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Résumé. — Nous démontrons des analogues au théorème de la section hyperplane de
Lefschetz pour l’homologie tropicale entière d’hypersurfaces tropicales dans des variétés toriques
tropicales. Nous en déduisons que les groupes d’homologie des hypersurfaces tropicales non-
singulières compactes (ou contenues dans Rn) sont sans torsion. Nous en déduisons également
une relation entre les coefficients du genre χy des hypersurfaces complexes dans les variétés
toriques et les caractéristiques d’Euler des complexes de chaînes cellulaires tropicales des
hypersurfaces tropicales. Il s’ensuit que les groupes d’homologies tropicales à coefficient entier
ont pour rang les nombres de Hodges d’hypersurfaces compactes non-singulières dans des
variétés toriques complexes. Finalement pour les hypersurfaces tropicales dans certaines variétés
toriques affines, nous relions les rangs de leurs groupes d’homologie tropicale aux nombres de
Hodge–Deligne des hypersurfaces complexes correspondantes.

1. Introduction

Tropical homology is a homology theory with non-constant coefficients for polyhe-
dral spaces. Itenberg, Katzarkov, Mikhalkin, and Zharkov, show that under suitable
conditions, the Q-tropical Betti numbers of the tropical limit of a family of complex
projective varieties are equal to the corresponding Hodge numbers of a generic mem-
ber of the family [IKMZ19]. This explains the particular interest of these homology
groups in tropical and complex algebraic geometry.
In this paper we consider the integral versions of tropical homology groups for

hypersurfaces in tropical toric varieties. The pp, qqth tropical homology group of
a rational polyhedral complex Z is denoted HqpZ; FZ

p q and the Borel–Moore ho-
mology group is denoted HBM

q pZ; FZ
p q. To avoid ambiguity we will often also refer

to HqpZ; FZ
p q as a standard tropical homology group. When a rational polyhedral

complex Z is compact then HqpZ; FZ
p q “ HBM

q pZ; FZ
p q. These homology groups are

defined in Section 2 as the cellular tropical homology groups [KS17, MZ14]. For a
comparison between cellular homology and singular homology, see Remark 2.20.
Our main goal is to prove that these homology groups are torsion free for a compact

non-singular tropical hypersurface in a compact non-singular tropical toric variety.
The road to the proof of this statement is quite similar to the one followed to
prove that the integral homology of a complex projective hypersurface is torsion
free. Namely, in order to prove that the integral tropical homology groups are
without torsion, we first establish a tropical variant of the Lefschetz section theorem.
Ultimately however, the techniques used in the proofs are quite different from the
complex setting, since we are working with polyhedral spaces instead of algebraic
varieties. Also notice that in the tropical version of the Lefschetz section theorem
stated below the tropical hypersurface is not required to be compact. However, the
tropical hypersurface is required to be combinatorially ample in the tropical toric
variety, see Definition 2.5. For the notion of cellular pair see Definition 2.7 and for
the notion of parent face see Definition 2.9.
Theorem 1.1. — Let X be a non-singular and combinatorially ample tropical

hypersurface of an n` 1 dimensional non-singular tropical toric variety Y . Then the
map induced by inclusion

i˚ : HBM
q

`

X; FX
p

˘

Ñ HBM
q

`

Y ; FY
p

˘
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is an isomorphism when p` q ă n and a surjection when p` q “ n.
If additionally, the pair pY,Xq is a cellular pair and every parent face of a compact

face of Y is compact, then the map induced by inclusion
i˚ : Hq

`

X; FX
p

˘

Ñ Hq

`

Y ; FY
p

˘

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Tropical homology with real or rational coefficients is the homology of the cosheaf
of real vector spaces Fp b R or Fp b Q, respectively. Theorem 1.1 holds in the
case of tropical homology with real coefficients when we remove the assumption
that the tropical hypersurface X is non-singular, provided that the tropical toric
variety Y is non-singular, combinatorially ample and also that X is proper in Y , see
Definition 2.3. Below we state the theorems in the case of real coefficients.

Theorem 1.2. — Let X be a combinatorially ample tropical hypersurface of an
n` 1 dimensional non-singular tropical toric variety Y such that X is proper in Y .
Then the maps induced by inclusion

i˚ : HBM
q

`

X; FX
p b R

˘

Ñ HBM
q

`

Y ; FY
p b R

˘

are isomorphisms when p ` q ă n and surjections when p ` q “ n. If additionally,
the pair pY,Xq is a cellular pair and every parent face of a compact face of Y is
compact, then the maps induced by inclusion

i˚ : Hq

`

X; FX
p b R

˘

Ñ Hq

`

Y ; FY
p b R

˘

are isomorphisms when p` q ă n and surjections when p` q “ n.

The above theorem in tropical geometry is inspired by the Lefschetz hyperplane
section theorem in complex algebraic geometry. When a toric variety is embedded by
way of a very ample line bundle, a hyperplane section of this embedding corresponds
to a hypersurface in the toric variety. Applying the classical Lefschetz hyperplane
section theorem in this situation relates the homology of the hypersurface to that of
the toric variety in a way analogous to the tropical theorem stated above.
Adiprasito and Björner present tropical variants of the Lefschetz hyperplane section

theorem in [AB14]. Their theorems relate the tropical homology with real coefficients
of a non-singular tropical varietyX contained in a tropical toric variety to the tropical
homology groups of the intersection of X with a so-called “chamber complex”. A
chamber complex is a codimension one polyhedral complex in a tropical toric variety
whose complement consists of pointed polyhedra, in particular it need not to be
balanced. Adiprasito and Björner first establish some topological properties of filtered
geometric lattices and then use Morse theory to prove their tropical versions of the
Lefschetz theorem. The proof we present here does not utilise Morse theory but
instead proves vanishing theorems for the homology of cosheaves that arise in short
exact sequences relating the cosheaves for the tropical homology of X and the
ambient space. Furthermore, we relate the integral tropical homology groups of a
non-singular tropical hypersurface with the integral tropical homology groups of
the ambient tropical toric variety. Another result which follows from the Lefschetz
section theorem for the integral tropical homology groups of hypersurfaces is that
under the correct hypotheses on the ambient space these homology groups are torsion
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free. At the end of the introduction we discuss the implications of torsion freeness
to recent results on the Betti numbers of real algebraic hypersurfaces arising from
patchworking.
The tropical (co)homology groups with integral coefficients of a non-singular trop-

ical hypersurface satisfy a variant of Poincaré duality [JRS18]. Using this we deduce
in Section 4 that the tropical homology groups of a non-singular tropical hypersur-
face in a non-singular tropical toric variety which satisfy the assumptions below are
torsion free, as long as the homology of the tropical toric variety is also torsion free.

Theorem 1.3. — Let X be a non-singular and combinatorially ample tropical
hypersurface in a non-singular tropical toric variety Y such that pY,Xq is a cellular
pair and every parent face of a compact face of Y is compact. If the tropical homology
groups HqpY ; Fpq are torsion free for all p and q, then both the Borel–Moore and
standard tropical homology groups of X are also torsion free.

Proposition 4.1 proves that the tropical homology groups HqpY ; Fpq of a compact
non-singular tropical toric variety are all torsion free. If Y is a non-singular trop-
ical toric variety which is not necessarily compact, and for all p and q the groups
HqpY ; Fpq are torsion free, then so are the Borel–Moore groups HBM

q pY ; Fpq. This
is proved in the proof of Theorem 1.3.

Corollary 1.4. — If Y is a compact non-singular tropical toric variety and X
is a combinatorially ample non-singular tropical hypersurface in Y , then all integral
tropical homology groups of X are torsion free.

Corollary 1.5. — Let Y be a non-singular tropical toric variety associated to
a fan whose support is a convex cone and such that the complex toric variety YC is
quasi-projective. LetX be a combinatorially ample non-singular tropical hypersurface
in Y such that pY,Xq is a cellular pair and every parent face of a compact face of
Y is compact. Then both the standard and Borel–Moore integral tropical homology
groups of X are torsion free.

Corollary 1.6. — The tropical homology groups of a non-singular tropical
hypersurface in Rn`1 are torsion free.

The above theorem and corollaries follow from the tropical Lefschetz section theo-
rems established here for hypersurfaces. That is why we require in Theorem 1.3 that
pY,Xq be a cellular pair, the assumptions that the hypersurface X is combinatorially
ample in Y , and that every parent face of a compact face of Y is compact. We do
not know if these assumptions are necessary, or if an alternate more direct proof
of torsion freeness exists. In Corollary 1.6, there is no assumption that pRn`1, Xq
is a cellular pair. This is because if the Newton polytope of X is full dimensional
then pRn`1, Xq is a cellular pair. If not, then X is a product Rk ˆX 1 for a tropical
hypersurface X 1 in Rn`1´k which has full dimensional Newton polytope. Then we
can apply the Künneth formula for tropical homology [GS19, Theorem B] to the
product and obtain that the tropical homology groups of X are torsion free.

Question 1.7. — Are the integral tropical homology groups of any non-singular
tropical hypersurface of a tropical toric variety torsion free?
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In Section 5, we first find that the Euler characteristics of the cellular chain com-
plexes for Borel–Moore tropical homology of a non-singular tropical hypersurface
give the coefficients of the χy genus of a torically non-degenerate complex hypersur-
face with the same Newton polytope (see Definition 5.1 for the definition of torically
non-degenerate). The Hodge–Deligne numbers of a complex variety XC are denoted
by hp, qpHk

c pXCqq (see for example [DK86]).The coefficients of the χy genus of XC
are given in terms of the numbers

ep, qc pXCq :“
ÿ

k

p´1qkhp, q
`

Hk
c pXCq

˘

,

and the χy genus is then defined as

χypXCq :“
ÿ

p, q

ep, qc pXCqy
p.

Theorem 1.8. — Let X be an n-dimensional non-singular tropical hypersurface
in a non-singular tropical toric variety Y . Let XC be a complex hypersurface torically
non-degenerate in the complex toric variety YC such that X and XC have the same
Newton polytope. Then

p´1qpχ
`

CBM
‚

`

X; FX
p

˘˘

“

n
ÿ

q“ 0
ep, qc pXCq,

and thus
χypXCq “

n
ÿ

p“0
p´1qpχ

`

CBM
‚

`

X; FX
p

˘˘

yp.

From the above theorem we obtain an immediate relation between the dimensions
of the R-tropical homology groups of a tropical hypersurface and the χy genus of
corresponding complex hypersurface. Namely, in the situation of the above theorem
we have

(1.1) p´1qp
n
ÿ

q“0
rankHBM

q

`

X; FX
p

˘

“

n
ÿ

q“0
ep, qc pXCq.

We combine the results from Section 4 and Equation (1.1) to calculate the ranks
of the tropical homology groups of non-singular tropical hypersurfaces in compact
tropical toric varieties in Corollary 1.9.

Corollary 1.9. — Let X be a non-singular and combinatorially ample compact
tropical hypersurface in a non-singular compact tropical toric variety Y and assume
that X has Newton polytope ∆. Let XC be a torically non-degenerate complex
hypersurface in the compact complex toric variety YC also with Newton polytope ∆.
Then for all p and q we have

dimHp, q
pXCq “ rankHq

`

X; FX
p

˘

.

In the situation of Corollary 1.5, if the toric variety is affine and constructed from
a fan whose support is a convex cone of maximal dimension, we also determine the
ranks of the Borel–Moore tropical homology groups of tropical hypersurfaces in terms
of the Hodge–Deligne numbers with compact support of complex hypersurfaces in
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Corollary 5.2. In Corollary 5.3, we again apply Theorem 1.8 to compute the ranks
of the Borel–Moore tropical homology groups of tropical hypersurfaces in the torus.
Our main motivation establishing torsion freeness of the tropical homology groups

of tropical hypersurfaces and a relation between their ranks and the Hodge–Deligne
numbers of complex hypersurfaces comes from a recently established relation be-
tween the Z2-tropical homology groups of tropical hypersurfaces and Betti numbers
of patchworked real algebraic hypersurfaces. In the theorem below HqpX; FX,Z2

p q

denotes the tropical homology groups considered with coefficients in Z2 :“ Z{2Z.
Theorem 1.10. — [RS18, Theorem 1.5] If V is a non-singular real algebraic

hypersurface in a toric variety obtained from a primitive patchworking of the tropical
hypersurface X equipped with a real structure then for all q we have,

bqpRV q ď
dimX
ÿ

p“1
dimHq

`

X; FX,Z2
p

˘

.

When the integral tropical homology groups are torsion free then we have
rankHq

`

X; FX
p

˘

“ dimHq

`

X; FX,Z2
p

˘

for all p and q. This together with Corollaries 1.9 and 5.3 allow the bounds in
Theorem 1.10 on the Betti numbers of the real points of a patchworked algebraic
variety to be written in terms of Hodge–Deligne numbers of the complexification.
For instance, one obtains the following result, conjectured by Itenberg around 2005,
and later appeared in [Ite17].
Theorem 1.11 ([RS18, Theorem 1.4]). — Let V be a real hypersurface in Pn`1

arising from a primitive patchworking. Then for any integer q “ 0, . . . , n we have

bqpRV q ď

#

hq, qpCV q for q “ n{2,
hq, n´qpCV q ` 1 otherwise.
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2. Preliminaries

2.1. Tropical toric varieties

In this text we will always use the standard lattice Zn`1 Ă Rn`1. The tropical
numbers are T “ r´8,`8q. We equip the set T with a topology so that it is
isomorphic to a half open interval. Tropical affine space of dimension n is Tn and is
equipped with the product topology.
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In algebraic geometry over a field a rational polyhedral fan in Rn`1 produces
an n ` 1 dimensional toric variety, see for example [Ful93]. The same fact is true
in tropical geometry. Given a rational polyhedral fan in Rn`1 we can construct a
tropical toric variety, see [MS15, Section 6.2], [MR18, Section 3.2]. We will briefly
recall this construction. Let Σ be a rational polyhedral pointed fan. For any cone ρ of
Σ, denote by Lpρq the subspace of Rn`1 spanned by ρ, and set LZpρq :“ LpρqXZn`1.

Definition 2.1. — The tropical toric variety associated to the fan Σ is the set

YΣ :“
ğ

ρ PΣ
Rn`1

{Lpρq,

equipped with the topology from [MR18, Remark 3.2.5] and [Pay09, Section 3], which
is the unique topology satisfying

‚ The inclusions Rn`1{Lpρq ãÑ YΣ are continuous for any cone ρ P Σ.
‚ For any x P Rn`1 and any v P Rn`1, the sequence px ` nvqn PN P Rn`1

– Rn`1{Lp0q converges in YΣ if and only if v is contained in the support of
the fan Σ.

Given a toric variety Y and a cone ρ of the associated fan, we denote by Yρ the
stratum Rn`1{Lpρq Ă Y (using the same notations as above). A rational polyhedral
fan Σ is simplicial if each of its cones is the cone over a simplex. A simplicial
rational polyhedral fan is unimodular if the primitive integer directions of the rays
of each cone can be completed to a basis of Zn`1. Just as in the case over a field,
a tropical toric variety is non-singular if it is built from a simplicial unimodular
rational polyhedral fan, The tropical toric varieties considered in this text are always
non-singular. A tropical toric variety is compact if and only if the corresponding fan
is complete.
A tropical toric variety Y has a stratification and the combinatorics of the strat-

ification is governed by its fan Σ. A stratum of dimension k of Y corresponds to
a cone ρ of dimension n ` 1 ´ k of Σ. We denote the vertex of the fan by ρ0 and
the corresponding open stratum of Y by simply Y0. For any point y P Y , the order
of sedentarity of y, denoted sedpyq, is defined to be the codimension in Y of the
stratum containing y.
A tropical toric variety is naturally equipped with a lattice on each stratum. More

precisely, the stratum Yρ is equipped with the lattice Zn`1{LZpρq. When ρ is of
dimension k, there is a lattice preserving isomorphism of vector spaces Yρ – Rn`1´k.
For two cones ρ and ρ1 of Σ we have Yρ1 Ă Yρ if and only if ρ is a face of ρ1 in Σ. If
ρ is a cone of Σ, then there is a projection map πρ : Rn`1 Ñ Yρ. If ρ1 is a face of ρ in
the fan Σ, then Lpρ1q Ď Lpρq and there is a projection map πρ1, ρ : Yρ1 Ñ Yρ.

Example 2.2. — The tropical projective space TPn is the tropical toric variety
constructed from the fan consisting of cones

Rě 0 ei1 ` ¨ ¨ ¨ ` Rě 0 eik ,
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Figure 2.1. The tropical projective plane TP2 on the left and its normal fan on
the right.

for all ti1 ¨ ¨ ¨ iku Ł t0, ¨ ¨ ¨ , nu, where e1, ¨ ¨ ¨ , en is the standard basis of Rn and
e0 “ ´

řn
k“1 ek. It can also be described as the quotient

Tn`1zp´8, . . . , ´8q

rx0 : ¨ ¨ ¨ : xns „ ra` x0 : ¨ ¨ ¨ : a` xns
,

where a P Tz ´ 8. The stratification of TPn can be described using homogeneous
coordinates. For a subset I Ă t0, . . . , nu define

TPnI “ tx P TP
n
|xi “ ´8 if and only if i P Iu .

The set TPnI corresponds to the cone
ÿ

i P I

Rě 0 ei.

The order of sedentarity of a point x “ rx0 : ¨ ¨ ¨ : xns P TPn is
sedpxq “ # ti | xi “ ´8u .

A rational polyhedron in a tropical toric variety Y is the closure in Y of a rational
polyhedron in some stratum Yρ. A rational polyhedral complex Z in Y is a collection
of rational polyhedra in Y such that Z X Yρ is a rational polyhedral complex in
Yρ – Rcodim ρ for every cone ρ of Σ and satisfying:

(1) for a polyhedron σ P Z, if τ is a face of σ, which is denoted τ Ă σ, we have
τ P Z;

(2) for σ, σ1 P Z, if τ “ σ X σ1 is non-empty then τ is a face of both σ and σ1.
A rational polyhedral complex Z 1 is a subpolyhedral complex of Z if any polyhedron

of Z 1 is a polyhedron of Z. For a polyhedron σ in Y we define sedpσq to be sedpyq for
any y in the relative interior of σ. This is a generalization of the notion of sedentarity
from [BIMS15, Section 5.5] to tropical toric varieties beyond TPn`1. Two rational
polyhedral complexes are combinatorially isomorphic if they are isomorphic as posets
under inclusion.

Definition 2.3. — A rational polyhedral complex Z is proper in Y if for each
cell σ and each cone ρ such that σXYρ ‰ H, one has dimpσXYρq “ dimpσq´dimpρq.

If σ is a polyhedron in Y which is the closure of a polyhedron in Y0 then σXYρ ‰ H
if and only if the recession cone of σ intersects relintpρq [OR13, Lemma 3.9]. The

ANNALES HENRI LEBESGUE



1355

same lemma also shows that if σ X Yρ ‰ H, then σ X Yρ “ πρpσ X Y0q. In particular,
this implies that all faces in the closure in Y of a rational polyhedral complex in Y0
are again rational.
Therefore, if a rational polyhedral complex Z is proper in Y and σ is a face of Z

such that relintσ Ă Yρ where ρ ‰ 0, there exists at most one face of sedentarity 0 of
Z of dimension dim σ`dim ρ containing σ as a face. This is because if Z is proper in
Y any face of sedentarity 0 intersecting Yρ in σ must be contained in a unique affine
subspace of Y0 of dimension dim σ ` dim ρ. If there are two distinct faces of Z with
sedentarity 0 intersecting Yρ in σ their intersection is also of dimension dim σ`dim ρ.
Since Z is a rational polyhedral complex the intersection of these two faces must
then be a face of Z so it is one, and hence both, of the faces.

2.2. Tropical hypersurfaces

A tropical hypersurface X in Rn`1 is a weighted rational polyhedral complex of
codimension one which satisfies the balancing condition well-known in tropical geom-
etry. Any tropical hypersurface in Rn`1 is defined by a tropical polynomial [MR18,
Theorem 2.4.10]. As a rational polyhedral complex, a tropical hypersurface X is dual
to a regular subdivision of the Newton polytope of its defining polynomial, and this
subdivision is also induced by the polynomial. A tropical hypersurface X in Rn`1 is
non-singular if it is dual to a primitive regular triangulation of its Newton polytope.
In this case, the weights of all top dimensional faces of X are equal to one. For the
definitions and properties of tropical hypersurfaces in Rn`1 and the dual subdivisions
of their Newton polytopes we refer the reader to [MS15, Chapter 3] and [BIMS15,
Section 5.1].
Definition 2.4. — A tropical hypersurface X in a tropical toric variety Y of

dimension n` 1 is a weighted rational polyhedral complex in Y which is the closure
of a tropical hypersurface X0 Ă Rn`1. The weights on top dimensional faces of X
are inherited directly from X0. A tropical hypersurface X is non-singular in Y if for
every open toric stratum Yρ the intersection Xρ :“ X X Yρ is a non-singular tropical
hypersurface in Yρ – Rn`1´dim ρ.
In particular, if X is non-singular in Y , then Xρ :“ XXYρ is of dimension n´dim ρ

and X is proper in Y . Moreover, there is a tropical polynomial fρ defining Xρ and
Xρ is dual to a primitive regular triangulation of the Newton polytope of fρ. We
always consider the polyhedral structure on X X Rn`1 which is dual to the regular
subdivision of its Newton polytope.
When considering a tropical hypersurface X contained in a tropical toric variety

Y , we always use the polyhedral structure on Y obtained from refining by X.
Let γ be a polyhedron of dimension s and sedpγq “ 0 in a tropical toric variety Y .

For each cone ρ in the fan Σ defining Y , set γρ :“ γ X Yρ and define

γ˝ :“
ğ

ρ

relint γρ.

If we assume that γ intersects the boundary of Y properly, a face σ of γo of dimension
q is necessarily of sedentarity order sedpσq “ dim γ ´ q.
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To prove the tropical version of the Lefschetz hyperplane section theorem we require
the following additional assumption on X. With the exception of Theorem 1.8, we
will always require that X is combinatorially ample in Y .
Definition 2.5. — A tropical hypersurface X in an n` 1 dimensional tropical

toric variety Y is combinatorially ample if for every face γ of dimension n` 1 of Y ,
considered with the refinement given by X, the rational polyhedral complex γo is
combinatorially isomorphic to a product of copies of T and R.
Suppose that a tropical polynomial f defines a non-singular tropical hypersurface

X0 in Rn`1. If the Newton polytope of f is full dimensional and the dual fan of the
polytope defines a non-singular tropical toric variety Y , then the compactification
of X0 in Y is non-singular and combinatorially ample.
Remark 2.6. — Here we explain why, if Y is a compact tropical toric variety and

X a combinatorially ample non-singular tropical hypersurface in Y , then the normal
fan of the Newton polytope of X is the same as the fan defining the tropical toric
variety Y .
First note that if X is combinatorial ample in Y then, for every 1-dimensional

stratum Yρ of Y we haveXXYρ ‰ H. Let YC denote the compact complex toric variety
obtained from the same fan as Y . If XC is any non-singular complex hypersurface
in YC with the same Newton polytope as the tropical hypersurface X, then XC also
has non-empty intersection with every 1-dimensional stratum YC,ρ of YC. By the
Kleinman condition and the Toric Cone Theorem [Wis02, p. 254], the hypersurface
XC is an ample Cartier divisor. If in addition, the tropical hypersurface is proper in
Y , then we may choose XC to be a T -Cartier divisor. By [Ful93, Exercise 2, p. 72],
the normal fan of the Newton polytope of the defining equation for XC must be the
same as the fan defining the toric variety YC. Therefore, we can conclude that the
normal fan of the Newton polytope of X is the same as the fan defining the tropical
toric variety Y .
To prove Lefschetz hyperplane section theorem in the case of standard tropical

homology, we also need the following assumption on the topological pair pY,Xq.
Definition 2.7. — Let Y be a tropical toric variety and let X Ă Y be a tropical

hypersurface. We say that the pair pY,Xq is a cellular pair if the cellular structure
induced by X on the one-point compactification pY of Y is a regular CW-complex.
More precisely, for any cell σ of pY of dimension k, the pair pσ, intpσqq is homeomorphic
to the pair pBk, intpBkqq, where Bk is the closed Euclidean ball of dimension k.
Requiring pY,Xq to be a cellular pair implies that X and Y equipped with the

polyhedral structure induced by X are both cellular complexes in the sense of [She85]
and [Cur14, Chapter 4]. This topological condition is required to use the cellular
description of cosheaf homology groups from [Cur14].
Example 2.8. — There are examples of tropical hypersurfaces in tropical toric

varieties which are not cellular pairs. For example, consider X to be supported on
the line x “ 0 in R2. Then the one point compactification of pR2, Xq is not a regular
CW-complex. In fact, if X is a tropical hypersurface in Rn`1, then pRn`1, Xq is a
cellular pair if and only if the Newton polytope of X is full dimensional.
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There exist tropical hypersurfaces in Tn`1 which do not intersect the boundary of
Tn`1. For example, let X Ă T2 be the tropical curve with three rays in directions
p´2, 1q, p1,´2q and p1, 1q. In this case, the pair pTn`1, Xq is not a cellular pair, though
X may be combinatorially ample in Tn`1. However, if Y is a compact tropical toric
variety and X is a hypersurface which intersects the boundary of Y transversally
then pY,Xq is a cellular pair.
Consider in T3 the two dimensional tropical hypersurface X whose support is a

fan with rays p´1, 0, 1q, p0,´1, 1q, p1, 1,´3q, and p0, 0, 1q and a two dimensional face
generated by each pair of rays. The hypersurface X does not intersect the boundary
of T3 since all the faces of X have an empty intersection with the cones defining
the fan dual to T3 [OR13, Lemma 3.9]. The hypersurface X is non-singular since
its Newton polytope is a tetrahedron of normalized volume equal to one. The pair
pT3, Xq is not a cellular pair, and Theorem 1.2 does not hold in this case since for
example H0pX; F1q “ R3 but H0pT3; F1q “ 0

Definition 2.9. — Let Y be a tropical toric variety and X be a tropical hyper-
surface that is proper in Y and σ a cell of the subdivision of Y induced by X of
dimension q. The parent face of σ is the unique face of Y of sedentarity order 0 and
dimension q ` sedpσq which contains σ.

2.3. Tropical homology

A rational polyhedral complex Z has the structure of a category. The objects of
this category are the cells of Z and there is a morphism τ Ñ σ if the cell τ is included
in σ. We use the notation Zop to denote the category that has the same objects as Z,
and with morphisms corresponding to the morphisms of Z but with their directions
reversed. Let ModZ denote the category of modules over Z. We now define cellular
sheaves and cosheaves of Z-modules on Z.

Definition 2.10. — Given a rational polyhedral complex Z, a cellular cosheaf
G is a functor

G : Zop
Ñ ModZ .

More explicitly, a cellular cosheaf consists of a Z-module Gpσq for each cell σ in Z
together with a morphism ιστ : Gpσq Ñ Gpτq for each pair τ , σ when τ is a face of σ.
Since G is a functor, for any triple of cells γ Ă τ Ă σ the morphisms ι commute in
the sense that

ισγ “ ιτγ ˝ ιστ

Dually, a cellular sheaf H is a morphism H : Z Ñ ModZ. Therefore, for each σ there
is a Z-module Hpσq and there are morphisms ρτσ : Hpτq Ñ Hpσq when τ is a face
of σ.
The cosheaves that we use throughout the text will always be free Z-modules

unless it is otherwise stated. We will now define the integral multi-tangent modules.
We refer the reader to [BIMS15, KS17, MZ14] for the definitions of the multi-tangent
spaces with rational and real coefficients.
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Let Y be the non-singular tropical toric variety corresponding to a fan Σ. Let ρ
be a simplicial cone of Σ which has rays in primitive integer directions r1, . . . , rs.
Then we define

T pYρq :“ Rn`1

xr1, . . . , rsy
and TZpYρq :“ Zn`1

xr1, . . . , rsy
.

If Yρ and Yη are a pair of strata such that Yη Ă Y ρ then the generators of the cone
η contain the generators of the cone ρ and thus we get projection maps:
(2.1) πρη : T pYρq Ñ T pYηq and πρη : TZpYρq Ñ TZpYηq.

Recall that a polyhedron in Y is the closure in Y of a rational polyhedron in some
stratum Yρ – Rk. Therefore, if σ is a polyhedron in Y , then relintσ is contained in
some stratum Yρ of Y . Let T pσq denote the tangent space to the relative interior of
σ in T pYρq when relintσ is contained in Yρ. Since σ is rational there is a full rank
lattice TZpσq Ă T pσq.
Definition 2.11. — Let Z be a rational polyhedral complex in a tropical toric

variety Y . The integral p-multi-tangent cosheaf of Z is a cellular cosheaf Fp of Z-
modules on Z. For a face τ of Z such that relint τ is contained in the stratum Yρ we
have

(2.2) FZ
p pτq “

ÿ

τ ĂσĂZρ

p
ľ

TZpσq.

For τ Ă σ, the maps of the cellular cosheaf iστ : FZ
p pσq Ñ FZ

p pτq are induced by
natural inclusions when intpσq and intpτq are in the same stratum of Y . Otherwise
are induced by the quotients πρη composed with inclusions when intpσq Ă Yρ and
intpτq Ă Yη.
Example 2.12. — Let Y be a tropical toric variety. Consider the polyhedral

structure on Y given by Y “
Ť

Y ρ induced by the toric stratification. One has

FY
p pY ρq “

p
ľ

TZpYρq –
p
ľ

Zcodim ρ,

and the cosheaf maps are the maps induced by the projection maps πρη defined
in (2.1).
Example 2.13. — Let Hn Ă Rn`1 denote the standard tropical hyperplane in

Rn`1. Then Hn is the tropical variety defined by the tropical polynomial function
fpx1, . . . , xn`1q “ maxt0, x1, . . . , xn`1u.

Its Newton polytope is the standard simplex in Rn`1.
The tropical hypersurface Hn is a fan of dimension n, it has n ` 2 rays that are

in the directions ´e1, . . . , ´en`1, and e1 ` . . . ` en`1. See the left hand side of
Figure 2.3 for the standard hyperplane in R3. Every subset of the rays of size less
than or equal to n spans a cone ofHn. If v is the vertex ofHn, then FHn

p pvq “ ΛpZn`1,
for 0 ď p ď n and FHn

n`1pvq “ 0. Moreover, we have

χvpλq :“
n
ÿ

p“0
p´1qp rank FHn

p pvqλp “ p1´ λqn`1
´ p´λqn`1.
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σ1
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x

τ2

τ1

τ3

Figure 2.2. The tropical line X in TP2 from Example 2.14.

Example 2.14. — Figure 2.2 shows a tropical line X contained in the tropical
projective plane TP2 from Example 2.2. The polyhedral structure on TP2 induced
by X has 7 vertices, 9 edges, and 3 faces of dimension 2.
For any face σ of this polyhedral structure on TP2, the rank of FTP2

p pσq depends
only on the dimension of the stratum of TP2 which contains relintpσq. If relintpσq is
contained in a stratum of TP2 of dimension k then FTP2

p pσq –
Źp Zk.

The directions of the rays of the fan for TP2 are
v1 “ p´1, 0q, v2 “ p0,´1q, and v3 “ p1, 1q.

Referring to the labeling in Figure 2.2, we have
FX

1 pxq “ xv1, v2, v3y – Z2, FX
1 pσiq “ xviy, and FX

1 pτiq “ 0.
When p “ 0, we have FX

0 pγq “ Z for all γ in X and FX
p pγq “ 0 for all γ in X when

p ě 2.

The following lemma about the structure of the cosheaves in the case of a non-
singular tropical hypersurface will be useful later on.

Lemma 2.15. — Let X be a non-singular tropical hypersurface in a tropical toric
variety Y . If τ is a face of X of dimension q whose relative interior is contained in a
stratum Yρ of dimension m, then

FX
p pτq –

p
à

l“0
FHm´q´1
p´l pvq b

l
ľ

TZpτq,

where Hm´q´1 is the standard tropical hyperplane of dimension m´ q ´ 1 in Rm´q

and v denotes its vertex.
If τ is a codimension one face of σ in X and relintpτq and relintpσq are contained in

the distinct strata Yρ and Yη, respectively, then the cosheaf map iστ : FX
p pσq Ñ FX

p pτq
together with the above isomorphisms commute with the map

(2.3)
p
à

l“0
FHm´q´1
p´l pvq b

l
ľ

TZpσq Ñ
p
à

l“0
FHm´q´1
p´l pvq b

l
ľ

TZpτq,
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which is induced by the map idbπηρ on each factor of the direct sum, where
πηρ :

Źl TZpσq Ñ
Źl TZpτq is from Equation (2.1).

Proof. — Recall that TZpτq denotes the integral points in the tangent space of the
face τ . Now let L be a m ´ q dimensional affine subspace of Rm – Yρ defined over
Z such that L intersects all faces of Xρ that contain relintpτq transversally and that
together TZpLq and TZpτq generate the lattice TZpYρq. By the above transversality
assumption, the intersection L1 “ LXX has a single vertex v1 contained in τ .
For every l there is a map

il : FL1

p´lpv
1
q b

l
ľ

TZpτq Ñ FX
p pτq,

given by taking the wedge product of the vectors in FL1

p´lpvq and
Źl TZpτq. Taking

the direct sum of the maps il for all 0 ď l ď p gives a map

(2.4)
p
à

l“0
FL1

p´lpv
1
q b

l
ľ

TZpτq Ñ FX
p pτq.

If σ is a facet of X X Yρ containing the face τ , then by our assumptions on L1, we
have

TZpσq – TZpτq ‘ TZpL
1
X σq.

Therefore,

FX
p pσq –

p
à

l“0
FL1Xσ
p´l pv

1
q b

l
ľ

TZpτq.

Now since FX
p pτq is generated by all FX

p pσq for σ a facet containing τ , the map in
Equation (2.4) is an isomorphism.
By the assumption that X is non-singular in Y , every non-empty stratum

Xρ “ YρXX is a non-singular tropical hypersurface in Rm, where m “ n`1´dim ρ.
Therefore, the hypersurface Xρ is defined by a tropical polynomial fρ and it is dual
to a primitive regular subdivision of the Newton polytope of fρ which is induced by
fρ. A face σ of X whose relative interior is contained in Xρ is dual to a face of the
dual subdivision of ∆pfρq, and since this dual subdivision is primitive, the face dual
to σ is a simplex. Therefore, near the vertex v1 the rational polyhedral complex L1 is
up to an integral affine transformation the same as a neighborhood of the vertex v
of the tropical hyperplane Hm´q´1 and we have FL1

p´lpv
1q – FHm´q´1

p´l pvq. This proves
the isomorphism stated in the Lemma 2.15.
If τ is a face of σ, and τ and σ are contained in Yη and Yρ respectively, for

η ‰ ρ, then we can write TZpYρq “ TZpLσq ‘ TZpσq and TZpYηq “ TZpLτ q ‘ TZpτq,
where Lσ and Lτ are the linear spaces chosen in the argument above to intersect
σ and τ , respectively. Since the polyhedral structure on X is proper in Y , the
map πρη : TZpYρq Ñ TZpYηq restricts to an isomorphism between TZpLσq and TZpLτ q.
Therefore, it also restricts to an isomorphism between FLσXX

p pvσq and FLτXX
p pvτ q

for all p. The claim about the commutativity of the above isomorphisms with the
maps in Equation (2.3) and iστ : FX

p pσq Ñ FX
p pτq follows since iστ is induced by

projecting along a direction πρη. �
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Corollary 2.16. — Let X be a non-singular tropical hypersurface of a tropical
toric variety Y . Let σ be a face ofX of dimension q whose relative interior is contained
in stratum Yρ of dimension m. Then the polynomial defined by

χσpλq :“
n
ÿ

p“0
p´1qp rank FX

p pσqλ
p.

is

χσpλq “p1´ λqm ´ p1´ λqqp´λqm´q.

Proof. — Using the isomorphism in Lemma 2.15, together with the formula for
the ranks of FHn´q

p pvq from Example 2.13, we obtain

χσpλq “ p1´ λqq
“

p1´ λqm´q ´ p´λqm´q
‰

.

The statement of the corollary follows upon simplification. �

In order to define the cellular tropical homology groups of a rational polyhedral
complex Z we must first fix orientations of each of its cells. Let Zq denote the cells
of dimension q of Z. We define an orientation map on pairs of cells, O : Zq ˆ Zq´1

Ñ t0, 1,´1u by:
(2.5)

Opσ, τq :“

$

’

&

’

%

0 if τ Ć σ,

1 if the orientation of τ coincides with its orientation in Bσ,
´1 if the orientation of τ differs from its orientation in Bσ.

Definition 2.17. — Let Z be a rational polyhedral complex and G a cellular
cosheaf on Z. The groups of cellular q-chains in Z with coefficients in G are

CqpZ; Gq “
à

dim σ“q
σ compact

Gpσq.

The boundary maps B : CqpZ; Gq Ñ Cq´1pZ; Gq are given by the direct sums of the
cosheaf maps iστ for τ Ă σ composed with the orientation maps Oστ for all τ and σ.
The qth homology group of G is

HqpZ; Gq “ HqpC‚pZ; Gqq.

Definition 2.18. — Let Z be a rational polyhedral complex and G a cellular
cosheaf on Z. The groups of Borel–Moore cellular q-chains in Z with coefficients in
G are

CBM
q pZ; Gq “

à

dimσ“q

Gpσq.

The boundary maps B : CBM
q pZ; Gq Ñ CBM

q´1 pZ; Gq are given by the direct sums of
the cosheaf maps iστ for τ Ă σ with the orientation maps Oστ for all τ and σ. The
qth homology group of G is

HBM
q pZ; Gq “ Hq

`

CBM
‚ pZ; Gq

˘

.
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Definition 2.19. — The pp, qqth tropical homology group is

(2.6) Hq

`

Z; FZ
p

˘

“ Hq

`

C‚
`

Z; FZ
p

˘˘

.

The pp, qqth Borel–Moore tropical homology group is

HBM
q

`

Z; FZ
p

˘

“ Hq

`

CBM
‚

`

Z; FZ
p

˘˘

.

Remark 2.20. — Both the Borel–Moore and the standard tropical cellular homol-
ogy groups of cosheaves are defined with respect to a fixed polyhedral structure.
Let X be a tropical hypersurface in a tropical toric variety Y , and consider the
polyhedral structure on X coming from the dual subdivision of its Newton polytope
and the polyhedral structure on Y induced by X. When pY,Xq is a cellular pair in
the sense of Definition 2.7 then the cellular homology groups from (2.6) of X or Y
are isomorphic to singular tropical homology groups of X or Y , respectively [Cur14,
Theorem 7.3.2].
On the other hand, even when pY,Xq is not a cellular pair, the Borel–Moore

tropical cellular homology groups of X and Y are always isomorphic to the Borel–
Moore singular homology groups of X and Y , respectively. In fact, one can always
find a compactification of the pair pY,Xq such that pX,XzXq, pY , Y zY q and pY ,Xq
are cellular pairs. The Borel–Moore homology groups of X are isomorphic to the
relative homology groups of the pair pX,XzXq, and similarly for Y and pY , Y zY q.

If G is a cellular sheaf on a rational polyhedral complex Z, then the group of q
cochains and q cochains with compact support of G are respectively,

Cq
pZ; Gq “

à

dimσ“q
σ compact

Gpσq and Cq
c pZ; Gq “

à

dimσ“q

Gpσq.

The complex of cochains and cochains with compact support of G are formed
from the cochain groups together with the restriction maps rτσ combined with the
orientation map O as in the case for a cosheaf. The cohomology groups of G are
defined as the cohomology of these complexes.

Definition 2.21. — Let Z be a rational polyhedral complex and G a cellular
sheaf on Z. The cohomology groups and cohomology groups with compact support
of G are respectively,

Hq
pZ; Gq :“ Hq

pC‚pZ; Gqq and Hq
c pZ; Gq :“ Hq

pC‚c pZ; Gqq.

Remark 2.22. — Given a rational polyhedral complex Z we can define a collec-
tion of cellular sheaves Fp

Z from the cosheaves FZ
p . For a face σ of Z set Fp

Zpσq

“ HompFZ
p pσq,Zq. For τ a face of σ the map ρτσ : Fp

Zpτq Ñ Fp
Zpσq is given by

dualizing the corresponding map from the cosheaf FZ
p . Then we have

Cq
pZ; Fp

Zq “ Hom
`

Cq
`

Z; FZ
p

˘

,Z
˘

and Cq
c pZ; Fp

Zq “ Hom
`

CBM
q

`

Z; FZ
p

˘

,Z
˘

.

Therefore for Z a non-singular tropical toric variety or a non-singular tropical hyper-
surface in a tropical toric variety, the tropical cohomology groups and cohomology
groups with compact support are respectively,
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Figure 2.3. The standard tropical hyperplane in R3 on the left its closure in the
tropical toric variety described in Example 2.23 on the right.

Hq
pZ; Fp

q :“Hq
`

Hom
`

C‚
`

Z; FZ
p

˘

,Z
˘˘

and

Hq
c pZ; Fp

q :“Hq
`

Hom
`

CBM
‚

`

Z; FZ
p

˘

,Z
˘˘

.

Let us end the preliminaries with two examples that show the necessity of the
assumptions in Theorem 1.1

Example 2.23. — Here is a counter example to Theorem 1.1 when we drop the
condition of combinatorial ampleness from Definition 2.5. Consider the standard
tropical hyperplane Xo Ă Rn`1. The case when n “ 2 is depicted in the left of
Figure 2.3. Let Σ be the fan for n ` 1 dimensional projective space blown up in a
toric fixed point, and let Y be the tropical toric variety defined by Σ. LetX denote the
compactification of Xo in Y . Then it can be computed that rankH1pX; FX

1 q “ 1 and
rankH1pY ; FY

1 q “ 2, so the map H1pX; FX
1 q Ñ H1pY ; FY

1 q is not an isomorphism
when n ą 2. The connected component of Y zX containing the stratum of Y dual to
the ray of Σ corresponding to the exceptional divisor of the blow up does not satisfy
the condition to be combinatorially ample.
The complex geometric version of the same scenario also fails the Lefschetz hyper-

plane section theorem, since the hypersurface of the toric variety is not ample.

When pY,Xq is not a cellular pair, the standard cellular tropical homology groups
are not isomorphic to the standard singular tropical homology groups from [IKMZ19].
Upon subdividing the spaces Y and X to form a cellular pair we can nevertheless
use the cellular chain complexes to compute the tropical homology. However, the
next example shows that the condition that pY,Xq equipped with their inherent
subdivisions form a cellular pair is required for the Lefschetz theorem to hold for
standard tropical homology, even when we compute the groups after refining the
polyhedral structure or using singular tropical homology.

Example 2.24. — Consider the case when the Newton polytope of X is an interval
of lattice length equal to 1. Then the tropical hypersurface X is a (classical) Z-affine
subspace of Y “ Rn`1 of dimension n. Upon subdividing X and Y so that they form
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a cellular pair, or using singular tropical homology, we can compute the standard
tropical homology groups to be:

Hq

`

X; FX
p

˘

“

#

Źp Zn if q “ 0,
0 if q ‰ 0

and Hq

`

Y ; FY
p

˘

“

#

Źp Zn`1 if q “ 0,
0 if q ‰ 0.

Whereas, the Borel–Moore homology groups are

HBM
q

`

X; FX
p

˘

“

#

Źp Zn if q “ n,

0 if q ‰ n

and

HBM
q

`

Y ; FY
p

˘

“

#

Źp Zn`1 if q “ n` 1,
0 if q ‰ n` 1.

We see that the conclusion of the Lefschetz section theorem as stated in Theo-
rem 1.1 does not hold for the standard tropical homology groups, however there is
no contradiction for the Borel–Moore homology groups.

3. Tropical Lefschetz section theorem

A tropical hypersurface X in a tropical toric variety Y induces a polyhedral
structure on Y . Unless it is explicitly mentioned we will use this polyhedral structure
on Y to compute its cellular tropical homology groups. Following Remark 2.20, we
obtain the same homology groups using this polyhedral structure as if we chose the
polyhedral structure from the stratification of Y dual to the polyhedral fan defining
it, see Example 2.12.
If Z 1 Ă Z is a rational subpolyhedral complex and G is a cosheaf on Z, then the

restriction cosheaf G|Z1 is a cosheaf on Z 1 which assigns the Z-module Gpσq for σ a
face of Z 1. The cosheaf G|Z1 can also be considered as a cosheaf on Z. In this case,
it assigns Gpσq if σ is a face of Z 1 and 0 otherwise.
Since we consider the polyhedral structure on Y induced by X, the tropical hy-

persurface X is a rational subpolyhedral complex of Y and we have the cosheaves
FY
p |X , which can be considered on X or Y as described above.
To prove Theorems 1.1 and 1.2, we consider two exact sequences of cosheaves. The

first is the exact sequence of cosheaves on Y given by,
(3.1) 0 Ñ FY

p |X Ñ FY
p Ñ Qp Ñ 0.

The second one consists of cosheaves on X and is given by,
(3.2) 0 Ñ FX

p Ñ FY
p |X Ñ Np Ñ 0.

The injective maps on the left hand side of both cosheaf sequences are both
natural inclusions on the stalks over faces. The cosheaves Qp and Np are defined as
the cokernel cosheaves in both short exact sequences. The cosheaves FY

p |X , FY
p , and

FX
p are all free Z-modules. Moreover, since X is a non-singular tropical hypersurface,

the cosheaves Qp and Np are also cosheaves of free Z-modules.
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Proposition 3.1. — If X is a non-singular tropical hypersurface in Y , the
cosheaves Qp and Np from (3.1) and (3.2) are cosheaves of free Z-modules.

Proof. — The cosheaf Qp satisfies Qppσq “ 0 if σ is a face of X and Qppσq “ Fppσq
for σ a face of Y and not a face of X. Therefore, the cosheaf Qp consists of torsion
free Z-modules.
Given a face σ of dimension q of X, the Z-module FX

p pσq is a submodule of FY
p pσq,

and the map FX
p pσq Ñ FY

p pσq is simply the inclusion map.
Let Yρ be the minimal stratum of Y such that σ is contained in Yρ. Let m be the

dimension of Yρ (as X is non-singular, we have m ě 1). By Lemma 2.15, one has

FX
p pσq –

p
à

l“0
FHm´q´1
l pvq b

p´l
ľ

Zq Ď
p
à

l“0

l
ľ

Zm´q b
p´l
ľ

Zq –
p
ľ

Zm “ FY
p pσq.

Using the canonical base te1 . . . , em´q, em´q`1, . . . , emu of Zm´q ˆ Zq – Zm and
the associated base tei1 ^ . . . ^ eipu0ď i1ă ... ipďm of

Źp Zm, we immediately see from
that description and the definitions of the standard tropical hyperplane Hm´q´1 (see
Example 2.13) and the cosheaves FHm´q´1

l that FX
p pσq is the free sub-Z-module of

FY
p pσq –

Źp Zm spanned by all the elements ei1 ^ . . . ^ eil ^ eil`1 ^ . . . ^ eip such
that i1 ă . . . ă ip, that il ď m ´ q and that l ď m ´ q ´ 1 (for l “ 0, . . . , p).
Therefore, the quotient FY

p pσq{FX
p pσq is free. �

Example 3.2. — If we drop the non-singularity assumption, the cosheaves Np

may have torsion. Consider for example the tropical hypersurface in R3 dual to the
simplex of volume 2 with vertices p0, 0, 0q, p1, 0, 0q, p0, 1, 0q and p1, 1, 2q, and consider
the face σ of X adjacent to the edges of X of direction p´2, 0, 1q and p0,´2, 1q. Then
the class in N1pσq represented by the vector p´1,´1, 1q is a 2-torsion class, since
p´1,´1, 1q P FY

1 |Xpσq but p´1,´1, 1q R FX
1 pσq and p´2,´2, 2q P FX

1 pσq.

Example 3.3. — Consider again the tropical line X in TP2 from Example 2.14
and Figure 2.2. Then the cosheaf Qp on TP2 assigns the trivial Z-module to any
face of TP2 which is also a face of X. For σ a face of TP2 and not a face of X,
then Qppσq “ FTP2

p pσq. The inclusion maps Qppσq Ñ Qppτq are either 0 or equal to
ιστ : FTP2

p pσq Ñ FTP2

p pτq.
For x the unique vertex of sedentarity 0 of X, the cosheaf Np assigns Nppxq “ 0,

for all p ă 2. When p “ 2, we have Nppxq “
Ź2 Z2.

For an edge σi of X the Z-module Nppσiq is a free module of rank 1, similarly for
the three other vertices τi of X that have non-zero sedentarity.

To prove the Lefschetz section theorem for hypersurfaces, we first prove some
useful lemmas, then some statements about the vanishing of both the standard and
Borel–Moore homology with coefficients in Qp and with coefficients in Np.
We recall the definition of γo for a face γ of X of dimension s and sedpγq “ 0. For

each cone ρ in the fan Σ defining Y , set γρ :“ γ X Yρ and define

γ˝ :“
ğ

ρ

relint γρ.
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The set γ˝ is not a rational polyhedral complex since the strata are not closed
polyhedra, however γo is a rational subpolyhedral complex of Y . The set γo is a
stratified subset of Y and it can be viewed as a poset with the order relations given
by inclusions. By Lemma 3.5, the set γo has a unique minimal strata.
If γ is a face of a rational polyhedral complex Z and G is a cellular cosheaf on

Z, we can consider the cosheaf G restricted to γo even though γo is not a rational
polyhedral complex. Similarly to Definition 2.10, the restriction G|γo is a functor from
γo considered as a poset to the category of Z-modules. The groups of Borel–Moore
chains of G restricted to γo are
(3.3) CBM

q pγo; G|γoq :“
à

dim ρ“q

Gpγρq.

The chain groups form a complex with the boundary map
(3.4) B : CBM

q pγo; G|γoq Ñ CBM
q´1 pγ

o; G|γoq

given by the cosheaf maps combined with the orientation map inherited from Z.
The homology groups of this complex are denoted HBM

q pγo; G|γoq. For simplicity we
denote the cosheaves Fγo

p |γ˝ by simply Fγo

p .
If X is a hypersurface in Rn`1, then for every face γ of X the complex γo consists

of a single open cell relintpγq. See Figure 3.1 and Example 3.4 for illustrations of γo.

Example 3.4. — Let X be a tropical hypersurface in a 3-dimensional tropical
toric variety Y . We describe the sets γo for some faces γ of X. If γ is a face of X
which does not intersect any of the strata Yρ for ρ ‰ 0 then γ˝ consists of a single cell
which is simply relintpγq. Therefore γ˝ is combinatorially isomorphic to Rq where q
is the dimension of γ.
Suppose that γ is a 2-dimensional face of X and γ X Yρ ‰ H for a unique 1-

dimensional stratum Yρ. There must be two 2-dimensional strata Yρ1 and Yρ2 of Y
which contain Yρ, moreover γ has non-empty intersection with both Yρ1 and Yρ2 .
Therefore, γo consists of four open cells and is combinatorially isomorphic to T2, see
the left hand side of Figure 3.1. If γ is 2-dimensional and intersects only a single
2-dimensional stratum Yρ, then γo consists of two open cells and is combinatorially
isomorphic to Rˆ T.
Suppose γ is a 1-dimensional face of X of sedentarity 0 such that γ X Yρ is non-

empty for a unique stratum Yρ of codimension 1. Such a situation is depicted on the
right hand side of Figure 3.1. Then γo consists of two open cells, the 1-dimensional
cell γ0 “ γ X R3 and the point γρ :“ γ X Yρ.
In the case of such a 1-dimensional face γ, we can describe the restriction cosheaves.

Namely, we have FY
p |γopγq –

Źp Z3 and Fγo

p pγ
oq –

Źp Z for all p. The restrictions
of the cosheaves FX

p to γo are

FX
0 |γopγq “ Z FX

1 |γopγq “ Z3 FX
2 |γopγq – Z2

and FX
p |γopγq “ 0 otherwise.

Lemma 3.5. — Let Y be a tropical toric variety whose defining fan is simplicial
and X be a combinatorically ample tropical hypersurface that is proper in Y . Then
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Figure 3.1. A depiction of the sets γo for two faces γ from Example 3.4

for every face γ of Y , considered with the polyhedral structure induced by X, the
stratified set γo has a unique minimal face by inclusion.

Proof. — Let Σ be the simplicial fan defining Y . We show that for any face γ of
Y , the collection Sγ of cones ρ P Σ such that γ X Yρ ‰ H forms a closed cone of Σ,
which in particular implies the statement of the lemma, as the minimal face of γo
will correspond to the intersection of γ with the stratum of Y of the maximal face
of that closed cone.
Consider any top-dimensional cell rγ of Y such that γ is a face of rγ. As we have

assumed combinatorial ampleness, the stratified set rγo is combinatorially isomorphic
to Tk ˆRn`1´k for some 0 ď k ď n` 1, where n` 1 is the dimension of Y . Then rγo

has a minimal face which corresponds to the face t´8uk ˆ Rn`1´k Ă Tk ˆ Rn`1´k

under the isomorphism. The minimal face of rγo corresponds to some simplicial cone
rρ of Σ and every other face of rγo corresponds to a face of rρ. So the collection of
cones in Sγ̃ are the faces of rρ.
By [OR13, Lemma 3.9], we have γ X Yρ ‰ H if and only if Cγ X relintpρq ‰ H,

where Cγ is the recession cone of γ. Therefore, if a ray of Σ is in Sγ it is in Sγ̃,
and therefore a ray of rρ. By convexity of the recession cone, if Cγ X relintpρiq ‰ H
for a collection of rays ρ1, . . . , ρk, then Cγ X relintpxρ1, . . . , ρkyq ‰ H. Since rρ is a
simplicial cone all faces are simplicial, and Sγ is a cone of Sγ̃ which means it is a
cone of Σ. Therefore it follows that γo has a unique minimal face. �

Lemma 3.6. — Let X be a non-singular and combinatorially ample tropical
hypersurface of an n` 1 dimensional non-singular tropical toric variety Y . Consider
the polyhedral structure on Y obtained by refinement by X. Let γ be a face of Y of
sedentarity 0. Then for any p and all q ‰ dim γ

HBM
q

`

γo; Fγo

p

˘

“ 0.

Proof. — Suppose γ is of dimension q and that the minimal face σ of γo is of
dimension k. The Borel–Moore chain groups for γo are

CBM
q

`

γo; Fγo

p

˘

“
à

γρXγo‰H
dim γρ“q

p
ľ

TZpγρq.
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The stratification on γo is isomorphic to the stratification of Rk ˆ Tq´k. Moreover,
there are lattice isomorphisms between the integral tangent spaces TZpγρq and the
integral tangent spaces of the corresponding strata. These isomorphisms are compat-
ible with the projection maps between the strata and hence the boundary maps of
the chain complexes. Therefore, the chain complex CBM

‚ pγo; Fγo

p q is isomorphic to

CBM
‚

´

Rk
ˆ Tq´k; FRkˆTq´k

p

¯

and there are isomorphisms of the corresponding homology groups.
By [JRS18], the space Rk ˆ Tq´k satisfies Poincaré duality for tropical homology

and the Borel–Moore tropical homology groups of Rq´kˆTk are zero except in degree
q “ dim γ. The statement of the Lemma 3.6 follows. �

Lemma 3.7. — Let X be a n-dimensional non-singular tropical hypersurface in
a tropical toric variety Y . For σ a face of X of dimension q and sedentarity sedpσq,
we have Nppσq “ 0 if p ď n´ q ´ sedpσq.

Proof. — The Z-modules Nppσq, FY
p |Xpσq, and FX

p are all free, so it suffices to
show that the ranks of FY

p |Xpσq and FX
p are equal when p ď n ´ q ´ sedpσq. By

Example 2.14,
rank FY

p |Xpσq “

ˆ

n` 1´ sedpσq
p

˙

.

By Corollary 2.16, the polynomial defined by

χσpλq :“
n
ÿ

p“0
p´1qp rank FX

p pσqλ
p.

is
χσpλq “p1´ λqn`1´sedpσq

´ p1´ λqqp´λqn´q`1´sedpσq.

So that
rank FX

p pσq “

ˆ

n` 1´ sedpσq
p

˙

if p ď n´ q ´ sedpσq.

Therefore Nppσq “ 0 when p ď n´ q ´ sedpσq, and the proof is completed. �

Lemma 3.8. — Let X be a combinatorially ample n-dimensional non-singular
tropical hypersurface in a tropical toric variety Y . For a face γ of X of sedentarity 0
we have

HBM
q

`

γ˝; FX
p

ˇ

ˇ

γ˝
˘

“ 0
for all q ‰ dim γ.

Proof. — Denote by γm the unique minimal face of γ˝ and suppose it is contained
in the stratum Yρm .. Let Γ denote the star of γm in Xρm , that is,

Γ “ starXρm pγmq “ trelintpσq | γm Ă σ Ă Xρmu Ă Rn`1´sedpγmq.

Then as a rational polyhedral complex Γ Ă Rn`1´sedpγmq is, up to GLn`1´sedpγmqpZq,
equal to a basic open set of Γ1ˆRdim γm where Γ1 “ Hn´sedpγmq´dim γm is the standard
tropical hyperplane in Rn`1´sedpγmq´dim γm . For the notion of basic open set see [JSS19,
Definition 3.7].
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Moreover, the star of any other face γρ in γo is, up to GLn`1pZq, equal to a basic
open set of Γ1 ˆRdim γρ . Let v be the vertex of Γ1, then by Lemma 2.15, for any face
γρ in γo we have

FX
p pγρq –

p
à

l“0
FΓ1
p´lpvq b

l
ľ

Zdim γρ .

This isomorphism follows from the tensor product formula for the Z-module FX
p pγρq

in Lemma 2.15.
For each l from 0 to p, let C l, p

‚ denote the chain complex whose terms are

C l,p
q “

à

ρ | γρ‰H
sedpγρq“dim γ´q

FΓ1
p´lpvq b

l
ľ

Zdim γρ .

We define the boundary maps of the complex on the direct summands. If γρ1 is a
face of γρ then the map on the direct summand is

idb πρρ1 : FΓ1
p´lpvq b

l
ľ

Zdim γρ Ñ FΓ1
p´lpvq b

l
ľ

Zdim γρ1 ,

where πρρ1 :
Źl Zdim γρ Ñ

Źl Zdim γρ1 is induced by the projection map
πρρ1 : TZpYρq Ñ TZpYρ1q

from (2.1). If γρ1 is not a face of γρ, then the map is 0.
Following the description of the cosheaf maps from Lemma 2.15, there are isomor-

phisms of chain complexes

CBM
‚

`

γo; FX
p

ˇ

ˇ

γo
˘

–

p
à

l“0
Cp, l
‚ .

By distributivity of tensor products we also have the isomorphisms

Cp,l
‚ – FΓ1

p´lpvq b C
BM
‚

´

γo; Fγo

l

¯

.

Moreover, the homology of the chain complex CBM
‚ pγo; Fγo

l q vanishes except in
degree q “ dim γ by Lemma 3.6, so we also have HBM

q pγo,Fγo

l q “ 0 for all q ‰ dim γ.
Because the tensor product is right exact, we have HqpC

p, l
‚ q “ 0 for q ‰ dim γ and

all l and p. It now follows that HBM
q pγ˝; FX

p |γ˝q “ 0 for q ‰ dim γ. �

Lemma 3.9. — Let X be a combinatorially ample n-dimensional non-singular
tropical hypersurface in a tropical toric variety Y . For a face γ of X of sedentarity 0
we have

HBM
q pγ˝; Np|γ˝q “ 0

for all q ‰ dim γ.

Proof. — The chain groups CBM
q pγ˝; Np|γ˝q are all zero for q ą dim γ, therefore

it suffices to prove the vanishing of the homology of the cosheaf Np|γ˝ in degrees
strictly less than dim γ. To do this we return to the short exact sequence from (3.2)
but restricted to γo, namely

0 Ñ FX
p |γ˝ Ñ FY

p |γ˝ Ñ Np|γ˝ Ñ 0.
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By proving the vanishing of the appropriate homology groups of the cosheaves FX
p |γ˝

and FY
p |γ˝ in order to show the vanishing of the homology groups as stated in the

theorem. By Lemma 3.8 we have HBM
q pγ˝; FX

p |γ˝q “ 0 for q ă dim γ.
Next we will show that

HBM
q

`

γ˝; FY
p

ˇ

ˇ

γ˝
˘

“ 0 for q ă dim γ .

By Lemma 3.5, there is a unique maximal cone ρm of the fan of Y such that
Yρm X γ

o ‰ H. Let rY be the tropical toric variety of dimension n` 1 defined by the
fan consisting of the single cone ρm. There is a correspondence between the strata of
γo and the strata of rY , where a q-dimensional stratum σ of γ˝ corresponds to a pn`
1´ dim γ ` qq-dimensional stratum rσ of rY . Moreover, under this correspondence we
have FY

p |γopσq “ F Ỹ
p prσq. The cellular chain complex CBM

‚ pγ˝; FY
p |γ˝q is isomorphic

to the chain complex
CBM
‚`n`1´dim γ

´

rY ; F Ỹ
p

¯

.

By Lemma 3.6 it follows that HBM
q prY ; F Ỹ

p q “ 0 for q ă n ` 1 and therefore,
HBM
q pγ˝; FY

p |γ˝q “ 0 for q ă dim γ.
By considering the long exact sequence in homology from the sequence (3.2) re-

stricted to γo proves that Hqpγ
o; Np|γoq “ 0 for all q ‰ dim γ. �

Proposition 3.10. — Let X be a combinatorially ample non-singular tropical
hypersurface of an n ` 1 dimensional non-singular tropical toric variety Y . Then
HBM
q pY ; Qpq “ 0 for all q ă n` 1, and therefore the map

HBM
q

`

X; FY
p

ˇ

ˇ

X

˘

Ñ HBM
q

`

Y ; FY
p

˘

is an isomorphism when q ă n and a surjection when q “ n.
If in addition pY,Xq is a cellular pair and every parent face of a compact face of

Y zX is compact, then HqpY ; Qpq “ 0 for all q ă n` 1, and therefore the map
Hq

`

X; FY
p

ˇ

ˇ

X

˘

Ñ Hq

`

Y ; FY
p

˘

is an isomorphism when q ă n and a surjection when q “ n.

Proof. — We consider the polyhedral structure on Y given by refinement by X.
For any face σ of Y which is also a face of X we have Qppσq “ 0. Therefore we have
the following isomorphism of cellular chain complexes,
(3.5) CBM

‚ pY ; Qpq “
à

σ PY zX

FY
p pσq.

When pY,Xq is a cellular pair, the cellular chain groups compute the standard
homology by Remark 2.20 and we also have the isomorphism
(3.6) C‚pY ; Qpq “

à

σ PY zX
σ compact

FY
p pσq.

The complement Y zX consists of connected components each of dimension n` 1.
Each such connected component is equal to γo where γ is a n` 1 dimensional face
of Y with polyhedral structure induced by X. For γ a face of Y of dimension n` 1,
there is the equality of cosheaves Fγo

p – FY
p |γo . Each face σ in Y zX is contained in
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γo for a unique n` 1-dimensional face γ of Y . Moreover, the boundary of the face σ
contained in γo is also contained in γo. Therefore, the cellular chain complexes for
Qp split and we have the following isomorphisms,

(3.7) CBM
‚ pY ; Qpq “

à

dim γ“n`1
CBM
‚

`

γo; Fγo

p

˘

and

(3.8) C‚pY ; Qpq “
à

dim γ“n`1
γ compact

CBM
‚

`

γo; Fγo

p

˘

.

This produces the isomorphisms

HBM
q pY ; Qpq “

à

dim γ“n`1
HBM
q

`

γo; Fγo

p

˘

and
HqpY ; Qpq “

à

dim γ“n`1
γ compact

HBM
q

`

γo; Fγo

p

˘

.

It follows from Lemma 3.6 that HBM
q pγo; Fγo

p q “ 0 if q ‰ n ` 1, and we obtain
that HqpY ; Qpq “ HBM

q pY ; Qpq “ 0 for all q ă n` 1.
A direct comparison of the respective chain complexes gives isomorphisms

Hq

`

Y ; FY
p

ˇ

ˇ

X

˘

– Hq

`

X; FY
p

ˇ

ˇ

X

˘

and HBM
q

`

Y ; FY
p

ˇ

ˇ

X

˘

– HBM
q

`

X; FY
p

ˇ

ˇ

X

˘

.

Lastly, combining this with the long exact sequence in homology associated to the
short exact sequence (3.1) and the vanishing of HBM

q pY ; Qpq and HqpY ; Qpq for all
q ă n` 1 proves the statement of the proposition. �

Proposition 3.11. — Let X be a combinatorially ample non-singular n-dimen-
sional tropical hypersurface in a n` 1 dimensional non-singular tropical toric variety
Y . Then

HBM
q pX; Npq “ 0

for all p` q ď n, and therefore the map

HBM
q

`

X; FX
p

˘

Ñ HBM
q

`

X; FY
p

ˇ

ˇ

X

˘

is an isomorphism when p` q ă n and a surjection when p` q “ n.
If in addition pY,Xq is a cellular pair and every parent face of a compact face of

X is compact, then HqpX; Npq “ 0 for all p` q ď n, and therefore the map

Hq

`

X; FX
p

˘

Ñ Hq

`

X; FY
p

ˇ

ˇ

X

˘

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Proof. — By Lemma 3.7, for a face σ of dimension q and sedentarity k, we have
Nppσq “ 0 if k ă n´ q ´ p` 1. Moreover, by assumption X is proper in Y so there
are no faces of X of dimension q and which have order of sedentarity strictly greater
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than n´ q. Therefore, the Borel–Moore cellular chain groups with coefficients in Np

can be written as,

(3.9) CBM
q pX; Npq :“

n´q
à

k“maxt0, n´p´q`1u

à

dimσ“q
sedpσq“k

Nppσq.

Perform the change of variables k ` q “ m:

(3.10) CBM
q pX; Npq :“

n
à

m“maxtq, n´p`1u

à

dimσ“q
sedpσq“m´q

Nppσq.

If in addition pY,Xq is a cellular pair, by Remark 2.20 the cellular chain complexes
compute the standard homology of X and we also have the isomorphism

(3.11) CqpX; Npq :“
n
à

m“maxtq, n´p`1u

à

dimσ“q
sedpσq“m´q
σ compact

Nppσq.

We now filter the cellular chain complex for Np using the order of sedentarity of
faces. Set,

CBM
q,m pX; Npq :“

à

dimσ“q
sedpσqďm´q

Nppσq and Cq,mpX; Npq :“
à

dimσ“q
sedpσqďm´q
σ compact

Nppσq

Notice that C‚
q,mpX; Npq Ă C‚

q,m`1pX; Npq, where the ‚ in the exponent denotes
either Borel–Moore or standard homology.
Since X intersects the boundary of Y properly, the boundary operator can only

increase the order of sedentarity by at most 1. Therefore,
BC‚

q,mpX; Npq Ă C‚
q´1,mpX; Npq,

and there is a filtration of the chain complex C‚
‚pX; Npq:

C‚
‚pX; Npq “ C‚

‚, npX; Npq Ą C‚
‚, n´1pX; Npq Ą ¨ ¨ ¨ Ą C‚

‚, m̃pX; Npq Ą 0,
where rm “ maxtq, n ´ p ` 1u. The first and last terms of the filtration come from
the bounds on the direct sum in Equation (3.10).
The spectral sequence associated to this filtration for the Borel–Moore complex

has 0th page consisting of the terms
(3.12) E0

q,m –
à

dimσ“q
sedpσq“m´q

Nppσq.

The differentials B0 : E0
q,m Ñ E0

q´1,m are induced by the usual cellular differentials.
The complex E0

‚,m is then
(3.13) 0 Ñ E0

m,m Ñ E0
m´1,m Ñ . . . Ñ E0

1,m Ñ E0
0,m Ñ 0.

Notice that the differential B0 decreases the dimensions of the cells by one and also
increases the sedentarity of the cell by one. A q-dimensional face of sedentaritym´q is
in the boundary of a unique face γ of X of dimension m and sedentarity 0. Moreover,
the differential B0 is defined on the direct summands from (3.12) and it restricts to
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a non-zero map Nppσq Ñ Nppσ
1q if and only if σ and σ1 are contained in the same

m-dimensional sedentarity 0 face γ of X. In this case, the map Nppσq Ñ Nppσ
1q is

the same as the one defined in (3.4) for the complex CBM
‚ pγ˝; Np|γoq. Therefore, we

have an isomorphism of complexes for every m:
E0
‚,m “

à

dim γ“m
sedpγq“0

CBM
‚ pγ˝; Np|γoq .

By Lemma 3.9, for a face γ of dimension m and sedentarity 0, we have HBM
q pγ˝;

Np|γ˝q “ 0 for q ‰ m, and the second page of the spectral sequence associated to the
filtration under consideration satisfies E1

q,m “ 0 if q ‰ m. Moreover, for m ď n´ p

the entire complex E0
‚,m is 0 by Lemma 3.7, so E1

q,m “ 0 for all q when m ď n´ p.
The differentials at the rth page of the spectral sequence are given by Br : Er

q,m Ñ

Er
q´1,m`r. Therefore, the spectral sequence E‚‚, ‚ satisfies Er

q,m “ 0 for any r ě 1 and
q ď n´ p. Since E‚‚, ‚ converges, we conclude that HBM

q pX; Npq “ 0 for p` q ď n.
To obtain the analogous statement for HqpX; Npq, consider the spectral sequence

associated to the filtration of the chain complex for the standard homology. The
first page of this spectral sequence has terms like in Equation (3.12), except that
the sum is taken over the faces σ which are compact. In order to proceed with a
similar argument to that used for Borel–Moore homology, we require the assumption
that if σ is compact then the unique face γ of X of sedentarity 0 which contains
σ is also compact. Then the rest of the argument is the same as in the case of the
Borel–Moore homology except we restrict to only compact faces of X.
To complete the proof of the proposition, consider the long exact sequence in

homology associated to the short exact sequence in (3.2). Applying the vanishing
statements for HBM

q pX; Npq gives the isomorphisms HBM
q pX; FX

p q – HBM
q pY ; FY

p q

for all p` q ă n. This completes the proof of Proposition 3.11. �

Theorem 1.1, which we state again, is now a trivial consequence of the two previous
propositions.

Theorem (Theorem 1.1). — Let X be a non-singular and combinatorially ample
tropical hypersurface of an n` 1 dimensional non-singular tropical toric variety Y .
Then the map induced by inclusion

i˚ : HBM
q

`

X; FX
p

˘

Ñ HBM
q

`

Y ; FY
p

˘

is an isomorphism when p` q ă n and a surjection when p` q “ n.
If additionally, the pair pY,Xq is a cellular pair and every parent face of a compact

face of X is compact, then the map induced by inclusion
i˚ : Hq

`

X; FX
p

˘

Ñ Hq

`

Y ; FY
p

˘

is an isomorphism when p` q ă n and a surjection when p` q “ n.

Proof. — The proof of the theorem follows by combining the statements in Propo-
sitions 3.10 and 3.11. �

We now present the proof of the Lefschetz section theorem for the tropical homology
groups with real coefficients of tropical hypersurfaces which are not necessarily non-
singular, but are still proper in a non-singular tropical toric variety.
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Theorem (Theorem 1.2). — Let X be a combinatorially ample tropical hyper-
surface of an n` 1 dimensional non-singular tropical toric variety Y such that X is
proper in Y . Then the maps induced by inclusion

i˚ : HBM
q

`

X; FX
p b R

˘

Ñ HBM
q

`

Y ; FY
p b R

˘

are isomorphisms when p ` q ă n and surjections when p ` q “ n. If additionally,
the pair pY,Xq is a cellular pair and every parent face of a compact face of Y is
compact, then the maps induced by inclusion

i˚ : Hq

`

X; FX
p b R

˘

Ñ Hq

`

Y ; FY
p b R

˘

are isomorphisms when p` q ă n and surjections when p` q “ n.

Proof. — The proof follows the same strategy as the proof of the Lefschetz the-
orems for the integral tropical homology groups. First we tensor the two exact
sequences of Z-module cosheaves from (3.1) and (3.2) with R to obtain two exact
sequences of cosheaves of R-vector spaces.
The vanishing of the homology groups HqpY ; Qpq from Proposition 3.10 still holds

for HqpY ; Qp bRq. The chain groups still decompose as in the proof over Z, namely

(3.14) CBM
‚ pY ; Qp b Rq “

à

dim γ“n`1
CBM
‚

`

γo; Fγo

p b R
˘

and
(3.15) C‚ pY ; Qp b Rq “

à

dim γ“n`1
γ compact

CBM
‚

`

γo; Fγo

p b R
˘

.

Since Y is non-singular and X is combinatorially ample in Y for each n` 1 dimen-
sional face γ of Y we also have isomorphisms of chain complexes

CBM
‚

`

γo; Fγo

p b R
˘

– CBM
‚

´

Rm
ˆ Tn`1´m; FRmˆTn`1´m

p b R
¯

as in the proof of Lemma 3.6. The homology groups of the complex on the right hand
side of the above isomorphism vanish as in the integral case by [JSS19, Section 4].
We claim that a variant of Proposition 3.11 holds for the cosheaf NpbR. In order

to prove this we describe the dimensions of the vector spaces Fppσq when X is a
tropical hypersurface. Consider the polyhedral decomposition of Y induced by X,
and let v be a vertex of X of sedentarity 0. Then v is contained in some n ` 1
dimensional face γ of this polyhedral decomposition of Y . For p ď n we have

Fppvq b R “
ÿ

vĂσĂ γ
dimσ“n

p
ľ

TY pσq,

where in the sum the faces of σ are faces of X. The number of faces σ of dimension
n is at least n ` 1. Up to a linear transformation, we can assume that the first
n` 1 hyperplanes are the standard hyperplanes xi “ 0 in Rn`1. And then for p ď n
we have

Fppvq b R “
ÿ

vĂσĂ γ
dimσ“n

p
ľ

TY pσq “
p
ľ

Rn`1.
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For any p ď n we have FX
p pvqbR “

ŹpRn`1, and for p ą n we have FX
p pvqbR “ 0.

Therefore, we have

χR
v pλq :“

n
ÿ

p“0
p´1qp dim

`

FX
p pvq b R

˘

λp “ p1´ λqn`1
´ p´λqn`1.

We can repeat the above argument for vertices of X of non-zero sedentarity and also
apply the same argument for the Künneth type formula from Lemma 2.15. Therefore,
if τ is a face of X of dimension q whose relative interior is contained in a stratum
Yρ of dimension m, we obtain

FX
p pτq –

p
à

l“0
FHm´q´1
p´l pvq b

l
ľ

TZpτq,

so that, as in Corollary 2.16, we have
χτ pλq “ p1´ λqs ´ p1´ λqqp´λqm´q.

This description enables us to conclude that Lemma 3.7 holds for Np bR. Similarly
the proofs of Lemmas 3.8 and 3.9 as well as Proposition 3.11 hold for a arbitrary hy-
persurface when using R coefficients. Then the proof of the Theorem 1.2 is completed
in the same way as the proof of Theorem 1.1. �

4. The tropical homology of hypersurfaces is torsion free

We start this section with the proof of Theorem 1.3, which uses the Lefschetz section
theorem for the integral homology of a non-singular tropical hypersurface. This
proposition establishes that the integral tropical homology groups of the hypersurface
are also torsion free if the integral tropical homology groups of the tropical toric
variety are as well.

Theorem (Theorem 1.3). — Let X be a non-singular and combinatorially ample
tropical hypersurface in a non-singular tropical toric variety Y such that pY,Xq
is a cellular pair and every parent face of a compact face of Y is compact. If the
tropical homology groups HqpY ; Fpq are torsion free for all p and q, then both the
Borel–Moore and standard tropical homology groups of X are also torsion free.

Proof. — Let X be a non-singular tropical hypersurface of a tropical toric variety
Y such that the standard tropical homology of Y is torsion free.
By the universal coefficient theorem for cohomology [Hat02, Theorem 3.2] for every

p and q we have the following short exact sequence:
0 Ñ Ext

`

Hn´q´1
`

X; FX
n´p

˘

,Z
˘

Ñ Hn´q
`

X; Fn´p
X

˘

Ñ Hom
`

Hn´q

`

X; FX
n´p

˘

,Z
˘

Ñ 0.

Notice that the cohomology of the sheaf Fn´p
X appears in the middle term because

Cq
pX; Fp

Xq – Hom
`

Cq
`

X; FX
q

˘

,Z
˘

.
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If p` q ě n, then 2n´ p´ q ´ 1 ă n, and it follows from Theorem 1.1 that
Hn´q´1

`

X; FX
n´p

˘

– Hn´q´1
`

Y,FY
n´p

˘

.

Since Hn´q´1pY ; FY
n´pq is a free Z-module by hypothesis, we conclude that

Ext
`

Hn´q´1
`

X; FX
n´p

˘

,Z
˘

“ 0.

Also the Z-module HompHn´qpX; FX
n´pq,Zq is free since it consists of maps to a free

module. Therefore, for all p` q ě n we have
Hn´q

`

X; Fn´p
X

˘

– Hom
`

Hn´q

`

X; FX
n´p

˘

,Z
˘

and Hn´qpX; Fn´p
X q is torsion free. The tropical hypersurface X is a non-singular

tropical manifold, so by Poincaré duality for tropical homology with integral coeffi-
cients from [JRS18] we have

Hn´q
`

X; Fn´p
X

˘

– HBM
q

`

X; FX
p

˘

for all p, q. This, combined with the torsion freeness of Hn´qpX; Fn´p
X q established

above, proves that HBM
q pX; FX

p q is torsion free for all p` q ě n.
Notice that applying the above argument to the tropical homology of Y shows that

if the groups HqpY,Fpq are torsion free for all p and q, then HBM
q pY,Fpq are also

torsion free for all p and q. It follows from this and Theorem 1.1, that HBM
q pX; FX

p q

is torsion free for p` q ă n, so the Borel–Moore tropical homology groups of X are
all torsion free.
To prove that the standard tropical homology groups of X are torsion free, we use

the universal coefficient theorem for cohomology with compact support. For every p
and q we have the following short exact sequence

0 Ñ Ext
`

HBM
q´1

`

X; FX
p

˘

,Z
˘

Ñ Hq
c pX; Fp

Xq

Ñ Hom
`

HBM
q

`

X; FX
p

˘

,Z
˘

Ñ 0.

Since HBM
q pY,Fpq are torsion free for all p and q, it follows from Theorem 1.1 that

HBM
q pX,Fpq are torsion free for all p ` q ă n. Then the Z-modules HBM

q pX; FX
p q

are torsion free for all p and q, and the Z-modules Hq
c pX; Fp

Xq are also torsion free
for all p and q. Applying again Poincaré duality, we have

Hq
c pX; Fp

Xq – Hn´q

`

X; FX
n´p

˘

,

and HqpX; FX
p q are also torsion free for all p and q. �

We now establish that the integral tropical homology groups of a compact tropical
toric variety are torsion free. For a non-singular compact complex toric variety YC,
we let hp, qpYCq denote its pp, qqth Hodge number. Recall that hp, qpYCq “ 0 if p ‰ q
and the numbers hp, ppYCq form the toric h-vector of the simple polytope ∆ whose
normal fan is the fan defining YC [Ful93, Section 5.2].

Proposition 4.1. — The integral tropical homology groups of a non-singular
compact tropical toric variety Y are torsion free. Moreover, we have

rankHq

`

Y ; FY
p

˘

“ hp, q pYCq
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where YC is the corresponding non-singular compact complex toric variety. In par-
ticular, we have HqpY ; FY

p q “ 0 unless p “ q.

Proof. — We now switch to computing the cellular homology groups of Y using
the polyhedral structure on Y which is dual to the polyhedral structure on the
defining fan Σ. Notice that every stratum Y σ is compact. Let us first show that
HqpY ; FY

p q “ 0 for all p ą q. With this cellular structure on Y , a face Y σ of
dimension q has sedentarity order n` 1´ q where dim Y “ n` 1. By Definition 2.11,
we have that FY

p pY σq “
Źp FY

1 pY σq where dim FY
1 pY σq “ q. Therefore, we have

FY
p pY σq “ 0 if p ą q. Hence the chain groups CqpY ; FY

p q are equal to zero for any
q ă p, which implies that HqpY ; FY

p q “ 0 for q ă p.
Recall by Remark 2.22 that the tropical cohomology groups are the cohomology

of the complex dual to the tropical cellular complexes. Therefore we can apply the
universal coefficient theorem for cohomology [Hat02, Theorem 3.2] to get the exact
sequence

0 Ñ Ext
`

Hq

`

Y ; FY
p

˘

,Z
˘

Ñ Hq`1
pY ; Fp

Y q

Ñ HompHq`1
`

Y ; FY
p q,Z

˘

Ñ 0.
(4.1)

When q ă p we have HqpY ; FY
p q “ 0, so there is the isomorphism

Hq`1
pY ; Fp

Y q – HompHq`1pY ; FY
p q,Zq.

The tropical toric variety Y is a tropical manifold, thus Poincaré duality for tropical
homology with integral coefficients from [JRS18] states that

Hq`1
pY ; Fp

Y q – Hn´q

`

Y ; FY
n`1´p

˘

.

If q ě p, then n´ q ă n` 1´ p and applying the isomorphism above we obtain

Hq`1
pY ; Fp

Y q “ Hn´q

`

Y ; FY
n`1´p

˘

“ 0.

This means that

Tor
`

Hq

`

Y ; FY
p

˘˘

“ Ext
`

Hq

`

Y ; FY
p

˘

,Z
˘

“ 0,

and so HqpY ; FY
p q is torsion-free for all q ě p and thus for all p, q. We also see from

the sequence in (4.1) that HqpY ; FY
p q “ 0 for all q ‰ p.

All of the chain groups for the cellular tropical homology of Y are also free so we
have

χ
`

C‚
`

Y ; FY
p

˘˘

:“
n`1
ÿ

q“0
p´1qq rankCq

`

Y ; FY
p

˘

“ p´1qp rankHp

`

Y ; FY
p

˘

.

Let fq denote the number of strata of Y of dimension q. Then pf0, . . . , fn`1q is the
f -vector of a polytope PY whose normal fan is the fan defining Y . Then for every p
and q we have rankCqpY ; FY

p q “
`

q
p

˘

fq. Therefore,

χ
`

C‚
`

Y ; FY
p

˘˘

:“
n`1
ÿ

q“0
p´1qq

ˆ

q

p

˙

fq “ p´1qphp,
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where ph0, . . . , hn`1q is the h-vector of the simple polytope PY . By [Ful93, Sec-
tion 5.2], we have hp “ dimH2ppYCq “ hp, ppYCq which completes the proof of
Proposition 4.1. �

The following example shows that a tropical toric variety, which is not assumed
to be non-singular, may have torsion in its tropical homology groups.

Example 4.2. — The fan producing the simplest classical singular toric variety,
produces a tropical toric variety with torsion in its tropical homology groups. Let Y
be defined by a single cone in R2 having rays p´1, 0q and p´1,´2q. Then the chain
complex 0 Ñ CBM

2 pY ; FY
1 q Ñ CBM

1 pY ; FY
1 q Ñ 0 consists of terms

CBM
2

`

Y ; FY
1
˘

“ xe1, e2y and CBM
1

`

Y ; FY
1
˘

–
Z2

ă e1 ą
‘

Z2

ă p´1,´2q ą ,

where the differentials are the direct sums of the projection maps. Then under the
differential we have e1 ÞÑ p0, 2q and e2 ÞÑ p1,´1q and the image of the differential is
a proper sublattice of rank 2 of CBM

1 pY ; FY
1 q. In fact we have HBM

1 pY ; F1q “ Z2.

Corollary (Corollary 1.4). — If Y is a compact non-singular tropical toric
variety and X is a combinatorially ample non-singular tropical hypersurface in Y ,
then all integral tropical homology groups of X are torsion free.

Proof. — By Proposition 4.1, if Y is compact, all its integral tropical homology
groups are torsion free. Then by Theorem 1.3, all the integral tropical homology
groups of X are torsion free. �

Corollary (Corollary 1.5). — Let Y be a non-singular tropical toric variety
associated to a fan whose support is a convex cone and such that the complex
toric variety YC is quasi-projective. Let X be a combinatorially ample non-singular
tropical hypersurface in Y such that pY,Xq is a cellular pair and every parent face of
a compact face of Y is compact. Then both the standard and Borel–Moore integral
tropical homology groups of X are torsion free.

Proof. — Assume that the convex cone supporting the fan of Y is full dimensional
in Rn`1. We will first show that the tropical toric variety Y equipped with the
polyhedral structure dual to the polyhedral structure on its defining fan is a regular
CW-complex. Thus the cellular tropical chain complexes can compute the standard
and Borel–Moore homology groups of Y . To prove this claim, consider YC, the quasi-
projective toric variety associated to a fan Σ. Let D be any ample Cartier divisor on
YC and consider the associated polyhedron P (see for example [Ful93, Chapter 3]).
The hypothesis on the support of Σ implies that it is the normal fan of P ([Mus04,
Chapter 6]). Therefore, the polyhedron P is combinatorially isomorphic to Y , the
tropical toric variety associated to Σ. Since P is a polyhedron, it is a cell-complex in
the sense of [Cur14, Chapter 4], and one can use the cellular description to compute
the standard homology groups of Y .
As in the proof of Proposition 4.1, both standard and Borel–Moore tropical homol-

ogy groups of Y vanish if p ą q. It follows again from Poincaré duality and universal
coefficients theorem that both standard and Borel–Moore tropical homology groups
of Y are torsion free. The statement for X follows again from Theorem 1.3. Now
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suppose that the convex cone supporting the fan Σ is of codimension s in Rn`1. Then
the tropical toric variety Y is a product Rs ˆ Y 1 where Y 1 is a tropical toric variety
of dimension n` 1´ s satisfying the assumptions above. The tropical toric variety
Y 1 is then combinatorially isomorphic to a polyhedron P 1. By the Künneth formula
for Borel–Moore tropical homology [GS19, Theorem B] we have

HBM
q

`

Y ; FY
p

˘

“
à

i`j“p
k`l“q

HBM
k

`

Rs; FRs
i

˘

bHBM
l

´

Y 1; FY 1

j

¯

.

Therefore, the Borel–Moore tropical homology groups of Y are all torsion free
and thus so are the standard tropical homology groups. This completes the proof of
Corollary 1.5. �

5. Betti numbers of tropical homology and Hodge numbers

The k-compactly supported cohomology group of a complex hypersurface XC Ă

pC˚qn`1 carries a mixed Hodge structure, see [DK86]. The numbers ep, qc pXCq are
defined to be

ep, qc pXCq :“
ÿ

k

p´1qkhp, q
`

Hk
c pXCq

˘

,

where hp, qpHk
c pXCqq denote the Hodge–Deligne numbers of XC. The numbers ep, qc

pXCq are the coefficients of the E-polynomial of XC,

E pXC;u, vq :“
ÿ

p, q

ep, qc pXCqu
pvq.

The χy genus of XC is defined to be

χypXCq “ EpXC; y, 1q :“
ÿ

p, q

ep, qc pXCqy
p.

Theorem 1.8 relates the coefficients of the χy genus and the Euler characteristics
of the chain complexes CBM

‚ pX; Fpq. For the proof of the theorem we require the
notion of torically non-degenerate complex hypersurfaces.

Definition 5.1. — If YC is a complex toric variety, a hypersurface XC Ă YC is
torically non-degenerate if the intersection of XC with any torus orbit of YC is non-
singular and XC intersects each torus orbit of YC transversally. If YC is the complex
toric variety associated to the Newton polytope of XC, then the second condition
follows from the first one (see for example [Kho77]).

Theorem (Theorem 1.8). — Let X be an n-dimensional non-singular tropical
hypersurface in a non-singular tropical toric variety Y . Let XC be a complex hyper-
surface torically non-degenerate in the complex toric variety YC such that X and XC
have the same Newton polytope. Then

p´1qpχ
`

CBM
‚

`

X; FX
p

˘˘

“

n
ÿ

q“0
ep, qc pXCq,
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and thus

χypXCq “

n
ÿ

p“0
p´1qpχ

`

CBM
‚

`

X; FX
p

˘˘

yp.

Proof. — Firstly, the variety XC is stratified by its intersection with the open torus
orbits of YC. Moreover, the numbers ep, qc pXCq are additive along strata by [DK86,
Proposition 1.6]. So we have

n
ÿ

q“0
ep, qc pXCq “

ÿ

ρ

n
ÿ

q“0
ep, qc pXC, ρq

for XC “ \ρXC, ρ, where XC,ρ :“ XC X YC, ρ and YC,ρ is the open torus orbit corre-
sponding to the face ρ of the fan Σ defining Y and YC.
The tropical hypersurface X admits a stratification analogous to XC. The Euler

characteristics of the chain complexes for cellular tropical Borel–Moore homology of
X satisfy the same additivity property. Namely,

χ
`

CBM
‚

`

X; FX
p

˘˘

“
ÿ

ρ

χ
`

CBM
‚

`

Xρ; FXρ
p

˘˘

.

Moreover, for any face ρ of the fan Σ defining Y and YC, the Newton polytope of
XC, ρ is equal to the Newton polytope of Xρ. In fact, since X is proper in Y and
XC intersects the boundary of YC properly, it is enough to prove it for ρ a ray of
Σ and then proceed by recurrence. Up to a toric change of coordinates, one can
assume that ρ is a ray in direction e1 “ p1, 0, ¨ ¨ ¨ , 0q. Then the hypersurface XC, ρ
is given by the polynomial fCp0, x2, ¨ ¨ ¨ , xn`1q, where fC is the polynomial defining
XC. Similarly the tropical polynomial of Xρ is obtained from the tropical polynomial
of X by removing all monomials containing x1. So, the fact that X and XC have the
same Newton polytope implies that XC, ρ and Xρ do as well. Therefore, it suffices to
prove the statement for X Ă Rn`1 and XC Ă pC˚qn`1.
We now assume that X is in Rn`1 and XC is in pC˚qn`1. In [KS16, Section 5.2],

Katz and Stapeldon give a formula for the χy genus of a torically non-degenerate
hypersurface in the torus. Their formula utilizes regular subdivisions of polytopes to
refine the formula in terms of Newton polytopes of Danilov and Khovanskii [DK86].
Note that they use the term schön in exchange for torically non-degenerate. Let ∆
be the Newton polytope for XC and r∆ a regular subdivision of the lattice polytope
∆. Then the formula is

(5.1) χypXCq “
ÿ

F Ă ∆̃
F ĆB∆

p´1qn`1´dimFχypXC, F q,

where XC, F is the hypersurface in the torus pC˚qn`1 defined by the polynomial
obtained by restricting the polynomial defining XC to the monomials corresponding
to the lattice points in the face F of r∆. Notice our description of XC, F differs from
the one in [KS16] up to the direct product with a torus.
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Suppose that r∆ is a primitive regular subdivision of ∆. Then for each face F of
r∆ the variety XC, F is the complement of a hyperplane arrangement. By [Sha93] its
mixed Hodge structure is pure and

χypXC, F q “

n
ÿ

p“0
p´1qn`p dimHn`p

c pXC, F qy
p.

In fact, this hyperplane arrangement complement is Cn´q ˆ pC˚qq, where dimF
“ n` 1´ q and Cn´q is the complement of n` 2´ q generic hyperplanes in CP n´q.
By [Zha13], we have dimHppXC, F q “ rank FppσF q where σF is the face of the tropical
hypersurface X dual to F . By Poincaré duality for XC, F we obtain dimHp

c pXC, F q “

rank Fn´ppσF q. Therefore, we obtain the formula

χypXC, F q “ y´1
py ´ 1qq

“

py ´ 1qn`1´q
´ p´1qn`1´q‰ .

Therefore when the subdivision is primitive χypXC, F q only depends on the dimension
of F . Moreover, if r∆ is the subdivision dual to the tropical hypersurface X then
formula in Equation (5.1) can be expressed in terms of the f -vector of bounded faces
of X. Namely,

(5.2) χypXCq “

n
ÿ

q“0
p´1qqy´1

py ´ 1qq
“

py ´ 1qn`1´q
´ p´1qn`1´q‰ f bq ,

where f bq denotes the number of bounded faces of X of dimension q.
On the other hand we can compute the Euler characteristics of the Borel–Moore

chain complexes

(5.3) χpCBM
‚ pX; Fpqq “

ÿ

τ PX

p´1qdim τ rank Fppτq.

The star of a face τ of X is a basic open subset and satisfies Poincaré duality
from [JRS18]. Therefore, we have

rank Fppτq “ rankH0pstarpτq; Fpq “ rankHn
c pstarpτq; Fn´p

q

“
ÿ

σĄ sτ dimσ“q

p´1qn´q rank Fn´ppσq.

since rank Fn´ppτq “ rank Fn´ppτq and also Hn
c pstarpτq; Fn´pq is torsion free. Swap-

ping the order of the sum we obtain

χ
`

CBM
‚ pX; Fpq

˘

“
ÿ

σ PX

p´1qn´dimσ rank Fn´ppσq
ÿ

τ Ăσ

p´1qdim τ .

If σ is a bounded face of X, then
ř

τĂσp´1qdim τ “ 1. If σ is an unbounded face
of X then

ř

τĂσp´1qdim τ “ 0, since the one point compactification of σ has Euler
characteristic equal to 1. Therefore, the sum in Equation (5.3) becomes

χ
`

CBM
‚ pX; Fpq

˘

“
ÿ

τ PX
τ bounded

p´1qn´dim τ rank Fn´ppτq.
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For a face τ of dimension q we have
n
ÿ

p“0
p´1qp rank Fn´ppτqy

p
“ p´1qnynχτ p

1
y
q

“ p´1qny´1
py ´ 1qq

“

py ´ 1qn`1´q
´ p´1qn`1´q‰ ,

where χτ is the polynomial from Corollary 2.16. By comparing this with Equa-
tion (5.2) we obtain

χypXCq “

n
ÿ

p“0
p´1qpχ

`

CBM
‚

`

X; FX
p

˘˘

yp,

and the proof of the Theorem 1.8 is complete. �

Corollary (Corollary 1.9). — Let X be a non-singular and combinatorially
ample compact tropical hypersurface in a non-singular compact tropical toric variety
Y and assume that X has Newton polytope ∆. Let XC be a torically non-degenerate
complex hypersurface in the compact complex toric variety YC also with Newton
polytope ∆. Then for all p and q we have

dimHp, q
pXCq “ rankHq

`

X; FX
p

˘

.

Proof. — By combining Proposition 4.1 with the Lefschetz hyperplane section
theorems for tropical homology and the homology of complex hypersurfaces of toric
varieties, for p` q ă n, we have
(5.4) rankHqpX; Fpq “ rankHq

`

Y ; FY
p

˘

“ hp, qpYCq “ hp, qpXCq.

The above equations combined with the Poincaré duality statements for all of
X, Y,XC and YC establishes the same equalities when p` q ą n.
Therefore, it only remains to prove the statement when q “ n´ p. It follows from

the tropical and complex versions of Lefschetz theorems and from Proposition 4.1
that

χ
`

CBM
‚

`

X; FX
p

˘˘

“ p´1qp rankHp

`

Y ; FY
p

˘

` p´1qn´p rankHn´p

`

X; FX
p

˘

,

and
ÿ

q

ep, qc pXCq “ dimHp, p
pYCq ` p´1qn dimHp, n´p

pXCq

for p ‰ n
2 .

For p “ n
2 , we get

χ
´

CBM
‚

´

X; FX
n
2

¯¯

“ p´1qn2 rankHn
2

´

X; FX
n
2

¯

,

and
ÿ

q

e
n
2 , q
c pXCq “ dimH

n
2 ,

n
2 pXCq.

Again by Proposition 4.1 for tropical toric varieties we have
rankHp

`

Y ; FY
p

˘

“ dimHp, p
pYCq.

The statement of the corollary follows after applying Theorem 1.8. �
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The next corollary also follows from Theorem 1.8.

Corollary 5.2. — Let Y be a non-singular tropical toric variety associated to a
fan whose support is a convex cone of maximal dimension in Rn`1 and such that the
complex toric variety YC is affine. Let X be a combinatorially ample non-singular
tropical hypersurface in Y such that pY,Xq is a cellular pair and every parent face
of a compact face of Y is compact. If XC is a torically non-degenerate complex
hypersurface in YC with the same Newton polytope as X, then

rankHBM
q pX; Fpq “

$

’

’

’

&

’

’

’

%

q
ÿ

l“0
hp, l pHn

c pXCqq if p` q “ n

hp, p pH2ppXCqq if p “ q ą n
2

0 otherwise.

Proof of Corollary 5.2. — It follows from [MM18, Theorem 3.6] that if p ‰ q or
k ‰ 2p, then hp, qpHk

c pYCqq “ 0. Therefore, if p ‰ q, then ep, qpYCq “ 0 and when
p “ q we have

ep, pc pYCq “ hp, p
`

H2p
c pYCq

˘

.

From the proof of Corollary 1.5, we also have HBM
q pY ; Fpq “ 0 if p ‰ q. The equality

in Theorem 1.8 also holds if we replace X and XC with non-singular toric varieties
Y and YC. This is because it holds for pC˚qk and the Euler characteristic of the
Borel–Moore complexes and the χy genus are both additive. Therefore, we obtain

rankHBM
p

`

Y ; FY
p

˘

“ hp, p
`

H2p
c pYCq

˘

.

Notice that since YC is affine, the Andreotti–Frankel theorem imply that hp, ppH2p
c

pYCqq “ 0 if 2p ă n, and thus rankHBM
p pY ; FY

p q “ 0 if 2p ă n. Combining the
tropical Lefschetz theorem and Poincaré duality, we obtain that if p` q ‰ n

rankHBM
q

`

X; FX
p

˘

“

#

rankHBM
p`1

`

Y ; FY
p`1

˘

if p “ q ą n
2 ,

0 otherwise.

Since XC is affine, one has again that hp, qpHk
c pXCqq “ 0 if k ă n. By the Lefschetz-

type theorems for the Hodge Deligne numbers on Hn
c pXCq [DK86, Section 3], we get

hp, qpHk
c pXCqq “ 0 if k ą n and p ‰ q and that if 2p ą n

hp, p
`

H2p
c pXCq

˘

“ hp`1, p`1 `H2p`2
c pYCq

˘

.

Therefore,

ep, qc pXCq “

$

’

&

’

%

p´1qnhp, q pHn
c pXCqq if p` q ď n

hp`1, p`1 pH2p`2
c pYCqq if p “ q ą n

2
0 otherwise.

Then by applying Theorem 1.8 and using the fact that the Borel–Moore tropical
homology groups of X are torsion free by Corollary 1.5, we obtain the statement of
Corollary 5.2. �

Theorem 1.8 can be used to calculate the ranks of the tropical homology groups
of tropical hypersurfaces in Rn`1.
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Corollary 5.3. — Let X be a non-singular tropical hypersurface in Rn`1 with
full-dimensional Newton polytope. If XC is a non-singular torically non-degenerate
complex hypersurface in pC˚qn`1 with the same Newton polytope as X, then

rankHBM
q pX; Fpq “

$

’

’

’

&

’

’

’

%

q
ÿ

l“0
hp, l pHn

c pXCqq if p` q “ n

hp, p pHn`ppXCqq if q “ n

0 otherwise.

The Hodge–Deligne numbers appearing in the above corollary can be calculated
using the algorithms in [DK86]. For example, when XC a non-singular torically
non-degenerate complex hypersurface in pC˚qn`1 we have hp, ppHn`ppXCqq “

`

n`1
p`1

˘

.
Proof of Corollary 5.3. — The proof follows exactly the same lines as the proof

of Corollary 5.2. It follows from [DK86] that

hp, q
`

Hk
c

`

pC˚qn`1˘˘
“

$

&

%

ˆ

n` 1
p

˙

if p “ q and k “ n` 1` p

0 otherwise .

The Borel–Moore tropical homology groups satisfy HBM
q pRn`1; Fpq “ 0 if q ‰ n` 1

and
rankHBM

n`1
`

Rn`1; Fp

˘

“

ˆ

n` 1
p

˙

.

Combining Theorem 1.1 and Poincaré duality for the tropical homology of X, when
p` q ‰ n we have

rankHBM
q

`

X; FX
p

˘

“

#

`

n`1
p`1

˘

if q “ n,

0 if q ‰ n.

The hypersurface XC is a non-singular affine variety, so the Andreotti–Frankel the-
orem and Poincaré duality imply Hk

c pXCq “ 0 if k ă n. By the Lefschetz-type
theorems for the Hodge–Deligne numbers on Hn

c pXCq [DK86, Section 3], if k ą n
one has

hp, q
`

Hk
c pXCq

˘

“

$

&

%

ˆ

n` 1
p` 1

˙

if p “ q and k “ n` p

0 otherwise.
Therefore

ep, qc pXCq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p´1qnhp, q pHn
c pXCqq if p` q ď n and p ‰ q

p´1qnhp, q pHn
c pXCqq ` p´1qn`p

ˆ

n` 1
p` 1

˙

if p` q ď n and p “ q

p´1qn`p
ˆ

n` 1
p` 1

˙

if p` q ą n and p “ q

0 otherwise.
Then by applying Theorem 1.8 and using the fact that the Borel–Moore tropical
homology groups of X are torsion free by Corollary 1.6, we obtain the statement of
Corollary 5.3. �
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