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Résumé. — Nous nous intéressons à une équation aux dérivées partielles non locale qui
modélise la mitose en deux parties égales. Nous prouvons que les solutions présentent des
oscillations persistantes en temps long et que la convergence vers ce comportement périodique,
dans des espaces de mesures à poids bien choisis, a lieu à vitesse exponentielle. On peut voir
cela comme un résultat de trou spectral entre l’ensemble dénombrable des valeurs propres
dominantes et le reste du spectre, ce qui est à notre connaissance complètement nouveau. Les
deux principales difficultés dans la preuve résident en la définition du projecteur sur le sous-
espace des solutions périodiques (renormalisées) et en l’estimation de la vitesse de convergence
vers ce projecteur. Nous pallions la première en employant la structure d’entropie relative
généralisée de l’équation duale, tandis que la seconde est surmontée en appliquant le théorème
ergodique de Harris à des sous-problèmes.

1. Introduction
We are interested in the following nonlocal transport equation

(1.1) ∂

∂t
u(t, x) + ∂

∂x

(
xu(t, x)

)
+B(x)u(t, x) = 4B(2x)u(t, 2x), x > 0,

which appears as an idealized size-structured model for the bacterial cell division
cycle [BA67, SS71]. The unknown u(t, x) represents the population density of cells
of size x at time t, which evolves according to two phenomena: the individual
exponential growth which results in the transport term ∂x(xu(t, x)), and the division
into two equal-sized daughter cells with rate B(x) that corresponds to the nonlocal
infinitesimal term 2B(2x)u(t, 2x)2dx−B(x)u(t, x)dx.
Equation (1.1) is an interesting and challenging critical case of the general linear

growth-fragmentation equation, which reads
∂

∂t
u(t, x) + ∂

∂x

(
g(x)u(t, x)

)
+B(x)u(t, x) =

∫ ∞
x

B(y)u(t, y)k(y, dx) dy.

The long time behavior of this equation is strongly related to the existence of steady
size distributions, namely solutions of the form U0(x)eλ0t with U0 nonnegative and
integrable. It is actually equivalent to say that U0 is a Perron eigenfunction associated
to the eigenvalue λ0. Such an eigenpair (λ0,U0) typically exists when, roughly speak-
ing, the fragmentation rate B dominates the growth speed g at infinity and on the
contrary g dominates B around the origin (see [DJEM16, DJG10, DJB18] for more
details). In most cases where this existence holds, the solutions behave asymptotically
like the steady size distribution U0(x)eλ0t. This property, known as asynchronous
exponential growth [WG87], has been proved by many authors using various meth-
ods since the pioneering work of Diekmann, Heijmans, and Thieme [DHT84]. Most
of these results focus on one of the two special cases g(x) = 1 (linear individual
growth) or g(x) = x (exponential individual growth). When g(x) = 1 it has been
proved for the equal mitosis case k(y, dx) = 2δx= y

2
or more general kernels k(y, dx)

by means of spectral analysis of semigroups [BG20, DHT84, GN88, Hei84, MS16],
general relative entropy method [DDJGW18, MMP05] and/or functional inequali-
ties [BCG13a, CCM11, LP09, Mon15, PPS14, PR05], the theory of stochastic semi-
groups [BCGM19, BGP19, Bou18, BPR12, CY19, CGY21, RP00], coupling argu-
ments [BCG+13b, CMP10, Mal15], many-to-one formula [Clo17], or explicit expres-
sion of the solutions [ZBW15]. For the case g(x) = x asynchronous exponential
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growth is proved under the assumption that for all y > 0 the kernel k(y, dx) has
an absolutely continuous part with respect to the Lebesgue measure: by means
of spectral analysis of semigroups [BG20, Hei84, MS16], general relative entropy
method [EMMRR05, MMP05] and/or functional inequalities [BCG13a, CCM10,
CCM11, GS14], Foster-Lyapunov criteria [Bou18, CGY21], Feynman-Kac [Ber19,
BW18, BW20, Cav20] or many-to-one formulas [Mar19a].
The assumption that the fragmentation kernel has a density part when g(x) = x

is not a technical but a necessary restriction. In the equal mitosis case of Equa-
tion (1.1) for instance, asynchronous exponential growth does not hold. It can be
easily understood by noticing that if at time t = 0 the population is composed of
only one individual with deterministic size x > 0, then for any positive time t the
size of the descendants necessarily belongs to the set {xet2−n : n ∈ N}. This obser-
vation was made already by Bell and Anderson in [BA67] and it has two important
consequences.
First the solution u(t, x) cannot relax to a steady size distribution and it prevents

Equation (1.1) from having the asynchronous exponential growth property. The
dynamics does not mix enough the trajectories to generate ergodicity, and the
asymptotic behavior keeps a strong memory of the initial data. This situation has
been much less studied than the classical ergodic case. In [DHT84, Hei85] Diekmann,
Heijmans, and Thieme made the link with the existence of a nontrivial boundary
spectrum: all the complex numbers λk = 1 + 2ikπ

log 2 , with k lying in Z, are eigenvalues.
As a consequence the Perron eigenvalue λ0 = 1 is not strictly dominant and it
results in persistent oscillations, generated by the boundary eigenfunctions. The
convergence to this striking behavior was first proved in [GN88] in the space L1([α, β])
with [α, β] ⊂ (0,∞). More recently it has been obtained in L2((0,∞), x/U(x) dx)
[BDJG19], and also in L1((0,∞), x1+rdx) for monomial division rates B(x) = xr

(r > 0) and smooth initial data [BALZ18].
Second, it highlights the lack of regularizing effect of the equation. If the initial dis-

tribution is a Dirac mass, then the solution is a Dirac comb for any time. It contrasts
with the cases of density fragmentation kernels for which the singular part of the mea-
sure solutions vanishes asymptotically when times goes to infinity [DDJGW18], and
gives an additional motivation for studying Equation (1.1) in a space of measures.
In the present paper, we prove the convergence to asymptotic oscillations for the

measure solutions of Equation (1.1) in weighted total variation distance. Besides, we
get an exponential rate of convergence, which is a major novelty compared to the
previous results in [BALZ18, BDJG19, GN88].
Before stating precisely the main results of the paper, let us start with some

definitions. For a Borel weight function w : (0,∞) → (0,∞), we denote by M(w)
the space of (real-valued) Radon measures µ = µ+ − µ− on (0,∞) such that

‖µ‖M(w) :=
∫

(0,∞)
w d|µ| <∞,

where |µ| = µ+ + µ− is the total variation of µ. We use the shorthand Ṁ for the
case w(x) = x, which provides a natural space to look for measure solutions to
Equation (1.1). Indeed a formal integration against the measure x dx over (0,∞)
yields the balance law
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278 P. GABRIEL & H. MARTIN

∫ ∞
0

xu(t, x)dx = et
∫ ∞

0
xu(0, x)dx.

We denote by B(w) the space of Borel functions f : (0,∞)→ R such that

‖f‖B(w) := sup
x> 0

|f(x)|
w(x) <∞.

An element µ ofM(w) defines a linear form on B(w) through

〈µ, f〉 :=
∫

(0,∞)
f dµ :=

∫
(0,∞)

f dµ+ −
∫

(0,∞)
f dµ−.

We also define the subset C(w) ⊂ B(w) of continuous functions, and the subset
C0(w) ⊂ C(w) of the functions such that the ratio f(x)/w(x) vanishes at zero and
infinity. The weighted total variation norm is also given by the dual representation

‖µ‖M(w) = sup
‖f‖B(w) 6 1

〈µ, f〉

where the supremum can be indifferently taken over B(w), C0(w) or Cc(0,∞). As for
Ṁ, we denote by Ḃ, Ċ, Ċ0 the spaces B(w), C(w), C0(w) corresponding to the choice
w(x) = x.
Now we state the notion of solutions that we will use for Equation (1.1) in the

space Ṁ. First we define the operator A acting on the space C1(0,∞) of continuously
differentiable functions via

Af(x) := xf ′(x) +B(x)
(
2f(x/2)− f(x)

)
and its domain

D(A) :=
{
f ∈ Ḃ ∩ C1(0,∞) : Af ∈ Ḃ

}
.

The definition we choose for the measure solutions to Equation (1.1) is of the “mild”
type in the sense that it relies on an integration in time, and of the “weak” type in
the sense that it involves test functions in space.

Definition 1.1. — A family (µt)t> 0 ⊂ Ṁ is called a measure solution to Equa-
tion (1.1) if for all f ∈ Ċ the mapping t 7→ 〈µt, f〉 is continuous, and for all t > 0
and all f ∈ D(A)

(1.2) 〈µt, f〉 = 〈µ0, f〉+
∫ t

0
〈µs,Af〉 ds.

In order to prove the well-posedness of Equation (1.1) in the sense of this definition,
we will make the following assumption on the division rate
(1.3) B : (0,∞)→ [0,∞) is continuous and bounded around 0.
Let us now look at the (direct and dual) eigenvalue problem associated to Equa-

tion (1.1). It consists in finding λ ∈ C together with nonzero U and φ such that(
xU(x)

)′
+ (B(x) + λ)U(x) = 4B(2x)U(2x),(1.4)

− xφ′(x) +
(
B(x) + λ

)
φ(x) = 2B(x)φ

(
x

2

)
.(1.5)
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Requiring that U and φ are non-negative corresponds to the Perron eigenvalue
problem, and it has been solved under various assumptions on the division rate B
in [DJG10, EMMRR05, HW90, Mic06]. The most general result is the one obtained
as a particular case of [DJG10, Theorem 1], which guarantees that if B satisfies (1.3)
and the additional assumption

(1.6)


suppB = [b,+∞) for some b > 0,
∃ b0, γ0, K0 > 0, ∀ x < b0, B(x) 6 K0x

γ0

∃ b1, γ1, γ2, K1, K2 > 0 ∀ x > b1 K1x
γ1 6 B(x) 6 K2x

γ2 ,

then there exists a unique nonnegative eigenfunction U0 ∈ L1(0,∞) solution to (1.4)
and normalized by

∫∞
0 xU0(x)dx = 1. It is associated to the eigenvalue λ0 = 1 and

to the dual eigenfunction φ0(x) = x solution to (1.5). Moreover,
∀ r ∈ R, xr U0 ∈ L1(0,∞) ∩ L∞(0,∞).

As already noticed in [DHT84] (see also [AGG+86, Example 2.15, p. 354]), the
Perron eigenvalue λ0 is not strictly dominant in the present case. There is an infinite
number of eigenvalues with real part equal to 1. More precisely for all k ∈ Z the
triplet (λk,Uk, φk) defined from (λ0,U0, φ0) by

λk = 1 + 2ikπ
log 2 , Uk(x) = x−

2ikπ
log 2U0(x), φk(x) = x1+ 2ikπ

log 2 ,

verifies (1.4)-(1.5). In such a situation the asynchronous exponential growth property
cannot hold, since for any k ∈ Z \ {0} the functions

Re
(
Uk(x)eλkt

)
and Im

(
Uk(x)eλkt

)
are solutions to Equation (1.1) that oscillate around U0(x)et. Since we work in Ṁ,
it will be useful to define the complex-valued Radon measures

νk(dx) := Uk(x)dx.
The main results of the paper are summarized in the following theorem.
Theorem 1.2. — Let µ0 ∈ Ṁ. If Assumption (1.3) is verified, then there exists

a unique measure solution (µt)t> 0 to Equation (1.1) in the sense of Definition 1.1.
If additionally B satisfies (1.6), then there exists a unique log 2-periodic family
(ρt)t> 0 ⊂ Ṁ such that for all f ∈ Ċ0〈

e−tµt, f
〉
− 〈ρt, f〉 −−−−→

t→+∞
0.

Moreover, for any t > 0, the Radon measure ρt is characterized through a Fejér type
sum: for all f ∈ C1

c (0,∞)

〈ρt, f〉 = lim
N→∞

N∑
k=−N

(
1− |k|

N

)
〈µ0, φk〉 〈νk, f〉 e

2ikπ
log 2 t.

Finally, consider two real numbers r1 and r2 with r1 < 1 < r2 and define the weight
w(x) = xr1 + xr2 . If µ0 belongs toM(w) then so does ρ0 and there exist computable
constants C > 1 and a > 0, that depend only on r1, r2 and B, such that for all t > 0∥∥∥e−tµt − ρt∥∥∥M(w)

6 Ce−at ‖µ0 − ρ0‖M(w) .
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Let us make some comments about these results:
(i) It is worth noticing that the well-posedness of Equation (1.1) does not require

any upper bound for the division rate. It contrasts with existing results in
Lebesgue spaces where at most polynomial growth is usually assumed.

(ii) In [BALZ18, BDJG19, GN88] the convergence to the oscillating behavior is
proved to occur in norm but without any estimate on the speed. Here we
extend the convergence to measure solutions and provide for the first time
an explicit rate of decay in suitable weighted total variation norms.

(iii) In [BDJG19], the dynamic equilibrium is characterized as a Fourier type
series. In our result it is replaced by a Fejér sum, namely the Cesàro means
of the Fourier series.

(iv) Even though all the νk have a density with respect to the Lebesgue measure,
the limit ρt does not in general. Indeed, as already noticed, if for instance
µ0 = δx then suppµt ⊂ {xet2−n : n ∈ N}. Consequently supp ρt ⊂ {xet2−n :
n ∈ Z} and ρt is thus a Dirac comb.

(v) We easily notice in the explicit formula of ρt that if µ0 is such that 〈µ0, φk〉 = 0
for all k 6= 0, then there is no oscillations and the solution behaves asymp-
totically like U0(x)et, similarly to the asynchronous exponential growth case.
Such initial distributions actually do exist, as for instance the one proposed
in [BALZ18] which reads in our setting

µ0(dx) = 1
x21[1, 2](x) dx

where 1[1, 2] denotes the indicator function of the interval [1, 2].
The proof of the results given in Theorem 1.2 is split into the two next sections:

Section 2 is about the well-posedness of Equation (1.1) in the framework of measure
solutions, and Section 3 is devoted to the analysis of the long time asymptotic
behavior. In a concluding section, we draw some future directions that can extend
the present work.

2. Well-posedness in the measure setting
Measure solutions to structured populations dynamics PDEs have attracted in-

creasing attention in the last few years, and there exist several general well-posedness
results [CCC12, CCC13, EHM15, EHM16, GLMC10]. However they do not apply
here due to the unboundedness of the function B. We overcome this difficulty by
adopting a duality approach in the spirit of [BCGM19, BCG20, DG20, Gab18], which
also proves useful for investigating the long time behavior.
Additional motivation to consider measure solutions lies in the study of stochastic

processes. Equation (1.1) is the Kolmogorov (forward) equation of the underlying
piecewise deterministic branching process. Let us give here a brief informal descrip-
tion of this, and refer to [CCF16, Clo17, DBW12, DJHKR15, Mar19b] for more
details. Take the measure-valued branching process (Zt)t> 0 defined as the empirical
measure

Zt =
∑
i∈Vt

δXi
t
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where Vt is the set of individuals alive at time t and {X i
t : i ∈ Vt} the set of their

sizes. For each individual i ∈ Vt the size X i
t grows exponentially fast following the

deterministic flow d
dtX

i
t = X i

t until a division time Ti which occurs stochastically
with rate B(X i

t). Then the individual i dies and gives birth to two daughter cells i1
and i2 with size X i1

Ti
= X i2

Ti
= 1

2X
i
Ti
. Taking the expectancy of the random measures

Zt, we get a family of measures u(t, ·) defined for any Borel set A ⊂ (0,∞) by

u(t, A) := E [Zt(A)] = E
[
#
{
i ∈ Vt : X i

t ∈ A
}]
,

which is a weak solution to the Kolmogorov Equation (1.1), see e.g. [DJHKR15,
Theorem 1] or [Mar19b, Corollary 5.1].
Another Kolmogorov equation is classically associated to (Zt)t> 0, which is the

dual equation of (1.1)

(2.1) ∂

∂t
ϕ(t, x) = x

∂

∂x
ϕ(t, x) +B(x)

[
2ϕ(t, x/2)− ϕ(t, x)

]
, x > 0.

This second equation is sometimes written in its backward version where ∂
∂t
ϕ(t, x)

is replaced by − ∂
∂t
ϕ(t, x), and is then usually called the Kolmogorov backward

equation. Nevertheless since the division rate B(x) does not depend on time, we prefer
here writing this backward equation in a forward form so that for any observation
function f

ϕ(t, x) := E
[
〈Zt, f〉

∣∣∣Z0 = δx
]

= E

∑
i∈Vt

f
(
X i
t

) ∣∣∣∣∣∣Z0 = δx


is the solution to (2.1) with initial data ϕ(0, x) = f(x), see e.g. [CCF16, Proposition 4]
or [Clo17, Corollary 2.4].
Equation (1.1) is then naturally defined on a space of measure, while Equation (2.1)

is defined on a space of functions.
To prove the well-posedness of Equation (1.1) in Ṁ, we proceed by duality and

first build a semigroup on Ḃ that yields the unique solutions to Equation (2.1).

2.1. The dual equation

We start by proving the well-posedness of Equation (2.1) in a space larger than Ḃ,
which turns out to be more suitable. For a subset Ω ⊂ Rd, we denote by Bloc(Ω) the
space of functions f : Ω → R that are bounded on Ω ∩ B(0, r) for any r > 0, and
by B(Ω) the (Banach) subspace of bounded functions endowed with the supremum
norm ‖f‖∞ = supx∈Ω |f(x)|. Using these spaces allows us to prove the well-posedness
without needing any upper bound at infinity on the division rate B.
In the following proposition, we prove that for any f ∈ Bloc(0,∞) there exists a

unique solution ϕ ∈ Bloc([0,∞)×(0,∞)) to Equation (2.1) in a mild sense (Duhamel
formula) with initial condition ϕ(0, ·) = f . Moreover, we show that if f ∈ C1(0,∞)
then ϕ is also continuously differentiable and verifies Equation (2.1) in the classi-
cal sense.
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Proposition 2.1. — Assume that B satisfies (1.3). Then for any f ∈ Bloc(0,∞)
there exists a unique ϕ ∈ Bloc([0,∞)× (0,∞)) such that for all t > 0 and x > 0

ϕ(t, x) = f
(
xet
)

e−
∫ t

0 B(xes)ds + 2
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)dsϕ

(
t− τ, xeτ

2

)
dτ.

Moreover if f is nonnegative/continuous/continuously differentiable, then so is ϕ. In
the latter case ϕ verifies for all t, x > 0

∂

∂t
ϕ(t, x) = Aϕ(t, ·)(x) = x

∂

∂x
ϕ(t, x) +B(x)

(
2ϕ(t, x/2)− ϕ(t, x)

)
.

Proof. — Let f ∈ Bloc(0,∞) and define on Bloc([0,∞)× (0,∞)) the mapping Γ by

Γg(t, x) = f
(
xet
)

e−
∫ t

0 B(xes) ds + 2
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes) dsg

(
t− τ, xeτ

2

)
dτ.

For T,K > 0 define the set ΩT,K = {(t, x) ∈ [0, T ] × (0,∞), xet < K}. Clearly Γ
induces a mapping B(ΩT,K)→ B(ΩT,K), still denoted by Γ. To build a fixed point
of Γ in Bloc([0,∞) × (0,∞)) we prove that it admits a unique fixed point in any
B(ΩT,K), denoted ϕT,K , that we will build piecewisely on subsets of ΩT,K .
Let K > 0 and t0 < 1/(2 sup(0,K) B). For any g1, g2 ∈ B(Ωt0,K) we have

‖Γg1 − Γg2‖∞ 6 2t0 sup
(0,K)

B ‖g1 − g2‖∞

and Γ is a contraction. The Banach fixed point theorem then guarantees the existence
of a unique fixed point ϕ0 = ϕt0,K of Γ in B(Ωt0,K). To extend this construction up
to T , we cover ΩT,K with strips of width t0:

ωk :=
{

(t, x) ∈ [kt0, (k + 1)t0]× (0,∞), xet < K
}

where k ∈ N. We start by setting ϕT,K |ω0
:= ϕ0. Then, applying the fixed point

technique in B(Ωt0,Ke−t0 ) with ϕ0(t0, ·) instead of f yields a function ϕ1. Defining
ϕT,K |ω1

:= ϕ1(· + t0, ·), we get a unique fixed point of Γ on ω0 ∪ ω1 and, repeating
the argument, a unique fixed point of Γ on ΩT,K .
For T ′ > T > 0 and K ′ > K > 0 we have ϕT ′,K′ |ΩT,K = ϕT,K by uniqueness

of the fixed point in B(ΩT,K), and we can define ϕ by setting ϕ|ΩT,K = ϕT,K for
any T,K > 0. Clearly the function ϕ thus defined is the unique fixed point of Γ in
Bloc([0,∞)× (0,∞)).
Since Γ preserves the closed cone of nonnegative functions if f is nonnegative, the

fixed point ϕt0,K is necessarily nonnegative when f is so. Then by iteration ϕT,K > 0
for any T,K > 0, and ultimately ϕ > 0. Similarly, the closed subspace of continuous
functions being invariant under Γ when f is continuous, the fixed point ϕ inherits
the continuity of f .
Consider now that f is continuously differentiable on (0,∞). Unlike the sets of

nonnegative or continuous functions, the subspace C1(Ωt0,K) is not closed in B(Ωt0,K)
for the norm ‖ · ‖∞. For proving the continuous differentiability of ϕ we repeat the
fixed point argument in the Banach spaces{

g ∈ C1 (ΩT,K) , g(0, ·) = f
}

endowed with the norm
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‖g‖C1 = ‖g‖∞ + ‖∂tg‖∞ + ‖x∂xg‖∞ .
Differentiating Γg with respect to t we get

(2.2) ∂t(Γg)(t, x)

=
[
xetf ′

(
xet
)
−B

(
xet
)
f
(
xet
)]

e−
∫ t

0 B(xes)ds

+ 2B
(
xet
)

e−
∫ t

0 B(xes)dsg

(
0, xet

2

)

+ 2
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)ds∂tg

(
t− τ, xeτ

2

)
dτ

= Af
(
xet
)

e−
∫ t

0 B(xes)ds + 2
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)ds∂tg

(
t− τ, xeτ

2

)
dτ

and differentiating the alternative formulation

Γg(t, x) = f
(
xet
)

e−
∫ xet

x
B(z) dz

z + 2
∫ xet

x
B(y)e−

∫ y
x
B(z) dz

z g
(
t− log

(
y

x

)
,
y

2

) dy
y

with respect to x we obtain

x∂x(Γg)(t, x) =
[
Af

(
xet
)

+B(x)f
(
xet
)]

e−
∫ xet

x
B(z) dz

z − 2B(x)g
(
t,
x

2

)
+ 2B(x)

∫ xet

x
B(y)e−

∫ y
x
B(z) dz

z g
(
t− log

(
y

x

)
,
y

2

) dy
y

+ 2
∫ xet

x
B(y)e−

∫ y
x
B(z) dz

z ∂tg
(
t− log

(
y

x

)
,
y

2

) dy
y

=
[
Af

(
xet
)

+B(x)f
(
xet
)
− 2B(x)f

(
x

2

)]
e−
∫ t

0 B(xes) ds

+ 2
∫ t

0
(B (xeτ )− eτB(x)) e−

∫ τ
0 B(xes)ds∂tg

(
t− τ, xeτ

2

)
dτ

+B(x)
∫ t

0
e−
∫ τ

0 B(xes)ds∂xg
(
t− τ, xeτ

2

)
dτ.

On the one hand, using the second expression of x∂x(Γg)(t, x) above we deduce that
for g1, g2 ∈ C1(Ωt0,K) such that g1(0, ·) = g2(0, ·) = f we have

‖Γg1 − Γg2‖C1

6 t0 sup
(0,K)

B
(
2 ‖g1 − g2‖∞ + 2

(
2 + et0

)
‖∂tg1 − ∂tg2‖∞ + ‖∂xg1 − ∂xg2‖∞

)
6 2t0

(
2 + et0

)
sup
(0,K)

B ‖g1 − g2‖C1 .

Thus Γ is a contraction for t0 small enough and this guarantees that the fixed point
ϕ necessarily belongs to C1([0,∞) × (0,∞)). On the other hand, using the first
expression of x∂x(Γg)(t, x) we have

∂t(Γg)(t, x)− x∂x(Γg)(t, x) = B(x)
(

2g
(
t,
x

2

)
− Γg(t, x)

)
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and accordingly the fixed point satisfies ∂tϕ = Aϕ. �

From now on, we assume that the division rate B satisfies (1.3). From Propo-
sition 2.1 we deduce that Equation (2.1) generates a positive semigroup on Ḃ by
setting for any t > 0 and f ∈ Bloc(0,∞)

Mtf := ϕ(t, ·).

Corollary 2.2. — The family (Mt)t> 0 defines a semigroup of positive operators
on Bloc(0,∞). If f ∈ D(A) then the function (t, x) 7→ Mtf(x) is continuously
differentiable on (0,∞)× (0,∞) and satisfies

∂tMtf(x) = AMtf(x) = MtAf(x).
Moreover the subspaces Ḃ and Ċ are invariant under Mt, and for any f ∈ Ḃ and any
t > 0

‖Mtf‖Ḃ 6 et ‖f‖Ḃ .

Proof. — The semigroup property Mt+s = MtMs follows from the uniqueness of
the fixed point in the proof of Proposition 2.1, (t, x) 7→ Mt+sf(x) and (t, x) 7→
Mt(Msf)(x) being both solutions with initial distribution Msf ∈ Bloc(0,∞).
The positivity of Mt is given by Proposition 2.1.
Proposition 2.1 also provides the regularity of (t, x) 7→ Mtf(x) when f ∈ Bloc ∩
C1(0,∞), as well as the identity ∂tMtf = AMtf . Besides, if f ∈ D(A) thenAf ∈ Bloc
and (2.2) with g(t, x) = Mtf(x) ensures, still by uniqueness of the fixed point, that
∂tMtf = MtAf.
Simple calculations provide that if f(x) = x then the fixed point of Γ is given

by Mtf(x) = xet. Together with the positivity of Mt it guarantees that ‖Mtf‖Ḃ
6 et‖f‖Ḃ for any f in Ḃ since −‖f‖Ḃ x 6 f(x) 6 ‖f‖Ḃ x for all x > 0. In particular
Ḃ is invariant under Mt, and Ċ also by virtue of Proposition 2.1. �

We give now another useful property of the positive operators Mt, namely that
they preserve increasing pointwise limits.

Lemma 2.3. — Let f ∈ Bloc(0,∞) and let (fn)n∈N ⊂ Bloc(0,∞) be an increasing
sequence that converges pointwise to f , i.e for all x > 0

f(x) = lim
n→∞

↑ fn(x).

Then for all t > 0 and all x > 0
Mtf(x) = lim

n→∞
Mtfn(x).

Proof. — Let f and (fn)n∈N satisfy the assumptions of the lemma. For all t > 0,
the positivity of Mt ensures that the sequence (Mtfn)n∈N is increasing and bounded
by Mtf . Denote by g(t, x) the limit of Mtfn(x). Using the monotone convergence
theorem, we get by passing to the limit in

Mtfn(x) = fn
(
xet
)

e−
∫ t

0 B(xes)ds + 2
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)dsMt−τfn

(
xeτ
2

)
dτ

that

g(t, x) = f
(
xet
)

e−
∫ t

0 B(xes)ds + 2
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)dsg

(
t− τ, xeτ

2

)
dτ.
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By uniqueness property we deduce that g(t, x) = Mtf(x). �

2.2. Construction of a measure solution

Using the results in Section 2.1, we define a left action of the semigroup (Mt)t> 0
on Ṁ. To do so we first set for t > 0, µ ∈ Ṁ+, and A ⊂ (0,∞) Borel set

(µMt)(A) :=
∫

(0,∞)
Mt1A dµ

and verify that µMt such defined is a positive measure on (0,∞).

Lemma 2.4. — For all µ ∈ Ṁ+ and all t > 0, µMt defines a positive measure.
Additionally µMt ∈ Ṁ+ and for any f ∈ Ḃ

〈µMt, f〉 = 〈µ,Mtf〉 .

Proof. — Let µ ∈ Ṁ+ and t > 0. We first check that µMt is a positive measure.
Clearly µMt(A) > 0 for any Borel set A, and µMt(∅) =

∫∞
0 Mt0 dµ = 0.

Let (An)n∈N be a countable sequence of disjoint Borel sets of (0,∞) and define

fn =
n∑
k=0

1Ak = 1 n⊔
k=0

Ak
.

For every integer n, one has

µMt

(
n⊔
k=0

Ak

)
=
∫

(0,∞)
Mtfn dµ =

n∑
k=0

∫
(0,∞)

Mt(1Ak)dµ =
n∑
k=0

µMt(Ak).

The sequence (fn)n∈N is increasing and its pointwise limit is f = 1⊔∞
k=0 Ak

, which
belongs to Bloc(0,∞). We deduce from Lemma 2.3 and the monotone convergence
theorem that

lim
n→∞

µMt

(
n⊔
k=0

Ak

)
= lim

n→∞

∫
(0,∞)

Mtfn dµ =
∫

(0,∞)
Mtf dµ = µMt

( ∞⊔
k=0

Ak

)

where the limit lies in [0,+∞]. This ensures that

µMt

( ∞⊔
k=0

Ak

)
=
∞∑
k=0

µMt(Ak)

and µMt thus satisfies the definition of a positive measure.
By definition of µMt, the identity 〈µMt, f〉 = 〈µ,Mtf〉 is clearly true for any simple

function f . Since any nonnegative measurable function is the increasing pointwise
limit of simple functions, Lemma 2.3 ensures that it is also valid in [0,+∞] for any
nonnegative f ∈ Bloc(0,∞). Considering f(x) = x we get 〈µMt, f〉 = 〈µ, f〉et < +∞,
so that µMt ∈ Ṁ+. Finally, decomposing f ∈ Ḃ as f = f+ − f− we readily obtain
that 〈µMt, f〉 = 〈µ,Mtf〉. �
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Now for µ ∈ Ṁ and t > 0, we naturally define µMt ∈ Ṁ by

(2.3) µMt = µ+Mt − µ−Mt.

It is then clear that the identity 〈µMt, f〉 = 〈µ,Mtf〉 is still valid for µ ∈ Ṁ and
f ∈ Ḃ. Notice that this decomposition (2.3) as the difference of two positive measures
is not in general the Jordan decomposition of µMt.

Proposition 2.5. — The left action of (Mt)t> 0 defines a positive semigroup in
Ṁ, which satisfies for all t > 0 and all µ ∈ Ṁ

‖µMt‖Ṁ 6 et‖µ‖Ṁ.

Proof. — Using the duality relation 〈µMt, f〉 = 〈µ,Mtf〉, it is a direct consequence
of Corollary 2.2. �

Finally we prove that the (left) semigroup (Mt)t> 0 yields the unique measure
solutions to Equation (1.1).

Theorem 2.6. — For any µ ∈ Ṁ, the family (µMt)t> 0 is the unique solution to
Equation (1.1), in the sense of Definition 1.1, with initial distribution µ.

Proof. — Let µ ∈ Ṁ. We first check that t 7→ 〈µMt, f〉 is continuous for any f ∈ Ċ
by writing∣∣∣ 〈µMt, f〉 − 〈µ, f〉

∣∣∣ 6 ∣∣∣∣∫ ∞
0

f
(
xet
)

e−
∫ t

0 B(xes)ds − f(x)µ(dx)
∣∣∣∣

+
∣∣∣∣2 ∫ ∞

0

∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)dsMt−τf

(
xeτ
2

)
dτ µ(dx)

∣∣∣∣
6
∫ ∞

0

∣∣∣∣f (xet
)

e−
∫ t

0 B(xes)ds − f(x)
∣∣∣∣ |µ|(dx)

+ et‖f‖Ḃ
∫ ∞

0

(
1− e−

∫ t
0 B(xes)ds

)
x |µ|(dx).

The two terms in the right hand side vanish as t tends to 0 by dominated convergence
theorem and the continuity of t 7→ 〈µMt, f〉 follows from the semigroup property.
Now consider f ∈ D(A). Integrating ∂tMtf = MtAf between 0 and t we obtain

for all x > 0
Mtf(x) = f(x) +

∫ t

0
Ms(Af)(x) ds.

By definition of D(A), the function Af belongs to Ḃ, so we deduce the inequality
|Ms(Af)(x)| 6 ‖Af‖esx and we can use Fubini’s theorem to get by integration
against µ

〈µ,Mtf〉 = 〈µ, f〉+
〈
µ,
∫ t

0
Ms (Af) ds

〉
= 〈µ, f〉+

∫ t

0

〈
µ,Ms (Af)

〉
ds.

The duality relation 〈µMt, f〉 = 〈µ,Mtf〉 then guarantees that (µMt) satisfies (1.2).
It remains to check the uniqueness. Let (µt)t> 0 be a solution to Equation (1.1)

with µ0 = µ. Recall that it implies in particular that t 7→ 〈µt, f〉 is continuous for
any f ∈ Ċ, and consequently t→ µt is locally bounded for the norm ‖ · ‖Ṁ due to
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the uniform boundedness principle. We want to verify that µt = µMt for all t > 0.
Fix t > 0 and f ∈ C1

c (0,∞), and let us compute the derivative of the mapping

s 7→
∫ s

0

〈
µτ ,Mt−sf

〉
dτ

defined on [0, t]. For 0 < s < s+ h < t we have

1
h

[∫ s+h

0

〈
µτ ,Mt−s−hf

〉
dτ −

∫ s

0

〈
µτ ,Mt−sf

〉
dτ
]

= 1
h

∫ s+h

s

〈
µτ ,Mt−sf

〉
dτ +

∫ s+h

s

〈
µτ ,

Mt−s−hf −Mt−sf

h

〉
dτ

+
∫ s

0

〈
µτ ,

Mt−s−hf −Mt−sf

h

〉
dτ.

The convergence of the first term is a consequence of the continuity of τ 7→
〈µτ ,Mt−sf〉

1
h

∫ s+h

s

〈
µτ ,Mt−sf

〉
dτ −−−→

h→ 0

〈
µs,Mt−sf

〉
.

For the second term we use that

Mt−sf −Mt−s−hf = Mt−s−h

∫ h

0
∂τMτf dτ = Mt−s−h

∫ h

0
MτAf dτ

to get, since τ 7→ ‖µτ‖Ṁ is locally bounded,∣∣∣∣∣
∫ s+h

s

〈
µτ ,

Mt−s−hf −Mt−sf

h

〉
dτ
∣∣∣∣∣ 6 h sup

τ ∈ [0, t]
‖µτ‖Ṁ ‖Af‖Ḃ et−s −−−→

h→ 0
0.

For the last term we have, by dominated convergence and using the identity ∂tMtf =
AMtf, ∫ s

0

〈
µτ ,

Mt−s−hf −Mt−sf

h

〉
dτ −−→

h→0
−
∫ s

0

〈
µτ ,AMt−sf

〉
dτ.

Finally we get
d
ds

∫ s

0

〈
µτ ,Mt−sf

〉
dτ =

〈
µs,Mt−sf

〉
−
∫ s

0

〈
µτ ,AMt−sf

〉
dτ =

〈
µ0,Mt−sf

〉
.

To obtain the last equality, one has to notice that f ∈ D(A), so Corollary 2.2 ensures
that Mt−sf ∈ D(A) can be used in Definition 1.1 in place of f . Integrating between
s = 0 and s = t we obtain, since µ0 = µ,∫ t

0

〈
µτ , f

〉
dτ =

∫ t

0

〈
µ,Mt−sf

〉
ds =

∫ t

0

〈
µMτ , f

〉
dτ

then by differentiation with respect to t〈
µt, f

〉
=
〈
µMt, f

〉
.

By density of C1
c (0,∞) in Ċ0, it ensures that µt = µMt. �
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3. Long time asymptotics

In [GN88] Greiner and Nagel deduce the convergence toward a rotation semigroup
from a general result of spectral theory of positive semigroups, valid in Lp spaces
with 1 6 p <∞ [AGG+86, C-IV, Theorem 2.14]. In order to apply this theoretical
result, they need the equation to be set on a compact size interval [α, β] ⊂ (0,∞).
In [BALZ18] van Brunt et al. take advantage of the Mellin transform to solve
Equation (1.1) explicitly and deduce the convergence in L1((0,∞), x1+rdx) where
r > 0. However, this method requires the division rate to be monomial, namely
B(x) = xr, and u(0, ·) to be a C2 function with polynomial decay at 0 and ∞.
In [BDJG19] the authors combine general relative entropy inequalities and the
Hilbert structure of the space L2((0,∞), x/U(x) dx) to prove that the solutions
converge to their orthogonal projection onto the closure of the subspace spanned by
the boundary eigenfunctions. General relative entropy is an elegant and powerful
method for deriving the convergence to the Perron eigenfunction, see [Per07], and
the novelty of [BDJG19] was to apply it to a non-ergodic case. This method was
recently extended to the measure solutions of the growth-fragmentation equation
with smooth fragmentation kernel [DDJGW18], but this cannot be applied to the
singular case of the mitosis kernel. Our approach rather relies on the general relative
entropy of the dual Equation (2.1). It allows us to both define a projector on the
boundary eigenspace despite the absence of Hilbert structure and prove the weak-*
convergence to this projection. We then use Harris’s ergodic theorem to strengthen it
into a convergence in weighted total variation norm with exponential speed. Besides,
the exponential rate of convergence can be estimated explicitly in terms of the
division rate B.

Lemma 3.1 (General Relative Entropy). — Let H : R → R be a differentiable
convex function. Then for all f ∈ Ḃ ∩ C1(0,∞) we have

d
dt

∫ ∞
0

xU0(x)H
(
Mtf(x)
x et

)
dx = −DH

[
e−tMtf

]
6 0

with DH defined on Ḃ by

DH [f ] =
∫ ∞

0
xB(x)U0(x)[
H ′
(
f(x)
x

)(
f(x)
x
− f(x/2)

x/2

)
+H

(
f(x/2)
x/2

)
−H

(
f(x)
x

)]
dx.
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Proof. — For f ∈ Ḃ ∩C1(0,∞) the function (t, x) 7→Mtf(x) is continuously differ-
entiable and verifies ∂tMtf(x) = AMtf(x), see Corollary 2.2. Simple computations
then yield, using that U satisfies (1.4),
(
∂

∂t
− x ∂

∂x

)(
xU0(x)H

(
Mtf(x)
x et

))

= e−txU0(x)B(x)H ′
(
Mtf(x)
x et

)(
Mtf(x/2)

x/2 − Mtf(x)
x

)

−H
(
Mtf(x)
x et

)
x
(
4B(2x)U0(2x)−B(x)U0(x)− U0(x)

)
and the conclusion follows by integration. �

This result reveals the lack of coercivity of the equation in the sense that the
dissipation DH [f ] does not vanish only for f(x) = φ0(x) = x but for any function
f such that f(2x) = 2f(x) for all x > 0. In particular all the eigenfunctions φk
satisfy this relation, so DH [Re(φk)] = DH [Im(φk)] = 0. More precisely we have the
following result about the space

X :=
{
f ∈ ĊC

∣∣∣ ∀ x > 0, f(2x) = 2f(x)
}

where ĊC is the space of complex-valued continuous functions on (0,∞) such that
‖f‖ĊC = supx> 0 |f(x)|/x <∞.

Lemma 3.2. — We have the identity

X = span(φk)k∈Z

and more specifically any f ∈ X is the limit in (ĊC, ‖ · ‖ĊC) of a Fejér type sum

f = lim
N→∞

N∑
k=−N

(
1− |k|

N

)
〈νk, f〉φk.

Proof. — The vector subspace X contains all the φk and is closed in (ĊC, ‖ · ‖ĊC),
so it contains span(φk)k∈Z.
To obtain the converse inclusion, we consider f ∈ X and we write it as

f(x) = x θ(log x)

with θ : R→ C a continuous log 2-periodic function. The Fejér theorem ensures that
the Fejér sum, namely the Cesàro means of the Fourier series

σN(θ)(y) := 1
N

N−1∑
n=0

n∑
k=−n

θ̂(k)e
2ikπ
log 2 y =

N∑
k=−N

(
1− |k|

N

)
θ̂(k)e

2ikπ
log 2 y

where

θ̂(k) = 1
log 2

∫ log 2

0
θ(y)e−

2ikπ
log 2 ydy
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converges uniformly on R to θ. We deduce that the sequence (FN(f))N > 1
⊂ span(φk)k∈Z defined by

FN(f)(x) := x σN(θ)(log x) =
N∑

k=−N

(
1− |k|

N

)
θ̂(k)φk(x)

converges to f in norm ‖ · ‖
ĊC
.

To conclude it remains to verify that θ̂(k) = 〈νk, f〉. Since
∫∞

0 xU(x)dx = 1 by
definition and λk 6= λl when k 6= l, we have that 〈νk, φl〉 = δkl, the Kronecker delta
function. We deduce that for any positive integer N

〈
νk, FN(f)

〉
=


0 if N < |k|,(
1− |k|

N

)
θ̂(k) otherwise.

As a consequence for all N > |k| we have∣∣∣〈νk, f〉 − θ̂(k)
∣∣∣ 6 ‖f − FN(f)‖Ḃ + |k|

N
‖f‖Ḃ

and this gives the desired identity by letting N tend to infinity. �
We have shown in the proof of Lemma 3.2 that the Fejér sums FN can be extended

to ĊC by setting

FN(f) =
N∑

k=−N

(
1− |k|

N

)
〈νk, f〉φk.

The limit when N → ∞, provided it exists, is a good candidate for defining a
relevant projection on X. Using Lemma 3.1 we prove in the following theorem that
the sequence (FN(f))n> 1 converges in X for any f ∈ C1

c (0,∞), and that the limit
extends into a linear operator Ċ0 → X which provides the asymptotic behavior of
(Mt)t> 0 on C0.

Theorem 3.3. — For any f ∈ C1
c (0,∞) and any t > 0 the sequence

FN
(
e−tMtf

)
=

N∑
k=−N

(
1− |k|

N

)
〈νk, f〉 e

2iπk
log 2 tφk

converges in Ċ and the limit Rtf defines a log 2-periodic family of bounded linear
operators Rt : Ċ0 → X ∩ Ċ. Moreover for all f ∈ Ċ0

e−tMtf −Rtf −−−→
t→∞

0

locally uniformly on (0,∞).

Notice that R0 is actually a projector from Ċ0 ⊕X onto X.
Proof. — We know from Corollary 2.2 that e−tMt is a contraction for ‖ · ‖Ḃ. Let

f ∈ C1
c (0,∞). We have Af ∈ Ċ and so ∂t(e−tMtf) = Mt(Af − f) is bounded in

time in Ċ. Since x∂xMtf(x) = ∂tMtf(x) − B(x)(2Mtf(x/2) − Mtf(x)) and B is
locally bounded we deduce that e−t∂xMtf is locally bounded on (0,∞) uniformly
in t > 0. So the Arzela–Ascoli theorem ensures that there exists a subsequence of
(e−t−n log 2Mt+n log 2f(x))n> 0 which converges locally uniformly on [0,∞)× (0,∞) to
a limit h(t, x), with h(t, ·) ∈ Ċ for all t > 0. We now use Lemma 3.1 to identify this
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limit. The dissipation of entropy for the convex function H(x) = x2, denoted D2,
reads

D2[f ] =
∫ ∞

0
xB(x)U(x)

∣∣∣∣∣f(x/2)
x/2 − f(x)

x

∣∣∣∣∣
2

dx.

The general relative entropy inequality in Lemma 3.1 guarantees that∫ ∞
0

D2
[
e−tMtf

]
dt < +∞

and as a consequence, for all T > 0,∫ T

0
D2

[
e−t−n log 2Mt+n log 2f

]
dt =

∫ T+n log 2

n log 2
D2

[
e−tMtf

]
dt −−−→

n→∞
0.

From the Cauchy–Schwarz inequality we deduce that

e−t−n log 2Mt+n log 2f(x/2)
x/2 − e−t−n log 2Mt+n log 2f(x)

x
→ 0

in the distributional sense on (0,∞)2, and since e−t−n log 2Mt+n log 2f(x) converges
locally uniformly to h(t, x) we get that for all t > 0 and x > 0

h(t, x/2)
x/2 − h(t, x)

x
= 0.

This means that h(t, ·) ∈ X for all t > 0, and Lemma 3.2 then ensures that

h(t, ·) = lim
N→∞

N∑
k=−N

(
1− |k|

N

)
〈νk, h(t, ·)〉φk.

Since by definition of Uk we have νkMt = eλktνk, the dominated convergence theorem
yields

〈νk, h(t, ·)〉 = lim
n→∞

e−t−n log 2 〈νkMt+n log 2, f〉 = e
2ikπ
log 2 t〈νk, f〉

and so

h(t, ·) = lim
N→∞

N∑
k=−N

(
1− |k|

N

)
〈νk, f〉e

2ikπ
log 2 tφk = lim

N→∞
FN

(
e−tMtf

)
.

This guarantees that (FN(Mtf))N > 1 is convergent in Ċ. Its limit denoted by Rtf

clearly defines a linear operator Rt : C1
c (0,∞)→ X ∩ Ċ. Moreover by local uniform

convergence of e−t−n log 2Mt+n log 2f to Rtf we get that

‖Rtf‖Ḃ 6 lim sup
n→∞

∥∥∥e−t−n log 2Mt+n log 2f
∥∥∥
Ḃ
6 ‖f‖Ḃ .

Thus Rt is bounded and it extends uniquely to a contraction Ċ0 → X ∩ Ċ. The
local uniform convergence of e−t−n log 2Mt+n log 2f(x) to Rtf(x) for f ∈ C1

c (0,∞) also
guarantees the local uniform convergence of e−tMtf − Rtf to zero when t → +∞.
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Indeed, letting K be a compact set of (0,∞) and defining for all t > 0 the integer
part n := b t

log 2c, so that t′ := t− k log 2 ∈ [0, log 2], one has

sup
x∈K

∣∣∣e−tMtf(x)−Rtf(x)
∣∣∣ = sup

x∈K

∣∣∣e−(n log 2+t′)Mn log 2+t′f(x)−Rt′f(x)
∣∣∣

6 sup
x∈K

sup
s∈ [0, log 2]

∣∣∣e−(n log 2+s)Mn log 2+sf(x)−Rsf(x)
∣∣∣ .

This convergence extends to any f ∈ Ċ0 by density. �

Due to the Riesz representation Ṁ ' Ċ ′0, we can define a log 2-periodic contraction
semigroup Rt on Ṁ by setting for all µ ∈ Ṁ and all f ∈ Ċ0

〈µRt, f〉 := 〈µ,Rtf〉 .
Theorem 3.3 then yields the weak-* convergence result in Theorem 1.2 since ρt =
µ0Rt. The following theorem readily implies the uniform exponential convergence in
weighted total variation norm.

Theorem 3.4. — Let r1, r2 ∈ R such that r1 < 1 < r2 and define w(x) = xr1 +xr2 .
Then Rt is a bounded endomorphism of C(w) for any t > 0, and there exist explicit
constants C > 1 and a > 0 such that for all f ∈ B(w) and all t > 0∥∥∥e−tMtf −Rtf

∥∥∥
B(w)
6 Ce−at ‖f −R0f‖B(w) .

The proof of this result relies on Harris’s ergodic theorem that we apply on discrete
time and discrete size sub-problems. Before giving the details, we thus start by
recalling Harris’s theorem in a form which can be readily deduced from [HM11,
Theorem 1.3]. Let X be a measurable space and P a Markov operator on this state
space, that is a positive operator in B(X) verifying P1 = 1, and suppose that this
operator P satisfies the two following assumptions:
(A1) There exist a function V : X → [1,∞) and constants K > 0 and γ ∈ (0, 1)

such that
PV (x) 6 γV (x) +K for all x ∈ X.

(A2) There exist a constant α ∈ (0, 1) and a probability measure ν such that
Pf(x) > α〈ν, f〉

for all functions f ∈ B+(X) and all x ∈ S := {x ∈ X : V (x) 6 R} for some
R > 2K/(1− γ), where K and γ are the constants from Assumption (A1).

Note that the only difference between these assumptions and [HM11, Assumption 1
and Assumption 2] is that we suppose here that V takes values larger than 1.

Theorem 3.5 (Harris’s theorem [HM11]). — If Assumptions (A1) and (A2) hold,
then P admits a unique invariant measure µ? and there exist constants C > 0 and
% ∈ (0, 1) such that the bound

‖P nf − 〈µ?, f〉‖B(X, V ) 6 C%n ‖Pf − 〈µ?, f〉‖B(X, V )

holds for every measurable function f ∈ B(X, V ). Moreover, the constants C and
% can be chosen in an explicit way in terms of the constants α, γ,K and R of
Assumptions (A1) and (A2).
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We are now in position to prove Theorem 3.4.
Proof. — The semigroup (Mt)t> 0 is not a family of Markov operators so we con-

sider the rescaled semigroup (Pt)t> 0 defined on B(0,∞) by

Ptf(x) := Mt(φ0f)(x)
etφ(x) .

Since φ0(x) = x verifies Mtφ0 = etφ0, the family (Pt)t> 0 is clearly a semigroup
of Markov operators. However, since the long time behavior of (Pt)t> 0 consists in
persistent oscillations, this continuous time semigroup is not ergodic. The idea is to
apply Harris’s theorem to a discrete time semigroup on a discrete state space. Let
us fix x > 0 until the end of the proof, and define

Xx :=
{
y ∈ (0,∞) : ∃ m ∈ Z, y = 2mx

}
.

The left action of Plog 2 defines an operator on the measures on Xx. Let us give a
rigorous proof of this claim. It is easily seen in the proof of Proposition 2.1 that if f
vanishes on Xz, then Γ leaves invariant the set of functions g such that g(t, y) = 0
for all t > 0 and y ∈ Xe−tz. It implies that the fixed point Mtf belongs to this set,
and consequently so does Ptf . In other words, if y ∈ Xe−tz then supp (δyPt) ⊂ Xz.
Applying this to z = xet ensures that if suppµ ⊂ Xx then supp (µPt) ⊂ Xetx. Since
X2x = Xx we deduce that Plog 2 leaves invariant the elements of Ṁ with support
included in Xx.
Let us denote by P the operator Plog 2 seen as a Markov operator on the state

space Xx. We will prove that P n satisfies Assumptions (A1) and (A2) above for some
positive integer n and the Lyapunov function V (x) = xq1 + xq2 with q1 < 0 < q2. To
do so we study the continuous time semigroup (Pt)t>0. Its infinitesimal generator is
given by

Ãf(x) = xf ′(x) +B(x)
(
f(x/2)− f(x)

)
and it satisfies the Duhamel formula

(3.1) Ptf(x) = f
(
xet
)

e−
∫ t

0 B(xes)ds +
∫ t

0
B (xeτ ) e−

∫ τ
0 B(xes)dsPt−τf

(
xeτ
2

)
dτ

which is the same as in Proposition 2.1 but without the factor 2 before the integral.
We easily check that

ÃV (x) =
[
q1 +

(
2−q1 − 1

)
B(x)

]
xq1 +

[
q2 +

(
2−q2 − 1

)
B(x)

]
xq2 .

Since B is continuous, B(x) → 0 at x = 0 and B(x) → +∞ as x → +∞, we see
that for any ω ∈ (0,−q1) the continuous function ÃV + ωV is bounded from above,
or in other words there exists a constant K > 0 such that

ÃV 6 −ω(V −K).
Since ∂tPtV = PtÃV and ÃK = 0 we deduce from Grönwall’s lemma that

PtV 6 e−ωtV +K

for all t > 0. In particular, since V > 1, this inequality also ensures that PtV 6
(e−ωt +K)V and consequently B(V ) is invariant under Pt. In terms of the original
semigroup (Mt)t> 0 this yields that
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(3.2)
∥∥∥e−tMtf

∥∥∥
B(w)
6
(
e−ωt +K

)
‖f‖B(w)

for all t > 0 and f ∈ B(w) with w(x) = xV (x) = x1+q1 + x1+q2 . As a by-product, it
guarantees that Rt is a bounded endomorphism of C(w) since

‖Rtf‖B(w) 6 lim sup
n→∞

∥∥∥e−t−n log 2Mt+n log 2f
∥∥∥
B(w)
6 K ‖f‖B(w) .

We also deduce that for all integer n > 1 and all y ∈ Xx

P nV (y) = Pn log 2V (y) 6 γV (y) +K

with γ = e−ω log 2 ∈ (0, 1). Assumption (A1) is thus satisfied by P n for any integer n >
1, with constants which do not depend on n. We will now prove that Assumption (A2)
is verified for some n > 1 on the sub-level set S = {y ∈ Xx : V (y) 6 R} for some
R > 2K/(1− γ).
Fix R > 2K/(1 − γ) and let ξ1, ξ2 ∈ Xx be such that S ⊂ [ξ1, ξ2] and ξ2 > b1,

where b1 is defined in (1.6). Define S := [ξ1, ξ2] ∩Xx ⊃ S and let us index this set
by ξ1 = x0 < x1 < · · · < xn0 = ξ2, meaning that S = {x0, · · · , xn0}. We prove by
induction on n that for all n ∈ {0, · · · , n0}, there exists cn > 0 such that for all
bounded function f : Xx → [0,∞) and all y ∈ S

(3.3) P nf(y) > cnf
(

min (2ny, xn0)
)
.

It is trivially satisfied for n = 0 with c0 = 1. Assume now that (3.3) is verified for
some n ∈ {0, · · · , n0 − 1}. Iterating once the Duhamel formula (3.1) and taking
t = log 2 we get that for all f : Xx → [0,∞) and all y ∈ S

Pf(y) > ηf(2y) + η2
(∫ log 2

0
B (yeτ ) dτ

)
f(y)

with η := exp(−
∫ 2ξ2
ξ1 B) > 0. Applying this inequality to P nf instead of f yields

that for all bounded function f : Xx → [0,∞) and all y ∈ S

P n+1f(y) > ηP nf(2y) + η2
(∫ log 2

0
B(yeτ )dτ

)
P nf(y).

If y < xn0 then we get by induction Hypothesis (3.3) that

P n+1f(y) > ηPnf(2y) > cnηf
(
min

(
2n+1y, xn0

))
.

If y = xn0 we use that xn0 = ξ2 > b1 to get

P n+1f (xn0) > η2
(∫ log 2

0
B (ξ2 eτ ) dτ

)
P nf (xn0) > η2K1ξ

γ1
2

2γ1 − 1
γ1

P nf (xn0) .

We can thus take cn+1 = min(cnη, η2K1ξ
γ1
2 (2γ1−1)/γ1) > 0. Now that (3.3) is proved

for all n ∈ {0, · · · , n0} we take n = n0 and obtain that

P n0f(y) > cn0

〈
δxn0

, f
〉

for all y ∈ S and all bounded f : Xx → [0,∞), which is Assumption (A2) with
α = cn0 and ν = δxn0

.
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We are in position to apply the Harris’s ergodic theorem. We get the existence
of an invariant measure µx on Xx, which integrate V , and constants C > 1 and
% ∈ (0, 1) such that for all f ∈ B(Xx, V ) and all m ∈ N

sup
y ∈Xx

|Pmn0f(y)− µx(f)|
V (y) 6 C%m sup

y ∈Xx

|f(y)− µx(f)|
V (y) .

Since the constants α, γ,K and R are independent of x in our calculations above,
Theorem 3.5 ensures that the constants C and % are too. In particular it implies that
Pmn0f(y) converges to µx(f) as m→∞ for all y ∈ Xx. But, defining t0 = n0 log 2,
we know from Theorem 3.3 that Pmt0f(y) → R0(φf)(y)/y for all f ∈ B(V ) as
m→∞. So we obtain, taking y = x in the left hand side, that for all f ∈ B(V ) and
all m ∈ N

|Pmt0f(x)−R0(φ0f)(x)/x|
V (x) 6 C%m sup

y ∈Xx

|f(y)−R0(φ0f)(y)/y|
V (y) .

Still using the function w(x) = xV (x), this yields in terms of (Mt)t>0 that for all
f ∈ B(w) and all m ∈ N

|e−mt0Mmt0f(x)−R0f(x)|
w(x) 6 C%m sup

y ∈ (0,∞)

|f(y)−R0f(y)|
w(y) .

Since we chose any x ∈ (0,∞) and the constants C and % are independent of x, we
finally proved that for all f ∈ B(w) and all m ∈ N∥∥∥e−mt0Mmt0f −R0f

∥∥∥
B(w)
6 C%m ‖f −R0f‖B(w) .

As Rmt0 = R0 by periodicity, this gives the result of Theorem 3.4 for discrete times
t = mt0. It easily extends to continuous times due to the bound (3.2). �

We finish by giving consequences of Theorems 3.3 and 3.4 in terms of mean
ergodicity. Since the limit is log 2-periodic we expect by taking the mean in time of
the semigroup to get alignment on the Perron eigenfunction. The results are given
in the following corollary for the right semigroup, but again they can readily be
transposed to the left action on measures by duality.

Corollary 3.6. — For any f ∈ Ċ0 the two mappings

t 7→ 1
log 2

∫ t+log 2

t
e−sMsf ds and t 7→ 1

t

∫ t

0
e−sMsf ds

converge locally uniformly to ν0(f)φ0 when t tends to infinity. Moreover if w(x) =
xr1 + xr2 with r1 < 1 < r2, then there exist constants C > 1 and a > 0 such that for
all f ∈ B(w)∥∥∥∥∥ 1

log 2

∫ t+log 2

t
e−sMsf ds− 〈ν0, f〉φ0

∥∥∥∥∥
B(w)
6 Ce−at

∥∥∥f − 〈ν0, f〉φ0

∥∥∥
B(w)

and ∥∥∥∥1
t

∫ t

0
e−sMsf ds− 〈ν0, f〉φ0

∥∥∥∥
B(w)
6
C

t

∥∥∥f − 〈ν0, f〉φ0

∥∥∥
B(w)

.
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Proof. — Let f ∈ C1
c (0,∞). On the one hand, since e−tMt and Rt are contractions

in Ċ and e−tMtf − Rtf tends to zero locally uniformly, we have by dominated
convergence theorem the local uniform convergence

1
log 2

∫ t+log 2

t
e−sMsf ds− 1

log 2

∫ t+log 2

t
Rsf ds −−−→

t→∞
0.

On the other hand, due to the convergence∥∥∥∥∥∥Rsf −
N∑

k=−N

(
1− |k|

N

)
〈νk, f〉 e

2iπk
log 2 sφk

∥∥∥∥∥∥
Ḃ

−−−−→
N→∞

0

we have that for all t > 0

1
log 2

∫ t+log 2

t
Rsfds = 〈ν0, f〉φ0.

This proves the local uniform convergence of the first integral of the lemma for
f ∈ C1

c (0,∞), which remains valid for f ∈ Ċ0 by density. As a consequence the
Cesàro means

1
N

N−1∑
n=0

∫ (n+1) log 2

n log 2
e−sMsf ds = 1

N log 2

∫ N log 2

0
e−sMsf ds

also converges to 〈ν0, f〉φ0 locally uniformly when N →∞, and it implies the con-
vergence of the second mapping in the lemma. The uniform exponential convergence
in weighted supremum norm follows from Theorem 3.4, integrating between t and
t+ log 2, and the other one is obtained by integrating between 0 and t. �
The difference between the two speeds in the previous corollary can be interpreted

as the difference in the amount of memory kept from the past.

4. Conclusion

In this work, we investigated how the cyclic asymptotic behavior of the rescaled
solutions of Equation (1.1) exhibited in [BDJG19] is transposed in the measure
setting. Despite the absence of Hilbert structure, we managed to build a suitable
projection on the boundary spectral subspace by taking advantage of the general
relative entropy of the dual equation. It allowed us to obtain the weak-* convergence
of the rescaled measure solutions to a periodic behavior. Then, using Harris’s ergodic
theorem on time and space discrete sub-problems, we managed to get uniform
exponential convergence in weighted total variation norm. To our knowledge no
estimate on the speed of convergence was known before for such problems. Here
we not only prove that the convergence takes place exponentially fast, but we also
obtain explicit estimates on the spectral gap in terms of the division rate B.
In [GN88], more general growth rates than linear are considered, namely those

satisfying g(2x) = 2g(x). Our method would work in this case, replacing the weight
x by the corresponding dual eigenfunction φ(x) and the space X by the functions
such that f(2x)/φ(2x) = f(x)/φ(x). However, considering such general coefficients,
while interesting from mathematical point of view, is not motivated by modeling
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concerns, that is why we decided to focus on the linear case. In addition, it makes
computations lighter, in particular those of the flow which is explicitly given by an
exponential when g(x) = x.
Our method would also apply to more sophisticated models of mitosis. For instance

the equation considered in [GM19] exhibits a similar countable family of boundary
eigenelements for the singular mitosis kernel. To the prize of additional technicalities,
our approach can be used to study its long time behavior.
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