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Curvature formula for direct images of twisted relative
canonical bundles endowed with a singular metric

JunyaN Cao VU, HENRI GUENANCIA () AND MiHAI PAuN ()

ABSTRACT. — In this note, we obtain various formulas for the curvature of the L2
metric on the direct image of the relative canonical bundle twisted by a holomorphic
line bundle endowed with a positively curved metric with analytic singularities, gen-
eralizing some of Berndtsson’s seminal results in the smooth case. When the twist is
assumed to be relatively big, we further provide a very explicit lower bound for the
curvature of the L? metric.

RESUME. — Dans cette note, nous obtenons diverses formules pour la courbure
de la métriques L2 sur I'image directe du fibré canonique relatif tordu par un fibré
en droites holomorphe muni d’une métrique & courbure positive avec singularités
analytiques, généralisant certains des résultats fondateurs de Berndtsson dans le cas
lisse. Quand le fibré par lequel on tord est gros, nous pouvons de plus donner une
borne inférieure explicite de la courbure de la métrique L2.

1. Introduction

Let p: X — D be a smooth, proper fibration from a (n + 1)-dimensional
Kéhler manifold X onto the unit disk D C C, and let (L,hz) be a holo-
morphic line bundle endowed with a possibly singular hermitian metric hy,
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assumed to be positively curved (i.e. when iOp, (L) > 0 in the sense of
currents). Then, the positivity properties of the direct image sheaves

F = pu (Kxyp + L) ® Z(hr))

endowed with the L? metric hz are well-known, cf. e.g. [2, 10, 16, 17] among
many others. Moreover, when hy, is smooth, we have at hand explicit formulas
obtained by Berndtsson [2, 3] that compute the curvature of the L? metric
on the direct image sheaf above.

In this article we are aiming at the generalisation of Berndtsson’s curva-
ture formulas in case where the metric hy, has relatively simple singularities,
e.g. analytic singularities. As for our main motivation, we recall that all the
results in connection to the famous Iitaka conjecture (predicting the sub-
additivity of Kodaira dimension for algebraic fiber spaces) are relying on
the properties of the sheaves F = F,, in which the bundle L is of type
(m —1)Kx/p + mB for some m > 1 and an effective divisor B on X’ such
that the pair (X, B) is klt. If det(F,,) is either big or trivial for some m > 0,
then the litaka conjecture is already established. We expect that in the “in-
termediate” cases a better understanding of the geometric properties of F,,
will be required, in particular the structure of the flat directions of the curva-
ture tensor and their interaction with the variation of the complex structure
of the fibers of the family p. Our main result in this framework states as
follows.

THEOREM A. — Letp : X — D and (L,hy) — X as above, and let
u € HY(D, F). We assume that

e The metric hy, has analytic singularities and i©y, (L) > 0 in the
sense of currents.
e The section u is flat with respect to hr.

Set E := {h = oco}. Then, there exists a continuous L?-integrable repre-
sentative u of u defined on the restriction X* \ E of the family p to some
punctured disk D* such that

)
oul
dt Xt\E
for any t € D* and
D'u=0, On, (L) ANu=0 (1.1)

on X*\ E. Here X* := p~1(D*) and u is L? with respect to hy and a
Poincaré type metric cf. Section 3.
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By “punctured disk” in the previous statement we mean that D\ D* is a
discrete set, possibly empty. By L?, we mean locally L? with respect to the

base D*. The meaning of %‘ is provided in (3.13) below.

Finally, a representative u of u (in the sense of Berndtsson) is a section
of (Kx/p+L)®Z(hy) over X* such that for any ¢t € D*, we have u|x, = u;
under the canonical identification ((Kx,p+L)®Z(hz)) |Xt ~ (Kx,+L|x,)®
Z(hr|x,), cf. Lemma 2.2 and the comments below. In other words, u is an
L-valued (n,0)-form on X which coincides with u; on X.

The result we are next mentioning concerns the case of a twisting line
bundle L which is p-big. It is then expected that the strict positivity of
(L,hr) is inducing stronger positivity properties of the curvature of the
direct image than in the general case of a semi-positively curved L. This is
confirmed by the following statement, which is a version of [3, Thm. 1.2].

THEOREM B. — Let p: X — D be a smooth projective fibration and let
(L,hp) — X be a line bundle such that

e hy has analytic singularities and i©p, (L) > 0 in the sense of cur-
Tents.

e For any t € D, the absolutely continuous part wr, := (iOn, (L))ac
satisfies [y wi > 0.

Then there exists a punctured disk D* C D such that for any uw € H°(D, F)
we have the following inequality

(Oh, (Flu,u)y > cn/X c(wp)u A Te= %t (1.2)

for any t € D*.

In the statement above we identify Oy, (F) with an endomorphism of F
- n2
by “dividing” with idt A d¢. Moreover, ¢, = (—1) = is the usual unimodular
n+1

f
w . .
constant. We denote by c(wr) := g the geodesic curvature associated
L

to wy, cf. Definition 2.3 for a precise definition in the degenerate case.

Actually we can provide some details about the punctured disk D* in The-
orem B. Under the hypothesis of this result, it turns out that the L? metric
hr is smooth in a complement of a discrete subset of D. We will show that
the formula (1.2) is valid for points ¢t € D in the neighborhood of which the
metric hr is smooth, and such that F; = H® (X, (Kx, + L) ® Z(hr|x,)),
cf. Remark 5.5.

As it was kindly recalled to us by P. Naumann, many of the results in the
current article overlap with his work [15]. Let us emphasize that his results
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are stated for a metric hy, on L with a very specific type of singularities,
which implies among other things that L is relatively ample. In particular,
Theorem B may not be obtained as a consequence of those results. The
readers interested in these topics can benefit of complementary points of
view, especially in the treatment of the Hodge-theoretic part of the current
article and [15], respectively.

Strategy of the proof

Roughly speaking, the idea of the proof of Theorem A and B respectively
is as follows: we endow the complement X \ E with a complete metric of
Poincaré type and proceed by taking advantage of what is known in the
compact case, combined with the existence of families of cut-off functions
specific to the complete setting. There are however quite a few difficulties
along the way. Probably the most severe stems from the Hodge decomposi-
tion in the complete case: the image of the usual operators 0 and 0* may
not be closed. We show in Section 3.2 that at least in bi-degree (n,1) this
is the case, cf. Theorem 3.6, as consequence of the fact that the background
metric has Poincaré singularities.

In order to construct the form u in Theorem A, we start with a represen-
tative of u given by the contraction with the lifting V' of % with respect to a
Poincaré metric wg. It turns out that this specific representative has all the
desired properties needed to fit into the L2-theory. Then we “correct” it: this
is possible by the flatness hypothesis, and it boils down to solving a fiber-
wise 0*-equation. It is both in the resolution of this equation as well as in
the study of the regularity of the resulting solution that Theorem 3.6 is used.
Another important ingredient of the proof is Proposition 4.1, which gives a
general curvature formula for (F, hx) when Ay, has e.g. analytic singularities.
It provides a rather wide generalisation of a result due to Berndtsson.

As for Theorem B, the starting point is the fact that the positivity prop-
erties of (L,hy,) allow us to construct a family of Poincaré metric (we)eso
on X' \ E. Then, the representatives u. of u (obtained as above as the con-
traction with the lifting V, of % with respect to w,) enjoy a special property
that allows us to extract the desired inequality from the general curvature
formula from Proposition 4.1 and a limiting argument when e approaches
zero. Although the use of this special representative goes back to Berndts-
son, several new analytic inputs are required to deal with the present singular
situation.
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Organization of the paper

In Section 2, we introduce our set-up, notation and main objects of study
(the L? metric on F, the geodesic curvature).

In Section 3, we review two aspects of Poincaré metrics: first, the integra-
bility properties of representatives u of sections u of F constructed via such
metrics (Lemma 3.3) and then, we investigate the closedness of the image
of the operators 0, 0* on a hermitian line bundle with analytic singularities
(Theorem 3.6).

In Section 4, we establish a general curvature formula (Proposition 4.1).
This allows us to find very special representatives of flat sections of F (The-
orem 4.6), leading to the proof of Theorem A.

In Section 5, we analyze the relatively big case in the “snc situation”
(Theorem 5.1), from which we then deduce Theorem B.

Acknowledgements
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and the useful suggestions to improve the exposition of the article.

It is our privilege to dedicate this article to our friend and colleague
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2. Set-up and notation

The set of assumptions we need for our results to hold is the following.

Setup 2.1. — Let p : X — D be a smooth, proper fibration from a (n+1)-
dimensional Kéhler manifold X onto the unit disk D C C, and let (L, hy)
be a holomorphic line bundle endowed with a possibly singular hermitian
metric hyp,.

We assume that there exists a divisor E = E7 + - - - + Ey whose support
is contained in the total space X of p. such that the following requirements
are fulfilled.

(A.1) For every t € D the divisor E 4 X; has simple normal crossings. Let
Q C X be a coordinate subset on X'. We take (21,....2n,t = 2p41) &
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coordinate system on €2 such that the last one z,1 corresponds to
the map p itself and such that z; ...z, = 0 (for some index p < N)
is the local equation of E'N ).

(A.2) The metric hy, has generalised analytic singularities along F; i.e. its
local weights ¢, on € can be written as

P
oL = Zai log |z|* — Zb; log (gbj(z) —log (H zz|2k>>
i=1 I i€l
modulo C* functions, where a;, by are positive real numbers, k; are
positive integers and (¢;); are smooth functions on 2. The set of
indexes in the second sum coincides with the non-empty subsets of

{1,...,p}.
(A.3) The Chern curvature of (L, hy,) satisfies

in the sense of currents on X.

We then set

.7: = p*(<KX/D + L) & I(hL))
and assume that this vector bundle on D has positive rank. As a consequence
of the previous requirements (A.1)—(A.3), we have the following statement.

LEMMA 2.2. — Under the assumptions (A.1)—(A.3), we have
Fe=H" (X, (Kx, + L) ® Z(ht|x,))

for every t € D. Moreover, the canonical L?> metric (cf. Notation 2.4) on F
is non-singular.

Proof. — We first remark that F is indeed locally free given that it is
torsion-free and D C C is a disk.

The fibers of F are indeed identified with H® (X4, (Kx, + L) ® Z(h1|x,))
because of the transversality hypothesis (A.1), combined with the type of
singularities we are allowing for hy, in (A.2). The point is that a holomorphic
function f defined on the coordinate subset 2 belongs to Z(hy,) exactly when
the restriction f|onx, belongs to the ideal Z(hr|x,). On the other hand the
Kaéhler version of Ohsawa—Takegoshi theorem [6] implies that any element
of H (X, (Kx, + L) ® Z(hz|x,)) extends to X. It is at this point that the
hypothesis (A.3) plays a crucial role.

Concerning the smoothness of the L2-metric on F, we can use partitions
of unity to reduce to checking that integrals of the form anXt |fe]2e=¥t
vary smoothly with ¢, where f; = f|x, for some f € Z(h)|q and ¢y, is
given by the expression in (A.2). Now it is clear there that all derivatives in
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the t,t variables of ¢ are bounded, so that the result follows from general
smoothness results for integrals depending on a parameter. O

A few comments about the conditions (A.1)-(A.2). — The point we want
to make here is that the transversality requirements in (A.1)—(A.2) can be
obtained starting from a quite general context.

We consider p : X — D a proper fibration from a (n + 1)-dimensional
Kéhler manifold X onto the unit disk D C C, and let (L, hz) be a holomor-
phic line bundle endowed with a possibly singular hermitian metric h;. We
assume that (A.3) holds true, and that the singularities of hy, are of the form

p P
L Ezai10g|fi\2—2bilog (1; — log|gi|?) (2.1)
=1 i=1

modulo C* functions, where a;, b; are positive real numbers, f;, g; are holo-
morphic, and 7; are smooth.

If (A.1)-(A.2) are not satisfied for p : X — D, then one can consider
a log resolution 7 : X' — X of (X, .#z) where Z is the singular set of hy,.
Set p' :=porm: X' — D, (L' hy) := (7*L,7*hy), E is the reduced divisor
induced by 71(Z). It is immediate that

T (Kxryp + L") ® Z(hyr)) = (Kx/p + L) @ Z(hy,)
so that, in particular, 7.((Kx//p + L") ® I(hr)) = F.

The map p’ may not be smooth anymore (e.g. some components of E
may be irreducible components of fibers of p’). Set D, to be the Zariski
open set of regular values of p/, Dy 1= Dyeg N D, Xy :=p'~1(Dy), p1 := p'|x,,
(L1,hr,):=(L',hr/)|x,. Then, the triplet (p1, L1, hz,) satisfies the assump-
tions (A.1)—(A.3).

In conclusion, starting with a map p as above and singular metric iy, as
in (2.1), we can use our results on the family p; restricted to some punctured
disk D* C D.

The geodesic curvature in a degenerate setting. — Let p : X — D be a
smooth, proper fibration where X is a Kahler manifold of dimension n + 1.
Let w be a closed positive (1, 1)-current on X such that w is smooth on a
non-empty Zariski open subset X° C X. Let wy be a Kéhler metric on X.

DEFINITION 2.3. — The geodesic curvature c¢(w) of w on X° is defined by

o s (w + ewy)"
olw) = limy ew + ewy) = limy (w+ ewx)™ Addt AdE

A few explanations are in order.

First, if w is relatively Kéhler on X, one recovers the usual definition.
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Next, it is easy to observe that c(w +ewy) = 1/[|dt||2 .., - In particular,

that non-negative quantity is non-increasing when ¢ decreases towards 0,
hence it admits a limit. By the same token, one can see that the limit is
independent of the choice of the Kéhler metric wy.

Finally, if t € D is such that X7 := X; N A° is dense in X;, then one
defines ¢(w) on the whole X; by extending it by zero across X;\ X;. Note that
if the absolutely continuous part of w satisfies w,. < Cwy on X; for some
constant C' > 0, then ¢(w) is a bounded function on X; (this follows e.g. from
the inequality c(w) < ||%||i for a set of coordinates (z1,...,2n, 2nt1 = t)
such that p(z) = t). In particular, the integral th c(w)wh is finite.

Notation 2.4. — In the Set-up 2.1 above:

o Weset X°:= X\ E, X°:= X, N X°, L, := L|x,, hr, := hr|x,.

e We use interchangeably hy, and e~?~; when working in a trivializing
chart of L, we will denote by ¢, the local weight of hr. The (1,0)-
part of the Chern connection of (L, hz,) over X'\ E is denoted by D’.

e Under assumption (A.1), we will write E := Zf\; E; for the decom-
position of E into its (smooth) irreducible components. Next, let s;
be a section of Oy (E;) that cuts out E;, and let h; be a smooth
hermitian metric on Ox (E;). In the following, |s;|* stands for |s;|3 ,
and we assume that |s;|> < e™L.

e We will interchangeably denote by ||| or hz the L? metric on
F;ie ifu € Fy = H(Xy,(Kx, + L) ® Z(hz,)), then |Ju|? :=
Cn fo u A Te~ %t with ¢, = (—1)§. Lemma 2.2 ensures that the
L? metric is smooth on D. We denote by V the (1,0) part of the
Chern connection of (F, | -||) on D.

3. A few technicalities about Poincaré type metrics

Throughout this section we adopt Set-up 2.1 and use the Notation 2.4.
Let w be a fixed Kéhler metric on X', and let
N

1
—ZloglogW
K2

i=1

wg = w +dd° on X°

be a metric with Poincaré singularities along E. Thanks to (A.1) we infer
that wg|xe is a complete Kéhler metric on Xy with Poincaré singularities
along £ N X, for each t € D.

In the next subsections we will be concerned with the following two main
themes.
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Let V be the horizontal lift of % with respect to the Poincaré-type metric
wp. We estimate the size of its coefficients near the singularity divisor F, and
then show that the representatives of direct images constructed by using V'
have the expected L? properties allowing us to use them in the computation
of the curvature of F. This is the content of Subsection 3.1.

In Subsection 3.2 we establish a few important properties of the L2-Hodge
decomposition for (n, 1)-forms with values in (L, hz,), where the background
metric is (X,wg). The main result here is that the image of 0* is closed,
cf. Theorem 3.6, a very useful result per se and for the next sections of this
paper as well.

3.1. Estimates of the background metric, lifting

We choose local coordinates (z1,...,2n,2n+1 = t) on X such that
p(z,t) =t (as in (A.1)) and in which wg is locally given by

n n
wp = gpidt NdE+ Y (g,7idza AT+ gixidt AdZa) + Y g,5idz0 AdZs
a=1 a,B=1

By the estimates in [11, §4.2] the coefficients of wg are can be written as
follows

6(1 . 5a,l3 6aAa
|za|210g2 [2a?  2a log? |2a|?
0pBgs
zglog? | 2|2

_ 0
gOéB - gaE

e
+ K (3.1)
; log |z|?
where A, Bg, Cy, 925 are smooth functions on 2. We use the notation

5. = 1 ifaedl,...,p}
“ 10 otherwise

and dqg is the usual Kronecker symbol.

In order to present the computations to follow in a reasonably simple

way, we introduce for a = 1,...,n the functions
We = 2o log|za|? if a€{l,...,p
fa(z) = [7al ] { } (3.2)
1 otherwise

or fo(2) = dqwa + 1 — &, more concisely. The coefficients of the metric wg
can be written as

905 = mkllag(z”,w,p). (3.3)
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The notations we are using in (3.3) are:

(a) a,8€{1,...,n}.
(b) ¥z is asmooth function defined in the neighborhood of 0 € C"~7 x
CP x CP.
() w:=(wy,...,wp) (cf. (3.2)) and 2" := (Zp41, ..., 2n).
1

(d) For @« =1,...,p we introduce p, := Toglzal?"

To justify the smoothness of wag, we keep in mind that f, = dqwa +1— 94
is a smooth function of w and that if & € {1,...,p}, 2o = Wapa is a smooth
function of (w, p). Smoothness of ¥ now follows once one rewrites (3.1) as

p
fafﬁgaﬁ = fafﬂggg + (Sa(saﬁ + 5aAapafB + 5ﬁBﬁpﬁfa + Z Cyp’yfafﬂ

r=1

Given that wg is a metric, the functions W 7 are not arbitrary (since the
matrix (\Ilag)aﬁ is definite positive at each point). We simply want to em-
phasize in (3.3) the general shape of the coefficients, which will be useful in
the statement that follows.

LEMMA 3.1. — The following estimates hold true:

(i) det(g) = T1oy [fa(2)| 72 (c+ ¥ (2", w, p)), where the c inside the
parentheses is a strictly positive constant, and ¥ is smooth such
that ¥(0) = 0.

(ii) For each pair of indezes «, § we have

9% = ful2) ()02 (2" w, p),

where gEa are the coefficients of the inverse of (gag).

Proof. — Both statements above are obtained by a direct calculation,
using the expression (3.3) of the coefficients. We skip the straightforward
details. |

Thanks to Lemma 3.1 it is easy to infer the following useful estimates:
for each set of indexes a, 3, ¢, we have

agaa 2\ 1 Zq "
or ()= (6aq6a<1 +1og |zal*) F5(2) + 5ﬁq5ﬁfa(2)zq) ¥, 5= w, )
+ (14 dg(l0g |24* = 1)) fal2) F5(2)¥ 5(2", w, p)
5 r "
mfa(z)fﬁ(z)‘l’ag(z s W, p) (3.4)
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as well as
829304
02,07,
0 - z
= O) 2 (Suaal1 + Togleal) () + Gtn ()2
Zr Zq
5, . z,
#00) (14 2o ) (a1 oz enl?) P 6) ()2
5.6 _
+o(1)— 2% ¢
O g )
rom(1+ —2e V(14— ) () Fa2)
zq log |z4|? z, log |22 k2] Bl%

T

5 -
+ O(l) <1+Zz110gq|2’q2> ((SBT(Sﬁ(l-i-lOg |z5|2)fa(z)+(5m(5af5(z)j) (35)

Again, in the relations (3.4)~(3.5) we are using ¥ _z and O(1) as generic
notation, these functions are allowed to change from one line to another, the
point is that they are of the same type. The verification of formula (3.5) is
immediate, one simply takes the derivative in (3.4).

3.1.1. Horizontal lift, 1 and 7

One can define the lift V' of % with respect to the Poincaré type metric
wg, cf. [3, 18, 19]. Tt is a vector field of type (1,0) on X° such that dp maps
it to % pointwise on X° and which is wg-orthogonal to T1°X, for any ¢. In
local coordinates, one has the following formula

0 3 0
V= E Ba
o £ 5 9" 9 0z (36)

Let u be a holomorphic section of p.(O(Kx,p+L)®Z(hr)). One can choose
an arbitrary representative Uy of w, this is an L-valued (n,0)-form on X
which coincides with u; on X;. Now, let

u:=V.i(dt AUp). (3.7)
One can write locally (using the previous system of coordinates):
Up ANdt = a(z,t)dt Adzy A--- Adz,
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where a(z,t) is holomorphic with values in L. We have an explicit formula:

u:a(z,t)<dz1/\---/\dzn

=S (=) gpdt Adzy A Adza A A dzn> . (3.8)
o8

By construction, we have
dt Au =dt A Up. (3.9)

Therefore, although u is only well defined on X'°, u A dt can be extended as
a smooth form on X.

Remark 3.2. — The representative u in (3.8) has the following interesting
property
uAwglo =a(z,t)gzdt AdEAdzy A=+ Adzy. (3.10)

In particular, we have “Q‘Z’E | +, = 0 for every .
t

Moreover, as U is a smooth representative of v on X and u is a holomor-
phic form, we have 9(Uy Adt) = 0 on X. Combining with (3.9), we know that
JuAdt =0 on X°. As a consequence, we can find a smooth (n — 1,1)-form
n on A° such that

ou=dtAn on X° (3.11)
and one has
D’uli du—dor, Au (3.12)
=dtAp

for some (n,0)-form p on X°. The forms

ou | J D'u
—| =mnlxs, an
dt xe t dt xe

= ,U|Xf (313)

are well-defined and do not depend on the choice of 7 satisfying (3.11) (resp.
w satisfying (3.12)).

3.1.2. Estimates for n and u.

In this section our goal is to establish the following statement.
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LEMMA 3.3. — We consider the forms n|x,, ptlx, induced by the repre-
sentative u constructed in the previous section in (3.13). Then n|x,, plx, as
well as Op|x, are L? with respect to (wg,e”?L).

Moreover, u,n, i and Op are also in L?(X°) with respect to (wg,e L),
say up to shrinking D.

Proof. — This is routine: we can easily obtain the explicit expression of
n and p, and then we simply evaluate their respective L? norms by using
the estimates (3.4)—(3.5). We detail to some extent the calculations next.

First of all, we have

n|xt:a(2,t)Z(—1)a+1(g gtﬁ—l—gﬁ‘)‘gtﬁr)dzl/\ /\dza < Adz, AdZ,.
a,B,r

. B /;@
where we use the notation gﬁfa = ngl .

We consider first the quantity

‘g gw’ (3.14)

Thanks to the equality (3.4), up to a constant it is smaller than

7 |2(5ar5 log® |za|*|f5|* + 5r3s| fol”

5y
+<1—6 +7|Z Tlog? |2, )|fafﬁ|) (3.15)

which simplifies to

|2 1
fal? 46, [5mlog2|zr|2+aﬁr'f' +( i —1) |fa|2]

| fr|? |2 |? log” | 2.|?
Since )
=T _ 2 |f7|
dza A Adzg A - Adz, AdZy| AV, S SdVi,
wWE |fa|
we eventually find
— 2 o 2
‘g@o‘gtlg‘ ‘dzl/\-~-/\dza/\---/\dzn/\d2,« dVp
, wp

<O + 6,00, l0g? |2.[2)dV,,. (3.16)

The term )
‘g‘mgtgf (3.17)
is bounded by
|f |2
3pr05(1 +log? |25 )|f E — 0y +| | | fal? (3.18)
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and we see that the same thing as before occurs, i.e.

/\ 2
dzg A ANdzg A--- ANdz, AdZ, AV,

WE

<O +6,log? |2 >)dV,. (3.19)

_ 2
‘gﬁ 9457

Thus, the restriction of i to any fiber of the family p : X — D is L? with
respect to (wg, e ?L) since the holomorphic function a(z,t) belongs to the
multiplier ideal sheaf defined by hr. Indeed, setting v := |a|?dV,,, one has
e~?L € L'*¢(v) for some e > 0 (this is easily checked since ¢, has analytic
singularities and e=%% € L!(v)) while log|z,.|?> € LP(v) for all p > 0, so that
Holder inequality shows the claim.

ll

The local expression of the form p|x, is obtained by restricting d to

the fiber Xy; it reads as

1l x e 3 3
P ) (959597950 — D 009" 05
o,
—a(z)prs+a(z,t)y ¢r.0a9"%9,5 (3.20)
a,f

where dz :=dz; A--- Adz,.

By our transversality conditions, the function a is still L? with respect
to hr,. The term g%‘lgtg+g50‘gt§7a is treated as we did for (3.14) and (3.17),
with the exception that the indexes r and 8 coincide (and the type of the
form is different). We have up to some constant

o%0,5] < (0= Togleal?) 1ol + 6ol ol
+[<15>+5} |ff>
T allog? zal2) )
S 1 —log |zq|? (3.21)

and we can bound this term as before. The second term satisfies gBa 9450 =

gao‘gagvt since wg is Kéhler, hence it is bounded.

< Ol24)?10g? |24, and also that

_ 2
Next, we have ’gﬂagtg

|a704|2\za|2 log2 |ZQ|2€7@L = O(\a|2 log2 |ZQ|2€7@L) el (3.22)

for any a = 1,...,p again by the transversality/L? conditions we impose to
a(z,t), so the third term in (3.20) is in L?. A similar argument applies to
the second line of (3.20).
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The last part of the proof of our lemma concerns Jp; the computations
are using (3.5). We will only discuss the term

o 3. 2o _
e (951 65+ gta,a) dz A dz, (3.23)

since for (3.23) the computations are the most involved. The reason why
we are able to conserve the L? property is that the partial derivative with
respect to Z, will induce a new term of order O(1/|z.|) if r < p, and its square
will be compensated by |d2r|3)E. As for the computations: the singularities

induced by gﬁao;gtg are bounded by the following quantity

1 baba, 1 1

9 o079 ‘ a— + log log +d00rag 5
‘ ¢7] < 0a ] 12812 " f2al)?

Izal2

1
+ |5 | (5 1og| E +6a5aﬂ)

5. 5 A
+ fal + 7 (55rlog
Twawr el ¥ Tuag \So00r o8 o5 120

from which we see that the first part of (3.23) is L2. The remaining terms
are

+ 64 5m) (3.24)

(9 957 T gﬁagtﬁ Lt gﬁagw M) dz Adz, (3.25)
for which one could use the fact that the metric wg is Kdhler and so we have
gtﬁ,a = gag,t’ gtE,aF = gag’ﬁ. (326)

The equalities (3.26) are simplifying a bit the calculations, since the deriva-
tive with respect to t does not increase at all the order of the singularity.

For the first term of (3.25), we have, up to a multiplicative constant

da
< |da (1_1Og‘za| ) ,3+6 5a5fa (( _6a)+
Zo log? |24 |2

< 6,604 L <1+5’”>

‘Zr|2 log |Zr|2 fﬁ 2 10g2 |Z7'|2

<|(1 = b4 log|zal) - (1 * zl(—foglzP))))

In particular, we get

)fozfﬁ‘

|[dZr|wr S 1 =60 log]|zal

‘g 9i5,7| "

and we are done with this term as before.
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For the second term of (3.25), we have, using (3.26)

3. 1
Ba 2
9% 9.3 <-(5ar5a 1 —log|za|)|f5] + 9505 fa
7 9aBt| S TR ( |2a|9)| f5| + 0pr05] fal
1
+|:(1—(5T)+5T(—10g|zr|2)—|—2 z}fafm)
| 2| log® | 2|
_ 2
<146 log ||

" | 2| (— log |Zr|2).

In particular, we get

NdZr by S 1—0,log|z

~

’g,ﬁﬁga@t
and we are done.
As for the last term of (3.25), we use (3.26) and (3.5) to see that the
expansion of g% 945,07 will only involve terms like
_ 877foz affﬂ
waﬁﬂﬂ ’ I
fa Is

which are respectively of order

57‘ 5r5ar 6r6ﬁ7‘
ZTIOg‘ZTP, Z7"10g|zr|27 Zpr .
All in all, we find
‘gﬂagtg,a; dZr]wp S 1 -6, log |z,

and this is the end of the main part of the proof.

The integrability of u,n, u on X° follows directly from the estimates we
have obtained above. Concerning dyu there is one additional term given by
(% of the expression in (3.20). This is however harmless: given the shape
of the coefficients (g,5) (i.e. the transversality conditions), the additional
anti-holomorphic derivative with respect to ¢ induces no further singularity

and the estimates e.g. for the term
8 —
Ba, _
5 (g,a‘)‘gw)
will be completely identical to those already obtained gfza 9:5- We leave the
details to the interested reader. |

Remark 3.4. — Using quasi-coordinates adapted to the Poincaré metric
wg (cf. e.g. [8, 12, 20]), we can prove easily that n and its derivatives are in
L?. However, that argument cannot be applied to p because of the singularity
in the Chern connection of (L, hr).
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3.2. A few results from L? Hodge theory

We recall briefly a few results of L?-Hodge theory for a complete manifold
endowed with a Poincaré type metric, following closely [7]. We are in the
following setting.

Let X be a n-dimensional compact Kahler manifold, and let (L,hr) be
a line bundle endowed with a (singular) metric h; = e~%% such that

e hy has analytic singularities;
o Its Chern curvature satisfies i@y, (L) > 0 in the sense of currents.

We consider a modification 7 : X — X of X such that the support of
the singularities of ¢y o 7 is a simple normal crossing divisor E. As usual,
we can construct m such that its restriction to X \ E is an biholomorphism.
Then

p
promla = ealog|zal’ (3.27)

a=1

modulo a smooth function. Here Q C X is a coordinate chart, and (z4)a=1
are coordinates such that ENQ = (z1...2, =0).

Let &g be a complete Kahler metric on X \ E, with Poincaré singularities
along F, and let

wg = ’/T*(@E) (328)
be the direct image metric. We note that in this way (X°, wg) becomes a
complete Kéhler manifold, where X° := X \ (h = o0).

Remark 3.5. — If u is a L-valued (p,0)-form on X° which is L? with
respect to wg, then it is also L? with respect to an euclidean metric on X
(or X, too).Therefore, if u is holomorphic, then it extends holomorphically
to X and more generally any smooth compactification of X°.

The main goal of this section is to establish the following decomposition
theorem, which is a slight generalization of the corresponding result in [7].

THEOREM 3.6. — Consider a line bundle (L,hy) — X endowed with a

metric hy, with analytic singularities, as well as the corresponding complete
Kdihler manifold (X°,wg), cf. (3.28). If iOp, (L) = 0 on X, we have the
following Hodge decomposition

L} 1(X° L) = Hon (X°, L) © ImJ & Im D"
Here H,, 1(X°, L) is the space of L* A" -harmonic (n,1)-forms.
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The proof we will present here is almost contained in the aforementioned
reference, in which the case Oy, (L) = 0 is treated. The few additional argu-
ments together with the precise references we are using are explained below.

We start by recalling the following result.

LEMMA 3.7. — There exists a family of smooth functions (pe)eso with
the following properties.

(a) For each € > 0, the function pe has compact support in X°, and
0<pe <1

(b) The sets (pie = 1) are providing an exhaustion of X°.

(¢) There exists a positive constant C' > 0 independent of € such that
we have

b;(lop (|6M5‘3)E + |agﬂa iE) <C

We have also the Poincaré type inequality for the d-operator acting on
(p, 0)-forms.

PROPOSITION 3.8 ([7]). — Let (£;);=1
nate sets of X covering E, and let U be any open subset contained in their

~

union and U := w(U). Let 7 be a (p,0)-form with compact support in a set
U\ 7(F)C X and values in (L, hy). Then we have

~ be a finite union of coordi-

.....

1 _ = _
5/ 1712, e dV,, g/ 0712, e~ " dV,, (3.29)
U U

where C' is a positive numerical constant.

We emphasize that the constant C' in (3.29) only depends on the distor-
tion between the model Poincaré metric on ); with singularities on £ and
the global metric Wg restricted to ;. Another important observation is that
by using the cut-off function . in Lemma 3.7, we infer that (3.29) holds in
fact for any L?-bounded form with compact support in U.

Quick recap around the Bochner—Kodaira—Nakano formula. — We recall
the following formula, which is central in complex differential geometry
A" = A +1[i0, (L), Ay,] (3.30)

where A” = 00* 4+ 0*0 and A’ = D'D"* + D'*D’ where D’ is the (1,0)-part
of the Chern connection on (L, hr). Let us also recall the well-known fact
that the self-adjoint operator

A= [i@hL (L), AwE]
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is semi-positive when acting on (n,q) forms, for any 0 < ¢ < n as long as
iOp, (L) > 0. An immediate consequence of (3.30) is that for a L?-integrable
form u with values in L of any type in the domains of A’ and A", we have

10ullZz + 10" ul|Z> = [D"ul[Z> + D" ulZ: +/ (Au, updVip,  (3.31)
XO

where ||+ ||z (resp. (-,-)) denotes the L?-norm (resp. pointwise hermitian
product) taken with respect to (hr,wg), cf. e.g. [4, Prop. 12.2 ¢)]. Here the
main point is that in case of complete manifolds, the forms with compact
support are dense in the domains of the operators 0 and 0* (unlike e.g. in
the case of bounded domains in C", where further boundary requirements
for forms are to be imposed so that Bochner formula holds true).

Let x : AP9T%, — A"~2""PT%, be the Hodge star with respect to wg;
we introduce for any integer 0 < p < n the space

o

H® .= {F € H'(X°, 0%, ® L) N L?; / (Ax F,xF)dV,, = 0} (3.32)

and we can observe by Bochner formula that for a L? integrable, L-valued
(p,0)-form F, one has

A"(*F)=0+= A'(xF) =0

and [ (A% F,«F)dV,, =0+<= Fec HP. (3.33)
XO

Indeed, the holomorphicity of F follows from the identity OF = —x D" (xF).

The proof of Theorem 3.6, which we give below, makes use of the following
proposition which is the 0-version of the Poincaré inequality established
in [1].

PRrROPOSITION 3.9. — Let p < n be an integer. There exists a positive
constant C' > 0 such that the following inequality holds

/ |u|iEe_¢deE
Xo
gc(/ |5u|3Ee*¢’deE+/ <A*u,*u>deE) (3.34)
XO o

for any L-valued form u of type (p,0) which belongs to the domain of O and
which is orthogonal to the space H®) defined by (3.32). Here % is the Hodge
star operator with respect to the metric wg.
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Proof of Proposition 3.9. — 1If a positive constant as in (3.34) does not
exists, then we obtain a sequence u; of L-valued forms of type (p,0) orthog-
onal to H®) such that

/ uj|2 e ?dV,,, =1, hm/ |0u; |3, e dV,, =0 (3.35)
Xo 7 Jxe
and
lim (A% uj, *u;)dVy,, = 0.
J Xo
It follows that the weak limit uo, of (u;) is holomorphic and belongs to H(?).

On the other hand, each u; is perpendicular to H ) 50 it follows that ua
is equal to zero.

Let us first show that the weak convergence u; — us also takes places
in L2 (X°). To that purpose, let us pick a small Stein open subset U € X°.
By solving the d-equation U, we can find w; such that 5wj = 5uj on U and
fU |w;|*> — 0. Therefore u; — w; is holomorphic on U and converges weakly,
hence strongly to us|y. In particular u; converges to ue in L? on U. As
Uso = 0, we have

ujlx — 0 (3.36)
in L? for any compact subset K C X°.

The last step in the proof is to notice that the considerations above
contradict the fact that the L? norm of each u; is equal to one. This is not
quite immediate, but is precisely as the end of the proof of Lemma 1.10
in [1], so we will not reproduce it here. The idea is however very clear:
in the notation of Proposition 3.8, we choose V small enough so that it
admits a cut-off function x with small gradient with respect to wg. Then,
we decompose each u; as u; = xu; + (1 — x)u;. Then the L? norm of XU;j
is small by (3.36). The L? norm of (1 — x)u; is equally small by (3.29), and
this is how we reach a contradiction. ]

We have the following direct consequences of Proposition 3.9.

COROLLARY 3.10. — There exists a positive constant C' > 0 such that
the following inequality holds
/ lul2, e ?dV,, < C (/ |3u|iE6¢deE> (3.37)
Xo Xo

for any L-valued form u of type (n,0) which belongs to the domain of O and
which is orthogonal to the kernel of O.

Proof. — This follows immediately from Proposition 3.9 combined with
the observation that the curvature operator A is equal to zero in bi-degree
(n,0). O
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The next statement shows that in bi-degree (n,2) the image of the oper-
ator 0* is closed.

COROLLARY 3.11. — There exists a positive constant C' > 0 such that
the following holds true. Let v be a L-valued form of type (n,2). We assume
that v is L2, in the domain of O and orthogonal to the kernel of the operator
0*. Then we have

/X |2, e ?*dV,, < C ; 10*v|2 e rdV,,. (3.38)

Proof. — Let us first observe that the Hodge star u := v, of type (n —
2,0), is orthogonal to H(=2)_ This can be seen as follows. Let us pick F €
H®™=2); it follows from (3.33) that we have 9*(xF) = 0. In other words,
xF € Ker 0*. We thus have

/ (u, FYdV,,, :/ (v, xF)dV,,, = 0.

Applying Bochner formula (3.31) to v and using the facts that Ov = 0 (since
v is orthogonal to Ker 0*) and that 0*u = 0 for degree reasons, we get

10% 017> = [|0ul|7- +/XO<A*U7*U>deE (3.39)

This proves the corollary by applying Proposition 3.9. ]

We discuss next the relative version of the previous estimates. Let p : X —
D and (L, hr) be the family of manifolds and the line bundle, respectively
fixed in the previous section. We assume that

D > t+ dim(Ker(AY)) is constant (3.40)

where the Laplace operator A} is the one acting on L? (n,1)-forms with
respect to (wg, hr).

The next result is a consequence of the proof of Proposition 3.9.

COROLLARY 3.12. — Under the additional assumptions (3.40) and
(A.1), there exists a constant C > 0 independent of t such that

/ |u|3Ee*¢deE
XO

<C </ |0u)2, e~ ?dV,, —|—/
x¢ p's

for all L? forms w orthogonal to the space Ht(p) defined in (3.32) on the
fiber X;.

(A *u, *u)deE> (3.41)

o
t
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Here the constant C is uniform in the sense that for any subset U of
compact support in D, we can find a constant C' depending on U such
that (3.41) is satisfied for any ¢t € U

Proof. — We first show that every form Fy on the central fiber which is
in the space H(()p) can be written as limit of F;, € Ht(f). This is of course
well-known in the compact case, but we include a proof here since we could
not find a reference fitting in our context.

Let (F})iep+ any family of L-valued holomorphic p-forms on the fibers
above the pointed disk D* such that

/ |F|2, e ¢ dV,, = 1. (3.42)
X7

Then we can definitely extract a limit F,, on the central fiber X, but in
principle it could happen that F,, = 0 is identically zero. Such assumption
would lead however to a contradiction, as follows.

We write locally on a coordinate chart € for X

Flo=>Y_ fidzr ®er, (3.43)

where the coefficients f; are holomorphic, and of course depending on t.
We can assume that the multiplier ideal sheaf of hy is trivial, given the
transversality conditions that we have imposed (we can simply divide F;
with the corresponding sections). If the weak limit of F} is zero, we can
certainly extract a limit in strong sense, because the L? norm with respect
to a smooth metric is smaller than the L? norm with respect to Poincaré
metric, cf. also Remark 3.5.

In this case, the sup norm of the coefficients f; above converges to zero
as t — 0. Since the Poincaré metric we are using has uniformly bounded
volume, the equality (3.42) will not be satisfied as soon as t < 1.

We now take an orthonormal basis (F; ;) of the space Ht(p ) (this is ob-
tained by the *; of an orthonormal basis for the Ker(A}), for example).
The previous considerations will allow us to construct by extraction an or-
thonormal family (Fu ;) in Hép ): this will be a basis because of dimension
considerations.

We argue by contradiction and assume that the smallest constant C; for
which (3.34) holds true to for the fiber X; tends to infinity when ¢ — 0.

Then we get u; on X;, such that u; is orthogonal to the space Ht(f ) and such
that

/ |2, e d VL, =1, lim 0w, e 9 dV,, = 0.  (3.44)
X, i Jx,,
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Then the limit (computed using any C* trivialization of the family)

ug = lim u;
i—0

is still orthogonal to Hép ). this is exactly where the previous considerations
are needed. The rest of the proof of the corollary follows the arguments
already given for Proposition 3.9, so we simply skip it. |

Now we can prove Theorem 3.6.

Proof of Theorem 8.6. — This statement is almost contained in [9,
Chap. VIII, p. 367-370]. Indeed, in the context of complete manifolds one
has the following decomposition

L2 (X°, L) = Hy1(X°, L) ®Imd @ Im 0*. (3.45)

n,l
We also know (see [9]) that the adjoints 0* and D" in the sense of von
Neumann coincide with the formal adjoints of @ and D’ respectively.

It remains to show that the range of the 9 and 9*-operators are closed
with respect to the L? topology. In our set-up, this is a consequence of the
particular shape of the metric wg at infinity (i.e. near the support of 7(F)):
we are simply using the inequalities (3.37) and (3.38). The former shows that
the image of J is closed, and the latter does the same for 0*. |

We finish this section with the following result (relying of the decompo-
sition theorem obtained above), identifying the L2-integrable A”-harmonic
forms of bi-degree (n,1) on (X°,wg, hy) with the vector space H! (X, Kx ®
L®Z(hy)) (which is independent of wg).

PROPOSITION 3.13. — In the setting of Theorem 3.6, we have a natural
isomorphism

Ho1(X°, L) — H' (X,Kx ® L& Z(hy))

where H,,1(X°, L) is the space of L? integrable, A" -harmonic (n,1)-forms
on X°.

Proof. — We proceed in several steps.

Step 1: Reduction to the snc case. — The first observation is that the
statement is invariant by blow-up whose centers lie on X\ X °. It is obvious for
the LHS while it follows from the usual formula 7, (Kx @ m*LQZ(m*hy)) ~
Kx ®L®ZI(hy) as well as Grauert-Riemenschneider vanishing Rl7,(Kx/ ®
7L Z(n*hy)) =0 (see [14, Cor. 1.5]) valid for any modification 7 : X’ —
X. So from now on, we assume that the singular locus of hy, is an snc divisor.
In the following, we pick a finite Stein covering (U;);er of X.

Step 2: Statement of the claim to solve the 0-equation. — Our main tool
in the proof will be the following estimate.
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Cram 3.14. — Let v be a (n,1)-from on X° with values in (L, hy), and
such that

A"y =0, / |2, e ¥=dV,, < oo.
X
Then for each coordinate set Q C X there exists an (n,0)-form u on Q such
that
ou = v, / |U|E)E67<‘0LdVWE < 00, (3.46)
Q

For bi-degree reasons, the (n,0)-form w in (3.46) is L? with respect to
hy, (independently of any background metric). We postpone the proof of the
claim for the moment and we will use it in order to prove Proposition 3.13.

Step 3: The map “harmonic to cohomology”. — We first construct an
application
®:H,1(X°, L) — HY(X,Kx ® L®Z(hy)) (3.47)

as follows. Let f € H,,1(X°, L); by definition we have A” f = 0. Therefore,
on can solve on each U := U; N X° the equation Ou; = f where u; is an
L-valued (n,0)-form on U? satisfies the condition (3.46). In particular, the
form w;; := u; — u; is a holomorphic L-valued n-form on Uioj such that

/ |uij|?e™%" < 2/ |fI2 e dVi,
Ue U;’j

ij
It follows that w;; extends holomorphically across E as a section of Kx ®
L ®Z(hz) on U;; and therefore it defines a 1-cocycle of the latter sheaf. It
is straighforward to check that the class

O(f) = {(wiy)igery € H'(X, Kx ® Lo Z(hy))
is independent of the choice of the L?-integrable form u; solving du; = f.
Step 4: The map “cohomology to harmonic”. — Next, we have a natural
morphism
U:H' (X, Kx @ L®Z(hy)) — Hn1(X°, L) (3.48)

Indeed, given a cocycle v := (v;;);,jer and a partition of unity (0x)rex we
use the Leray isomorphism and consider as usual the L-valued (n,0)-form

T 1= Zﬁivki on Uy (3.49)
iel
and then the local L-valued forms of type (n, 1)

aTk
are gluing on overlapping sets. Let g, be the resulting form. We have
0B, =0 and B, €L? (3.50)
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where the second property in (3.50) is due to the fact that wg > w. Under
the canonical decomposition

_ L _
Kerd=H,1 ®Imo

from Theorem 3.6, we define ¥(v) to be the orthogonal projection of 3, onto
Hp,1. It is clear that W above is well-defined: if v;; = v; — v;, then 7, — vy, is
a global, L? form and our 3, is exact and therefore its projection onto the
kernel of A" is zero.

Step 5: Compatibility of the maps. — We are left to showing that the
maps ® and ¥ in (3.47) and (3.48) are inverse to each other. Let f € H,, 1,
u; € L? such that Ou; = f on UP and u = (ui;). Then on Uy, one has

Bu—f=0 <Z€uk - uk> =9 (-Zeim)

iel
and that last form is globally exact in X° and L2, hence ¥U(®(f)) = f.

In the other direction, let v := (v;;);jer be a cocycle and let us write
By = ¥(v)+ 0w for some L2-integrable (n,0)-form w. On Uy, one has ¥ (v) =
d(1, — w) so that ®(¥(v)) is represented by the cocycle (1; — 75)i jer = v.

Step 6: Proof of Claim 3.14. — In order to complete the proof of Propo-
sition 3.13, we need to prove the Claim 3.14 that we used in the course of
the proof.

By (3.33), the form v is holomorphic and its restriction to a coordinate
subset () can be written as

2
*xv|g = E (-1 toydz; @ ep, E A ||fj_||2e PLAN < 00 (3.51)
J

where the a; are holomorphic on 2 and f; is as in (3.2).

Then we have

vl = (-1)" aigzdz Adz @ ey (3.52)
ik

where g, are the coefficients of the metric wg. The construction of the metric
at the beginning shows that

32

9% = 5ogm ¢ — zj:log log (3.53)

|51
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where ¢ is a local potential for the smooth metric w. Therefore we can get a
primitive for v|q by defining

uzi:ai(,i gbf;loglog 1 dz®eyr. (3.54)

552

By equality (3.53) it verifies Ju = v and in is also in L? as one can see by an
direct explicit computation combined with the second inequality in (3.51).

The proof of Proposition 3.13 is now complete. g

4. Curvature formulas and applications

In this section, we use the Set-up 2.1. We also borrow the Notation 2.4 for
the L? metric denoted by hz on the direct image bundle F = p,(O(Kx,p +
L) ® Z(hz)) induced by e~%-.

Let u € H°(D, F) and let u be a (n, 0)-form on X° representing u. Thanks
to (3.9), for any smooth function f(¢) with compact support in D, we have

/ ull7 - dd°f(t) = cn/ uAte %% Addef(t). (4.1)
D xo
Recall that hx is smooth by Lemma 2.2.

The aim of this section is to generalize formulas [2, (4.4), (4.8)] to our
singular setting, cf. Proposition 4.1 and Proposition 4.5.

4.1. A general curvature formula

In this context we establish the following general formula, which gener-
alise the corresponding result in [2, (4.4)].

PROPOSITION 4.1. — Let u be a continuous representative of u such that:

(i) u,D"a and d(D'u) are L? on X° with respect to wg, by,
(ii) GuAdu is L' on X° with respect to wg, hy .

Then the following formula holds true
00|[ullf . = cn|~P+((Oh,(L))ac AuATe™ ) + (=1)"p.(D'u A D'ue %)
+(—1)"p,(Fu A ?ue*%)} (4.2)
Here (O, (L))ac is the absolutely continuous part of the current Oy, (L).
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Remark 4.2. — Here we merely require the L' integrability of du A Ou
and not the L2-integrability of Ju. The reason is that for later application
in Theorem 4.6, we could only obtain the former condition. It is not clear
whether the term Ou in Theorem 4.6 is L.

The proof of Proposition 4.1 will require a few preliminary computations
and will be given on page 888 below. First, we start with the following result
legitimizing integration by parts.

LEMMA 4.3. — Ifu and D'u are L? on X°, we have
/ WA T i0Bf(t) = — [ D'unme=ridf(t).
o XO

Proof. — Let 1. be the cut-off fonction in Lemma 3.7. Since u is L?
bounded with respect to ¢, and wg, we have

/ uAte ?Lid0f(t) = lim [ tpouAte ?LidOf(t).
° e—0 xo
An integration by parts yields

You A e Liddf(t)
Xo

=— / i0h. ANu Atie PEOf(t) — Ve A D'u A Te ?Lidf(t)
o XO
—(=1)" | e Aunduetridf(t). (4.3)
XO
Since u is a representative of a holomorphic section u, we know by (3.11)
that du = dt A n, hence 3
Jundt=0 (4.4)
and the third term of RHS of (4.3) vanishes.

The first term of RHS of (4.3) tends to 0 because u is assumed to be
globally L?-integrable. Similarly, we see that the second term of RHS of (4.3)
tends to

— D'a Ate ?=idf(t).
XO
The lemma is thus proved. ]

As a corollary of Lemma 4.3 above, we can compute the Chern connection
of (F,hr) as follows.

COROLLARY 4.4. — Let uw € H°(D,F) and let u be a smooth represen-

tative of u. We have
Vu = P(p)dt
where
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o V is the (1,0)-part of the Chern connection on (F,hr).

o u is defined by D'u = dt Ay, cf. (3.12), and p|x, only depends on u.

o P(u) is the fiberwise projection onto H°(Xy, (Kx, + L) ® Z(hr,))
with respect to the L?-norm.

Proof. — Let V be the (1,0)-part of the Chern connection of (F,hr).
Then we have

Vu =0 ®dt,

where o = % € C™(D,F). Let u,v be two holomorphic sections of F

and let f be a smooth function with compact support in D. Since v is a
holomorphic, we have

/<u,v>i35f(t):/<Vu,v>/\z‘5f(t).
D D

Let u and v be the representatives of u and v respectively given by (3.7).
The argument already used in Lemma 4.3 shows that we have

/ uAve ?Ligdf(t) = | D'uAve ?Lidf(t).
o XO

Here D’ is, as before, the Chern connection on (L — X°, hy). As a conse-
quence, we have

/ (Vu,v) NiOf(t) = D'u Ave ?Lidf(t).
D

XO
Since we can choose f on the base D arbitrarily, we infer

\Y D’
/ (¢, ve) =/ <u,v> :/ 1A gt
X def X;) dt t Xf dt

b
= / nwA Tpe %L
X7

— / P(ulx,) A Tre %
X7

for each t € D.
As the above holds for any holomorphic section v, we obtain thus
Vu = P(u)dt
on D. O
We can now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. — Let f € C°(D). By (4.4), we have

eu A %e_mgf(t) =0
XO
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for every €. By integration by parts, we obtain
Ope ANuAdue ® f(t) + [ 1p.Oun Bue  f(1)
X° X°
+(=1)" [ YounDOue = f(t) =0. (4.5)

Xo

For the first term of (4.5), by integration by parts again, we have

(=)™ [ e AuAdue®t f(2)

Xo

=— [ Op.ADuATe PEf(t)+ [ O0Y. ANuATe PE (1)
X X°

— [ 0. AuATe PE ADf(1).
XO

Recall that di. and dd“y, are uniformly bounded with respect to wg and
converge to zero pointwise. Since u and D’u are L? by assumption, we see
from Lebesgue dominated convergence theorem that the RHS tends to 0.
Therefore the first term of (4.5) tends to 0.

Since JuAdu is LY, the second term of (4.5) tends to [, 5u/\ae_mf(t).
We obtain thus

Jundue @t f(t) = (—1)"  lim [ houADue ®tf(t).  (4.6)
xo e—0 xo

We complete in what follows the proof of the proposition. We have
/ uAte ?r ADOf(t)
XO

=lim [ t.uAte ?* ADIf(t)
e—=0 Jyo

= —lim{ O NuNTe P2 NOf(t)+ | - ANOuATe P2 ADf(t)
e—0 Xo Xo

+ (=) Ye Au A Due™ %t A@f(t)}
XO
Note that the first term tends to 0 since u is L2. The second term vanishes

because of (4.4). Then we have

/ uAte ?r AJOf(t) = (—1)" 1 lim [ g AuA Drae=%= AOf(t).
o E— Xo
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Applying again integration by part, the RHS above becomes

lim(—=1)""' [ 9y AuA Drae™t f(t)
e—0 xo

+(=1)""Y [ Y.D'uADue?tf(t) — [ p.uAdDue PEf(t). (4.7)
xo xe

As u and D'u are L2, the first term of (4.7) tends to 0, and the second
term of (4.7) tends to [, D'uAD"ae~?~ f(t). For the third term, as 9D'u =
O, (L) — D'Ou, we have

Yeu A OD'ue” PE f(t)
XO

=— [ YuADOue f(t) — | .On, (L)unde ?Ef(t). (4.8)
X° Xo
Combining with (4.6), we obtain

lim Yeu A OD'ue " f(t)
e—=0 [ yo

=(=D)" [ dundueft)— [ On, (L) Aunte 9 f(t).
xe xe

All three terms of the RHS of (4.7) have now been calculated and the
sum is just

(=)t . D'u A D'ue % f(t) + (—1)" ! . ou /\%e_mf(t)

+ [ On (L) Aunde ?Ef(t).
XO
The proposition is thus proved. O

4.2. A characterization of flat sections

Now for applications, we need to generalize [2, Prop. 4.2] and formula [2,
(4.8)] to our singular setting. Following the argument of [2, Prop 4.2], we
have the following.

PROPOSITION 4.5. — We assume that the coefficients by in the Set-up
condition (A.2) are equal to zero. Let u be a holomorphic section of F on D
such that Vu(0) = 0. Then u can be represented by a smooth (n,0)-form u
on X°, L? with respect to hp,wg, such that

Ju=dtAn
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for some L?-form n which is primitive (with respect to wg|x-) on X°, and
Du=dtAp
for some p satisfying plxo = 0. Here X° := XoNX° is on the central fiber.
Proof. — Let u be the representative constructed in (3.7). We have
Du=dtApu Ou=dt An.

Then p|xo is orthogonal to the space of L2-holomorphic section by Corol-
lary 4.4.

By Remark 3.2 our representative u has the following property
uAwg =dt AdEAu (4.9)
for some (n,0)-form u; on X°. It follows that we have
nAwg =0 (4.10)
on each fiber X;.

Moreover, as pi|xo is orthogonal to Ker @, Theorem 3.6 shows that p|xo
is 0*-exact, i.e., there exists a d-closed L?-form By on X° such that

9*°Bo = plxe.
Let 50 be an arbitrary (globally L?) extension of xq3y. Then u — dt A Bo is
the representative we are looking for. O

The result above produces a representative enjoying nice properties in
restriction to the central fiber; more precisely, the fact that n|x. is primitive
ensure that the third term in the RHS of the curvature formula (4.2) has a
(positive) sign at ¢t = 0.

In order to generalize that to each fiber, we consider the case where
u € H°(D,F) is a flat section with respect to hr. For that purpose, we
introduce an additional cohomological assumption.

In the Set-up 2.1, assume that the coefficients by appearing in (A.2)
vanish. That is to say, hy has analytic singularities in the usual sense. We
let Ag be the Laplace operator on L-integrable (n,1)-forms with values
in L on X7, taken with respect to wg,hr. Let us consider the following
assumption.

(A.4) The dimension dim Ker A; is independent of ¢ € D.

Note that by Bochner formula, we already know that dim Ker A;/ < +00.
Indeed, if o is a A;-harmonic L2 (n,1)-form on X?, then (3.31) shows
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that o is Aj-harmonic and (D')*a = 0. In particular, xa is a L2holo-
morphic section. Thanks to Remark 3.5, we get an injection Ker A;/ —
HO (X, Q}:l ® L¢). In particular, the former space is finite-dimensional.

The main result of this subsection states as follows.

THEOREM 4.6. — In the Set-up 2.1, assume that hy has analytic singu-
larities and that the condition (A.4) above is satisfied.

Letw € H°(D,F) be a flat section with respect to hx. Then, we can find
a continuous (n,0)-form u on X \ E representing u such that

(i) u is L? and D'u =0, o
(i) nlxe = 0 for any t € D, and du A Ou = 0, where n is (as usual)
given by Ou = dt A n. Moreover, the equality

On, (L)Au=0 (4.11)
holds true point-wise on X \ E.

Remark 4.7. — Let us collect a few remarks about the theorem.

(a) The content of Theorem 4.6 is clear: it “converts” the abstract data
Ou =0 and Vu = 0 into an effective result.

(b) The identity (4.11) is equivalent to saying that the hermitian metric
induced by i©p, (L) on A"T%. has u in its kernel.

Proof. — As in the proof of Proposition 4.5, we start with a representa-
tive u given by (3.7) (i.e. constructed via the contraction with the canonical
lifting of % with respect wg).

Since u is flat on D, we have D'u = dt Ay where pu|xo is L? and 0*t-exact

for every t € D. Therefore we can solve the 0*-equation fiberwise, namely
there exists a unique L?-form 3; on X7 such that j3; is orthogonal to the
Ker 0** and such that

9% By = plxs.
By taking the J in both side and taking into account the fact that 3; is
orthogonal to the Ker 0*t, we obtain
AYBr=0(ulxs) on X{ and B L KerA,. (4.12)

By analogy to the compact case it is expected that the minimal solution
of a A;/ equation varies smoothly provided that dim Ker AZ is constant.
We partly confirm this expectation in Proposition 4.8 by showing that it is
continuous; for the moment, we will admit this fact and finish the proof of
the theorem.
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We set
up i=u—dit A (% 5).
It is a continuous, fiberwise smooth form on X° and we show now that u;

is a representative for which the points (i)—(ii) above are satisfied.

By construction, D'u; = 0 on X°. By (4.18) of Proposition 4.8 below,
the L2-norm of j3; is smaller than the L2-norm of 5M|X§7 ie.,

18]l < CllOulxe |2

for some constant C' independent of t. Moreover, we recall the estimates in
Lemma 3.3: dp|xe is uniformly L?-bounded. Therefore dt A (x3;) is L* and
so our representative u; is L2.
We have du; = dt A (17 + 5(*1&/@)) and since 5(*t5t) Awg = 0B =0, it
follows that
5111
— A =0. 4.13
dt |, " (4.13)

In order to use Proposition 4.1, we show next that we have OuiAOu;y € L.
To this end, we write

uy Aduy =dt AnAdEAT+dEAD(xB) AdE AT (4.14)
+dt AnpAdt A O(xfy) +dt AO(x¢B) Adt AD(x¢B). (4.15)

By the estimates in Lemma 3.3, 7 is L2. Then the first term of RHS of (4.14)
is L. Degree considerations show that we have

dt A O(xB) ANdt A= dt A Oy (xf) Adt A, (4.16)

where 9, is the J-operator on X;. Since A;,ﬁt = O and f; is of degree (n, 1),
Bochner formula shows that the L2-norm of 9;(x;/3;) is equal to the L? norm
of the form (D’)**f3; (this is due to the fact that 3; is O-closed), which in
turn is bounded by the L?-norm of du. Once again, the estimates provided
by Lemma 3.3 show that the L?-norm of du|x, is bounded uniformly with
respect to t. It follows that dt A 0y (x3;) is L2.

Therefore dt A 9(x¢;) A dt An is L'-bounded by using (4.16). The same
type of arguments show that the two terms in (4.15) are also L!.

We apply Proposition 4.1 for the representative u; of u. The flatness of
u imply that

. / (—1)"Fuy A Dy + iOp, (L) A AT = 0.
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Thanks to the assumption i©p, (L) > 0 combined with (4.13), both two
terms in the integral are semi-positive, and modulo the continuity of the
family (3;) our result is proved. a

The proof of the following result is very similar to the familiar situation in
which the couple of metrics (wg, hy,) are non-singular. We provide a complete
argument because we were unable to find a reference.

PROPOSITION 4.8. — The minimal solution B; in (4.12) varies continu-
ously with respect to t.

Proof. — We have divided our proof in a few steps.

Step 1. — Let (u;) be a family of L-valued, L? forms of (n,1)-type on
the fibers of p, such that we have
A;I’l)t = Ut (417)
on the fiber X;. If moreover we assume that each v; is perpendicular to
Ker AY, then we claim that

/ |vt|f)Ee*¢LdeE <C |ut|3Ee*¢LdeE (4.18)
X Xt

for some constant C' uniform with respect to .

Indeed, our claim follows instantly from Corollary 3.12 and (3.33) applied
to u 1= *4v;.

Step 2. — Let A € C such that 0 < |A\] < 1 (we will make this precise
in a moment). We claim that the operator

Aygi=A—A]

is invertible, which we show by proving that the equation A ;v = u admits
a solution v, as soon as u is in L2. This can be seen via the usual Riesz
representation theorem, as follows.

We define on L2 ; the functional

1(6) = /X (u, $)e 1AV,

We write 4 = w1 + us and ¢ = ¢1 + ¢ according to the decomposition
L2 | =Ker A} & (Ker A{)*. Then we have

I((b):/x <U1,¢1>€_¢LdeE+/ (uz, po)e~?rdV,,

Xt
and then the squared absolute value of the second integral is smaller than

/ |A) p|2e=?EdV,, (4.19)

t
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up to a uniform constant, by Step 1. Therefore, we get
TP S [ JoiPe®avy + [ A7 aVep  (120)
Xt X

Since
2

/<¢,A;'¢>deE </ \¢2|26_¢LdeE-/ |AY p|?e= %AV,
X X X

we see that from (4.20) that

(@) < Cun /X NG — AgPetLav, (4.21)

as we see from the previous step, provided that |A| < %, where C' is the

constant in (4.18). Moreover, C,, y is of the form Cj - ||ul%.,.
Taking ¢ = u in the identity above, we see that Ay ; := A— A} is injective.

Moreover, the functional
J :Im A)\,t — (C
Axip — 1(9)

is well-defined and continuous by (4.21). In particular, it extends to F =
Im A, + and Riesz theorem provides us with an element v € F' satisfying

Ve F, J@) :/ (v,p)e=?2dV,,, and ||jv||p2 < Cxlluf?z.  (4.22)
Xt

The equality J(Ay:¢) = I(¢) for any ¢ in L? shows that Ay v = u. This

concludes this step.

Step 3. — Let A € C as in the previous step, and let u; be a continuous
L2-family. We show that v; := (A — A, ) ~lu, is continuous with respect to t
(with respect to the L?-norm).

It would be sufficient to check the continuity at one point 0 € D. For any
e > 0 we define the form vg . := p.vo with compact support in X \ E. We
then have

lvo.e —vollzz <& (A= Ag)voe — (A = Ag)wollLz <&
by the properties of (fic)e>0-

We next construct a smooth extension v, of vy . as follows. Let (€;);er

be a finite covering of p~*(2D) by coordinate charts, and let (6;);c; be a

partition of unity subordinate to this covering. The L-valued form

Ve 1= [he Z 0i(z,t)vo;
i
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extends vg . and it is compactly supported in X \ E. Here we denote by vg ;
is the local expression of vy | x,nq;, extended trivially to ; (note that this
is still L?).

Since the metrics wg, by, are smooth in X \ E,
e = (A — Ay )(ve]x,)
is a smooth L2-family.

By the second part in (4.22) we have

lve — velx, [z < Cllug — ue i 12

As u; and wu.: are continuous with respect to ¢, we infer that we have
lvy — ve|x,llL2 < C.O(|t]) + Clluo — ue ol 2. It follows that we have

[or = velx, ||z < o(1) + Ce

as |t| — 0. The -small- quantity o(1) here depends on &, but since by con-
struction the family v.|; is continuous with respect to ¢ and its continuity
modulus is independent of € we infer that v; is continuous at 0.

Now we define the operator Pr; := [\ (A — A;)~1dX where I is a small
circle centered at 0. We have proved above that Pr, is continuous with respect
to t. Moreover, Pr; coincides with the orthogonal projection onto Ker AZ: we
postpone the proof of this claim for the moment, see the Remark 4.9 below.

Step 4. — This is the main step in the proof of the proposition. Let
be the 0*-solution on X; in question. Then

AL B = d(ulxe)-

By the estimates in Proposition 4.5, the RHS is L? and continuous with
respect to t. Let s; be a continuous L?-family (continuous with respect to t)
such that sy = y. Then we have

Aose — AY By = Nosy — Ol xg)

for every ¢, where 0 < |Ag| < 1 is fixed, small enough as in Step 2. By Step 3,
we can find a continuous family +; such that

A0St — A;/ﬂt = AoVt — A;,’Yt

for every t. Then Ag (B: — ") = Mo(st — 1), where 73 := v, — Pry~y, is the
projection onto (Ker A//)~L.

Now S; is orthogonal to Ker Ag by construction. Then S; — ;- is orthog-
onal to Ker A:. By Step 1 we thus have

18 = i llz2 < Clise — vl 2
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Note that sp = 7o and s; and ~; are continuous, then ||3; — v ||z = o(1).
By Step 4, ;- is continuous, therefore 3; is continuous at 0.

Summing up, the continuity with respect to the L? norm of (3)icp is
established.

Step 5. — We show here that the form
dt A *tﬁt (423)

induced by the family (8;)tep in (4.12) is continuous on X \ E. This is a
consequence of the fact that the family of operators (AY):cp is smooth and
it has a smooth variation when restricted to a compact subset K C X'\ E,
combined with the continuity property established in Proposition 4.8.

Let Q@ € X\ E be a small coordinate chart. We can interpret the (A} )iep
as family of operators on the forms defined on 2, since p is locally trivial.
Then we have

AG By = Oy + (A — AY)(Be) (4.24)
from which it follows that
AG(By — Bo) = Oy — Opo + (AF — AY)(By). (4.25)

The equality (4.25) combined with the usual a-priori estimates for the elliptic
operators imply that

18: = Bolliv> < C(I10pe — ol e + 1B — BollZ2) + bellBellfy> (4.26)
where §; — 0 as t — 0. We infer that
18: = Bollfir> < & (4.27)
for some (other) function d; tending to zero.

The usual boot-strapping method implies that lim; .o 8; = Sy smoothly
on any compact subset in X \ E. In global terms this translates as

dt A *t/Bt
is a continuous (n,0)-form on X'\ E, so our lemma is proved. O
Remark 4.9. — For the sake of completeness, we provide the details for

the fact that the linear operator Pr; := [, (A — A})~1d\ is the orthogonal
projection onto Ker A}. Let H; be the Hilbert space (Ker A})L. We need to
prove two points:

(i) Pryu =0 for any u € Hy;
(ii) Pryu = u for any u € Ker A}.
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For the first point, we have the following equality

A=A == NG onH, (4.28)
k>0

where G; is the inverse of the operator A} restricted to H;. The sum in (4.28)
is indeed convergent (for the operator norm), given the estimates (4.18) and
the fact that A belongs to the circle I' of small enough radius.

It follows that we can exchange integration/sum and then we have

/ (A =AY udr = = " GF (u) Neda (4.29)
el

k>0 AeT
and this shows that Pr;(u) = 0 for any u € H;.

For the second point, let u € Ker A}. For any o € Ker A}, we have

<%, a> = <()\ — AQ’)(?\— AQ’)—lu’a> = (A=A "y, a).

Therefore

(u,a) = /Ael“ <§,a> d\ = //\er«)\ — Aty a)dA.

Then v — Pr; u is orthogonal to Ker A". On the other hand, thanks to the
equality

Ao (A= Al u) = (A= A o Afu =0,
we know that Pr; u € Ker A}. Therefore Pr; u = u.

Remark 4.10. — Actually the form [; can be obtained as usually via an
integral formula,

@:—A L= AN Bulxe) (4.30)

A

€r

which gives the hope that its variation with respect to ¢ is actually smooth.
This can probably be obtained along the same lines as in [13, Thm. 7.5]
modulo the fact that in the present situation, we have to deal with the
additional difficulty induced by the fact that we are working with singular
metrics wg and hp,.

We can now end this section by providing a proof of Theorem A.

Proof of Theorem A. — Up to shrinking D to a punctured disk D; C D,
one may assume that the assumptions (A.1)—(A.3) are satisfied (with by =0
for each I), cf. Section 2.

Next, there exists another punctured disk Dy C D; such that the coherent
sheaf R'p.(Kx/p®L®ZI(hy)) islocally free and commutes with base change;
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i.e. its fiber at t € Dy is given by H'(X;, Kx, ® L|x, ® Z(hr|x,)) and the
dimension of the latter is independent of t € Ds. Thanks to Proposition 3.13,
the dimension of the space of harmonic (n, 1)-forms, i.e. dim Ker(AY), is in-
dependent of t € D5. In other words, the condition (A.4) is satisfied over Ds.

Theorem A is now a direct consequence of Theorem 4.6. ]

5. A lower bound for the curvature in case of a -relatively- big
twist

Let p : X — D be a smooth, projective family, and let L — X be
a line bundle endowed with a metric h;, = e~?* satisfying the following
requirements.

(B.1) There exist a smooth, semi-positive real (1,1)-form wy, as well as an
effective R-divisor Ey on X such that

1O, (L) = wr + [Eo)
where we denote by [Ep] the current of integration associated to the
R-divisor Ej.
(B.2) wy is relatively Kéhler, i.e., wr|x, > 0 for every t.

(B.3) The support of the divisor E := Supp(Ep) is snc, and transverse to
the fibers of p.

Let
n+1
— wr,
c(dr) = Wi Addt A dE

be the so-called geodesic curvature associated to wy,.
Our goal here is to establish the following result.

THEOREM 5.1. — Under the assumptions (B.1)—(B.3) above, let (F,hx)
be the direct image bundle p, (Kx;p+L)®Z(hr)) endowed with the L? met-
ric. Then for every u € H°(D,F) and every t € D, the following inequality
holds

(On, (Flu,u), = cn/ c(pr)u N ue™ %t (5.1)
X
where we identify Oy, (F) with an endomorphism of F by “dividing” with
idt A dt.

Prior to providing the arguments for Theorem 5.1 we propose here the
following problem.
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QUESTION 5.2. — We assume that Y is a foliation on a Kdhler manifold
Z. In which cases the bundle Ky+ L admits a positively curved metric? That
is to say, is there some analogue of the Bergman metric on twisted relative
canonical bundles in the more general contexts of a foliation? If yes, can we
equally obtain a lower bound of the curvature form?

Proof of Theorem 5.1. — The idea of our proof is to construct an ap-
proximation of the metric hy so that the resulting absolutely continuous
part of the associated curvature form has Poincaré singularities along the
support of . Then we can use the curvature formulas we have obtained in
the previous sections, and finally conclude by a limit argument.

Approzimation of the metric. — Let ¢ > 0 be a (small) positive real
number. We introduce the form

We = wr, — 5dec log log
iel

e (5.2)
where [ is the set of irreducible components of FE, and s; cut outs exactly
one of these for a given ¢ € I, following notation in Section 2. We note that
we is positive and has Poincaré singularities along E as soon as the metrics
h; used to measure the norm of s; are suitably scaled, which is what we
assume from now on.

Next, we introduce the following weight on L

1
be = ¢r, —5210g10g E (5.3)
i€l
Clearly, ¢. has generalized analytic singularities in the sense of (A.2) in
Set-up 2.1 and it satisfies dd¢, = ws.

The properties of (¢¢). are collected in the following statement.

LEMMA 5.3. — Let (9, (21,...,2n,t = 2n41) be a coordinate system on
X adapted to the pair (X, E) as in Set-up 2.1. Then the following hold.

(i) The geodesic curvature c(¢.) is uniformly bounded from above.
(ii) We have lim._,0 c(¢.) = c(ér) point-wise on X \ E.
(iii) For every e small enough, the multiplier ideal sheaf of h. := e~ %
coincides with T(hr). Moreover, the induced L? metric, say H. on
the direct image is smooth, and it converges to hr as € — 0.

Proof. — For the point (i), we write ¢(w:) = 1/[|dt|2_ and the result
follows from the transversality conditions (B.3) and e.g. the estimates for
the coefficients provided in (3.1).
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The point (ii) follows easily from the local smooth convergence ¢. — ¢,
on X\ E combined with the positivity requirement (B.2).

As for the third point (iii), the smoothness of H. and its convergence
to hx is a consequence of the transversality assumption (B.3) by the same
arguments as for Lemma 2.2. As for the statement about multiplier ideal
sheaves, one has clearly Z(¢.) C Z(¢1,) while the reverse inclusion is an easy
consequence of (B.1)-(B.3). O

Application of the curvature formula. — We consider u a local holomor-
phic section of the bundle F, and let u. be the representative of v constructed
in (3.7), by using the contraction with the vector field V. associated to the
metric we.

Let

du, = dt A ., D'u, = dt A p. (5.4)

where D’ = D! is the Chern connection corresponding to (L, h.). Moreover
we have

we ANue A = ¢(de)us At Ap*(dtAdE) on X\ E
by [3, Lem. 4.2]. Proposition 4.1 then gives

82
otot

(lull?,) = e /X e(6o)ue A Tee—*"
t

+/ \nEIQe“bEdea—/ |ue|?e=?2dV,,., (5.5)
Xt X,

since 7). is primitive on fibers of p. We discuss next the terms which occur
in (5.5).

The LHS of (5.5) is equal to
(O, (F)u,u) — || P(ue)|* (5.6)

by the usual formula of the Hessian of the norm of a holomorphic section of
a vector bundle. Then (5.5) becomes

(On. (F)u, u)e = c”/ c(p)u A ue™¥e

X

[P - [ R e, 659)
X, : X, ©

where . = P(p.)+ pt is the L? decomposition of pi. according to the Ker 9
and its orthogonal.
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As observed in [3, Lem. 4.4], we have
Ope = D'n. (5.8)

(even if the curvature is not zero!), and actually pt is the solution of (5.8)
whose L? norm is minimal. By [7, Thm. 1.6], we have the precise estimate

[owtpeav < [ pean, (5.9)
Xt X
and then we get
Om. (Flu,u)y > cn/ c(de)u A e %, (5.10)
Xt

as consequence of (5.7).

The last step in our proof is to notice that as the parameter € approaches
zero, the inequality (5.10) implies

<@h}' (]:)uv u>t Z Cp /); C(QbL)U ATe %, (511)

Indeed, we are using Lemma 5.3 for the LHS of (5.10) and Lemma 5.3 (i)
combined with dominated convergence theorem for the RHS. Theorem 5.1
is proved. O

In the last lines, we now explain how to deduce Theorem B from Theo-
rem 5.1 above.

Proof of Theorem B. — We start by making the observation that if
m: X' — X is a proper birational morphism inducing birational morphisms
X — X, then one has th, c(Pp)u' ANa'e=?r = [ c(br)unie F, with the
self-explanatory notation.

Therefore, by blowing up X and restricting the family to a punctured disk
Dy C D, one can from now on assume that the conditions (B.1) and (B.3)
are satisfied.

Now, one has to show that one can further assume that condition (B.2)
is satisfied. This is a bit more involved and can be shown as follows.

Since th w} > 0 and wy, is smooth, it follows from e.g. [5] that [wr] is
p-big. In particular, there exists a punctured disk Dy C D;, an effective,
horizontal R-divisor F' and an ample R-line bundle A on X such that

wr]=A+F in H"'(X,R). (5.12)
After blowing-up once again and restricting to a smaller punctured disk
D3 C D5, one can assume without loss of generality that ' + F' is snc and

transverse to the fiber. Of course, the pull-back of A is not ample anymore,
but there exists an effective divisor G contained in the exceptional locus of
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the blow-up such that A — G is ample. All in all, one will assume from now
on that one has a decomposition (5.12) where A is ample and E + F is snc
and transverse to the fibers.

We pick a strictly psh smooth weight ¢4 on A and set ¢ (resp. ¢p) for
the singular psh weight on the corresponding R-divisor.

For § > 0, we introduce the psh weight ¢s5 on L defined by

¢s = (1 —0)or +0(pa + ¢r + dE).

Clearly, ¢s has analytic singularities along the divisor E 4+ F and (dd®¢s)ac
is a relative Kéhler metric for any § > 0. That is, the metric hz s := e~ %
satisfies (B.2).

Thanks to Theorem 5.1, the proof of Theorem B will be complete once
we show the following

CLAIM 5.4. — With the notation above, one has

(i) Z(¢ps) = Z(¢pL) for & small enough.
(i) The L? metric Hs induced by hr s on F is smooth and converges
smoothly to hx when § — 0.
(iii) For anyt € D3 and u € F;, one has

lim c(ps)u A lie™ % = / c(dr)u A e ?r.
d—0 X, X,
Proof of Claim 5.4. — Since ¢, —¢g it is smooth (its curvature is nothing
but wy,), we have Z(¢1,) = Z(¢g) and Z(¢s) = Z(¢pg + ¢ ), which coincides
with Z(¢g) when § is small enough. This shows (i).

The item (ii) can be proved along the same lines as Lemma 2.2, using the
fact that '+ F' is snc and transverse to the fibers.

As for item (iii), we have pointwise convergence c¢(¢s) — c(¢r) on a
Zariski open set of each X, t € D3, cf. Definition 2.3. Moreover, the Kahler
metric (dd“¢s)ac on X is uniformly bounded above by a fixed Kéhler metric
on X (for instance, wy, + dd°¢4). In particular ¢(¢s) is uniformly bounded
above (say over compact subsets of D3) and one can apply Lebesgue domi-

nated convergence theorem to conclude. |
The proof of Theorem B is now complete. (|
Remark 5.5. — The following limit argument shows that we can take

D* C D to be the set of t € D such that the following hold:

e the metric hr is smooth locally near t;
e the fiber F; coincides with H° (Xy, (Kx, + L) ® Z(hr|x,))-
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Let 0 € D be a point which satisfies these requirements. Let U € X'\ (h, =00)
be any open subset of X whose closure does not meet the singular locus of
the metric Ar,. Then we have

/ c(¢pr)u A Ge”?" = lim c(or)u A de=?* (5.13)
UnXo =0 Junx,

since all the objects involved are non-singular.

The next observation is that since hx is smooth near 0 (by assumption),
the function t — (O}, . (F)u,u), is thus continuous at 0. Theorem B combined
with (5.13) and the positivity of ¢(¢) shows that we have

/ c(br)u A e < (O, (F)u, u)(0).
UNXyp

It follows that the estimate in (5.1) of Theorem B extends across 0 € D
as well.
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