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Uniform estimates for cscK metrics

Alix Deruelle (1) and Eleonora Di Nezza (2) (3)

ABSTRACT. — This note grew out of a series of lectures held in Cortona in 2019
and whose aim was to understand the recent breakthrough obtained by Chen and
Cheng on the existence of constant scalar curvature Kähler metrics. We present a
detailed version of the C0 and C2 a priori estimates within the realm of pluripotential
theory.

RÉSUMÉ. — Cette note est le fruit d’une série d’exposés donnés à Cortona en 2019
et dont le but visait à comprendre les avancées majeures due à Chen et Cheng sur
l’existence de métriques kähleriennes à courbure scalaire constante. Nous donnons
ici une preuve alternative et détaillée des estimées a priori dites C0 et C2 dans le
cadre de la théorie du pluripotentiel.

1. Introduction

Finding “canonical” metrics on compact Kähler manifolds is one of the
central questions in complex geometry (see for example [5, 21, 23]). Exam-
ples of these metrics are Kähler-Einstein metrics, constant scalar curvature
and more generally extremal metrics. Given a Kähler metric ω on a compact
Kähler manifold X of complex dimension n, one looks for a Kähler poten-
tial ϕ such that the curvature of the new metric ωϕ := ω + ddcϕ becomes
more tractable in some sense. This general problem is known to admit a so-
lution in some important particular cases (theorems of Aubin [1], Yau [23],
Chen–Donaldson–Sun [10, 11, 12], Tian [22] to cite only a few) as well as
obstructions (Futaki [17], Donaldson [16]).
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Alix Deruelle and Eleonora Di Nezza

Recently there have been major breakthroughs related to a longstanding
conjecture on the existence of constant scalar curvature Kähler metrics (cscK
for short) and the properness of a functional, called K-energy (see [3, 7, 8, 9,
15]): it was shown in [3, 15] that the existence of a cscK metric implies the
K-energy is proper (even coercive), while the breakthrough of Chen–Cheng
in [7, 8, 9] show that this necessary condition is actually also a sufficient
condition.

Given a Kähler form ωϕ ∈ {ω} we define its scalar curvature as

S(ωϕ) := n
Ric(ωϕ) ∧ ωn−1

ϕ

ωnϕ
.

We say that ωϕ = ω+ ddcϕ is a cscK metric if ωϕ is a Kähler metric and
S(ωϕ) = S, S ∈ R. Integrating both sides with respect to ωnϕ, we find that
S is a cohomological constant equal to nc1(X) · {ω}n−1/{ω}n.

The fact that the existence of a cscK metric implies the properness of
the K-energy is due to [3] and [15], while the reverse implication was proved
more recently by Chen and Cheng [7, 8, 9]. The first observation that has
to be made is that the constant scalar curvature equation can be re-written
as a system of two equations. Indeed, if we set ωnϕ = eFωn, then tracing the
pointwise equality

Ric(ωϕ) = Ric(ω)− ddc log
ωnϕ
ωn

with respect to ωϕ leads to

S = S(ωϕ) = Trωϕ(Ric(ω))−∆ωϕF.

It then follows that the cscK equation can be re-written as a system of
coupled equations:

ωnϕ = eFωn, ∆ωϕF = −S + Trωϕ(Ric(ω)).

The (classical) idea is then to deform the above system using a continuity
path in such a way that the initial system (at time t = 0) has an obvious
solution while the system of equations at t = 1 is the one for which we
want to prove existence of solutions. The goal is to show that the set S of
parameters t ∈ [0, 1] such that a smooth solution exists is open, closed and
non-empty. This would imply in turn that t = 1 is in S, meaning that the
desired solution exists.

The closedness part is historically the most difficult. In the framework of
the continuity method (specific to this setting) it suffices to prove uniform
estimates for cscK potentials. Indeed, such estimates generalize easily to
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potentials which are solutions of the intermediate equations we have to deal
with in the continuity method.

The key result that Chen and Cheng [8] are able to obtain states as
follows:

Theorem 1.1 (Chen–Cheng, [8]). — Let (X,ω) be a compact Kähler
manifold. Assume ωϕ is a cscK metric for some smooth function ϕ on X
normalized such that supX ϕ = 0. Then all the derivatives of ϕ can be esti-
mated in terms of Ent(ϕ), i.e. for each k > 0, there exists a positive constant
Ck = C(k,Ent(ϕ)) such that

‖ϕ‖Ck 6 Ck.

Here Ent(ϕ) denotes the entropy of the measure ωnϕ and it is defined as

Ent(ϕ) :=
∫
X

FeFωn =
∫
X

log
ωnϕ
ωn

ωnϕ > 0.

In [8], the authors establish C0 and C2 a priori estimates by proving an
intermediate C1 a priori estimate on the Kähler potential ϕ.

Once the C0 and C2 estimates are in hand, higher order estimates fol-
low from standard regularity results for complex Monge–Ampère equations:
see [19, Chapter 14, Section 14.3] and the references therein for instance.

In this note we present a detailed version of the C0 and C2 a priori
estimates that does not require an a priori C1 estimate in between.

It is worth it to emphasize that, while the original proof of the C0-
estimate in [8, Theorem 5.1] uses the Alexandroff maximum principle (for
the real Monge–Ampère operator), we present here an alternative proof that
makes use in a crucial way of pluripotential theory and which is based on
the recent paper [14].

This note grew out of a series of lectures held in Cortona in 2019 and
whose aim was to understand the articles [7, 8, 9] by Chen and Cheng. By
no means we intend here to claim new proofs of their results. Our goal is
only to get a more self-contained proof of the aforementioned a priori results
within the realm of pluripotential theory.

Outline of the paper

Section 2 introduces basic notations and preliminary results that will
be used in the rest of this note. In particular, appropriate definitions and
references to pluripotential theory that are needed in the sequel are given.
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Section 3 gives a different proof of the a priori C0 estimate which is
based on the work [14]: see Theorem 3.1. This culminates in the statement
of Corollary 3.2.

The proof of the a priori C2 estimate from Theorem 1.1 requires an
intermediate step which is taken care of in Section 4: Theorem 4 establishes
a priori integral Lp estimates on the laplacian of ϕ for all p > 1. At that
stage of the proof, notice that the Lp bounds one gets, might blow up as p
tends to +∞.

Finally, Section 5 ends the proof of the a priori C2 estimate through a
delicate De Giorgi–Nash–Moser iteration applied to the laplacian of ϕ: notice
that it not only gives the desired C2-estimate but also an a priori Lipschitz
bound on the (log of the) volume ratio ωnϕ/ω

n required to complete the
proof of the higher-order estimates. The last two sections essentially follow
the work of Chen and Cheng in [8].

Acknowledgements
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AMAZER conference and in acknowledgment of the fundamental contribu-
tion he made to the development of pluripotential theory.
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a conference that was held in Cortona in 2019. We are grateful to Chinh
Lu and Jingrui Cheng for useful discussions during the preparation of the
talks. We thank the referee for pointing out some inaccuracies that led to an
improvement of the presentation of the present note.

2. Notations & Preliminaries

Let (X,ω) be a compact Kähler manifold of complex dimension n > 2
and ω be a reference Kähler form normalized so that

V := Volω(X) =
∫
X

ωn = 1.

We denote by g the corresponding hermitian metric, i.e. ω =
√
−1
∑
gij̄dzi∧

dzj .

The assumption n > 2 will be crucial in the proof of Lemma 5.2. At
the same time it is harmless since when n = 1, the Uniformization Theo-
rem guarantees the existence of a constant curvature metric on a Riemann
surface.
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Definition 2.1. — A function ϕ : X → R ∪ {−∞} is quasi-plurisub-
harmonic (qpsh for short) if it is locally given as the sum of a smooth and
a psh function. Quasi-psh functions satisfying

ωϕ := ω + ddcϕ > 0,
in the weak sense of currents are called ω-psh functions.

We let PSH(X,ω) denote the set of all ω-psh functions which are not
identically −∞.

Quasi-psh functions are upper semi-continuous and Lebesgue-integrable.
They are actually in Lp for all p > 1, and the induced topologies are all
equivalent.

We say that ϕ is strictly ω-psh if and only if ωϕ := ω + ddcϕ > εω, for
some ε > 0.

Thanks to [18], for each ϕ ∈ PSH(X,ω), one can make sense of its as-
sociated Monge–Ampère measure ωnϕ, which by construction is a positive
measure that does not charge mass on pluripolar sets. When ϕ is smooth
and strictly ω-psh, then ωϕ is a genuine Kähler form and ωnϕ is nothing but
the wedge product of ωϕ with itself n-times.

For notational convenience we note ∆ϕ := ∆ωϕ and Trϕ := Trωϕ . We
simply denote ∆ := ∆ω and Tr := Trω. Analogously, we denote by ∇ the
Levi-Civita connection associated to ω and by ∇ϕ the one associated to ωϕ.
We recall that given a smooth function u and a Kähler form η,

∆ηu := n
ddcu ∧ ηn−1

ηn
, |∇ηu|2 = n

du ∧ dcu ∧ ηn−1

ηn
.

Equivalently, in coordinates we have

∆ηu =
∑
i,j

gij̄uij̄ , |∇ηu|2 =
∑
i,j

gij̄uiuj̄ ,

where g is the associated hermitian metric. For notational convenience, in
what follow we drop the sum when working in local coordinates.

With the aforementioned conventions, the cscK equation then writes as
ωnϕ = eFωn, ∆ϕF = −S + Trϕ(Ric(ω)). (2.1)

We now recall below some ingredients from pluripotential theory that
are going to be crucial in what follows in order to establish uniform C0-
estimates. The first is a powerful integrability result which is known as a
uniform version of Skoda’s integrability theorem. We introduce

νω := sup
u,x

ν(u, x), x ∈ X, u ∈ PSH(X,ω),
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where ν(u, x) denotes the Lelong number of u at x. We note that from the
proof of [19, Lemma 8.10] one can deduce that νω > 1.

Theorem 2.2. — Let c < 2ν−1
ω . Then there exists a uniform constant

C > 0 such that for all u ∈ PSH(X,ω) with supX u = 0 we have∫
X

e−cuωn 6 C.

We refer to [19, Theorem 8.11] for a proof. The following result is due to
Kołodziej [20]:

Theorem 2.3. — Assume ωnu = fωn with f ∈ Lp for some p > 1. Then
there exists C > 0 depending only on ω, n, ‖f‖Lp such that

OscX u 6 C.

Here Lp := Lp(ωn). We specify the reference volume form in the notation
of the Lp norms only if is different from the standard one.

At last, we recall [14, Theorem 3.3], that can be viewed as a generalization
of Kołodziej’s theorem:

Theorem 2.4. — Fix a ∈ [0, 1), A > 0, χ ∈ PSH(X,ω) and 0 6 f ∈ Lp
for some p > 1. Assume that u ∈ PSH(X,ω), normalized by supX u = 0,
satisfies

ωnu 6 fω
n + aωnχ.

Assume also that ∫
E

fωn 6 A[Capχ(E)]2, (2.2)

for every Borel subset E ⊂ X. If P [u] is less singular than χ (i.e. χ 6
P [u] + C, for some C > 0) then

χ− sup
X
χ− C

(
‖f‖Lp , p, (1− a)−1, A

)
6 u.

It is worth it to mention that such a result is stated and proved in a much
more general version in [14] to which we refer for a proof. Here Capχ(E) is
the χ-relative capacity of E and it is defined as

Capχ(E) := sup
{∫

E

ωnu

∣∣∣∣u ∈ PSH(X,ω), χ− 1 6 u 6 χ
}

and
P [u] = (sup {v ∈ PSH(X,ω), v 6 0 and v 6 u+ C, for some C > 0})∗ ,

where ∗ denotes the upper semi-continuous regularization. For later purposes
we mention that P [u] = 0 if and only if u is such that

∫
X
ωnu = V ([13,

Theorem 1.3]).
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3. A priori C0-estimate

Let ϕ and F be solutions to (2.1). Let ψ be the unique smooth solution
of

ωnψ = b−1eF
√
F 2 + 1ωn = b−1

√
F 2 + 1ωnϕ, sup

X
ψ = 0, (3.1)

where b =
∫
X
eF
√
F 2 + 1ωn in order to have

∫
X
ωnψ =

∫
X
ωn = 1. The

existence of a smooth solution ψ to (3.1) is guaranteed by Yau’s theorem [23].
Observe that, since F 2 + 1 6 2F 2 on {F > 1},

0 < b =
∫
{F<1}

eF
√
F 2 + 1ωn +

∫
{F>1}

eF
√
F 2 + 1ωn 6

√
2 (e+ Ent(ϕ)) .

Therefore, if Ent(ϕ) is uniformly bounded, so is b.

We now establish the following:

Theorem 3.1. — Given ε ∈ (0, 1), there exists C = C(ε, ω, b) such that
F + εψ −Aϕ 6 C,

where A > 0 is a uniform constant depending only on the lower bound of the
Ricci curvature.

Proof. — Let H := F + εψ − Aϕ, A0 be such that Ric(ω) > −A0 ω and
A = A0 + 1. An easy computation gives

∆ϕH = ∆ϕF + ε∆ϕψ −A∆ϕϕ

= −S + Trϕ(Ric(ω)) + nε
ωψ ∧ ωn−1

ϕ

ωnϕ
− εTrϕ ω +ATrϕ ω − nA

> −(S + nA) + (A−A0 − ε) Trϕ ω + nε
ωψ ∧ ωn−1

ϕ

ωnϕ

> −(S + nA) + nε
ωψ ∧ ωn−1

ϕ

ωnϕ
> −(S + nA) + nε(F 2 + 1)1/2n

where the last inequality follows from the mixed Monge–Ampère inequali-
ties [4, Proposition 1.11] ensuring that ωψ ∧ωn−1

ϕ > (
√
F 2 + 1)1/neF ωn. By

the maximum principle, applied to H, we can then infer that at a maximum
point x0 we have

nε(F 2 + 1)1/2n(x0) 6 S + nA.

Thus F (x0) 6 C0, C0 = C0(ε,A0, ω).

We then claim that
εψ −Aϕ 6 C1,

where C1 > 0 depends on ε, A and b.
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Let us now prove the claim. First of all we observe that, for any a, δ ∈
(0, 1) we have either

√
F 2 + 1 > b/(aδn) or F 6

√
F 2 + 1 6 b/(aδn); thus

ωnϕ = eFωn 6 aδnb−1eF
√
F 2 + 1ωn + e

b
aδn ωn = aδnωnψ + e

b
aδn ωn

6 aωnδψ + e
b
aδn ωn.

We are going to apply Theorem 2.4 with u = ϕ, χ = δψ and f = eb/(aδ
n).

In fact, we have that eb/(aδn) ∈ Lp, for any p > 1 and, since
∫
X
ωnϕ = V = 1,

P [ϕ] = 0 > δψ (in particular P [ϕ] is less singular than δψ). Moreover,
the assumption in (2.2) is satisfied thanks to [14, Proposition 3.10] since∫
X
ωnδψ > 0.

We can then infer that ϕ > δψ−C3((1− a)−1, eb/aδ
n). Choosing δ small

enough so that ε−Aδ > 0 we obtain the claim with C1 = AC3.

It then follows that for any x ∈ X

H(x) 6 H(x0) 6 C0 + C1,

which concludes the proof. �

Corollary 3.2. — The functions ψ,ϕ, F are uniformly bounded by a
constant that only depends on ω and Ent(ϕ).

Proof. — From Theorem 3.1 we know that F 6 C − εψ +Aϕ 6 C − εψ,
since supX ϕ = 0. Therefore∫

X

e2Fωn 6 C̃
∫
X

e−2εψωn.

Choosing ε < ν−1
ω , by Theorem 2.2 we get a uniform bound for ‖eF ‖L2 .

It follows from Kołodziej uniform estimates (Theorem 2.3), applied to the
equation ωϕ = eFωn, that ϕ > −C(‖eF ‖L2 , ω). In particular, since supX ϕ =
0 we do get a uniform control on ‖ϕ‖L∞ . Also,∫

X

e2F (F 2 + 1)ωn 6
∫
X

e4F ωn 6 C ′
∫
X

e−4εψωn.

Once again, thanks to Theorem 2.2, choosing ε 6 (2νω)−1 we get a uniform
bound for ‖eF

√
F 2 + 1‖L2 . Theorem 2.3 then gives a uniform control for

‖ψ‖L∞ .

We can then conclude from Theorem 3.1 together with the arguments
above that

F 6 C − εψ +Aϕ 6 −ε inf
X
ψ 6 C4

for some uniform positive constant C4.
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It remains to prove a uniform lower bound for F . For this purpose we
apply the minimum principle to F + tϕ, with t = A1 + 1 where A1 > 0 is
such that Ric(ω) 6 A1ω. A standard computation gives

∆ϕ(F + tϕ) = −S + Trϕ(Ric(ω)) + tn− tTrϕ ω

6 (tn− S)− Trϕ ω 6 C5 − ne−F/n

where the last inequality is a simple consequence of the algebro-geometric
inequality. Now, let x0 be a minimum point of the function F + tϕ, then
0 6 C5−ne−F (x0)/n, or equivalently F (x0) > −n log(C5/n). For any x ∈ X,
F (x) + tϕ(x) > F (x0) + tϕ(x0), hence F > −n log(C5/n)− t‖ϕ‖L∞ . �

4. Integral C2-estimates

The theorem we are going to prove in this section states as follows:

Theorem 4.1. — Let ϕ be a solution of (2.1). Then, for any p > 1, there
exists a constant C > 0, depending on p, ‖ϕ‖C0 , ‖F‖C0 , an upper bound on
the Ricci form and a lower bound of the holomorphic bisectional curvature
of ω so that

‖Trωϕ‖Lp 6 C. (4.1)

Proof. — Consider
u := e−γ(F+λϕ) Trωϕ > 0,

where γ, λ > 1 are uniform constants to be chosen in a suitable way in
the following. Observe that, given a smooth function f , ddcef = efddcf +
efdf ∧ dcf . Hence a simple computation gives

∆ϕu = ∆ϕe
logu > elogu∆ϕ log u = −γu∆ϕ(F + λϕ) + u∆ϕ log Trωϕ.

Also, by [6, Lemma 2.2]

∆ϕ log Trωϕ >
∆F

Trωϕ
−B Trϕ ω,

where B > 0 is a lower bound for the holomorphic bisectional curvature of
ω. Moreover, using (2.1) we see that
∆ϕ(F +λϕ) = (λn−S) + Trϕ(Ric(ω))−λTrϕ ω 6 (λn−S) + (A−λ) Trϕ ω,
where A > 0 is such that Ric(ω) 6 Aω. Thus, combining the above inequal-
ities leads us to:
∆ϕu > e

−γ(F+λϕ){γ(S − λn) Trωϕ + ∆F + (λγ −Aγ −B) Trωϕ Trϕ ω
}
.

Observe that using (2.1) and the fact that n > 2, we have

Trωϕ Trϕ ω > e−
F
n−1 (Trωϕ)1+ 1

n−1 .
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We now choose λ > 4 max(A,B) (in order to have λγ − Aγ − B > λγ
2 ) so

that

∆ϕu > γ(S − λn)u+ λγ

2 e−
F
n−1 (Trωϕ)

1
n−1 u+ e−γ(F+λϕ)∆F. (4.2)

Now, since |∇ϕu|2ϕ Trωϕ > |∇u|2 holds pointwise, we write

1
2p+ 1∆ϕu

2p+1 = u2p∆ϕu+ 2pu2p−1|∇ϕu|2ϕ

> u2p∆ϕu+ 2pu2p−2e−γ(F+λϕ)|∇u|2.

Thus, by combining the above inequality with (4.2), we get

0 = 1
2p+ 1

∫
X

∆ϕu
2p+1ωnϕ

> 2p
∫
X

u2p−2|∇u|2e−γ(F+λϕ)+Fωn + γ(S − λn)
∫
X

u2p+1eFωn

+ γλ

2

∫
X

u2p+1e(
n−2
n−1 )F (Trωϕ)

1
n−1ωn+

∫
X

u2pe−γ(F+λϕ)+F∆F ωn. (4.3)

Next, we focus on finding a suitable lower bound for the last term involving
the laplacian of F .

A formal trick gives that

I := −
∫
X

u2p∆Fe(1−γ)F−γλϕ ωn

= − 1
1− γ

∫
X

u2p ∆ ((1− γ)F − γλϕ) e(1−γ)F−γλϕ ωn

− γλ

1− γ

∫
X

u2p∆ϕe(1−γ)F−γλϕ ωn

:= I1 + I2.

Set G := (1− γ)F − γλϕ. From Stokes’ theorem we get that

I1 = − 1
γ − 1

∫
X

u2p|∇G|2eG ωn − 2pn
γ − 1

∫
X

u2p−1 eG du ∧ dcG ∧ ωn−1

6 − 1
2(γ − 1)

∫
X

u2p|∇G|2eGωn + 2p2

γ − 1

∫
X

u2p−2|∇u|2eG ωn

6
2p2

γ − 1

∫
X

u2p−2|∇u|2eG ωn (4.4)

where in the first inequality we used the fact that∣∣∣∣2pu2p−1n
du ∧ dcG ∧ ωn−1

ωn

∣∣∣∣ 6 (2p)2

2 u2p−2|∇u|2 + 1
2u

2p|∇G|2,
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by Young’s inequality. Also, since Trωϕ = n+ ∆ϕ,

I2 = γλ

γ − 1

∫
X

u2p+1eF ωn − nγλ

γ − 1

∫
X

u2peG ωn

6
γλ

γ − 1

∫
X

u2p+1eF ωn. (4.5)

Combining (4.3), (4.4), (4.5) and choosing γ big enough (say γ = ap, with
a� 1) we obtain

0 > 2
(
p− p2

γ − 1

)∫
X

u2p−2|∇u|2eG ωn

+ γ

(
S − λn− λ

γ − 1

)∫
X

u2p+1eFωn

+ γλ

2

∫
X

u2p+1e(
n−2
n−1 )F (Trωϕ)

1
n−1ωn

> −C1

∫
X

(Trωϕ)2p+1 ωn + C2

∫
X

(Trωϕ)2p+1+ 1
n−1 ωn, (4.6)

where the constant C1, C2 > 0 depends on ‖F‖C0 and ‖ϕ‖C0 only. Observe
that in (4.6), the choice of γ ensures that p− p2

γ−1 > 0. Using Hölder inequality
we can conclude that

‖Trωϕ‖
2p+1+ 1

n−1

L
2p+1+ 1

n−1
6 C‖Trωϕ‖2p+1

L2p+1 6 C ′‖Trωϕ‖2p+1

L
2p+1+ 1

n−1
.

This gives the statement for p > 3, hence for p > 1 thanks to Hölder in-
equality. �

5. C2-estimates

The main result of this section is the following C2 a priori estimate as
promised in the introduction.

Theorem 5.1. — Let ϕ be a solution to (2.1). Then there exists a posi-
tive constant C depending on ω, ‖F‖C0 , ‖ϕ‖C0 and Ent(ϕ) such that,

max
X

(|∇F |+ Trωϕ) 6 C.

It is worth it to underline that, thanks to Theorem 3.1 and Corollary 3.2,
the quantities ‖F‖C0 and ‖ϕ‖C0 are controlled by Ent(ϕ).

In order to prove Theorem 5.1, we need to establish several lemmata.
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Lemma 5.2. — Let u := e
F
2 |∇ϕF |2 + K Trωϕ for K > 0. Then there

exist positive constants K and c depending on ω,‖F‖C0 and ‖ϕ‖C0 such that
the function u satisfies the following differential inequality:

∆ϕu > −c(Trωϕ)3n−3u.

As a first remark, notice that the function u defined above is uniformly
bounded from below. Indeed, by the arithmetic-geometric inequality,

u > K Tr(ωϕ) > nKeFn > nKe−
‖F‖

C0
n > 0. (5.1)

Proof of Lemma 5.2. — We start with the following claim:

Claim 5.3. — For some positive constants C1 and C2 depending on ‖F‖C0

and the geometry of the Kähler form ω,

∆ϕ

(
e
F
2 |∇ϕF |2

)
> C1|∇ϕ∇ϕF |2 − C2

(
(Trωϕ)3n−3 |∇ϕF |2 + |∇ϕ∇ϕ∇ϕ|2 + 1

)
,

where, in holomorphic normal coordinates with respect to the Kähler form
ω,

|∇ϕ∇ϕ∇ϕ|2 := |ϕβᾱi|2

(1 + ϕαᾱ)(1 + ϕββ̄) , |∇ϕ∇ϕF |2 := |Fī|2

(1 + ϕiı̄)(1 + ϕj̄)
.

Proof of Claim 5.3. — By Bochner formula applied to the function F :

∆ϕ|∇ϕF |2 = |∇ϕ∇ϕF |2 + |∇ϕ∇ϕF |2

+ Ric(ωϕ)(∇ϕF,∇ϕF ) + 2< (〈∇ϕF,∇ϕ∆ϕF 〉) . (5.2)

Now, for some real constant c,

∆ϕ

(
ecF |∇ϕF |2

)
= (∆ϕe

cF )|∇ϕF |2 + 2cecF<(〈∇ϕF,∇ϕ|∇ϕF |2〉) + ecF∆ϕ|∇ϕF |2

= ecF {c∆ϕF |∇ϕF |2 + c2|∇ϕF |4

+ 2c<(〈∇ϕF,∇ϕ|∇ϕF |2〉) + ∆ϕ|∇ϕF |2}. (5.3)

One can check that in holomorphic normal coordinates with respect to ωϕ:

2<
(
〈∇ϕF,∇ϕ|∇ϕF |2〉

)
= FīFı̄Fj + Fı̄jFiF̄ + FijFı̄F̄ + Fı̄̄FiFj

= 2<
(
∇ϕ∇ϕF (∇ϕF,∇ϕF )

)
+ 2< (∇ϕ∇ϕF (∇ϕF,∇ϕF ))

= 2
(
∇ϕ∇ϕF (∇ϕF,∇ϕF )

)
+ 2< (∇ϕ∇ϕF (∇ϕF,∇ϕF )) . (5.4)
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where the last equality follows from the fact that the quantity(
∇ϕ∇ϕF (∇ϕF,∇ϕF )

)
is real. In particular, by choosing c = 1

2 , one can
complete the square as follows:

c2|∇ϕF |4 + 2c< (∇ϕ∇ϕF (∇ϕF,∇ϕF )) + |∇ϕ∇ϕF |2

=
∣∣∣∣∇ϕ∇ϕF + 1

2∇
ϕF ⊗∇ϕF

∣∣∣∣2 := T > 0.

Therefore, by combining the above identity with (5.2) and (5.3), we have

e−F/2∆ϕ

(
ecF |∇ϕF |2

)
= T + ∆ϕF

2 |∇ϕF |2 + <
(
∇ϕ∇ϕF (∇ϕF,∇ϕF )

)
+ |∇ϕ∇ϕF |2

+ Ric(ωϕ)(∇ϕF,∇ϕF ) + 2< (〈∇ϕF,∇ϕ∆ϕF 〉) .

Moreover, since Ric(ωϕ) = Ric(ω) − ddcF , the term ddcF (∇ϕF,∇ϕF ) in-
troduces a cubic term in F by the Bochner formula (5.2). Choosing c = 1

2
again lets us absorb this cubic term with the help of (5.2) based on (5.4).

Consequently,

e−
F
2 ∆ϕ

(
e
F
2 |∇ϕF |2

)
>

∆ϕF

2 |∇ϕF |2 + |∇ϕ∇ϕF |2

+ Ric(ω)(∇ϕF,∇ϕF ) + 2< (〈∇ϕF,∇ϕ∆ϕF 〉) .

Now, by (2.1),

|∆ϕF | 6 |S|+ |Trϕ Ric(ω)| 6 |S|+ C|Trϕ ω| 6 |S|+ C (Trωϕ)n−1
, (5.5)

where C is a positive constant depending on supM |Ric(ω)| and ‖F‖C0 that
may vary from line to line.

Similarly, since Ric(ω)(∇ϕF,∇ϕF ) = giı̄ϕg
j̄
ϕ Ricī Fı̄F̄ in holomorphic

normal coordinates with respect to ω, one has:

|Ric(ω)(∇ϕF,∇ϕF )| 6 C Trϕ ω · |∇ϕF |2 6 C (Trωϕ)n−1 |∇ϕF |2. (5.6)

Using (2.1) again, in holomorphic normal coordinates with respect to ω,
we have

〈∇ϕF,∇ϕ∆ϕF 〉 = 〈∇ϕF,∇ϕ Trϕ Ric(ω)〉

= − ϕk̄li Rickl̄ Fı̄
(1 + ϕkk̄)(1 + ϕll̄)(1 + ϕiı̄)

+
Rickk̄,i Fı̄

(1 + ϕkk̄)(1 + ϕiı̄)
.
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By Young’s inequality:

|〈∇ϕF,∇ϕ Trϕ Ric(ω)〉|

6 C|∇ϕ∇ϕ∇ϕ|2 + C (Trϕ ω)3 |∇ϕF |2 + C

6 C|∇ϕ∇ϕ∇ϕ|2 + C (Trωϕ)3(n−1) |∇ϕF |2 + C, (5.7)

where C is a positive constant depending on supM |Ric(ω)|ω and
supM |∇Ric(ω)|ω. Using once again the fact that Trωϕ is uniformly bounded
from below as we noticed in (5.1), we can infer that there exists a constant
C > 0 such that 1 6 C(Trωϕ)3n−3 and (Trωϕ)n−1 6 C(Trωϕ)3n−3. This
ends the proof of Claim 5.3 by combining (5.5), (5.6) together with (5.7):

∆ϕ

(
e
F
2 |∇ϕF |2

)
> e

F
2 |∇ϕ∇ϕF |2 − CeF2

(
(Trωϕ)3n−3 |∇ϕF |2 + |∇ϕ∇ϕ∇ϕ|2 + 1

)
> C1|∇ϕ∇ϕF |2 − C2

(
(Trωϕ)3n−3 |∇ϕF |2 + |∇ϕ∇ϕ∇ϕ|2 + 1

)
,

where C1 and C2 are uniform positive constants depending on the geometry
of ω and ‖F‖C0 . �

We recall Yau’s C2 estimates on Trωϕ in the form we need:

∆ϕ Trωϕ > −C(Trωϕ)n + |∇ϕ∇ϕ∇ϕ|2 + ∆F − C, (5.8)

where C is a positive constant depending on a lower bound of the bisectional
curvature of the Kähler form ω: see [23, (2.10)] for a proof. By Claim (5.3)
together with (5.8),

∆ϕu > C1|∇ϕ∇ϕF |2 − C2

(
(Trωϕ)3n−3 |∇ϕF |2ϕ + |∇ϕ∇ϕ∇ϕ|2 + 1

)
+K|∇ϕ∇ϕ∇ϕ|2 −KC(Trωϕ)n +K(∆F − C).

Choose K large enough so that one can drop the term |∇ϕ∇ϕ∇ϕ|2. Now,
by (5.1), any power of Trωϕ can be bounded from above uniformly by a
higher power.

Therefore,

∆ϕu > C1|∇ϕ∇ϕF |2 − C2 (Trωϕ)3n−3
u+K(∆F − C)− C2, (5.9)

where C2 may vary from line to line.

It remains to bound from below the last term on the righthand side:

K|(∆F − C)| 6 K (|∆F |+ C) .
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In holomorphic normal coordinates with respect to ω:

K|Fiı̄| = K

∣∣∣∣ Fiı̄
(1 + ϕiı̄)

· (1 + ϕiı̄)
∣∣∣∣ ,

so that by Young’s inequality,

K|∆F | 6 ε|∇ϕ∇ϕF |2 + Cε−1K2(Trωϕ)2

6 ε|∇ϕ∇ϕF |2 + Cε−1K2(Trωϕ)3n−3u,

where ε will be chosen later and where we used the fact that u is bounded
from below (5.1) in the last inequality. Here we have used n > 2. Let us
choose ε less than or equal to the constant C1 from (5.9) so that one can
drop the term |∇ϕ∇ϕF |2 to get the expected result:

∆ϕu > −C (Trωϕ)3n−3
u− Cε−1K2(Trωϕ)3n−3u− C2 > −C(Trωϕ)3n−3u,

where C is a positive constant that may vary from line to line and which
depends on the parameter K, ε, ‖F‖C0 and the geometry of the Kähler
form ω. �

The next lemma establishes a priori L1 bound for the function u:

Lemma 5.4. — The following estimate holds true:

‖u‖L1 6 C(ω, ‖F‖C0 ,Ent(ϕ)).

Proof of Lemma 5.4. — Since we assume that the volume is normalized
with V = 1, we notice first that:

‖Trωϕ‖L1 =
∫
M

Trωϕ ωn = n

∫
X

ωϕ ∧ ωn−1 = nVolω(X) = n, (5.10)

‖Trϕ ω‖L1(ωnϕ) =
∫
X

Trϕ ω ωnϕ = nVolω(X) = n. (5.11)

Now, by using (2.1), one has:

∆ϕF
2 = 2F∆ϕF + 2|∇ϕF |2 = 2F (−S + Trϕ(Ric(ω))) + 2|∇ϕF |2.

After integrating the previous identity with respect to ωnϕ and by using (2.1)
once more, ∫

X

|∇ϕF |2ωnϕ = S

∫
X

Fωnϕ −
∫
X

Trϕ(Ric(ω))Fωnϕ

6 S
∫
X

FeFωn + C‖F‖C0

∫
X

Trϕ ω ωnϕ

= S Ent(ϕ) + nC‖F‖C0 ,

where C is a positive constant depending on an upper bound of the norm of
the Ricci curvature Ric(ω) and where we have used (5.11) in the last line.
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This bound together with (5.10) proves the expected bound on the L1

norm of the function u. �

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. — The proof consists in applying a De Giorgi–
Nash–Moser iteration to the auxiliary function u defined in Lemma 5.2 as
follows for p > 1:

1
2p+ 1∆ϕu

2p+1 = u2p∆ϕu+ 2p u2p−1|∇ϕu|2

= u2p∆ϕu+ 8p
(2p+ 1)2

∣∣∣∇ϕ (up+ 1
2

)∣∣∣2 .
Integrating over X with respect to ωnϕ and using Lemma 5.2 we get:∫

X

∣∣∣∇ϕ (up+ 1
2

)∣∣∣2 ωnϕ 6 Cp∫
X

(Trωϕ)3n−3u2p+1ωnϕ, (5.12)

for p > 1. Let us apply Hölder’s inequality in the perspective of invoking a
suitable Sobolev inequality with respect to ωn in the following. Let ε ∈ (0, 2)
which will be chosen later. Then,∫

X

(Trωϕ)3n−3u2p+1ωnϕ 6 ‖(Trωϕ)3n−3 ‖
L

2+ε
ε
· ‖u2p+1‖

L
2+ε

2

= ‖Trωϕ‖3n−3

L
(2+ε)(3n−3)

ε

· ‖u2p+1‖
L

2+ε
2
,

which implies by (5.12) and the fact that ‖F‖C0 is under control (Corol-
lary 3.2),

‖|∇ϕup+ 1
2 |‖2L2 6 Cp‖Trωϕ‖3n−3

L
(2+ε)(3n−3)

ε

· ‖up+ 1
2 ‖2L2+ε . (5.13)

For p > 1, define the auxiliary function v := up+
1
2 and recall that |∇v|2 6

Trωϕ · |∇ϕv|2 is true pointwise.

Using Hölder’s inequality once more,∫
X

|∇v|2−εωn 6
∫
X

(Trωϕ)
2−ε

2 |∇ϕv|2−εωn

6 ‖(Trωϕ)
2−ε

2 ‖
L

2
ε
‖|∇ϕv|2−ε‖

L
2

2−ε

= ‖Trωϕ‖
2−ε

2

L
2−ε
ε

‖|∇ϕv|‖2−εL2 ,

that gives ‖∇v‖2L2−ε 6 ‖Trωϕ‖
L

2−ε
ε
‖|∇ϕv|‖2L2 . Therefore, by (5.13)

‖∇v‖2L2−ε 6 Cp‖Trωϕ‖3n−3

L
(2+ε)(3n−3)

ε

· ‖Trωϕ‖
L

2−ε
ε
· ‖v‖2L2+ε .
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Using the a priori integral bounds from Theorem 4.1, one arrives at:

‖∇v‖2L2−ε 6 Cp‖v‖2L2+ε . (5.14)

Let us apply the following Sobolev inequality with respect to ωn to the
function v [2, Theorem 2.21]:

‖v‖Lθ 6 C (‖∇v‖L2−ε + ‖v‖L2−ε) ,

where θ := 2n(2−ε)
2n−(2−ε) . With the help of (5.14) and the previous Sobolev

inequality, one gets:

‖v‖2Lθ 6 C
(
p‖v‖2L2+ε + ‖v‖2L2−ε

)
,

which implies (by definition of v in terms of u),

‖u‖2p+1

L(p+ 1
2 )θ 6 Cp‖u‖

2p+1

L(p+ 1
2 )(2+ε)

+ C‖u‖2p+1

L(p+ 1
2 )(2−ε)

6 Cp‖u‖2p+1

L(p+ 1
2 )(2+ε)

,

since p > 1 and where we used Hölder’s inequality on the second norm of
the righthand side. Here, C denotes a positive constant that may vary from
line to line which is independent of p.

Choose ε ∈ (0, 2) so small such that θ > 2 + ε and define the quotient
χ := θ

2+ε which is larger than 1. Consider the diverging sequence (χi)i>0

and define a sequence (pi)i>0 by pi + 1
2 = χi. Let i0 > 0 such that if i > i0,

pi > 1. Then the previous estimate applied to this sequence (pi)i>i0 reads:

‖u‖L(2+ε)χi+1 6 (Cχi)
1

2χi ‖u‖L(2+ε)χi , i > i0.

Consequently,

lim sup
i→+∞

‖u‖L(2+ε)χi 6 (Cχ)
∑

i>i0
1+i
2χi ‖u‖

L(2+ε)χi0 ,

which implies in turn by Hölder’s inequality,

‖u‖L∞ 6 C‖u‖L(2+ε)χi0 6 C‖u‖
1
pε

L1 · ‖u‖
1− 1

pε

L∞ , pε := (2 + ε)χi0 .

This leads to the desired estimate on u by invoking Lemma 5.4: ‖u‖L∞ 6 C.
This ends the proof of the theorem. Indeed, on one hand, one has a priori C2

bounds on the potential ϕ: this implies that norms of tensors defined with
respect to either the metric g or the metric gϕ are uniformly equivalent. On
the other hand, ‖∇ϕF‖C0 being uniformly bounded, the previous remark
leads to the expected uniform bound on the first derivatives of F (with
respect to the background metric g). �
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