation F̃ (t) =

∫ t
0 [1 − F̃ (s)] ds distinguishing

the exponential distribution function F = F̃(Exp,1). In a second step, we provide a
characterization of Φ̃(Exp,θ) similar to Proposition 7.5.

Proposition 7.6 (Characterizing F̃(Exp,θ) and Φ̃(Exp,θ)). — Take any θ ∈ (0, 1].
(a) If F̃ is a probability distribution function on [0,∞), then F̃ = F̃(Exp,θ) iff

(7.17) F̃ (t) = (1 − θ) + θ
∫ t

0

[
1 − F̃ (s)

]
ds for t ⩾ 0.

(b) If Φ̃ is a stationary sequence of random variables in [0,∞) with finite-
dimensional distribution functions F̃ [d] (where F̃ [0] := 1), then law(Φ̃) =
law(Φ̃(Exp,θ)) iff

(7.18) F̃ [d+1] (t0, t1, . . . , td) = (1 − θ) F̃ [d] (t1, . . . , td)

+ θ
∫ t0

0

[
F̃ [d] (t1, . . . , td) − F̃ [d+1] (s, t1, . . . , td)

]
ds

whenever d ⩾ 0 and tj ⩾ 0.
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Proof. —
(a) It is immediate that F̃(Exp,θ) from (3.19) satisfies (7.17). For the converse, as-
sume (7.17) and let F (t) :=

∫ t
0 [1 − F̃ (s)] ds for t ⩾ 0. Due to (7.17) we have

1 − F̃ (s) = θ[1 − F (s)] and hence

F (t) = θ
∫ t

0 [1 − F (s)] ds for t ⩾ 0.

Therefore F is C∞ on (0,∞), and F (t) := 1 − F (t) satisfies F
′ = −θF there.

Consequently, F (t) = ce−θt, and since F (0+) = 0 we have c = 1.
(b) Using (7.17) it is straightforward that the marginals of the iid sequence Φ̃(Exp,θ)

satisfy (7.18). For the converse, assume that Φ̃ satisfies (7.18).
The d = 0 case covered by part a) shows that F̃ [1] = F̃(Exp,θ). Write Φ̃ = (φ̃(j))j ⩾ 0,

then by stationarity, each φ̃(j) has distribution F̃(Exp,θ). We need to prove that the
φ̃(j) are independent. Using stationarity again, we see that it suffices to check that

(7.19) for d ⩾ 1, the variable φ̃(0) is independent of
{
φ̃(1), . . . , φ̃(d)

}
.

Fix any d ⩾ 1, and take (t1, . . . , td) such that F̃ [d](t1, . . . , td) > 0. Define

G̃(s) := Pr
[
φ̃(0) ⩽ s

∣∣∣ φ̃(1) ⩽ t1, . . . , φ̃
(d) ⩽ td

]
= F̃ [d+1] (s, t1, . . . , td) /F̃ [d] (t1, . . . , td)

for s ⩾ 0. Then (7.18) becomes

G̃(t) = (1 − θ) + θ
∫ t

0

[
1 − G̃(s)

]
ds for s ⩾ 0.

But since φ̃(0) takes values in [0,∞), part a) ensures that G̃ = F̃(Exp,θ), meaning
that Pr[φ̃(0) ⩽ s | φ̃(1) ⩽ t1, . . . , φ̃

(d) ⩽ td] = Pr[φ̃(0) ⩽ s] whenever the conditioning
event has positive probability. This establishes (7.19). □

We are now ready for the proof of Theorem 3.8. The strategy is the same as in the
case of Theorem 3.6, but we now split off the contribution of points which return
within time τl.

Proof of Theorem 3.8. —
(i) Let Rl := µ(Al)ΦAl

, l ⩾ 1. As in the proof of Theorem 3.6 we can assume w.l.o.g.
that

(7.20) Rl

µAl=⇒ Φ̃ and Rl
µ=⇒ Φ as l → ∞.

We need to show that

(7.21) law
(
Φ̃
)

= law
(
Φ̃(Exp,θ)

)
.

(ii) Take any ε > 0 and choose (νl)l⩾ 1 in P with dP(νl, µAl
) < ε for all l, a compact

set K ⊆ P, and measurable functions τl : X → N0 such that (3.21)-(3.25) hold.
Abbreviate θl := νl(A◦

l ), so that

(7.22) νl = (1 − θl) ν•
l + θlν

◦
l for l ⩾ 1.
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Assumptions (3.21) to (3.23) allow us to apply Theorem 3.2 using the sequence (ν◦
l )

of measures, to see that D[0,∞]N0 (lawν◦
l
(Rl), lawµ(Rl)) → 0. Consequently,

(7.23) Rl

ν◦
l=⇒ Φ as ł → ∞.

To analyse the asymptotic distribution of Rl under ν•
l we observe first that due

to (3.24) the assumption (3.21) implies that also

(7.24) µ(Al)φAl

ν•
l−→ 0 as l → ∞.

On the other hand,

lawν•
l

(Rl ◦ TAl
) = lawν•

l
(Rl), where ν•

l := (TAl
)∗ν

•
l .

In view of (3.25) and (6.3), we thus have D[0,∞]N0 (lawν•
l
(Rl ◦ TAl

), lawµAl
(Rl)) =

D[0,∞]N0 (lawν•
l
(Rl), lawµAl

(Rl)) → 0. Recalling (7.20) and the fact that Φ̃ is stationary
(see (3.3)), this shows that

(7.25) Rl ◦ TAl

ν•
l=⇒ σΦ̃ as l → ∞,

where σΦ̃ := (φ̃(1), φ̃(2), . . .) is the shifted version of Φ̃ = (φ̃(0), φ̃(1), . . .). Since the
limit in (7.24) is constant, and hence independent of all random variables, we can
combine (7.24) and (7.25) to obtain

(7.26) Rl = (µ(Al)φAl
, Rl ◦ TAl

)
ν•

l=⇒
(
0,σΦ̃

)
=
(
0, φ̃(1), φ̃(2), . . .

)
as l → ∞.

Going back to (7.22) we can employ (7.23) and (7.26) to see that in M([0,∞]N0),

lawνl
(Rl) = (1 − θl) lawν•

l
(Rl) + θl lawν◦

l
(Rl)

→ (1 − θ) law
(
0,σΦ̃

)
+ θ law(Φ) as l → ∞.

(7.27)

(iii) On the other hand, (6.3) guarantees that D[0,∞]N0 (lawνl
(Rl), lawµAl

(Rl)) < ε for
all l, and hence by (7.20) that D[0,∞]N0 (lawνl

(Rl), law(Φ̃)) ⩽ ε. Together with (7.27)
this proves that

(7.28) D[0,∞]N0

(
(1 − θ) law

(
0,σΦ̃

)
+ θ law(Φ), law

(
Φ̃
))

⩽ ε.

But ε > 0 was arbitrary, and therefore

(7.29) law(Φ̃) = (1 − θ) law
(
0,σΦ̃

)
+ θ law(Φ).

For the finite dimensional distribution functions {F [d]} and {F̃ [d]} of Φ and Φ̃ this
means that for all d ⩾ 0 and t0, t1, . . . , td ⩾ 0,

(7.30) F̃ [d+1] (t0, t1, . . . , td) = (1 − θ) F̃ [d] (t1, . . . , td) + θF [d+1] (t0, t1, . . . , td) .

However, because of (7.20), {F [d]} and {F̃ [d]} are related to each other as in (7.4)
of Theorem 7.4. Together with (7.30) the latter shows that {F̃ [d]} satisfies condi-
tion (7.18), and (7.21) follows by Proposition 7.6(b). □
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8. Proofs for local processes

Throughout this section, the fixed compact metric space (Z, dZ) is the state space
for local observables.

8.1. The general asymptotic local process

To prepare the proof of Theorem 4.3, we first establish an approximation result.

Proposition 8.1 (Approximating d-dimensional marginals of a stationary
sequence). — Let T be an ergodic measure preserving map on the nonatomic prob-
ability space (X,A, µ), and let Ψ̂ be an Z-valued stationary sequence which only
assumes finitely many different values. Then, for any d ⩾ 1 and ε > 0, there is some
measurable ψ : X → Z such that the sequence Ψ := (ψ, ψ ◦ T, . . .) satisfies

(8.1) DZd

(
πd∗ (lawµ(Ψ)) , πd∗

(
law

(
Ψ̂
)))

< ε.

Proof. —
(i) Write Ψ̂ = (ψ̂(0), ψ̂(1), . . .) and let F ⊆ Z be a finite set such that ψ̂(0) ∈ F a.s.
Fix d and ε, and pick one particular element y∗ ∈ F . It suffices to show that we can
construct a local observable ψ and an arbitrarily large subset Y of X such that the
d-dimensional marginal of Ψ, when conditioned on Y , coincides with the marginal
of Ψ̂. That is, we prove that for every δ > 0 there is some Y ∈ A with µ(Y c) < δ,
and a measurable ψ : X → Z such that
(8.2) πd∗ (lawµY

(Ψ)) = πd∗
(
law

(
Ψ̂
))
.

(ii) Apply the classical Rokhlin Lemma (as in [Zwe16, Lemma 7.4]) to obtain a
Rokhlin tower (Xi)Ii=0 of height I > 2d/δ and with µ(X \⋃Ii=0Xi) < δ/2. This means
that the Xi are pairwise disjoint and Xi = T−(I−i)XI for i ∈ {0, . . . , I}. Conditioning
on the top level XI of the tower we obtain the probability space (XI , XI ∩ A, µXI

).
Being nonatomic, it admits a partition into measurable sets,

XI = ⋃
(y0, ..., yI) ∈F I+1XI (y0, . . . , yI) (disjoint),

with µXI
(XI(y0, . . . , yI)) = Pr[(ψ̂(0), . . . , ψ̂(I)) = (y0, . . . , yI)]. We define partitions

of the other levels Xi, i ∈ {0, . . . , I − 1},
Xi = ⋃

(y0, ..., yI) ∈F I+1Xi(y0, . . . , yI) (disjoint),
by setting

Xi (y0, . . . , yI) := T−1Xi+1 (y0, . . . , yI) = . . . = T−(I−i)XI (y0, . . . , yI) .
Finally, define a measurable function ψ : X → Z through

(8.3) ψ :=

yi on Xi (y0, . . . , yI) , 0 ⩽ i ⩽ I,

y∗ otherwise.

Then, for any (y0, . . . , yI) ∈ F I+1 and j ∈ {0, 1, . . . I − i},
(8.4) ψ ◦ T j = yi+j on Xi (y0, . . . , yI) .
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(iii) As a consequence of (8.4) we get, for i ∈ {0, . . . , I−d+1}, (z0, . . . , zd−1) ∈ F d,
a decomposition

Xi ∩
{(
ψ, . . . , ψ ◦ T d−1

)
= (z0, . . . , zd−1)

}
=
⋃

(y0, ..., yI) ∈F I+1:
(yi, ..., yi+d−1)=(z0, ..., zd−1)

Xi (y0, . . . , yI)

=
⋃

(y0, ..., yI) ∈F I+1:
(yi, ..., yi+d−1)=(z0, ..., zd−1)

T−(I−i)XI (y0, . . . , yI) .

Therefore, as T preserves µ and Xi = T−(I−i)XI , we se that
µXi

((
ψ, . . . , ψ ◦ T d−1

)
= (z0, . . . , zd−1)

)
=

=
∑

(y0, ..., yI) ∈F I+1:
(yi, ..., yi+d−1)=(z0, ..., zd−1)

µXi

(
T−(I−i)XI (y0, . . . , yI)

)
=
∑

(y0, ..., yI) ∈F I+1:
(yi, ..., yi+d−1)=(z0, ..., zd−1)

µXI
(XI (y0, . . . , yI))

=
∑

(y0, ..., yI) ∈F I+1:
(yi, ..., yi+d−1)=(z0, ..., zd−1)

Pr
[(
ψ̂(0), . . . , ψ̂(I)

)
= (y0, . . . , yI)

]
= Pr

[(
ψ̂(i), . . . , ψ̂(i+d−1)

)
= (z0, . . . , zd−1)

]
= Pr

[(
ψ̂(0), . . . , ψ̂(d−1)

)
= (z0, . . . , zd−1)

]
,

meaning that

(8.5) lawµXi

((
ψ, . . . , ψ ◦ T d−1

))
= law

((
ψ̂(0), . . . , ψ̂(d−1)

))
for 0 ⩽ i ⩽ I − d+ 1.

Hence, taking Y := ⋃I−d+1
i=0 Xi we have

µ(Y c) = µ
(⋃I

i=I−d+2Xi

)
+ µ

(
X \ ⋃Ii=0Xi

)
< d/I + δ/2 < δ

and
lawµY

((
ψ, . . . , ψ ◦ T d−1

))
= law

((
ψ̂(0), . . . , ψ̂(d−1)

))
,

as required in (8.2) above. □

We can now turn to the
Proof of Theorem 4.3. Let (Al) and Ψ̃ = (ψ̃(0), ψ̃(1), . . .) be given. For every l ⩾ 1

there is some finite set Fl ⊆ Z and a Borel measurable map θl : Z → Fl such that
dZ(IdZ, θl) < 1/l on Z. Setting Ψ̂l := (θl ◦ ψ̃(0), θl ◦ ψ̃(1), . . .) we obtain a stationary
sequence in Z which only assumes finitely many values and satisfies dZ(Ψ̂l, Ψ̃) < 1/l
on the underlying probability space. Therefore,
(8.6) DZN0

(
law

(
Ψ̂l

)
, law

(
Ψ̃
))

−→ 0 as l → ∞.

Due to (8.6) it suffices to construct ψAl
, l ⩾ 1, such that the corresponding local

processes Ψ̃Al
approximate the Ψ̂l and satisfy

(8.7) DZN0

(
lawµAl

(
Ψ̃Al

)
, law

(
Ψ̂l

))
−→ 0 as l → ∞,
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or, equivalently, that for every d ⩾ 1,

(8.8) DZd(πd∗(lawµAl
(Ψ̃Al

)), πd∗(law(Ψ̂l))) −→ 0 as l → ∞.

For each l ⩾ 1 apply Proposition 8.1 to (Al, Al ∩ A, µAl
, TAl

), d := l, ε := 1/l, and
Ψ̂ := Ψ̂l to obtain an local observable ψAl

: Al → Z for Al for which

(8.9) DZd

(
πl∗
(
lawµAl

(
Ψ̃Al

))
, πl∗

(
law

(
Ψ̂l

)))
< 1/l.

Then (8.8) follows since DZd(πd∗(law(Ψ′′)), πd∗(law(Ψ′))) is non-decreasing in d for all
random sequences Ψ′,Ψ′′ in Z. □

8.2. Towards specific limit processes

To get started, we record some basic properties of local processes.

Proposition 8.2 (Asymptotic invariance and admissible delays for (ΨAl
)). —

Let T be a measure-preserving map on the probability space (X,A, µ).
(a) For every set A ∈ A, any local process ΨA on A, and any m ⩾ 0,

(8.10) ΨA ◦ Tm = ΨA on {φA > m} .

(b) Suppose that (Al)l⩾1 is a sequence of asymptotically rare events, and (ψAl
)l⩾1

a sequence of local observables for the Al, with corresponding local processes
ΨAl

. Set Rl := ΨAl
: X → ZN. Then (Rl) is asymptotically T -invariant in

measure.
(c) Let (νl) be a sequence in P, and let the measurable maps τl : X → N0 satisfy

(8.11) νl (τl < φAl
) −→ 1 as l → ∞.

Then (τl) is an admissible delay sequence for (Rl) and (νl).

Proof. — Statement (a) is immediate from the fact that TA◦Tm = TA on {φA > m}
for every m ⩾ 0. Next, (Al) being asymptotically rare means that µ(φAl

> m) → 1 as
l → ∞. In particular, µ(dZN(Rl ◦ T,Rl) > 0) ⩽ µ(ΨAl

◦ T ̸= ΨAl
) ⩽ µ(φAl

= 1) → 0,
proving (b). Turning to (c) we note that (8.10) entails

ΨAl
◦ T τl = ΨAl

on {φAl
> τl} ,

whence νl(dZN(Rl ◦ T τl , Rl) > 0) ⩽ νl(φAl
⩽ τl) → 0, validating the sufficient

condition (6.23). □

Statement (b) shows that Proposition 4.5 is a special case of Theorem 6.1 with
Rl := ΨAl

. We can now supply the easy
Proof of Theorem 4.7. — Set Rl := ΨAl

, l ⩾ 1. By Proposition 8.2(b) and (c)
and condition (4.9), (Rl) is asymptotically T -invariant in measure, and (τl) is an
admissible delay sequence for (Rl) and (νl). Now (4.10) allows us to apply Proposi-
tion 6.5. □

Next we turn to the
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Proof of Theorem 4.8. —
(i) For every k ⩾ 1 choose a sequence (ν(k)

l )l⩾ 1 in P which satisfies the assumptions
on (νl)l⩾ 1 in the final paragraph of the theorem with dP(ν(k)

l , µAl
) < 1/k for all l.

By compactness of (M(ZN0), DZN0 ) and a diagonalization argument we may assume
w.l.o.g. that we work with a subsequence along which we have distributional conver-
gence for all measures involved. Specifically, assume that there are random sequences
Ψ̃ = (ψ(0), ψ(1), . . .) and Ψ̃(k) = (ψ(0,k), ψ(1,k), . . .), k ⩾ 1, in Z such that

(8.12) Ψ̃Al

µAl=⇒ Ψ̃ and Ψ̃Al

ν
(k)
l=⇒ Ψ̃(k) for all k ⩾ 1 as l → ∞.

Due to (4.4) we know that Ψ̃ is stationary, obviously with law(ψ(0)) = law(ψ). The
main point is to show that Ψ̃ is in fact iid.

To this end, write σΨ̃ := (ψ(1), ψ(2), . . .) for the shifted version of Ψ̃, and regard
Ψ̃ as the random element (ψ(0),σΨ̃) of Z × ZN. Due to (8.12) we have

(8.13) (ψAl
,ΨAl

)
µAl=⇒

(
ψ(0),σΨ̃

)
as l → ∞.

Since Ψ̃ is stationary, we know it is in fact iid as soon as

(8.14)
(
ψ(0),σΨ̃

)
is an independent pair.

(ii) For every k ⩾ 1 we can employ Theorem 6.7 with E := Z, E′ := ZN, νl := ν
(k)
l ,

Rl := ψAl
, R′

l := ΨAl
, and Bπ

E := Bπ
Z . Indeed, by Proposition 8.2 b), the sequence

(R′
l) is asymptotically T -invariant in measure.
Fix k, take any F ∈ Bπ

Z with Pr[ψ ∈ F ] > 0, and pick (νl,F ), (τl,F ) and KF for
(ν(k)
l ) as in the assumption of Theorem 4.8. Observe that via Proposition 8.2(c) our

assumption (4.13) ensures that (τl,F ) is always an admissible delay sequence for (R′
l)

and the νl,F . Thus, Theorem 6.7 shows that for every k ⩾ 1,

(8.15)
(
ψ(0,k),σΨ̃(k)

)
is an independent pair.

But since dP(ν(k)
l , µAl

) < 1/k for all l, it is clear that

(8.16) Ψ̃(k) =
(
ψ(0,k),σΨ̃(k)

)
=⇒

(
ψ(0),σΨ̃

)
as k → ∞.

Together with (8.15) this proves (8.14).
(iii) The above shows that Ψ̃Al

µAl=⇒ Ψ∗, and hence also ΨAl
= σΨ̃Al

µAl=⇒ σΨ∗ d= Ψ∗.
From (8.12) we see that

ΨAl

ν
(k)
l=⇒ σΨ̃(k)

for each k, and applying Theorem 4.7 with

νl := ν
(k)
l =

(
ν

(k)
l

)
{ψAl

∈Z} and τl := τl,Z,

we conclude that ΨAl

µ=⇒ σΨ̃(k) for every k. But then all these limit processes have
the same law, and hence also the same law as their distributional limit σΨ̃ d= Ψ∗.
This proves ΨAl

µ=⇒ Ψ∗. □
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8.3. Robustness

To conclude this section, we provide a
Proof of Theorem 4.10. — We assume w.l.o.g. that A′

l ⊆ Al for all l. (Otherwise
we can apply this partial result to compare either of (ψAl

) and (ψ′
A′

l
) to (ψAl

|Al∩A′
l
).)

Our goal is to prove that

(8.17) DZN0

(
lawµAl

(
Ψ̃Al

)
, lawµA′

l

(
Ψ̃′
A′

l

))
−→ 0 as l → ∞.

(i) We first note that our asumptions guarantee

(8.18) DZ

(
lawµAl

(ψAl
) , lawµA′

l

(
ψ′
A′

l

))
−→ 0 as l → ∞.

For this, decompose
lawµAl

(ψAl
) = µAl

(A′
l) lawµA′

l

(ψAl
) + µAl

(Al \ A′
l) lawµAl\A′

l

(ψAl
)

and
lawµA′

l

(
ψ′
A′

l

)
= µAl

(A′
l) lawµA′

l

(
ψ′
A′

l

)
+ µAl

(Al \ A′
l) lawµA′

l

(
ψ′
A′

l

)
.

By (6.2),

DZ

(
lawµAl

(ψAl
) , lawµA′

l

(
ψ′
A′

l

))
⩽ DZ

(
lawµA′

l

(ψAl
) , lawµA′

l

(
ψ′
A′

l

))
+ µAl

(Al \ A′
l) ,

and this bound tends to zero as l → ∞, recall (6.5).
(ii) To prepare for the process version (8.17) of (8.18), we show, for every j ⩾ 0,

(8.19) µA′
l

(
T jAl

̸= T jA′
l

)
−→ 0 as l → ∞.

Indeed, whenever A′ ⊆ A, then A′ ∩ {T jA = T jA′} ⊇ ⋂j
i=0T

−i
A A′. Therefore,

µA
(
A′ ∩

{
T jA ̸= T jA′

})
⩽ µA

(⋃j
i=0T

−i
A (A \ A′)

)
⩽

j∑
i=0
µA

(
T−i
A (A \ A′)

)
= (j + 1)µA (A \ A′) ,

since TA preserves µA. Applying this to A′
l ⊆ Al yields (8.19), as µAl

(Al \ A′
l)

→ 0.
We use this to check that for every j ⩾ 0,

(8.20) dZ
(
ψAl

◦ T jAl
, ψ′

A′
l
◦ T jA′

) µA′
l−→ 0 as l → ∞.

Take any η > 0, then

A′
l ∩

{
dZ
(
ψAl

◦ T jAl
, ψ′

A′
l
◦ T jA′

)
⩾ η

}
⊆
(
A′
l ∩

{
T jAl

̸= T jA′
l

})
∪
(
A′
l ∩ T−j

A′

{
dZ
(
ψAl

, ψ′
A′

l

)
⩾ η

})
.

As a consequence of this and the fact that TA′
l

preserves µA′
l

we find that

µA′
l

(
dZ
(
ψAl

◦ T jAl
, ψ′

A′
l
◦ T jA′

)
⩾ η

)
⩽ µA′

l

(
T jAl

̸= T jA′
l

)
+ µA′

l

(
dZ
(
ψAl

, ψ′
A′

l

)
⩾ η

)
,

which tends to zero due to (8.19) and assumption (4.17). This proves (8.20).
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(iii) Now recall that we can regard the local processes Ψ̃Al
and Ψ̃′

A′
l
as local observables

taking values in ZN0 . Therefore our assertion (8.17) will follow from the weaker
version (8.18) of the present theorem which has already been established in step (i),
as soon as we validate

(8.21) dZN0

(
Ψ̃Al

, Ψ̃′
A′

l

) µA′
l−→ 0 as l → ∞.

Given ε > 0 choose J ⩾ 1 so large that 2−Jdiam(Z) < ε/2. Then, for all l ⩾ 1,

dZN0

(
Ψ̃Al

, Ψ̃′
A′

l

)
=
∑
j ⩾ 0

2−(j+1)dZ
(
ψAl

◦ T jAl
, ψ′

A′
l
◦ T jA′

)
⩽

J∑
j=0

dZ
(
ψAl

◦ T jAl
, ψ′

A′
l
◦ T jA′

)
+ ε/2,

which in view of (8.20) leads to (8.21) and thus gives (8.17). □

9. Proofs for joint processes

We start with the easy
Proof of Proposition 5.1. — Since both (µ(Al)ΦAl

)l⩾ 1 and (ΨAl
)l⩾ 1 are asymp-

totically T -invariant in measure as sequences in [0,∞]N and ZN respectively (Propo-
sition 7.1(b) and Proposition 8.2(b)), we immediately see that (µ(Al)ΦAl

,ΨAl
)l⩾ 1

is asymptotically T -invariant in measure as a sequence in [0,∞]N × ZN. Now use
Theorem 6.1. □

Now compare the laws of joint processes under µ and under the µAl
.

Proof of Theorem 5.2. —
(i) Due to stationarity of (µ(Al)ΦAl

, Ψ̃Al
) under µAl

, it is easy to see that (5.4) is
actually equivalent to the formally weaker statement (obtained by forgetting about
the first entry of Ψ̃Al

)

(9.1) Rl

µAl=⇒ (ΦExp,Ψ∗) as l → ∞.

where Rl := (µ(Al)ΦAl
,ΨAl

) : X → [0,∞]N0 × ZN =: E (equipped with dE :=
d[0,∞]N0 +dZ). The standard subsequence argument based on compactness of E shows
that we can assume w.l.o.g. that there are random elements (Φ,Ψ) and (Φ,Ψ) of E,
with Φ = (φ(i))i⩾ 0, Φ = (φ(i))i⩾ 0, Ψ = (ψ(i))i⩾ 0, and Ψ = (ψ(i))i⩾ 0, such that

(9.2) Rl
µ=⇒ (Φ,Ψ) and Rl

µAl=⇒
(
Φ,Ψ

)
as l → ∞.

To prove the theorem, we now assume that
(9.3) one of (Φ,Ψ) and

(
Φ,Ψ

)
has the law of (ΦExp,Ψ∗) .

In view of (9.2) and (5.1) & (5.2), Theorem 4.7 then shows that Ψ d= Ψ d= Ψ∗.
Similarly, Theorem 7.4 and Proposition 7.5 together show that if one of Φ and Φ
has the distribution of ΦExp, then so does the other. Hence, Φ d= Φ d= Φ∗ as well, but
it is not immediate that both (Φ,Ψ) and (Φ,Ψ) are independent pairs.
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To prove that in fact (Φ,Ψ) d= (Φ,Ψ) d= (ΦExp,Ψ∗), we will first check that

(9.4)
(µ(Al)ΦAl

◦ TAl
,ΨAl

) νl=⇒ (ΦExp,Ψ∗) as l → ∞
holds for (νl) = (µ) iff it holds for (νl) = (µAl

).

Once this is established, we show that the one component µ(Al)φAl
of Rl missing

in (9.4) is asymptotically independent of the rest: Writing σΦ := (φ(i+1))i⩾ 0 and
σΦ := (φ(i+1))i⩾ 0 for the shifted versions of Φ and Φ respectively, we claim that

(9.5) if
(
Φ,Ψ

)
d= (ΦExp,Ψ∗) , then φ(0) is independent of (σΦ,Ψ),

whereas

(9.6) if (Φ,Ψ) d= (ΦExp,Ψ∗) , then φ(0) is independent of
(
σΦ,Ψ

)
,

Together, assertions (9.4) - (9.6) prove our theorem.
(ii) Validating (9.4) is straightforward: Set R′

l := (µ(Al)ΦAl
◦TAl

,ΨAl
), l ⩾ 1. Accord-

ing to Proposition 7.1(c) and Proposition 8.2(b), the sequence (R′
l) is asymptotically

T -invariant in measure. Recalling Proposition 7.2(b) and 8.2(c) , we see that (τl) is an
admissible delay sequence for (R′

l). Now (5.2) allows us to appeal to Proposition 6.5
to complete the proof of (9.4).
(iii) Preparing for the proof of (9.5) and (9.6) we set, for M ∈ BE, Bl(M) :=
{(µ(Al)ΦAl

, Ψ̃Al
) ∈ M} ∈ A. Observe then that due to (µ(A)ΦA ◦ TA,ΨA) =

(µ(A)ΦA, Ψ̃A) ◦ TA, independence of φ(0) and (σΦ,Ψ) follows if we show that

(9.7)
µ
(
{µ(Al)φAl

⩽ t} ∩ T−1
Al
Bl(M)

)
−→

(
1 − e−t

)
Pr [(ΦExp,Ψ∗) ∈ M ]

for t > 0 and M ∈ BE with Pr [(ΦExp,Ψ∗) ∈ ∂M ] = 0.

(Use a variant of [Bil99, Theorem 2.3] to argue as in the proof of [Bil99, Theorem 2.8].)
Analogously, independence of φ(0) and (σΦ,Ψ) is immediate if

(9.8)
µA

(
{µ(Al)φAl

> s} ∩ T−1
Al
Bl(M)

)
−→ e−s Pr [(ΦExp,Ψ∗) ∈ M ]

for s > 0 and M ∈ BE with Pr [(ΦExp,Ψ∗) ∈ ∂M ] = 0.

Now [Zwe16, Lemma 4.1] shows that for any A,B ∈ A and t ⩾ 0,

(9.9)
∣∣∣∣∫ t

0
µA

(
{µ(A)φA > s} ∩ T−1

A B
)
ds− µ

(
{µ(A)φA ⩽ t} ∩ T−1

A B
)∣∣∣∣ ⩽ µ(A).

Hence, taking A := Al and B := Bl(M) for an arbitrary (ΦExp,Ψ∗)-continuity set
M ∈ BE, we see that for every t ⩾ 0,

(9.10)
∫ t

0
µAl

(
{µ(Al)φAl

> s} ∩ T−1
Al
Bl(M)

)
ds

− µ
(
{µ(Al)φAl

⩽ t} ∩ T−1
Al
Bl(M)

)
−→ 0 as l → ∞.

(iv) To validate (9.5), suppose that (Φ,Ψ) d= (ΦExp,Ψ∗). This entails

µAl

(
{µ(Al)φAl

> s} ∩ T−1
Al
Bl(M)

)
−→ e−s Pr [(ΦExp,Ψ∗) ∈ M ]
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whenever s > 0 and M is a (ΦExp,Ψ∗)-continuity set. But then (9.7) follows via the
crucial relation (9.10) by dominated convergence, ensuring independence of φ(0) and
(σΦ,Ψ) as required.

Similarly, to prove (9.6), suppose that

(Φ,Ψ) d= (ΦExp,Ψ∗) .

Then,

µ
(
{µ(Al)φAl

⩽ t} ∩ T−1
Al
Bl(M)

)
−→

(
1 − e−t

)
Pr [(ΦExp,Ψ∗) ∈ M ]

for t > 0 and any (ΦExp,Ψ∗)-continuity set M . Fixing M and varying t, we can
use (9.10) once again and apply [Zwe16, Lemma 4.2] to obtain (9.8), and hence the
desired independence of φ(0) and (σΦ,Ψ). □

The argument for the joint limit theorem elaborates on a principle used before.
Proof of Theorem 5.3. —

(i) By compactness of (M([0,∞]N0 × ZN0), D[0,∞]N0 ×ZN0 ) we may assume w.l.o.g. that

(9.11)
(
µ(Al)ΦAl

, Ψ̃Al

) µAl=⇒
(
Φ, Ψ̃

)
as l → ∞,

with Φ = (φ(0), φ(1), . . .) and Ψ̃ = (ψ(0), ψ(1), . . .) random sequences in [0,∞] and
Z, respectively. Theorem 4.8 shows that Ψ̃ is iid with law(ψ(0)) = law(ψ) so that
law(Ψ̃) = law(Ψ∗). Next, taking s = 0 and observing that Al ∩ {µ(Al)φAl

> 0} = Al,
we see that Theorem 3.6 guarantees law(Φ) = law(ΦExp).

The main point is to show that Φ and Ψ̃ are independent. Let σΦ := (φ(1), φ(2), . . .)
and σΨ̃ := (ψ(1), ψ(2), . . .) denote the shifted versions of the individual limit pro-
cesses. We will first show that

(9.12) ψ(0) is independent of
(
Φ,σΨ̃

)
,

and then check that

(9.13) φ(0) is independent of
(
σΦ,σΨ̃

)
.

Together these imply that (ψ(0), φ(0), (σΦ,σΨ̃)) is an independent triple. But since
convergence in (9.11) uses the TAl

-invariant measures µAl
under which, for each

l ⩾ 1, (µ(Al)ΦAl
, Ψ̃Al

) is a stationary sequence in [0,∞] ×Z, we see that so is (Φ, Ψ̃),
meaning that law(Φ, Ψ̃) = law(σΦ,σΨ̃). Therefore the above can be iterated to
show that for any m ⩾ 1,(

ψ(0), φ(0), . . . , ψ(m−1), φ(m−1),
(
σmΦ,σmΨ̃

))
is an independent tuple. Hence {ψ(j), φ(k)}j,k⩾ 0 is indeed an independent family.
(ii) To prove (9.12) we are going to apply Theorem 6.7 with E := Z, E′ := [0,∞]N0×ZN,
Rl := ψAl

, R′
l := (µ(Al)ΦAl

,ΨAl
), representing (µ(Al)ΦAl

, Ψ̃Al
) as the map (Rl, R

′
l) :

X → E×E′. The sequence (R′
l) is asymptotically T -invariant in measure since both

(µ(Al)ΦAl
) and (ΨAl

) are (due to Propositions 7.1(b) and 8.2(b)).
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For any F ∈ Bπ
Z with Pr[ψ ∈ F ] > 0 pick (νl,F ), (τl,F ) and KF as in the statement

of Theorem 5.3. By assumption, νl,F := T
τl,F
∗ νl,F ∈ KF for l ⩾ 1, so that (9.12)

follows via Theorem 6.7 once we check that
(9.14) (τl,F )l⩾ 1 is an admissible delay for (µ(Al)ΦAl

,ΨAl
)l⩾ 1 and (νl,F )l⩾ 1.

Here it is enough to treat (µ(Al)ΦAl
) and (ΨAl

) separately. But in the first case (5.7)
and (5.8) allow us to appeal to Proposition 7.2(a), while (5.8) alone takes care of
the second case via Proposition 8.2(c).
(iii) We validate (9.13) analogously, this time applying Theorem 6.7 with E := [0,∞],
E′ := [0,∞]N × ZN0 , Rl := µ(Al)φAl

, R′
l := (µ(Al)ΦAl

◦ TAl
,ΨAl

), representing
(µ(Al)ΦAl

,ΨAl
) as the map (Rl, R

′
l) : X → E × E′. Again, (R′

l) is asymptotically
T -invariant in measure. We use Bπ

E := {(s,∞) : s ⩾ 0}. For any s ⩾ 0 we have
Pr[φ(0) > s] > 0 since we already know that φ(0) has an exponential distribution.
Take (νl,s), (τl,s) and Ks as in the statement of Theorem 5.3. By assumption, νl,s :=
T
τl,s
∗ νl,s ∈ Ks for l ⩾ 1, and (9.13) follows via Theorem 6.7 if we check that

(9.15) (τl,s)l⩾ 1 is an admissible delay for (µ(Al)ΦAl
◦ TAl

,ΨAl
)l⩾1 and(νl,s)l⩾ 1.

Condition (5.6) ensures that (τl,s)l⩾ 1 is admissible for (µ(Al)ΦAl
◦ TAl

) via Proposi-
tion 7.2(b), and also for (ΨAl

) by virtue of Proposition 8.2(c).
(iv) The above shows that (

µ(Al)ΦAl
, Ψ̃Al

) µAl=⇒ (ΦExp,Ψ∗) ,
hence

(µ(Al)ΦAl
,ΨAl

) =
(
µ(Al)ΦAl

,σΨ̃Al

) µAl=⇒ (ΦExp,σΨ∗) d= (ΦExp,Ψ∗) .

To prove that we also have (µ(Al)ΦAl
,ΨAl

) µ=⇒ ( ΦExp,Ψ∗) we appeal to Proposi-
tion 6.5:

Set E := [0,∞]N0 × ZN, Rl := (µ(Al)ΦAl
,ΨAl

) and νl := µAl
. As before, (Rl) is

asymptotically T -invariant in measure. Take τl := τl,Z and K := KZ as in assumption
b) of Theorem 5.3, and note that νl = νl,Z = µAl∩{ψAl

∈Z}. Finally, recall that we
have already shown admissibility of this sequence (τl) for the present (Rl) and (νl)
in step (9), see (9.14). □

10. Illustration in some easy standard situations

We illustrate the ease with which the above results can sometimes be applied by
studying some basic piecewise invertible dynamical systems.

10.1. Piecewise invertible systems

We consider situations in which (X, dX) is a metric space with Borel σ-field A = BX ,
and where X comes with a partition ξ0 (mod λ) into open components (e.g. X may
be a union of disjoint open intervals in R). Let λ be a σ-finite reference measure on A.
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A piecewise invertible system on X is a quintuple (X,A, λ, T, ξ), where ξ = ξ1 is a
(finite or) countable partition mod λ of X into open sets, refining ξ0, such that each
branch of T , i.e. its restriction to any of its cylinders Z ∈ ξ is a homeomorphism
onto TZ, null-preserving with respect to λ, that is, λ |Z ◦T−1 ≪ λ. If the measure is
T -invariant, we denote it by µ and call (X,A, µ, T, ξ) a measure preserving system.
The system is called uniformly expanding if there is some ρ ∈ (0, 1) such that
dX(x, y) ⩽ ρ · dX(Tx, Ty) whenever x, y ∈ Z ∈ ξ.

We let ξn denote the family of cylinders of rank n, that is, the sets of the form
Z = [Z0, . . . , Zn−1] := ⋂n−1

i=0 T
−iZi with Zi ∈ ξ. Write ξn(x) for the element of ξn

containing x (which is defined a.e.). Each iterate (X,A, µ, T n, ξn), n ⩾ 1, of the
system is again piecewise invertible. The inverse branches will be denoted vZ :=
(T n |Z)−1 : T nZ → Z, Z ∈ ξn. All vZ have Radon–Nikodym derivatives v′

Z :=
d(λ ◦ vZ)/dλ.

The system is Markov if TZ ∩ Z ′ ̸= ∅ for Z,Z ′ ∈ ξ implies Z ′ ⊆ TZ.

10.2. Gibbs–Markov maps

One important basic class of piecewise invertible systems (X,A, µ, T, ξ) is that of
probability preserving Gibbs–Markov maps (GM maps). This means that diam(X) <
∞, and µ is an invariant probability, that the system has a uniformly expanding
iterate TN , and satisfies the big image property, so that ♭ := infZ ∈ ξ µ(TZ) > 0.
Moreover, the v′

Z , Z ∈ ξ, have well behaved versions in that there exists some r > 0
such that |v′

Z(x)/v′
Z(y) − 1| ⩽ r dX(x, y) whenever x, y ∈ TZ, Z ∈ ξ (see [AD01]).

In this case r can be chosen in such a way that in fact

(10.1)
∣∣∣∣∣v′
Z(x)
v′
Z(y) − 1

∣∣∣∣∣ ⩽ r dX(x, y) whenever n ⩾ 1 and x, y ∈ T nZ,Z ∈ ξn.

In this context, v′
Z will always denote such versions of the a.e. defined Radon–

Nikodym derivatives d(µ ◦ vZ)/dµ.
We recall a few well known basic properties of such systems, all of which are

obtained by elementary routine arguments. Let β be the partition generated by Tξ.
By (10.1) the normalized image measures T n∗ µZ with n ⩾ 1 and Z ∈ ξn have densities
belonging to U := {u ∈ D(µ) : |u(x)/u(y) − 1| ⩽ r dX(x, y) whenever x, y ∈ B ∈ β},
that is,
(10.2) T n∗ µZ ∈ K for all n ⩾ 1 and Z ∈ ξn,

where K := {ν ∈ P : dν/dµ ∈ U}. But U is compact in L1(µ) (Arzela–Ascoli, as
in [Aar97, § 4.7]) and convex, so that K is a compact convex set in P.

Property (10.1) also implies bounded distortion in that
(10.3) µZ

(
Z ∩ T−nA

)
= e±rµTnZ(A) for all n ⩾ 1, Z ∈ ξn, and A ∈ A.

In particular,
(10.4) µ

(
Z ∩ T−nA

)
⩽ ♭−1erµ(Z)µ(A) for all n ⩾ 1, Z ∈ ξn, and A ∈ A.

Also, an easy argument provides constants κ ⩾ 1 and q ∈ (0, 1) such that
(10.5) µ(Z) ⩽ κqn for all n ⩾ 1 and Z ∈ ξn.
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10.3. Poisson asymptotics for (unions of) cylinders of GM-maps

To demonstrate how convenient the assumptions of our limit theorems are, we first
illustrate their use in the setup of cylinders of GM-maps, re-proving the well-known

Theorem 10.1 (Poisson asymptotics for shrinking cylinders of GM maps). —
Let (X,A, µ, T, ξ) be an ergodic probability preserving Gibbs–Markov system. Let
x∗ ∈ X be a point such that the cylinder Al := ξl(x∗) is defined for all l ⩾ 1.

(a) Assume that x∗ ∈ X is not periodic, then (Al) exhibits Poisson asymptotics,

(10.6) µ(Al)ΦAl

µ=⇒ ΦExp and µ(Al)ΦAl

µAl=⇒ ΦExp as l → ∞.

(b) On the other hand, if x∗ ∈ X is periodic, x∗ = T px∗ with p ⩾ 1 minimal,
then

(10.7) µ(Al)ΦAl

µAl=⇒ Φ(Exp,θ) as l → ∞,

where θ := 1 − v′
Ap

(x∗) ∈ (0, 1).

Our proof via Theorems 3.6 and 3.8 will only employ the basic elementary facts
about Gibbs–Markov maps mentioned before. The well-known strong mixing prop-
erties (valid in aperiodic situations) which follow (by more sophisticated arguments)
from related observations are not used.

Proof. —
(a) We are going to apply Theorem 3.6, using νl := µAl

, K as in (10.2), and the
obvious delay times τl := l. Set κ̃ := ♭−1erκ.

Condition (3.15) is trivially satisfied since µ(Al) is exponentially small, while
condition (3.17) is taken care of by (10.2).

To validate (3.16), take any ε > 0. Choose K ⩾ 1 so large that κ̃qK/(1 − q) < ε.
Since x∗ is not periodic, and T is continuous on cylinders, there is some l′ such that
φAl

> K on Al whenever l ⩾ l′ (recall that diam(Al) → 0). For every k ∈ {1, . . . , l}
we have Al ⊆ Ak = ξk(x∗) ∈ ξk, and therefore

(10.8) µAl

(
T−kAl

)
⩽ µ(Al)−1µ

(
Ak ∩ T−kAl

)
⩽ ♭−1erµ(Ak) ⩽ κ̃qk

due to (10.4) and (10.5). For l ⩾ l′ we then find that

µAl
(φAl

⩽ l) = µAl
(K ⩽ φAl

⩽ l) = µAl

(⋃l

k=K T
−kAl

)
⩽
∑l

k=K µAl

(
T−kAl

)
⩽ κ̃

∑l

k=K q
k < ε,

(10.9)

and (3.16) follows because ε > 0 was arbitrary.
(b) We employ Theorem 3.8, using νl := µAl

and K as in (10.2). Define A•
l :=

Al ∩ T−pAl = Al+p ∈ ξl+p and A◦
l := Al \ A•

l , so that

µ (A•
l ) = µ

(
Ap ∩ T−pAl

)
= T p∗

(
µ |Ap

)
(Al) = µ(Al) ·

∫
Al
v′
Ap
dµAl

.

Now x∗ ∈ Al ⊆ T pAp for l > p, and diam(Al) ↘ 0. As v′
Ap

is continuous on T pAp
with v′

Ap
(x∗) = 1 − θ, we get µ(A•

l ) ∼ (1 − θ)µ(Al) as l → ∞, proving (3.20).
Observe that φAl

= p on A•
l , and accordingly define τl := p on A•

l . Then (3.24)
is clear. Moreover, (TAl

)∗µA•
l

= µ(A•
l )−1 (T p∗ (µ |Al

)) |Al
, and this measure is given
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by the probability density µ(A•
l )−11Al

v′
Al

=: h•
l . Comparing these to the densities

µ(Al)−11Al
=: hl of the µAl

we obtain (3.25), because of diam(Al) ↘ 0 and (10.1).
Turning to the escaping part A◦

l , note that it is ξl+p-measurable (mod µ). Define
τl := l + p on A◦

l , then (3.23) is immediate from (10.2) and convexity of K. We
finally check (3.22). Up to a set of measure zero, A◦

l = ⋃
W ∈ ξp\{Ap}Al ∩ T−lW , so

that φAl
> l on A◦

l . Therefore,

µA◦
l

(φAl
⩽ τl) = µA◦

l
(l < φAl

⩽ τl) ⩽
∑p
k=1µA◦

l

(
T−(l+k)Al

)
⩽ µ (A◦

l )
−1∑p

k=1µ
(
Al ∩ T−(l+k)Al

)
⩽ µ (A◦

l )
−1∑p

k=1
∑
V ∈ ξk

µ
((
Al ∩ T−lV

)
∩ T−(l+k)Al

)
⩽ ♭−1erµAl

(A◦
l )

−1∑p
k=1

∑
V ∈ ξk

µ
(
Al ∩ T−lV

)
= p ♭−1erµAl

(A◦
l )

−1 µ(Al) −→ 0 as l → ∞,

where we have used Al = ⋃
V ∈ ξk

Al ∩ T−lV (disjoint), (10.4), (10.5), and the fact
that µAl

(A◦
l ) → θ ∈ (0, 1). □

Another simple situation is that of small sets Al which consist of (fewer and fewer)
rank-one cylinders. Partitioning the Al into subsets of the same type, and recording
which of those subsets an orbit hits, leads us to the study of basic discrete local
processes.

Theorem 10.2 (Poisson asymptotics and local processes for unions of cylinders
of GM maps). — Let (X,A, µ, T, ξ) be an ergodic probability preserving Gibbs–
Markov system. Let (Al) be a sequence of asymptotically rare events such that each
Al is ξ-measurable.

(a) Then (Al) exhibits Poisson asymptotics,

(10.10) µ(Al)ΦAl

µ=⇒ ΦExp and µ(Al)ΦAl

µAl=⇒ ΦExp as l → ∞.

(b) Assume further that, for some integer m ⩾ 2, each Al is partitioned into
ξ-measurable subsets A(1)

l , . . . A
(m)
l which satisfy µAl

(A(j)
l ) → ϑj ∈ (0, 1) as

l → ∞. Define local observables by letting ψAl
(x) := j if x ∈ A

(j)
l . Then,

(10.11)


(
µ(Al)ΦAl

, Ψ̃Al

) µAl=⇒
(µ(Al)ΦAl

,ΨAl
) µ=⇒

( ΦExp,Ψ∗) as l → ∞,

where ( ΦExp,Ψ∗) is an independent pair with Ψ∗ a (ϑ1, . . . , ϑm)-Bernoulli
sequence.

This, too, is an easy consequence of the results above.
Proof. —

(a) We check that Theorem 3.6 applies with νl := µAl
, τl := 1 and K as in (10.2).

Since (τl) is uniformly bounded, condition (3.15) is trivial. In view of (10.2) and
ξ-measurability of the Al, (3.17) is also satisfied. To validate (3.16), recall (10.4) to
see that indeed
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µAl
(φAl

= 1) = µAl

(
T−1Al

)
= µ(Al)−1∑

Z ∈ ξ ∩Al
µ
(
Z ∩ T−1Al

)
⩽ µ(Al)−1∑

Z ∈ ξ ∩Al
♭erµ(Z)µ(Al)

⩽ ♭−1erµ(Al) −→ 0 as l → ∞.

(b) To establish the joint convergence asserted in (10.11), we will appeal to Theo-
rem 5.3. The local observables ψAl

take their values in the compact discrete space
Z := {1, . . . , m}, and we are assuming that ψAl

µAl=⇒ ψ with Pr[ψ = j] = ϑj for all
j ∈ Z. We use the same K as above.

To check condition (A) of Theorem 5.3, take any s ∈ [0,∞) and define τl,s :=
⌊s/µ(Al)⌋. Then Al ∩ {φAl

> s/µ(Al)} = Al ∩ {φAl
> τl,s}, so that (5.6) is trivially

fulfilled. On the other hand, this set is ξτl,s
-measurable because Al is ξ-measurable.

Therefore, (10.2) and convexity of K ensure that T τl,s
∗ µAl ∩ {µ(Al)φAl

>s} ∈ K for l ⩾ 1.
In order to validate condition (B) of Theorem 5.3, we use Bπ

Z := {{j} : j ∈ Z}
and, for arbitrary F = {j}, take τl,F := 1, so that (5.7) is automatically satisfied. As
Al ∩ {ψAl

∈ F} = A
(j)
l is ξ-measurable, (10.2) and convexity of K immediately show

that T τl,F
∗ µAl∩{ψAl

∈F} ∈ K for l ⩾ 1. Finally, (5.8) follows since

µAl ∩ {ψAl
∈F} (φAl

⩽ τl,F ) = µAl

(
A

(j)
l

)−1
µ
(
A

(j)
l ∩ T−1Al

)
= µAl

(
A

(j)
l

)−1∑
Z ∈ ξ ∩A(j)

l

µ
(
Z ∩ T−1Al

)
⩽ ♭−1er µAl

(
A

(j)
l

)−1∑
Z ∈ ξ ∩A(j)

l

µ (Z)µ (Al)

= ♭−1er µ (Al) −→ 0 as l → ∞,

where we used (10.4) again. □
We next provide some specific applications of this theorem in the context of

continued fraction expansions. But sequences (Al) as in our theorem do appear
naturally in a variety of other situations. We mention one particular instance:

Remark 10.3. — Under the assumptions of Theorem 10.2(a), it is immediate from
Theorem 6.3 and Arzela–Ascoli that (10.10) implies
(10.12) µ(Al)ΦAl

νl=⇒ ΦExp as l → ∞,

whenever (νl) is a sequence of probabilities with supl⩾1 Lipξ(dνl/dµ) < ∞, where
Lipξ(w) := supZ ∈ ξ LipZ(w) with LipZ(w) := supx,y ∈Z,x ̸= y | w(x) − w(y) | /d(x, y).
This is a stronger (functional) version of [PT20, Proposition 3.13].

10.4. The continued fraction map. Variations on a theme of Doeblin

We will illustrate the use of Theorem 10.2 in the setup of a particularly prominent
system. Set X := [0, 1], A := BX , and let T : X → X be the Gauss map with
T0 := 0 and

(10.13) Tx := 1
x

−
⌊1
x

⌋
= 1
x

− k for x ∈
( 1
k + 1 ,

1
k

]
=: Ik, k ⩾ 1,
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which, since Gauss [Gau12], is known to preserve the probability density

(10.14) h(x) := 1
log 2

1
1 + x

, x ∈ X.

The invariant Gauss measure µ on A defined by the latter, µ(A) :=
∫
A h(x) dx, is

exact (and hence ergodic). Iteration of T reveals the continued fraction (CF) digits
of any x ∈ X, in that

(10.15) x = 1

a1(x) + 1
a2(x) + · · ·

with an(x) = a ◦ T n−1(x), n ⩾ 1,

where a : X → N is the digit function corresponding to ξ := {Ik : k ⩾ 1}, i.e.
a(x) := ⌊1/x⌋ = k for x ∈ Ik. It is a standard fact that the ergodic measure
preserving piecewise invertible CF-system (X,A, µ, T, ξ) is Gibbs–Markov.

We shall focus on the simple sequence of ξ-measurable asymptotically rare events
given by Al := {a ⩾ l} = ⋃

k⩾ lIk, which satisfy µ(Al) ∼ 1/(l log 2) as l → ∞, and
allow to immediately apply Theorem 10.2(a) to obtain Poisson asymptotics,

(10.16) µ(Al)ΦAl

µ=⇒ ΦExp and µ(Al)ΦAl

µAl=⇒ ΦExp as l → ∞.

This is a well-known classical fact with non-trivial history [Doe40, Ios77] and various
extensions, see e.g. [IK02]. In the following we refine this statement, using two
different sequences of local observables in order to obtain extra information on the
distributions of the particular digits observed when the orbit hits Al. In either case,
Theorem 10.2(b) applies without difficulties.

To get a better understanding of the actual size of those digits which happen to
exceed some large l, we show that, asymptotically, whether these large digits are
even of order l/ϑ (for some ϑ ∈ (0, 1)) is determined by an independent sequence of
(1 − ϑ, ϑ)-coin flips.

Proposition 10.4 (Just how large are large CF-digits?). — Let (X,A, µ, T, ξ)
be the CF-system, and take any ϑ ∈ (0, 1). Set ψAl

:= 1{a⩾ l/ϑ} on Al, which identifies
those digits ⩾ l which are in fact ⩾ l/ϑ. Then

(10.17) (µ(Al)ΦAl
,ΨAl

) µ=⇒ ( ΦExp,Ψ∗) as l → ∞,

where ( ΦExp,Ψ∗) is an independent pair with Ψ∗ a (1 − ϑ, ϑ)-Bernoulli sequence.

Proof. — Let A′
l := {a ⩾ l/ϑ} = ⋃

k⩾ l/ϑIk ⊆ Al, which is again ξ-measurable.
Trivially, µ(A′

l) ∼ ϑµ(A′
l) as l → ∞, and the assertion follows via Theorem 10.2(b).

□

Remark 10.5. — This result is closely related to the fact that ergodic sums of the
digit function satisfy a functional stable limit theorem,

(10.18)
 log 2

n

⌊nt⌋−1∑
k=0

a ◦ T k − t(log n− γ)

t⩾ 0

µ=⇒ G as n → ∞,

where γ is Euler’s constant, G = (Gt)t⩾ 0 is an α-stable motion with α = 1 and
skewness β = 1, and convergence takes place on the Skorohod space D[0,∞) equipped
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with the J1-topology. Proposition 10.4 can also be derived using information on the
convergence (10.18), see the approach to that limit theorem developed in [TK10].

Turning to a different feature of individual CF-digits which cannot be extracted
from (10.18), we now observe that the residue classes mod m of large CF-digits are
asymptotically equidistributed and independent of each other (and of the waiting
times).

Proposition 10.6 (Residue classes of large CF-digits). — Let (X,A, µ, T, ξ) be
the CF-system, and take an integer m ⩾ 2. Define ψ : X → {0, . . . ,m − 1} by
ψ(x) := j if a(x) ≡ j (modm), so that ψ ◦ T n−1 identifies the residue class mod m
of the digit an, and set ψAl

:= ψ |Al
. Then

(10.19) (µ(Al)ΦAl
,ΨAl

) µ=⇒ ( ΦExp,Ψ∗) as l → ∞,

where ( ΦExp,Ψ∗) is an independent pair with Ψ∗ a ( 1
m
, . . . , 1

m
)-Bernoulli sequence.

Proof. — Setting I0 := ∅ we have {ψ = j} = ⋃
i⩾ 0Iim+j for all j. From our explicit

knowledge of µ and the Ik it is easily seen that, for each j ∈ {0, . . . , m − 1}, the
ξ-measurable sets A(j)

l := Al ∩ {ψ = j} satisfy µAl
(A(j)

l ) → 1/m as l → ∞. Now
apply Theorem 10.2(b). □

10.5. Local processes of interval maps

We now turn to a basic situation in which the geometry of the underlying space
suggests a natural way of describing the relative position inside small sets by spe-
cific local observables. Call (X,A, µ, T, ξ) a (probability-preserving) Gibbs–Markov
interval map provided that it is a GM-system as in the previous section, where X
and each Z ∈ ξ is an open interval, and the invariant probability µ is absolutely
continuous w.r.t. one-dimensional Lebesgue measure λ. In this setup, we shall study
asymptotically rare sequences (Al) of subintervals, and take the normalizing interval
charts ψAl

: Al → [0, 1] as our local observables.
Only using the elementary properties employed in the previous section, we are

going to prove
Theorem 10.7 (Small intervals in GM interval maps). — Let (X,A, µ, T, ξ) be

a probability-preserving ergodic Gibbs–Markov interval map, (Al) an asymptotically
rare sequence of subintervals, and ψAl

: Al → [0, 1] the corresponding normalizing
interval charts, giving local processes ΨAl

. Assume that x∗ ∈ X is not periodic and
such that each ξl(x∗) is well defined, and the Al are contained in neighbourhoods Il
of x∗ with diam(Il) → 0. Then,(

µ(Al)ΦAl
, Ψ̃Al

) µAl=⇒ ( ΦExp,Ψ∗) as l → ∞,(10.20)
and

(µ(Al)ΦAl
,ΨAl

) µ=⇒ ( ΦExp,Ψ∗) as l → ∞,(10.21)
where ( ΦExp,Ψ∗) is an independent pair with Ψ∗ an iid sequence of uniformly dis-
tributed elements of [0, 1].
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To establish this result we can essentially argue as in the preceding section, once
we replace the intervals Al by more convenient sets A′

l which are unions of cylinders
of rank ȷ(Al), where

(10.22) ȷ(A) := −2 log(µ(A))
− log q , A ∈ A with µ(A) > 0,

where q ∈ (0, 1) is as in (10.5). Note that

(10.23) µ(Al)ȷ(Al) −→ 0 as l → ∞,

whenever (Al) is an asymptotically rare sequence.

Lemma 10.8 (Approximating intervals by cylinders). — Let (X,A, µ, T, ξ) be a
probability-preserving ergodic Gibbs–Markov interval map and (Al) an asymptoti-
cally rare sequence of subintervals. Define

(10.24) A′
l := ⋃

W ∈ ξȷ(Al):W⊆Al
W, l ⩾ 1,

then the ξȷ(Al)-measurable sets A′
l ⊆ Al satisfy µ(Al △ A′

l) = o(µ(Al)) as l → ∞.

Proof. — If A is an interval, ȷ ⩾ 1, and A′ := ⋃
W ∈ ξȷ:W ⊆Al

W , then Al \A′
l consists

of at most two subintervals of measures not exceeding κqȷ (recall (10.5)). □

We are now ready for the
Proof of Theorem 10.7.

(i) In view of the Lemma and Remark 5.5, we can assume w.l.o.g. that (up to a set
of measure zero) each Al is ξȷ(Al)-measurable. (Note that ȷ(A′

l) ⩾ ȷ(Al).)
We prove our result by a direct application of Theorem 5.3. Note first that

(10.25) ψAl

µAl=⇒ ψ as l → ∞,

where ψ is uniformly distributed in Z := [0, 1] (see the discussion following (4.6)).
(ii) We will validate condition (B) of Theorem 5.3 for every F ∈ Bπ

Z := {[a, b] : 0 ⩽
a ⩽ b ⩽ 1} of positive measure. In the particular case of F = Z this verifies the
assumptions of Theorem 3.6, and hence implies Poisson asymptotics,

(10.26) µ(Al)ΦAl

µAl=⇒ ΦExp and µ(Al)ΦAl

µ=⇒ ΦExp as l → ∞.

Throughout, we use K as in (10.2). Now fix any F ∈ Bπ
Z with Pr[ψ ∈ F ] = λ(F ) > 0.

The sets Bl,F := Al ∩ {ψAl
∈ F} are intervals. Define

B′
l,F := ⋃

V ∈ ξȷ(Bl,F ):V ⊆Al
V, l ⩾ 1,

which satisfy µ(Bl,F △ B′
l,F ) = o(µ(Bl,F )) as l → ∞ (Lemma 10.8). Setting νl,F :=

µB′
l,F

we therefore have dP(νl,F , µAl∩{ψAl
∈F}) → 0.

Next, λ(Bl,F ) ∼ λ(F )λ(Al) as l → ∞ by definition of Bl,F . Since the invariant
density dµ/dλ =: h of T is continuous at x∗ (x∗ being in the interior of ξ(x∗)) with
h(x∗) > 0, we see that also µ(Bl,F ) ∼ λ(F )µ(Al).

Let τl,F := ȷ(Bl,F ), l ⩾ 1, then it is immediate from (10.23) that µ(Al)τl,F ∼
λ(F )−1µ(Bl,F )ȷ(Bl,F ) → 0, and hence (5.7). Also, since B′

l,F is ξȷ(Bl,F )-measurable, it
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is clear from (10.2) and convexity of K that T τl,F
∗ νl,F ∈ K for l ⩾ 1. It only remains

to check (5.8) or, equivalently, that
(10.27) νl,F (φAl

⩽ τl,F ) −→ 0 as l → ∞.

This is done by an argument slightly extending that of Theorem 10.1. Take any
ε > 0. Choose K ⩾ 1 so large that κ̃qK/(1 − q) < ε/2 with κ̃ := 2λ(F )−1♭−1erκ. For
every k ∈ {1, . . . , l} we have, using (10.4) and (10.5),

µB′
l,F

(
T−kAl

)
⩽ µ

(
B′
l,F

)−1∑
Z ∈ ξk :Z ∩Al ̸=∅µ

(
Z ∩ T−kAl

)
⩽ ♭−1erµ

(
B′
l,F

)−1
µ(Al)

∑
Z ∈ ξk :Z ∩Al ̸=∅µ(Z)

⩽ ♭−1erµ
(
B′
l,F

)−1
µ(Al)

(
µ(Al) + 2κqk

)
⩽ κ̃

(
µ(Al) + qk

)
for l ⩾ l′,

(10.28)

where we note that at most two of the Z ∈ ξk which intersect the interval Al are
not covered by Al. Since x∗ is not periodic, and a continuity point of each T n, there
is some l′′ such that φAl

> K on Al whenever l ⩾ l′′. As seen before, we also have
µ(Al)τl,F < ε/(2κ̃) whenever l ⩾ l′′′. We thus find that

νl,F (φAl
⩽ τl,F ) = µB′

l,F
(K ⩽ φAl

⩽ τl,F ) = µB′
l,F

(⋃τl,F

k=KT
−kAl

)
⩽
∑τl,F

k=KµB′
l,F

(
T−kAl

)
⩽ κ̃

(
µ(Al)τl,F +∑τl,F

k=Kq
k
)

< ε for l ⩾ l′ ∨ l′′ ∨ l′′′,

(10.29)

and (10.27) follows as ε > 0 was arbitrary. Condition (B) of Theorem 5.3 is fulfilled.
(iii) Turning to condition (A) of Theorem 5.3, fix any s ∈ [0,∞). For θ > 0 consider
the sets Cl(θ) := Al∩{φAl

> θ}, l ⩾ 1. Since the Al are ξȷ(Al)-measurable, each Cl(θ)
is ξȷ(Al)+θ-measurable.

We approximate the Bl := Al ∩ {µ(Al)φAl
> s} = Cl(θl) with θl := s/µ(Al) by

the sets B′
l := Cl(θ′

l) with θ′
l := θl − ȷ(Al). It is clear from the definition of ȷ(A) that

θ′
l ∼ θl as l → ∞. In view of step (ii) above, we can already use (10.26). The latter

shows that µ(Bl △B′
l) = o(µ(Bl)), and hence dP(µB′

l
, µBl

) → 0.
But for the B′

l condition (A) is very easy if we take τl,s := θl. Indeed, by (10.26),
µB′

l
(φAl

⩽ τl,s) = µB′
l
(s− µ(Al)ȷ(Al) < µ(Al)φAl

⩽ s) → 0 as l → ∞. On the other
hand, T τl,s

∗ µB′
l

∈ K for l ⩾ 1, because each B′
l is θl-measurable. □

11. Inducing and further examples

11.1. Induced versions of the processes

When studying specific systems, one often tries to find some good reference set
Y ∈ A such that the first-return map TY : Y → Y is more convenient than T . In
this case, it often pays to prove a relevant property first for TY , and to transfer it
back to T afterwards.
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In the following, we let φYA : Y → N denote the hitting time of A ∈ A ∩ Y under
the first-return map TY , that is,
(11.1) φYA(x) := inf

{
j ⩾ 1 : T jY x ∈ A

}
, x ∈ Y,

and write ΦY
A := (φYA, φYA ◦ TA, φYA ◦ T 2

A, . . .) on Y for the hitting-time process of A
under TY . Since µY is the natural invariant probability measure for TY , the canonical
normalization for φYA and ΦY

A is µY (A).
Given an Z-valued local observable on A with corresponding local process ΨA =

(ψA ◦ TA, ψA ◦ T 2
A, . . .), we can also consider the corresponding object for the first-

return map, ΨY
A = (ψA◦(TY )A, ψA◦(TY )2

A, . . .) on Y . But since the first-return maps
on A respectively induced by T and TY coincide, TA = (TY )A, we have ΨY

A = ΨA |Y
and there is no need for this extra notation.

11.2. Relating original and induced processes

Inducing was first used to deal with limit laws for normalized return- or hitting
times µ(A)φA in [BSTV03]. A more general abstract form of their result was given
in [HWZ14], and [Zwe19] contains an even more flexible version. The theorem below
confirms that the same strategy can also be employed when dealing with joint
processes (µ(A)ΦA,ΨA) for small sets. The argument closely follows that of [HWZ14],
and its process variant from [FFTV16], but compares the two hitting-time processes
in probability rather than just in distribution, thus keeping track of their relation
to the second process ΨA.

Theorem 11.1 (Joint limit processes under µ via inducing). — Let (X,A, µ, T )
be an ergodic probability preserving system, Y ∈ A, (Al) an asymptotically rare
sequence in A ∩ Y , and (ψAl

)l⩾ 1 a sequence of Z-valued local observables for the Al
with corresponding local processes ΨAl

.
Assume that (Φ,Ψ) is a random element of [0,∞)N × ZN. Then, as l → ∞,

(11.2) (µ(Al)ΦAl
,ΨAl

) µ=⇒ ( Φ,Ψ) iff (µY (Al)ΦY
Al
,ΨAl

) µY=⇒ ( Φ,Ψ).

Proof. —
(i) According to Proposition 5.1, we can replace µ by µY in the first convergence
statement of (11.2). Therefore it suffices to show that for every d ⩾ 1,(

µ(Al)Φ[d]
Al
,Ψ[d]

Al

)
µY=⇒

(
Φ[d],Ψ[d]

)
iff

(
µY (Al)ΦY,[d]

Al
,Ψ[d]

Al

)
µY=⇒

(
Φ[d],Ψ[d]

)
.

Since Φ[d] = (φ(0), . . . , φ(d−1)) is finite-valued by assumption, we do not lose informa-
tion if instead we work with ΦΣ[d] := (φ(0), φ(0) +φ(1), . . . , φ(0) + · · · +φ(d−1)). Define
ΦΣ[d]
Al

and ΦY,Σ[d]
Al

analogously as vectors of partial sums of Φ[d]
Al

and ΦY,[d]
Al

, respectively.
Then,(

µ(Al)Φ[d]
Al
,Ψ[d]

Al

)
µY=⇒

(
Φ[d],Ψ[d]

)
iff

(
µ(Al)ΦΣ[d]

Al
,Ψ[d]

Al

)
µY=⇒

(
ΦΣ[d],Ψ[d]

)
,

while(
µY (Al)ΦY,[d]

Al
,Ψ[d]

Al

)
µY=⇒

(
Φ[d],Ψ[d]

)
iff

(
µY (Al)ΦY,Σ[d]

Al
,Ψ[d]

Al

)
µY=⇒

(
ΦΣ[d],Ψ[d]

)
.
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Therefore our assertion (11.2) follows once we check that for every d ⩾ 1,(
µ(Al)ΦΣ[d]

Al
,Ψ[d]

Al

)
µY=⇒

(
Φ[d],Ψ[d]

)
iff

(
µY (Al)ΦY,Σ[d]

Al
,Ψ[d]

Al

)
µY=⇒

(
Φ[d],Ψ[d]

)
.

The latter is immediate if we check that for every d ⩾ 1,
(11.3) d[0,∞]d

(
µ(Al)ΦΣ[d]

Al
, µY (Al)ΦY,Σ[d]

Al

)
µY−→ 0 as l → ∞,

because this convergence in probability trivially carries over to the joint processes,
d[0,∞]d×Zd

((
µ(Al)ΦΣ[d]

Al
,Ψ[d]

Al

)
,
(
µY (Al)ΦY,Σ[d]

Al
,Ψ[d]

Al

))
µY−→ 0 as l → ∞.

(ii) To validate (11.3), we take some d ⩾ 1 and any ε > 0. Note that

κ(δ) := sup
t⩾ 0

d[0,∞]
(
t, eδt

)
→ 0 as δ ↘ 0.

Now fix some δ > 0 so small that dκ(δ) < ε. By the Ergodic theorem and Kac’
formula, we have
(11.4) m−1∑m−1

j=0 φY ◦ T jY −→ µ(Y )−1 a.e. on Y,

so that the increasing sequence (EM)M ⩾ 1 of sets given by

EM :=
{∑m−1

j=0 φY ◦ T jY = e±δµ(Y )−1m for m ⩾M
}

∈ A ∩ Y

satisfies µY (Ec
M) → 0 as M → ∞. Now fix some M such that µY (Ec

M) < ε/2. Next,
let Fl := {φYAl

⩾ M} ∈ A ∩ Y , l ⩾ 1. Then, Fl = Y ∩ ⋂M−1
j=1 T

−j
Y Acl , and hence

µY (F c
l ) ⩽

∑M−1
j=1 µY (T−j

Y Al) ⩽ M µY (Al) → 0 as l → ∞. Pick L ⩾ 1 so large that
µY (F c

l ) < ε/2 for l ⩾ L.

(iii) Observe now that for A ∈ A ∩Y we have φA = ∑φY
A−1
j=0 φY ◦T jY on Y , and, more

generally, for any i ⩾ 1,

(11.5) φA + · · · + φA ◦ T i−1
A =

φY
A+···+φY

A◦T i−1
A −1∑

j=0
φY ◦ T jY on Y.

By definition of EM and Fl we have, for every i ∈ {1, . . . , d},

φAl
+ · · · + φAl

◦ T i−1
Al

= e±δµ(Y )−1
(
φYAl

+ · · · + φYAl
◦ T i−1

Al

)
on EM ∩ Fl.

Note that the left-hand expression is the ith component of ΦΣ[d]
Al

, while the sum on
the right-hand side is the ith component of ΦY,Σ[d]

Al
. Due to our choice of δ we thus

find that
d[0,∞]d

(
µ(Al)ΦΣ[d]

Al
, µY (Al)ΦY,Σ[d]

Al

)
⩽ dκ(δ) < ε on EM ∩ Fl.

But since µY ((EM ∩ Fl)c) < ε for l ⩾ L, this proves (11.3). □

We also provide an inducing principle for limits under the measures µAl
. Recall

from (4.8) that transferring information about the asymptotics of spatiotemporal
processes under one of (µ)l⩾ 1 and (µAl

)l⩾ 1 to the other requires extra information.
Therefore this principle is less general than Theorem 11.1, and we content ourselves
with the case relevant for typical applications.
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Proposition 11.2 (Joint limit processes under µAl
via inducing). — Let (X,A,

µ, T ) be an ergodic probability preserving system, Y ∈ A, (Al) an asymptotically rare
sequence in A ∩ Y , and (ψAl

)l⩾ 1 a sequence of Z-valued local observables for the Al
with corresponding local processes ΨAl

. Assume there are measurable τYl : Al → N0
and a compact set K ⊆ P such that

(11.6) µAl

(
τYl < φYAl

)
−→ 1 as l → ∞ while (TY )τ

Y
l∗ µAl

∈ K for l ⩾ 1,
and that
(11.7)

(
µY (Al)ΦY

Al
, Ψ̃Al

) µAl=⇒ (ΦExp,Ψ∗) as l → ∞,

with (ΦExp,Ψ∗) an independent pair of iid sequences. Then

(11.8)
(
µ(Al)ΦAl

, Ψ̃Al

) µAl=⇒ (ΦExp,Ψ∗) as l → ∞.

Proof. — Applying Theorem 5.2 to the first-return map TY we see that (11.6)
and (11.7) together imply (µY (Al)ΦY

Al
,ΨAl

) µY=⇒ (ΦExp,Ψ∗). In view of Theorem 11.1
this entails
(11.9) (µ(Al)ΦAl

,ΨAl
) µ=⇒ (ΦExp,Ψ∗) as l → ∞.

Now define τl := ∑τY
l −1
j=0 φY ◦ T jY for l ⩾ 1. This ensures that T τl = (TY )τY

l on Al and
that Al ∩ {τl < φAl

} = Al ∩ {τYl < φYAl
}. Having thus found measurable τl : Al → N0

satisfying
µAl

(τl < φAl
) −→ 1 as l → ∞ while T τlµAl

∈ K for l ⩾ 1,
we can apply Theorem 5.2 again, this time to T , to derive (11.8) from (11.9). □

11.3. Application: Spatiotemporal Poisson limits for systems inducing
GM maps

Using the results of this section, we can easily provide further examples of systems
exhibiting spatiotemporal Poisson limits, including some with arbitrarily slow mixing
rates. We first record

Theorem 11.3 (Small intervals via induced GM maps). — Let (X,A, µ, T ) be a
probability-preserving system, and Y ∈ A a set with µ(Y ) > 0 on which it induces
a Gibbs-Markov interval map (Y,A ∩ Y, µY , TY , ξY ). Let (Al) an asymptotically rare
sequence of subintervals of Y , and ψAl

: Al → [0, 1] the corresponding normalizing
interval charts, giving local processes ΨAl

. Assume that x∗ ∈ Y is not periodic and
such that each ξY,l(x∗) is well defined, and the Al are contained in neighbourhoods
Il of x∗ with diam(Il) → 0. Then,

(11.10)
(
µ(Al)ΦAl

, Ψ̃Al

) µAl=⇒ ( ΦExp,Ψ∗) as l → ∞,

and
(11.11) (µ(Al)ΦAl

,ΨAl
) µ=⇒ ( ΦExp,Ψ∗) as l → ∞,

where ( ΦExp,Ψ∗) is an independent pair with Ψ∗ an iid sequence of uniformly dis-
tributed elements of [0, 1].
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Proof. — It is immediate from our assumptions that Theorem 10.7 applies to the
induced system, thus proving

(11.12)
(
µY (Al)ΦY

Al
,ΨAl

)
µY=⇒ ( ΦExp,Ψ∗) as l → ∞,

and

(11.13)
(
µY (Al)ΦY

Al
, Ψ̃Al

) µAl=⇒ (ΦExp,Ψ∗) as l → ∞.

The first of these immediately implies (11.11) via Theorem 11.1. We then check
that (11.10) can be derived from (11.13) using Proposition 11.2. In view of Remark 5.5
and Lemma 10.8 we can replace (Al) by (A′

l) in both (11.10) and (11.13), where A′
l :=⋃

W ∈ ξY,ȷ(Al) :W ⊆Al
W , l ⩾ 1, (note the use of the partition ξY of the induced system)

with ȷ(Al) as in (10.22). To apply Proposition 11.2, recall that condition (11.6) for
(A′

l) and the induced Gibbs–Markov interval map TY has already been validated in
the proof of Theorem 10.7. □

We illustrate the use of this theorem by applying it to prototypical nonuniformly
expanding interval maps with indifferent fixed points. (Everything said below gen-
eralized in a trivial way to Markovian interval maps with several indifferent fixed
points satisfying the obvious analogous analytical conditions.)

Example 11.4 (Probability preserving intermittent interval maps). — Let (X,T, ξ)
be piecewise increasing with X = [0, 1] and ξ = {(0, c), (c, 1)}, mapping each Z ∈ ξ
onto (0, 1). Assume that T |(c,1) admits a uniformly expanding C2 extension to [c, 1],
while T |(0,c) extends to a C2 map on (0, c] and is expanding except for an indifferent
fixed point at x∗ = 0: for every ε > 0 there is some ρ(ε) > 1 such that T ′ ⩾ ρ(ε) on
[ε, c], while T0 = 0 and limx↘0 T

′x = 1 with T ′ increasing on some (0, δ). Suppose
also that

(11.14)
there is a continuous decreasing function g on (0, c] with∫ c

0
g(x) dx < ∞ and |T ′′| ⩽ g on (0, c].

Let c =: c0 > c1 > c2 > . . . > 0 be the points with Tcm = cm−1 for m ⩾ 1. By an
analytic argument which goes back to [Tha80], see for example [Zwe03, § 3] or [Tha05,
§ 4], assumption (11.14) ensures that the induced system on any Y := Y (m) :=
(cm, 1) is Gibbs–Markov, and that T possesses a unique absolutely continuous (w.r.t.
Lebesgue measure λ) invariant probability measure µ with density h strictly positive
and continuous on (0, 1]. This family of maps contains systems with very slow decay
of correlations, see for example [Hol05].

Now take any x∗ ∈ X which is not periodic and such that each ξj(x∗) is well defined,
let (Al)l⩾1 be a sequence of non-degenerate intervals contained in neighbourhoods
Il of x∗ with diam(Il) → 0, and let ψAl

: Al → [0, 1] denote the corresponding
normalizing interval charts, giving local processes ΨAl

. Then Theorem 11.3 applies
(with Y = Y (m) for m so large that x∗ ∈ Y ), so that (11.10) and (11.11) hold in
the present situation. (We only need to observe that all cylinders ξY,l(x∗) of the
induced system around this particular point are well defined since the cylinders of
the original system are.)
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12. Relation to the tail-σ-algebra
The abstract limit theorems of the present paper merely require the probability pre-

serving system (X,A, µ, T ) to be ergodic. On top of this we only impose conditions
on the specific asymptotically rare sequence (Al) under consideration. These assump-
tions do not imply that the system is mixing, as is clear from the basic GM-map
examples of Section 10, which can be taken to have a periodic structure. However,
it is well-known that this is the only way in which an ergodic probability preserving
GM-map can fail to be mixing, since it always has a discrete tail-σ-algebra.

We conclude by showing that if an ergodic probability preserving map T admits
a (one-sided) generating partition (mod µ) such that the cylinders ξl(x) around a.e.
point x ∈ X (the element of ξl := ∨l−1

j=0 T
−jξ containing x) satisfy a condition similar

to that used above, with constant delay times and a common compact set of image
measures, then it is exact up to a cyclic permutation.

Proposition 12.1 (Abundance of good cylinders implies discrete tail). — Let
(X,A, µ, T ) be an ergodic probability preserving system. Assume that there is a
compact subset K of (P, dP) and a countable partition ξ of X (mod µ), with A =
σ(ξn : n ⩾ 1) (mod µ) and the following property: For a.e. x ∈ X the sequence
(ξl(x))l⩾ 1 is well defined with 0 < µ(ξl(x)) ↘ 0, and it admits a sequence of constants
τx,l ∈ N0, such that
(12.1) T τx,l

∗ µξl(x) ∈ K for l ⩾ 1.
Then there are p ∈ N and X1, . . . , Xp ∈ A such that T−1Xi+1 = Xi. The tail-σ-
algebra has the form ⋂

n⩾ 0 T
−nA = σ(X1, . . . , Xp) (mod µ), and T p |Xi

is exact.
Remark 12.2. —
(a) The proof only requires K to be weakly compact in (P, dP) (with the latter

identified with (D(µ), ∥ � ∥L1(µ))).
(b) Condition (12.1), and its generalization pointed out in a), can be interpreted

as weak bounded distortion conditions. We exploit them through a Rokhlin
type argument, see [Roh64].

(c) If we drop the assumption of ergodicity, the argument below still shows that
the tail-σ-algebra is discrete.

Proof. — Abbreviate A∞ := ⋂
n⩾ 0 T

−nA. Our assertion follows by easy routine
arguments once we show that there is some constant η > 0 such that
(12.2) µ(A) > η for all A ∈ A∞ with µ(A) > 0.
(i) Let U ⊆ L1(µ) be the set of (probability) densities of all measures ν ∈ K. Then
U is strongly compact in L1(µ), and hence also uniformly integrable. Consequently,
there is some η > 0 such that
(12.3) µ(h > 2η) > 2η for u ∈ U .
(Otherwise there are um ∈ U such that the sets Bm := {um > 2/m} satisfy µ(Bm) ⩽
2/m for m ⩾ 1. But µ(Bm) → 0 implies

∫
Bm

um dµ → 0 by uniform integrability,
contradicting

∫
um dµ = 1.) For probability densities u, v with u ∈ U we then have

µ(v > η) ⩾ µ(u > 2η) − µ ({u > 2η} \ {v > η}) > 2η − η−1 ∥u− v∥1 ,
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so that
(12.4) µ(v > η) > η for probability densities v with distL1(µ)(v,U) < η2.

(ii) Now fix any A ∈ A∞ (meaning that there are An ∈ A such that A = T−nAn for
n ⩾ 0) for which µ(A) > 0. By the a.s. martingale convergence theorem (see [Bil86,
Theorem 35.5 and Exercise 35.17]), we have
(12.5) µξl(x) (ξl(x) ∩ A) −→ 1 as l → ∞ for a.e. x ∈ A.

Take a point x ∈ A satisfying both (12.1) and (12.5). Abbreviating τl := τx,l, we
consider the probability densities given by ul := µ(ξl(x))−1T̂ τl1ξl(x), vl := µ(ξl(x) ∩
A)−1T̂ τl1ξl(x)∩A, and wl := µ(ξl(x) \ A)−1T̂ τl1ξl(x)\A, l ⩾ 1. Since

vl = ul + µ(ξl(x) \ A)
µ(ξl(x) ∩ A)(ul − wl) for l ⩾ 1,

where ul ∈ U and µ(ξl(x) \ A)/µ(ξl(x) ∩ A) → 0, there is some l0 ⩾ 1 such that
distL1(µ) (vl,U) < η2 for l ⩾ l0.

Because ξl(x) ∩A ⊆ A = T−τlAτl
, we have {vl > 0} ⊆ Aτl

(mod µ). Therefore (12.4)
entails

µ(Aτl
) ⩾ µ(vl > 0) ⩾ µ(vl > η) > η for l ⩾ l0.

But µ(A) = µ(Aτl
) for all l since T preserves µ. This proves (12.2). □
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