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Curvature formula for direct images of twisted relative
canonical bundles endowed with a singular metric

Junyan Cao (1), Henri Guenancia (2) and Mihai Păun (3)

ABSTRACT. — In this note, we obtain various formulas for the curvature of the L2

metric on the direct image of the relative canonical bundle twisted by a holomorphic
line bundle endowed with a positively curved metric with analytic singularities, gen-
eralizing some of Berndtsson’s seminal results in the smooth case. When the twist is
assumed to be relatively big, we further provide a very explicit lower bound for the
curvature of the L2 metric.

RÉSUMÉ. — Dans cette note, nous obtenons diverses formules pour la courbure
de la métriques L2 sur l’image directe du fibré canonique relatif tordu par un fibré
en droites holomorphe muni d’une métrique à courbure positive avec singularités
analytiques, généralisant certains des résultats fondateurs de Berndtsson dans le cas
lisse. Quand le fibré par lequel on tord est gros, nous pouvons de plus donner une
borne inférieure explicite de la courbure de la métrique L2.

1. Introduction

Let p : X → D be a smooth, proper fibration from a (n+ 1)-dimensional
Kähler manifold X onto the unit disk D ⊂ C, and let (L, hL) be a holo-
morphic line bundle endowed with a possibly singular hermitian metric hL
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assumed to be positively curved (i.e. when iΘhL(L) > 0 in the sense of
currents). Then, the positivity properties of the direct image sheaves

F := p?
(
(KX/D + L)⊗ I(hL)

)
endowed with the L2 metric hF are well-known, cf. e.g. [2, 10, 16, 17] among
many others. Moreover, when hL is smooth, we have at hand explicit formulas
obtained by Berndtsson [2, 3] that compute the curvature of the L2 metric
on the direct image sheaf above.

In this article we are aiming at the generalisation of Berndtsson’s curva-
ture formulas in case where the metric hL has relatively simple singularities,
e.g. analytic singularities. As for our main motivation, we recall that all the
results in connection to the famous Iitaka conjecture (predicting the sub-
additivity of Kodaira dimension for algebraic fiber spaces) are relying on
the properties of the sheaves F = Fm in which the bundle L is of type
(m − 1)KX/D + mB for some m > 1 and an effective divisor B on X such
that the pair (X,B) is klt. If det(Fm) is either big or trivial for some m� 0,
then the Iitaka conjecture is already established. We expect that in the “in-
termediate” cases a better understanding of the geometric properties of Fm
will be required, in particular the structure of the flat directions of the curva-
ture tensor and their interaction with the variation of the complex structure
of the fibers of the family p. Our main result in this framework states as
follows.

Theorem A. — Let p : X → D and (L, hL) → X as above, and let
u ∈ H0(D,F). We assume that

• The metric hL has analytic singularities and iΘhL(L) > 0 in the
sense of currents.
• The section u is flat with respect to hF .

Set E := {hL = ∞}. Then, there exists a continuous L2-integrable repre-
sentative u of u defined on the restriction X ? \ E of the family p to some
punctured disk D? such that

∂u
dt

∣∣∣∣
Xt\E

= 0

for any t ∈ D? and

D′u = 0, ΘhL(L) ∧ u = 0 (1.1)

on X ? \ E. Here X ? := p−1(D?) and u is L2 with respect to hL and a
Poincaré type metric cf. Section 3.
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By “punctured disk” in the previous statement we mean that D \D? is a
discrete set, possibly empty. By L2, we mean locally L2 with respect to the
base D?. The meaning of ∂u

dt is provided in (3.13) below.

Finally, a representative u of u (in the sense of Berndtsson) is a section
of (KX/D +L)⊗I(hL) over X ? such that for any t ∈ D∗, we have u|Xt = ut
under the canonical identification

(
(KX/D+L)⊗I(hL)

)∣∣
Xt
' (KXt+L|Xt)⊗

I(hL|Xt), cf. Lemma 2.2 and the comments below. In other words, u is an
L-valued (n, 0)-form on X which coincides with ut on Xt.

The result we are next mentioning concerns the case of a twisting line
bundle L which is p-big. It is then expected that the strict positivity of
(L, hL) is inducing stronger positivity properties of the curvature of the
direct image than in the general case of a semi-positively curved L. This is
confirmed by the following statement, which is a version of [3, Thm. 1.2].

Theorem B. — Let p : X → D be a smooth projective fibration and let
(L, hL)→ X be a line bundle such that

• hL has analytic singularities and iΘhL(L) > 0 in the sense of cur-
rents.
• For any t ∈ D, the absolutely continuous part ωL := (iΘhL(L))ac
satisfies

∫
Xt
ωnL > 0.

Then there exists a punctured disk D? ⊂ D such that for any u ∈ H0(D,F)
we have the following inequality

〈ΘhF (F)u, u〉t > cn
∫
Xt

c(ωL)u ∧ ue−φL (1.2)

for any t ∈ D?.

In the statement above we identify ΘhF (F) with an endomorphism of F
by “dividing” with idt∧ dt. Moreover, cn = (−1)n

2
2 is the usual unimodular

constant. We denote by c(ωL) := ωn+1
L

ωn
L
∧idt∧dt the geodesic curvature associated

to ωL, cf. Definition 2.3 for a precise definition in the degenerate case.

Actually we can provide some details about the punctured diskD? in The-
orem B. Under the hypothesis of this result, it turns out that the L2 metric
hF is smooth in a complement of a discrete subset of D. We will show that
the formula (1.2) is valid for points t ∈ D in the neighborhood of which the
metric hF is smooth, and such that Ft = H0 (Xt, (KXt + L)⊗ I(hL|Xt)),
cf. Remark 5.5.

As it was kindly recalled to us by P. Naumann, many of the results in the
current article overlap with his work [15]. Let us emphasize that his results
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are stated for a metric hL on L with a very specific type of singularities,
which implies among other things that L is relatively ample. In particular,
Theorem B may not be obtained as a consequence of those results. The
readers interested in these topics can benefit of complementary points of
view, especially in the treatment of the Hodge-theoretic part of the current
article and [15], respectively.

Strategy of the proof

Roughly speaking, the idea of the proof of Theorem A and B respectively
is as follows: we endow the complement X \ E with a complete metric of
Poincaré type and proceed by taking advantage of what is known in the
compact case, combined with the existence of families of cut-off functions
specific to the complete setting. There are however quite a few difficulties
along the way. Probably the most severe stems from the Hodge decomposi-
tion in the complete case: the image of the usual operators ∂ and ∂? may
not be closed. We show in Section 3.2 that at least in bi-degree (n, 1) this
is the case, cf. Theorem 3.6, as consequence of the fact that the background
metric has Poincaré singularities.

In order to construct the form u in Theorem A, we start with a represen-
tative of u given by the contraction with the lifting V of ∂

∂t with respect to a
Poincaré metric ωE . It turns out that this specific representative has all the
desired properties needed to fit into the L2-theory. Then we “correct” it: this
is possible by the flatness hypothesis, and it boils down to solving a fiber-
wise ∂?-equation. It is both in the resolution of this equation as well as in
the study of the regularity of the resulting solution that Theorem 3.6 is used.
Another important ingredient of the proof is Proposition 4.1, which gives a
general curvature formula for (F , hF ) when hL has e.g. analytic singularities.
It provides a rather wide generalisation of a result due to Berndtsson.

As for Theorem B, the starting point is the fact that the positivity prop-
erties of (L, hL) allow us to construct a family of Poincaré metric (ωε)ε>0
on X \ E. Then, the representatives uε of u (obtained as above as the con-
traction with the lifting Vε of ∂

∂t with respect to ωε) enjoy a special property
that allows us to extract the desired inequality from the general curvature
formula from Proposition 4.1 and a limiting argument when ε approaches
zero. Although the use of this special representative goes back to Berndts-
son, several new analytic inputs are required to deal with the present singular
situation.
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Organization of the paper

In Section 2, we introduce our set-up, notation and main objects of study
(the L2 metric on F , the geodesic curvature).

In Section 3, we review two aspects of Poincaré metrics: first, the integra-
bility properties of representatives u of sections u of F constructed via such
metrics (Lemma 3.3) and then, we investigate the closedness of the image
of the operators ∂, ∂∗ on a hermitian line bundle with analytic singularities
(Theorem 3.6).

In Section 4, we establish a general curvature formula (Proposition 4.1).
This allows us to find very special representatives of flat sections of F (The-
orem 4.6), leading to the proof of Theorem A.

In Section 5, we analyze the relatively big case in the “snc situation”
(Theorem 5.1), from which we then deduce Theorem B.

Acknowledgements
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and the useful suggestions to improve the exposition of the article.

It is our privilege to dedicate this article to our friend and colleague
Ahmed Zeriahi, with our admiration for his outstanding mathematical
achievements and wishing him a very happy and active retirement!

2. Set-up and notation

The set of assumptions we need for our results to hold is the following.

Set up 2.1. — Let p : X → D be a smooth, proper fibration from a (n+1)-
dimensional Kähler manifold X onto the unit disk D ⊂ C, and let (L, hL)
be a holomorphic line bundle endowed with a possibly singular hermitian
metric hL.

We assume that there exists a divisor E = E1 + · · ·+EN whose support
is contained in the total space X of p. such that the following requirements
are fulfilled.

(A.1) For every t ∈ D the divisor E+Xt has simple normal crossings. Let
Ω ⊂ X be a coordinate subset on X . We take (z1, . . . .zn, t = zn+1) a
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coordinate system on Ω such that the last one zn+1 corresponds to
the map p itself and such that z1 . . . zp = 0 (for some index p 6 N)
is the local equation of E ∩ Ω.

(A.2) The metric hL has generalised analytic singularities along E; i.e. its
local weights ϕL on Ω can be written as

ϕL ≡
p∑
i=1

ai log |zi|2 −
∑
I

bI log
(
φI(z)− log

(∏
i∈I
|zi|2ki

))
modulo C∞ functions, where ai, bI are positive real numbers, ki are
positive integers and (φI)I are smooth functions on Ω. The set of
indexes in the second sum coincides with the non-empty subsets of
{1, . . . , p}.

(A.3) The Chern curvature of (L, hL) satisfies

iΘhL(L) > 0

in the sense of currents on X .

We then set
F := p∗((KX/D + L)⊗ I(hL))

and assume that this vector bundle on D has positive rank. As a consequence
of the previous requirements (A.1)–(A.3), we have the following statement.

Lemma 2.2. — Under the assumptions (A.1)–(A.3), we have

Ft = H0 (Xt, (KXt + L)⊗ I(hL|Xt))

for every t ∈ D. Moreover, the canonical L2 metric (cf. Notation 2.4) on F
is non-singular.

Proof. — We first remark that F is indeed locally free given that it is
torsion-free and D ⊂ C is a disk.

The fibers of F are indeed identified with H0 (Xt, (KXt + L)⊗ I(hL|Xt))
because of the transversality hypothesis (A.1), combined with the type of
singularities we are allowing for hL in (A.2). The point is that a holomorphic
function f defined on the coordinate subset Ω belongs to I(hL) exactly when
the restriction f |Ω∩Xt belongs to the ideal I(hL|Xt). On the other hand the
Kähler version of Ohsawa–Takegoshi theorem [6] implies that any element
of H0 (Xt, (KXt + L)⊗ I(hL|Xt)) extends to X . It is at this point that the
hypothesis (A.3) plays a crucial role.

Concerning the smoothness of the L2-metric on F , we can use partitions
of unity to reduce to checking that integrals of the form

∫
Ω∩Xt |ft|

2e−ϕL

vary smoothly with t, where ft = f |Xt for some f ∈ I(hL)|Ω and ϕL is
given by the expression in (A.2). Now it is clear there that all derivatives in
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the t, t variables of ϕL are bounded, so that the result follows from general
smoothness results for integrals depending on a parameter. �

A few comments about the conditions (A.1)–(A.2). — The point we want
to make here is that the transversality requirements in (A.1)–(A.2) can be
obtained starting from a quite general context.

We consider p : X → D a proper fibration from a (n + 1)-dimensional
Kähler manifold X onto the unit disk D ⊂ C, and let (L, hL) be a holomor-
phic line bundle endowed with a possibly singular hermitian metric hL. We
assume that (A.3) holds true, and that the singularities of hL are of the form

ϕL ≡
p∑
i=1

ai log |fi|2 −
p∑
i=1

bi log
(
τi − log |gi|2

)
(2.1)

modulo C∞ functions, where ai, bi are positive real numbers, fi, gi are holo-
morphic, and τi are smooth.

If (A.1)–(A.2) are not satisfied for p : X → D, then one can consider
a log resolution π : X ′ → X of (X ,IZ) where Z is the singular set of hL.
Set p′ := p ◦ π : X ′ → D, (L′, hL′) := (π∗L, π∗hL), E is the reduced divisor
induced by π−1(Z). It is immediate that

π∗((KX ′/D + L′)⊗ I(hL′)) = (KX/D + L)⊗ I(hL)
so that, in particular, π∗((KX ′/D + L′)⊗ I(hL′)) = F .

The map p′ may not be smooth anymore (e.g. some components of E
may be irreducible components of fibers of p′). Set Dreg to be the Zariski
open set of regular values of p′, D1 := Dreg∩D, X1 := p′−1(D1), p1 := p′|X1 ,
(L1, hL1):=(L′, hL′)|X1 . Then, the triplet (p1, L1, hL1) satisfies the assump-
tions (A.1)–(A.3).

In conclusion, starting with a map p as above and singular metric hL as
in (2.1), we can use our results on the family p1 restricted to some punctured
disk D? ⊂ D.

The geodesic curvature in a degenerate setting. — Let p : X → D be a
smooth, proper fibration where X is a Kähler manifold of dimension n+ 1.
Let ω be a closed positive (1, 1)-current on X such that ω is smooth on a
non-empty Zariski open subset X ◦ ⊂ X . Let ωX be a Kähler metric on X .

Definition 2.3. — The geodesic curvature c(ω) of ω on X ◦ is defined by

c(ω) := lim
ε→0

c(ω + εωX ) = lim
ε→0

(ω + εωX )n+1

(ω + εωX )n ∧ idt ∧ dt
.

A few explanations are in order.

First, if ω is relatively Kähler on X , one recovers the usual definition.
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Next, it is easy to observe that c(ω+εωX ) = 1/‖dt‖2ω+εωX . In particular,
that non-negative quantity is non-increasing when ε decreases towards 0,
hence it admits a limit. By the same token, one can see that the limit is
independent of the choice of the Kähler metric ωX .

Finally, if t ∈ D is such that X◦t := Xt ∩ X ◦ is dense in Xt, then one
defines c(ω) on the wholeXt by extending it by zero acrossXt\X◦t . Note that
if the absolutely continuous part of ω satisfies ωac 6 CωX on Xt for some
constant C > 0, then c(ω) is a bounded function on Xt (this follows e.g. from
the inequality c(ω) 6 ‖ ∂∂t‖

2
ω for a set of coordinates (z1, . . . , zn, zn+1 = t)

such that p(z) = t). In particular, the integral
∫
Xt
c(ω)ωnX is finite.

Notation 2.4. — In the Set-up 2.1 above:

• We set X ◦ := X \ E, X◦t := Xt ∩ X ◦, Lt := L|Xt , hLt := hL|Xt .
• We use interchangeably hL and e−φL ; when working in a trivializing
chart of L, we will denote by ϕL the local weight of hL. The (1, 0)-
part of the Chern connection of (L, hL) over X \E is denoted by D′.
• Under assumption (A.1), we will write E :=

∑N
i=1Ei for the decom-

position of E into its (smooth) irreducible components. Next, let si
be a section of OX (Ei) that cuts out Ei, and let hi be a smooth
hermitian metric on OX (Ei). In the following, |si|2 stands for |si|2hi ,
and we assume that |si|2 < e−1.
• We will interchangeably denote by ‖ · ‖ or hF the L2 metric on
F ; i.e. if u ∈ Ft = H0(Xt, (KXt + Lt) ⊗ I(hLt)), then ‖u‖2 :=
cn
∫
Xt
u ∧ ue−φLt with cn = (−1)n

2
2 . Lemma 2.2 ensures that the

L2 metric is smooth on D. We denote by ∇ the (1, 0) part of the
Chern connection of (F , ‖ · ‖) on D.

3. A few technicalities about Poincaré type metrics

Throughout this section we adopt Set-up 2.1 and use the Notation 2.4.
Let ω be a fixed Kähler metric on X , and let

ωE := ω + ddc
[
−

N∑
i=1

log log 1
|si|2

]
on X ◦

be a metric with Poincaré singularities along E. Thanks to (A.1) we infer
that ωE |X◦t is a complete Kähler metric on X◦t with Poincaré singularities
along E ∩Xt for each t ∈ D.

In the next subsections we will be concerned with the following two main
themes.
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Let V be the horizontal lift of ∂
∂t with respect to the Poincaré-type metric

ωE . We estimate the size of its coefficients near the singularity divisor E, and
then show that the representatives of direct images constructed by using V
have the expected L2 properties allowing us to use them in the computation
of the curvature of F . This is the content of Subsection 3.1.

In Subsection 3.2 we establish a few important properties of the L2-Hodge
decomposition for (n, 1)-forms with values in (L, hL), where the background
metric is (X,ωE). The main result here is that the image of ∂? is closed,
cf. Theorem 3.6, a very useful result per se and for the next sections of this
paper as well.

3.1. Estimates of the background metric, lifting

We choose local coordinates (z1, . . . , zn, zn+1 = t) on X such that
p(z, t) = t (as in (A.1)) and in which ωE is locally given by

ωE = gtt idt ∧ dt+
n∑
α=1

(gαt idzα ∧ dt+ gtα idt ∧ dzα) +
n∑

α,β=1
gαβ idzα ∧ dzβ

By the estimates in [11, §4.2] the coefficients of ωE are can be written as
follows

gαβ = g0
αβ

+ δα · δαβ
|zα|2 log2 |zα|2

+ δαAα

zα log2 |zα|2

+ δβBβ

zβ log2 |zβ |2
+

p∑
γ=1

Cγ
log |zγ |2

(3.1)

where Aα, Bβ , Cγ , g0
αβ

are smooth functions on Ω. We use the notation

δα =
{

1 if α ∈ {1, . . . , p}
0 otherwise

and δαβ is the usual Kronecker symbol.

In order to present the computations to follow in a reasonably simple
way, we introduce for α = 1, . . . , n the functions

fα(z) :=
{
wα := zα log |zα|2 if α ∈ {1, . . . , p}
1 otherwise

(3.2)

or fα(z) = δαwα + 1− δα more concisely. The coefficients of the metric ωE
can be written as

gαβ = 1
fαfβ

Ψαβ(z′′, w, ρ). (3.3)
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The notations we are using in (3.3) are:

(a) α, β ∈ {1, . . . , n}.
(b) Ψαβ is a smooth function defined in the neighborhood of 0 ∈ Cn−p×

Cp × Cp.
(c) w := (w1, . . . , wp) (cf. (3.2)) and z′′ := (zp+1, . . . , zn).
(d) For α = 1, . . . , p we introduce ρα := 1

log |zα|2 .

To justify the smoothness of ψαβ , we keep in mind that fα = δαwα + 1− δα
is a smooth function of w and that if α ∈ {1, . . . , p}, zα = wαρα is a smooth
function of (w, ρ). Smoothness of Ψ now follows once one rewrites (3.1) as

fαfβgαβ = fαfβg
0
αβ

+ δαδαβ + δαAαραfβ + δβBβρβfα +
p∑

γ=1
Cγργfαfβ .

Given that ωE is a metric, the functions Ψαβ are not arbitrary (since the
matrix (Ψαβ)αβ is definite positive at each point). We simply want to em-
phasize in (3.3) the general shape of the coefficients, which will be useful in
the statement that follows.

Lemma 3.1. — The following estimates hold true:

(i) det(g) =
∏n
α=1 |fα(z)|−2 (c+ Ψ(z′′, w, ρ)), where the c inside the

parentheses is a strictly positive constant, and Ψ is smooth such
that Ψ(0) = 0.

(ii) For each pair of indexes α, β we have

gβα = fα(z)fβ(z)Ψαβ(z′′, w, ρ),

where gβα are the coefficients of the inverse of (gαβ).

Proof. — Both statements above are obtained by a direct calculation,
using the expression (3.3) of the coefficients. We skip the straightforward
details. �

Thanks to Lemma 3.1 it is easy to infer the following useful estimates:
for each set of indexes α, β, q, r we have

∂gβα

∂zq
(z) =

(
δαqδα(1 + log |zα|2)fβ(z) + δβqδβfα(z)zq

zq

)
Ψαβ(z′′, w, ρ)

+ (1 + δq(log |zq|2 − 1))fα(z)fβ(z)Ψαβ(z′′, w, ρ)

+ δq

zq log2 |zq|2
fα(z)fβ(z)Ψαβ(z′′, w, ρ) (3.4)
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as well as

∂2gβα

∂zq∂zr
(z)

= O(1) ∂

∂zr

(
δαqδα(1 + log |zα|2)fβ(z) + δβqδβfα(z)zq

zq

)
+O(1)

(
1+ δr

zr log |zr|2

)(
δαqδα(1+log |zα|2)fβ(z)+δβqδβfα(z)zq

zq

)
+O(1) δqδrq

|zq|2 log3 |zq|2
fα(z)fβ(z)

+O(1)
(

1 + δq
zq log |zq|2

)(
1 + δr

zr log |zr|2

)
fα(z)fβ(z)

+O(1)
(

1+ δq
zq log |zq|2

)(
δβrδβ(1+log |zβ |2)fα(z)+δαrδαfβ(z) zr

zr

)
(3.5)

Again, in the relations (3.4)–(3.5) we are using Ψαβ and O(1) as generic
notation, these functions are allowed to change from one line to another, the
point is that they are of the same type. The verification of formula (3.5) is
immediate, one simply takes the derivative in (3.4).

3.1.1. Horizontal lift, µ and η

One can define the lift V of ∂
∂t with respect to the Poincaré type metric

ωE , cf. [3, 18, 19]. It is a vector field of type (1, 0) on X ◦ such that dp maps
it to ∂

∂t pointwise on X ◦ and which is ωE-orthogonal to T 1,0Xt for any t. In
local coordinates, one has the following formula

V = ∂

∂t
−
∑
α,β

gβαgtβ
∂

∂zα
. (3.6)

Let u be a holomorphic section of p∗(O(KX/D+L)⊗I(hL)). One can choose
an arbitrary representative U0 of u, this is an L-valued (n, 0)-form on X
which coincides with ut on Xt. Now, let

u := V y (dt ∧ U0). (3.7)

One can write locally (using the previous system of coordinates):

U0 ∧ dt = a(z, t)dt ∧ dz1 ∧ · · · ∧ dzn
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where a(z, t) is holomorphic with values in L. We have an explicit formula:

u = a(z, t)
(

dz1 ∧ · · · ∧ dzn

−
∑
α,β

(−1)αgβαgtβdt ∧ dz1 ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn

)
. (3.8)

By construction, we have

dt ∧ u = dt ∧ U0. (3.9)

Therefore, although u is only well defined on X ◦, u∧ dt can be extended as
a smooth form on X .

Remark 3.2. — The representative u in (3.8) has the following interesting
property

u ∧ ωE |Ω = a(z, t)gtt dt ∧ dt ∧ dz1 ∧ · · · ∧ dzn. (3.10)
In particular, we have u∧ωE

dt
∣∣
Xt

= 0 for every t.

Moreover, as U0 is a smooth representative of u on X and u is a holomor-
phic form, we have ∂(U0∧dt) = 0 on X . Combining with (3.9), we know that
∂u ∧ dt = 0 on X ◦. As a consequence, we can find a smooth (n− 1, 1)-form
η on X ◦ such that

∂u = dt ∧ η on X ◦ (3.11)
and one has

D′u =
loc
∂u− ∂ϕL ∧ u (3.12)

= dt ∧ µ

for some (n, 0)-form µ on X ◦. The forms

∂u
dt

∣∣∣∣
X◦t

:= η|X◦t , and D′u
dt

∣∣∣∣
X◦t

:= µ|X◦t (3.13)

are well-defined and do not depend on the choice of η satisfying (3.11) (resp.
µ satisfying (3.12)).

3.1.2. Estimates for η and µ.

In this section our goal is to establish the following statement.
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Lemma 3.3. — We consider the forms η|Xt , µ|Xt induced by the repre-
sentative u constructed in the previous section in (3.13). Then η|Xt , µ|Xt as
well as ∂µ|Xt are L2 with respect to (ωE , e−φL).

Moreover, u, η, µ and ∂µ are also in L2(X ◦) with respect to (ωE , e−φL),
say up to shrinking D.

Proof. — This is routine: we can easily obtain the explicit expression of
η and µ, and then we simply evaluate their respective L2 norms by using
the estimates (3.4)–(3.5). We detail to some extent the calculations next.

First of all, we have

η|Xt = a(z, t)
∑
α,β,r

(−1)α+1
(
gβα,r gtβ+gβαgtβ,r

)
dz1∧· · ·∧ d̂zα∧· · ·∧dzn∧dzr.

where we use the notation gβα,r := ∂gβ̄α

∂zr
.

We consider first the quantity∣∣∣gβα,r gtβ∣∣∣2 . (3.14)

Thanks to the equality (3.4), up to a constant it is smaller than

1
|fβ |2

(
δαrδα log2 |zα|2|fβ |2 + δβrδβ |fα|2

+
(

1− δr + δr

|zr|2 log2 |zr|2

)
|fαfβ |2

)
(3.15)

which simplifies to

|fα|2 + δr

[
δαr log2 |zr|2 + δβr

|fα|2

|fr|2
+
(

1
|zr|2 log2 |zr|2

− 1
)
|fα|2

]
.

Since ∣∣∣dz1 ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn ∧ dzr
∣∣∣2
ωE

dVωE .
|fr|2

|fα|2
dVω

we eventually find∣∣∣gβα,r gtβ∣∣∣2 ∣∣∣dz1 ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn ∧ dzr
∣∣∣2
ωE

dVωE

6 C(1 + δrδαr log2 |zr|2) dVω. (3.16)
The term ∣∣∣gβαgtβ,r∣∣∣2 (3.17)
is bounded by

δβrδβ(1 + log2 |zβ |2) |fα|
2

|fβ |2
+
(

1− δr + δr
|wr|2

)
|fα|2 (3.18)
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and we see that the same thing as before occurs, i.e.∣∣∣gβαgtβ,r∣∣∣2 ∣∣∣dz1 ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn ∧ dzr
∣∣∣2
ωE

dVωE

6 C(1 + δr log2 |zr|2) dVω. (3.19)

Thus, the restriction of η to any fiber of the family p : X → D is L2 with
respect to (ωE , e−φL) since the holomorphic function a(z, t) belongs to the
multiplier ideal sheaf defined by hL. Indeed, setting ν := |a|2dVω, one has
e−ϕL ∈ L1+ε(ν) for some ε > 0 (this is easily checked since ϕL has analytic
singularities and e−ϕL ∈ L1(ν)) while log |zr|2 ∈ Lp(ν) for all p > 0, so that
Hölder inequality shows the claim.

The local expression of the form µ|Xt is obtained by restricting D′u
dt to

the fiber Xt; it reads as

µ|Xt
dz = a,t − a

∑
α,β

(gβα,α gtβ + gβαgtβ,α)−
∑
α,β

a,αg
βαgtβ

− a(z, t)ϕL,t + a(z, t)
∑
α,β

ϕL,αg
βαgtβ (3.20)

where dz := dz1 ∧ · · · ∧ dzn.

By our transversality conditions, the function a,t is still L2 with respect
to hL. The term gβα,α gtβ + gβαgtβ,α is treated as we did for (3.14) and (3.17),
with the exception that the indexes r and β coincide (and the type of the
form is different). We have up to some constant∣∣∣gβα,α gtβ∣∣∣ 6 ((1− log |zα|2)|fβ |+ δαβδα|fα|

+
[
(1− δα) + δα

|zα| log2 |zα|2

]
· |fαfβ |

)
· 1
|fβ |

. 1− log |zα|2 (3.21)

and we can bound this term as before. The second term satisfies gβαgtβ,α =
gβαgαβ,t since ωE is Kähler, hence it is bounded.

Next, we have
∣∣∣gβαgtβ∣∣∣2 6 C|zα|2 log2 |zα|, and also that

|a,α|2|zα|2 log2 |zα|2e−ϕL = O(|a|2 log2 |zα|2e−ϕL) ∈ L1 (3.22)

for any α = 1, . . . , p again by the transversality/L2 conditions we impose to
a(z, t), so the third term in (3.20) is in L2. A similar argument applies to
the second line of (3.20).
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The last part of the proof of our lemma concerns ∂µ; the computations
are using (3.5). We will only discuss the term

∂

∂zr

(
gβα,α gtβ + gβαgtβ,α

)
dz ∧ dzr (3.23)

since for (3.23) the computations are the most involved. The reason why
we are able to conserve the L2 property is that the partial derivative with
respect to zr will induce a new term of order O(1/|zr|) if r 6 p, and its square
will be compensated by |dzr|2ωE . As for the computations: the singularities
induced by gβα,αrgtβ are bounded by the following quantity∣∣∣gβα,αrgtβ∣∣∣ 6 δαδrα 1

|zr|
+ δαδβr
|fβ |

log 1
|zα|2

log 1
|zβ |2

+ δαδrαβ
1

|fβ ||zα|2

+ δr
|wr|

(
δα log 1

|zα|2
+ δαδαβ

)
+ δαδr
|wαwr|

|fα|+
δα
|wα|

(
δβδβr log 1

|zβ |2
|fα|
|fβ |

+ δαδαr

)
(3.24)

from which we see that the first part of (3.23) is L2. The remaining terms
are (

gβα,α gtβ,r + gβα,r gtβ,α + gβαgtβ,αr

)
dz ∧ dzr (3.25)

for which one could use the fact that the metric ωE is Kähler and so we have

gtβ,α = gαβ,t, gtβ,αr = gαβ,tr. (3.26)

The equalities (3.26) are simplifying a bit the calculations, since the deriva-
tive with respect to t does not increase at all the order of the singularity.

For the first term of (3.25), we have, up to a multiplicative constant∣∣∣gβα,α gtβ,r∣∣∣
6

∣∣∣∣δα(1− log |zα|2)fβ + δαδαβfα +
(

(1− δα) + δα

zα log2 |zα|2

)
fαfβ

∣∣∣∣
×
∣∣∣∣δrδrβ 1

|zr|2 log2 |zr|2
+ 1
fβ

(
1 + δr

zr log2 |zr|2

)∣∣∣∣
6

∣∣∣∣(1− δα log |zα|) ·
(

1 + δr
|zr|(− log |zr|2) )

)∣∣∣∣
In particular, we get∣∣∣gβα,α gtβ,r∣∣∣ · |dzr|ωE . 1− δα log |zα|

and we are done with this term as before.

– 875 –



Junyan Cao, Henri Guenancia and Mihai Păun

For the second term of (3.25), we have, using (3.26)∣∣∣gβα,r gαβ,t∣∣∣ 6 1
|fαfβ |

·
(
δαrδα(1− log |zα|2)|fβ |+ δβrδβ |fα|

+
[
(1− δr) + δr(− log |zr|2) + 1

|zr| log2 |zr|2

]
|fαfβ |

)
6 1 + δr

− log |zr|2

|zr|(− log |zr|2) .

In particular, we get∣∣∣gβα,r gαβ,t∣∣∣ · |dzr|ωE . 1− δr log |zr|

and we are done.

As for the last term of (3.25), we use (3.26) and (3.5) to see that the
expansion of gβαgtβ,αr will only involve terms like

ψαβ,r,
∂rfα
fα

,
∂rfβ

fβ

which are respectively of order
δr

zr log |zr|2
,

δrδαr
zr log |zr|2

,
δrδβr
zr

.

All in all, we find ∣∣∣gβαgtβ,αr∣∣∣ · |dzr|ωE . 1− δr log |zr|

and this is the end of the main part of the proof.

The integrability of u, η, µ on X ◦ follows directly from the estimates we
have obtained above. Concerning ∂µ there is one additional term given by
∂
∂t

of the expression in (3.20). This is however harmless: given the shape
of the coefficients (gαβ) (i.e. the transversality conditions), the additional
anti-holomorphic derivative with respect to t induces no further singularity
and the estimates e.g. for the term

∂

∂t

(
gβα,α gtβ

)
will be completely identical to those already obtained gβα,α gtβ . We leave the
details to the interested reader. �

Remark 3.4. — Using quasi-coordinates adapted to the Poincaré metric
ωE (cf. e.g. [8, 12, 20]), we can prove easily that η and its derivatives are in
L2. However, that argument cannot be applied to µ because of the singularity
in the Chern connection of (L, hL).
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3.2. A few results from L2 Hodge theory

We recall briefly a few results of L2-Hodge theory for a complete manifold
endowed with a Poincaré type metric, following closely [7]. We are in the
following setting.

Let X be a n-dimensional compact Kähler manifold, and let (L, hL) be
a line bundle endowed with a (singular) metric hL = e−φL such that

• hL has analytic singularities;
• Its Chern curvature satisfies iΘhL(L) > 0 in the sense of currents.

We consider a modification π : X̂ → X of X such that the support of
the singularities of ϕL ◦ π is a simple normal crossing divisor E. As usual,
we can construct π such that its restriction to X̂ \E is an biholomorphism.
Then

ϕL ◦ π|Ω ≡
p∑

α=1
eα log |zα|2 (3.27)

modulo a smooth function. Here Ω⊂ X̂ is a coordinate chart, and (zα)α=1,...,n
are coordinates such that E ∩ Ω = (z1 . . . zp = 0).

Let ω̂E be a complete Kähler metric on X̂ \E, with Poincaré singularities
along E, and let

ωE := π?(ω̂E) (3.28)
be the direct image metric. We note that in this way (X◦, ωE) becomes a
complete Kähler manifold, where X◦ := X \ (hL =∞).

Remark 3.5. — If u is a L-valued (p, 0)-form on X◦ which is L2 with
respect to ωE , then it is also L2 with respect to an euclidean metric on X̂
(or X, too).Therefore, if u is holomorphic, then it extends holomorphically
to X and more generally any smooth compactification of X◦.

The main goal of this section is to establish the following decomposition
theorem, which is a slight generalization of the corresponding result in [7].

Theorem 3.6. — Consider a line bundle (L, hL) → X endowed with a
metric hL with analytic singularities, as well as the corresponding complete
Kähler manifold (X◦, ωE), cf. (3.28). If iΘhL(L) > 0 on X, we have the
following Hodge decomposition

L2
n,1(X◦, L) = Hn,1(X◦, L)⊕ Im ∂ ⊕ Im ∂?.

Here Hn,1(X◦, L) is the space of L2 ∆′′-harmonic (n, 1)-forms.
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The proof we will present here is almost contained in the aforementioned
reference, in which the case ΘhL(L) = 0 is treated. The few additional argu-
ments together with the precise references we are using are explained below.

We start by recalling the following result.

Lemma 3.7. — There exists a family of smooth functions (µε)ε>0 with
the following properties.

(a) For each ε > 0, the function µε has compact support in X◦, and
0 6 µε 6 1.

(b) The sets (µε = 1) are providing an exhaustion of X◦.
(c) There exists a positive constant C > 0 independent of ε such that

we have
sup
X◦

(
|∂µε|2ωE + |∂∂µε|2ωE

)
6 C.

We have also the Poincaré type inequality for the ∂-operator acting on
(p, 0)-forms.

Proposition 3.8 ([7]). — Let (Ωj)j=1,...,N be a finite union of coordi-
nate sets of X̂ covering E, and let Û be any open subset contained in their
union and U := π(Û). Let τ be a (p, 0)-form with compact support in a set
U \ π(E) ⊂ X and values in (L, hL). Then we have

1
C

∫
U

|τ |2ωEe
−φLdVωE 6

∫
U

|∂τ |2ωEe
−φLdVωE (3.29)

where C is a positive numerical constant.

We emphasize that the constant C in (3.29) only depends on the distor-
tion between the model Poincaré metric on Ωj with singularities on E and
the global metric ω̂E restricted to Ωj . Another important observation is that
by using the cut-off function µε in Lemma 3.7, we infer that (3.29) holds in
fact for any L2-bounded form with compact support in U .

Quick recap around the Bochner–Kodaira–Nakano formula. — We recall
the following formula, which is central in complex differential geometry

∆′′ = ∆′ + [iΘhL(L),ΛωE ] (3.30)

where ∆′′ = ∂∂∗ + ∂∗∂ and ∆′ = D′D′∗ +D′∗D′ where D′ is the (1, 0)-part
of the Chern connection on (L, hL). Let us also recall the well-known fact
that the self-adjoint operator

A := [iΘhL(L),ΛωE ]
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is semi-positive when acting on (n, q) forms, for any 0 6 q 6 n as long as
iΘhL(L) > 0. An immediate consequence of (3.30) is that for a L2-integrable
form u with values in L of any type in the domains of ∆′ and ∆′′, we have

‖∂u‖2L2 + ‖∂∗u‖2L2 = ‖D′u‖2L2 + ‖D′∗u‖2L2 +
∫
X◦
〈Au, u〉dVωE (3.31)

where ‖ · ‖L2 (resp. 〈 · , · 〉) denotes the L2-norm (resp. pointwise hermitian
product) taken with respect to (hL, ωE), cf. e.g. [4, Prop. 12.2 c)]. Here the
main point is that in case of complete manifolds, the forms with compact
support are dense in the domains of the operators ∂ and ∂? (unlike e.g. in
the case of bounded domains in Cn, where further boundary requirements
for forms are to be imposed so that Bochner formula holds true).

Let ? : Λp,qT ∗X◦ → Λn−q,n−pT ∗X◦ be the Hodge star with respect to ωE ;
we introduce for any integer 0 6 p 6 n the space

H(p) :=
{
F ∈ H0(X◦,ΩpX◦ ⊗ L) ∩ L2;

∫
X◦
〈A ? F, ?F 〉dVωE = 0

}
(3.32)

and we can observe by Bochner formula that for a L2 integrable, L-valued
(p, 0)-form F , one has

∆′′(?F ) = 0⇐⇒ ∆′(?F ) = 0

and
∫
X◦
〈A ? F, ?F 〉dVωE = 0⇐⇒ F ∈ H(p). (3.33)

Indeed, the holomorphicity of F follows from the identity ∂F = −?D′∗(?F ).

The proof of Theorem 3.6, which we give below, makes use of the following
proposition which is the ∂-version of the Poincaré inequality established
in [1].

Proposition 3.9. — Let p 6 n be an integer. There exists a positive
constant C > 0 such that the following inequality holds∫

X◦
|u|2ωEe

−φdVωE

6 C

(∫
X◦
|∂u|2ωEe

−φdVωE +
∫
X◦
〈A ? u, ?u〉dVωE

)
(3.34)

for any L-valued form u of type (p, 0) which belongs to the domain of ∂ and
which is orthogonal to the space H(p) defined by (3.32). Here ? is the Hodge
star operator with respect to the metric ωE.
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Proof of Proposition 3.9. — If a positive constant as in (3.34) does not
exists, then we obtain a sequence uj of L-valued forms of type (p, 0) orthog-
onal to H(p) such that∫

X◦
|uj |2ωEe

−φdVωE = 1, lim
j

∫
X◦
|∂uj |2ωEe

−φLdVωE = 0 (3.35)

and
lim
j

∫
X◦
〈A ? uj , ?uj〉dVωE = 0.

It follows that the weak limit u∞ of (uj) is holomorphic and belongs to H(p).
On the other hand, each uj is perpendicular to H(p), so it follows that u∞
is equal to zero.

Let us first show that the weak convergence ui ⇀ u∞ also takes places
in L2

loc(X◦). To that purpose, let us pick a small Stein open subset U b X◦.
By solving the ∂-equation U , we can find wj such that ∂wj = ∂uj on U and∫
U
|wj |2 → 0. Therefore uj −wj is holomorphic on U and converges weakly,

hence strongly to u∞|U . In particular uj converges to u∞ in L2 on U . As
u∞ = 0, we have

uj |K → 0 (3.36)
in L2 for any compact subset K ⊂ X◦.

The last step in the proof is to notice that the considerations above
contradict the fact that the L2 norm of each uj is equal to one. This is not
quite immediate, but is precisely as the end of the proof of Lemma 1.10
in [1], so we will not reproduce it here. The idea is however very clear:
in the notation of Proposition 3.8, we choose V small enough so that it
admits a cut-off function χ with small gradient with respect to ωE . Then,
we decompose each uj as uj = χuj + (1 − χ)uj . Then the L2 norm of χuj
is small by (3.36). The L2 norm of (1− χ)uj is equally small by (3.29), and
this is how we reach a contradiction. �

We have the following direct consequences of Proposition 3.9.

Corollary 3.10. — There exists a positive constant C > 0 such that
the following inequality holds∫

X◦
|u|2ωEe

−φdVωE 6 C
(∫

X◦
|∂u|2ωEe

−φdVωE
)

(3.37)

for any L-valued form u of type (n, 0) which belongs to the domain of ∂ and
which is orthogonal to the kernel of ∂.

Proof. — This follows immediately from Proposition 3.9 combined with
the observation that the curvature operator A is equal to zero in bi-degree
(n, 0). �
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The next statement shows that in bi-degree (n, 2) the image of the oper-
ator ∂? is closed.

Corollary 3.11. — There exists a positive constant C > 0 such that
the following holds true. Let v be a L-valued form of type (n, 2). We assume
that v is L2, in the domain of ∂ and orthogonal to the kernel of the operator
∂?. Then we have∫

X◦
|v|2ωEe

−φLdVωE 6 C
∫
X◦
|∂?v|2ωEe

−φLdVωE . (3.38)

Proof. — Let us first observe that the Hodge star u := ?v, of type (n −
2, 0), is orthogonal to H(n−2). This can be seen as follows. Let us pick F ∈
H(n−2); it follows from (3.33) that we have ∂?(?F ) = 0. In other words,
?F ∈ Ker ∂?. We thus have∫

X◦
〈u, F 〉dVωE =

∫
X◦
〈v, ?F 〉dVωE = 0.

Applying Bochner formula (3.31) to v and using the facts that ∂v = 0 (since
v is orthogonal to Ker ∂∗) and that ∂∗u = 0 for degree reasons, we get

‖∂∗v‖2L2 = ‖∂u‖2L2 +
∫
X◦
〈A ? u, ?u〉dVωE (3.39)

This proves the corollary by applying Proposition 3.9. �

We discuss next the relative version of the previous estimates. Let p : X →
D and (L, hL) be the family of manifolds and the line bundle, respectively
fixed in the previous section. We assume that

D 3 t 7→ dim
(
Ker(∆′′t )

)
is constant (3.40)

where the Laplace operator ∆′′t is the one acting on L2 (n, 1)-forms with
respect to (ωE , hL).

The next result is a consequence of the proof of Proposition 3.9.

Corollary 3.12. — Under the additional assumptions (3.40) and
(A.1), there exists a constant C > 0 independent of t such that∫

X◦t

|u|2ωEe
−φdVωE

6 C

(∫
X◦t

|∂u|2ωEe
−φdVωE +

∫
X◦t

〈A ? u, ?u〉dVωE

)
(3.41)

for all L2 forms u orthogonal to the space H(p)
t defined in (3.32) on the

fiber Xt.
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Here the constant C is uniform in the sense that for any subset U of
compact support in D, we can find a constant C depending on U such
that (3.41) is satisfied for any t ∈ U

Proof. — We first show that every form F0 on the central fiber which is
in the space H(p)

0 can be written as limit of Fti ∈ H
(p)
ti . This is of course

well-known in the compact case, but we include a proof here since we could
not find a reference fitting in our context.

Let (Ft)t∈D? any family of L-valued holomorphic p-forms on the fibers
above the pointed disk D? such that∫

X◦t

|Ft|2ωEe
−φLdVωE = 1. (3.42)

Then we can definitely extract a limit F∞ on the central fiber X0, but in
principle it could happen that F∞ ≡ 0 is identically zero. Such assumption
would lead however to a contradiction, as follows.

We write locally on a coordinate chart Ω for X

Ft|Ω =
∑

fIdzI ⊗ eL, (3.43)

where the coefficients fI are holomorphic, and of course depending on t.
We can assume that the multiplier ideal sheaf of hL is trivial, given the
transversality conditions that we have imposed (we can simply divide Ft
with the corresponding sections). If the weak limit of Ft is zero, we can
certainly extract a limit in strong sense, because the L2 norm with respect
to a smooth metric is smaller than the L2 norm with respect to Poincaré
metric, cf. also Remark 3.5.

In this case, the sup norm of the coefficients fI above converges to zero
as t → 0. Since the Poincaré metric we are using has uniformly bounded
volume, the equality (3.42) will not be satisfied as soon as t� 1.

We now take an orthonormal basis (Ft,j) of the space H(p)
t (this is ob-

tained by the ?t of an orthonormal basis for the Ker(∆′′t ), for example).
The previous considerations will allow us to construct by extraction an or-
thonormal family (F∞,j) in H(p)

0 ; this will be a basis because of dimension
considerations.

We argue by contradiction and assume that the smallest constant Ct for
which (3.34) holds true to for the fiber Xt tends to infinity when t → 0.
Then we get ui on Xti such that ui is orthogonal to the space H(p)

ti and such
that∫

Xti

|ui|2ωEe
−φLdVωE = 1, lim

i

∫
Xti

|∂ui|2ωEe
−φLdVωE = 0. (3.44)
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Then the limit (computed using any C∞ trivialization of the family)
u0 := lim

i→0
ui

is still orthogonal to H(p)
0 : this is exactly where the previous considerations

are needed. The rest of the proof of the corollary follows the arguments
already given for Proposition 3.9, so we simply skip it. �

Now we can prove Theorem 3.6.

Proof of Theorem 3.6. — This statement is almost contained in [9,
Chap. VIII, p. 367–370]. Indeed, in the context of complete manifolds one
has the following decomposition

L2
n,1(X◦, L) = Hn,1(X◦, L)⊕ Im ∂ ⊕ Im ∂?. (3.45)

We also know (see [9]) that the adjoints ∂? and D′? in the sense of von
Neumann coincide with the formal adjoints of ∂ and D′ respectively.

It remains to show that the range of the ∂ and ∂?-operators are closed
with respect to the L2 topology. In our set-up, this is a consequence of the
particular shape of the metric ωE at infinity (i.e. near the support of π(E)):
we are simply using the inequalities (3.37) and (3.38). The former shows that
the image of ∂ is closed, and the latter does the same for ∂?. �

We finish this section with the following result (relying of the decompo-
sition theorem obtained above), identifying the L2-integrable ∆′′-harmonic
forms of bi-degree (n, 1) on (X◦, ωE , hL) with the vector space H1(X,KX ⊗
L⊗ I(hL)) (which is independent of ωE).

Proposition 3.13. — In the setting of Theorem 3.6, we have a natural
isomorphism

Hn,1(X◦, L) '−→ H1(X,KX ⊗ L⊗ I(hL))
where Hn,1(X◦, L) is the space of L2 integrable, ∆′′-harmonic (n, 1)-forms
on X◦.

Proof. — We proceed in several steps.

Step 1: Reduction to the snc case. — The first observation is that the
statement is invariant by blow-up whose centers lie onX\X◦. It is obvious for
the LHS while it follows from the usual formula π∗(KX′⊗π∗L⊗I(π∗hL)) '
KX ⊗L⊗I(hL) as well as Grauert–Riemenschneider vanishing R1π∗(KX′ ⊗
π∗L⊗ I(π∗hL)) = 0 (see [14, Cor. 1.5]) valid for any modification π : X ′ →
X. So from now on, we assume that the singular locus of hL is an snc divisor.
In the following, we pick a finite Stein covering (Ui)i∈I of X.

Step 2: Statement of the claim to solve the ∂-equation. — Our main tool
in the proof will be the following estimate.

– 883 –



Junyan Cao, Henri Guenancia and Mihai Păun

Claim 3.14. — Let v be a (n, 1)-from on X◦ with values in (L, hL), and
such that

∆′′v = 0,
∫
X

|v|2ωEe
−ϕLdVωE <∞.

Then for each coordinate set Ω ⊂ X there exists an (n, 0)-form u on Ω such
that

∂u = v,

∫
Ω
|u|2ωEe

−ϕLdVωE <∞, (3.46)

For bi-degree reasons, the (n, 0)-form u in (3.46) is L2 with respect to
hL (independently of any background metric). We postpone the proof of the
claim for the moment and we will use it in order to prove Proposition 3.13.

Step 3: The map “harmonic to cohomology”. — We first construct an
application

Φ : Hn,1(X◦, L) −→ Ȟ1(X,KX ⊗ L⊗ I(hL)) (3.47)
as follows. Let f ∈ Hn,1(X◦, L); by definition we have ∆′′f = 0. Therefore,
on can solve on each U◦i := Ui ∩ X◦ the equation ∂ui = f where ui is an
L-valued (n, 0)-form on U◦i satisfies the condition (3.46). In particular, the
form uij := ui − uj is a holomorphic L-valued n-form on U◦ij such that∫

U◦
ij

|uij |2e−ϕL 6 2
∫
U◦
ij

|f |2ωEe
−ϕLdVωE

It follows that uij extends holomorphically across E as a section of KX ⊗
L ⊗ I(hL) on Uij and therefore it defines a 1-cocycle of the latter sheaf. It
is straighforward to check that the class

Φ(f) := {(uij)i,j∈I} ∈ Ȟ1(X,KX ⊗ L⊗ I(hL))

is independent of the choice of the L2-integrable form ui solving ∂ui = f .

Step 4: The map “cohomology to harmonic”. — Next, we have a natural
morphism

Ψ : Ȟ1(X,KX ⊗ L⊗ I(hL)) −→ Hn,1(X◦, L) (3.48)
Indeed, given a cocycle v := (vij)i,j∈I and a partition of unity (θk)k∈K we
use the Leray isomorphism and consider as usual the L-valued (n, 0)-form

τk :=
∑
i∈I

θivki on Uk (3.49)

and then the local L-valued forms of type (n, 1)
∂τk

are gluing on overlapping sets. Let βv be the resulting form. We have
∂βv = 0 and βv ∈ L2, (3.50)
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where the second property in (3.50) is due to the fact that ωE > ω. Under
the canonical decomposition

Ker ∂ = Hn,1
⊥
⊕ Im ∂

from Theorem 3.6, we define Ψ(v) to be the orthogonal projection of βv onto
Hn,1. It is clear that Ψ above is well-defined: if vij = vi − vj , then τk − vk is
a global, L2 form and our βv is exact and therefore its projection onto the
kernel of ∆′′ is zero.

Step 5: Compatibility of the maps. — We are left to showing that the
maps Φ and Ψ in (3.47) and (3.48) are inverse to each other. Let f ∈ Hn,1,
ui ∈ L2 such that ∂ui = f on U◦i and u = (uij). Then on U◦k , one has

βu − f = ∂

(∑
i

θiuki − uk

)
= ∂

(
−
∑
i∈I

θiui

)

and that last form is globally exact in X◦ and L2, hence Ψ(Φ(f)) = f .

In the other direction, let v := (vij)i,j∈I be a cocycle and let us write
βv = Ψ(v)+∂w for some L2-integrable (n, 0)-form w. On Uk, one has Ψ(v) =
∂(τk − w) so that Φ(Ψ(v)) is represented by the cocycle (τi − τj)i,j∈I = v.

Step 6: Proof of Claim 3.14. — In order to complete the proof of Propo-
sition 3.13, we need to prove the Claim 3.14 that we used in the course of
the proof.

By (3.33), the form ?v is holomorphic and its restriction to a coordinate
subset Ω can be written as

? v|Ω =
∑

(−1)i−1αid̂zi ⊗ eL,
∑
j

∫
Ω

|αj |2

|fj |2
e−ϕLdλ <∞ (3.51)

where the αi are holomorphic on Ω and fj is as in (3.2).

Then we have

v|Ω = (−1)n
∑
i,k

αigikdz ∧ dzk ⊗ eL (3.52)

where gik are the coefficients of the metric ωE . The construction of the metric
at the beginning shows that

gik = ∂2

∂zi∂zk

φ−∑
j

log log 1
|sj |2

 (3.53)
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where φ is a local potential for the smooth metric ω. Therefore we can get a
primitive for v|Ω by defining

u =
∑
i

αi
∂

∂zi

φ−∑
j

log log 1
|sj |2

 dz ⊗ eL. (3.54)

By equality (3.53) it verifies ∂u = v and in is also in L2 as one can see by an
direct explicit computation combined with the second inequality in (3.51).

The proof of Proposition 3.13 is now complete. �

4. Curvature formulas and applications

In this section, we use the Set-up 2.1. We also borrow the Notation 2.4 for
the L2 metric denoted by hF on the direct image bundle F = p?(O(KX/D +
L)⊗ I(hL)) induced by e−φL .

Let u ∈ H0(D,F) and let u be a (n, 0)-form on X ◦ representing u. Thanks
to (3.9), for any smooth function f(t) with compact support in D, we have∫

D

‖u‖2hF · ddcf(t) = cn

∫
X◦

u ∧ ue−φL ∧ ddcf(t). (4.1)

Recall that hF is smooth by Lemma 2.2.

The aim of this section is to generalize formulas [2, (4.4), (4.8)] to our
singular setting, cf. Proposition 4.1 and Proposition 4.5.

4.1. A general curvature formula

In this context we establish the following general formula, which gener-
alise the corresponding result in [2, (4.4)].

Proposition 4.1. — Let u be a continuous representative of u such that:

(i) u, D′u and ∂(D′u) are L2 on X ◦ with respect to ωE , hL,
(ii) ∂u ∧ ∂u is L1 on X ◦ with respect to ωE , hL.

Then the following formula holds true

∂∂‖u‖2hF = cn

[
−p?((ΘhL(L))ac ∧ u ∧ ue−φL) + (−1)np?(D′u ∧D′ue−φL)

+ (−1)np?(∂u ∧ ∂u e−φL)
]

(4.2)

Here (ΘhL(L))ac is the absolutely continuous part of the current ΘhL(L).
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Remark 4.2. — Here we merely require the L1 integrability of ∂u ∧ ∂u
and not the L2-integrability of ∂u. The reason is that for later application
in Theorem 4.6, we could only obtain the former condition. It is not clear
whether the term ∂u in Theorem 4.6 is L2.

The proof of Proposition 4.1 will require a few preliminary computations
and will be given on page 888 below. First, we start with the following result
legitimizing integration by parts.

Lemma 4.3. — If u and D′u are L2 on X ◦, we have∫
X◦

u ∧ ue−φLi∂∂f(t) = −
∫
X◦

D′u ∧ ue−φLi∂f(t).

Proof. — Let ψε be the cut-off fonction in Lemma 3.7. Since u is L2

bounded with respect to φL and ωE , we have∫
X◦

u ∧ ue−φLi∂∂f(t) = lim
ε→0

∫
X◦

ψεu ∧ ue−φLi∂∂f(t).

An integration by parts yields∫
X◦

ψεu ∧ ue−φLi∂∂f(t)

= −
∫
X◦

i∂ψε ∧ u ∧ ue−φL∂f(t)−
∫
X◦

ψε ∧D′u ∧ ue−φLi∂f(t)

− (−1)n
∫
X◦

ψε ∧ u ∧ ∂ue−φLi∂f(t). (4.3)

Since u is a representative of a holomorphic section u, we know by (3.11)
that ∂u = dt ∧ η, hence

∂u ∧ dt = 0 (4.4)
and the third term of RHS of (4.3) vanishes.

The first term of RHS of (4.3) tends to 0 because u is assumed to be
globally L2-integrable. Similarly, we see that the second term of RHS of (4.3)
tends to

−
∫
X◦

D′u ∧ ue−φLi∂f(t).

The lemma is thus proved. �

As a corollary of Lemma 4.3 above, we can compute the Chern connection
of (F , hF ) as follows.

Corollary 4.4. — Let u ∈ H0(D,F) and let u be a smooth represen-
tative of u. We have

∇u = P (µ)dt
where
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• ∇ is the (1, 0)-part of the Chern connection on (F , hF ).
• µ is defined by D′u = dt∧µ, cf. (3.12), and µ|Xt only depends on u.
• P (µ) is the fiberwise projection onto H0(Xt, (KXt + Lt) ⊗ I(hLt))
with respect to the L2-norm.

Proof. — Let ∇ be the (1, 0)-part of the Chern connection of (F , hF ).
Then we have

∇u = σ ⊗ dt,
where σ = ∇u

dt ∈ C
∞(D,F). Let u, v be two holomorphic sections of F

and let f be a smooth function with compact support in D. Since v is a
holomorphic, we have∫

D

〈u, v〉i∂∂f(t) =
∫
D

〈∇u, v〉 ∧ i∂f(t).

Let u and v be the representatives of u and v respectively given by (3.7).
The argument already used in Lemma 4.3 shows that we have∫

X◦
u ∧ ve−φLi∂∂f(t) =

∫
X◦

D′u ∧ ve−φLi∂f(t).

Here D′ is, as before, the Chern connection on (L → X ◦, hL). As a conse-
quence, we have∫

D

〈∇u, v〉 ∧ i∂f(t) =
∫
X◦

D′u ∧ ve−φLi∂f(t).

Since we can choose f on the base D arbitrarily, we infer∫
X◦t

〈σt, vt〉 =
def

∫
X◦t

〈
∇u
dt , v

〉
t

=
∫
X◦t

D′u
dt ∧ ve−φL

=
∫
X◦t

µ ∧ vte−φL

=
∫
X◦t

P (µ|Xt) ∧ vte−φL

for each t ∈ D.

As the above holds for any holomorphic section v, we obtain thus

∇u = P (µ)dt

on D. �

We can now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. — Let f ∈ C∞c (D). By (4.4), we have∫
X◦

ψεu ∧ ∂ue−φL∂f(t) = 0
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for every ε. By integration by parts, we obtain∫
X◦

∂ψε ∧ u ∧ ∂ue−φLf(t) +
∫
X◦

ψε∂u ∧ ∂ue−φLf(t)

+ (−1)n
∫
X◦

ψεu ∧D′∂ue−φLf(t) = 0. (4.5)

For the first term of (4.5), by integration by parts again, we have

(−1)n
∫
X◦

∂ψε ∧ u ∧ ∂ue−φLf(t)

= −
∫
X◦

∂ψε ∧D′u ∧ ue−φLf(t) +
∫
X◦

∂∂ψε ∧ u ∧ ue−φLf(t)

−
∫
X◦

∂ψε ∧ u ∧ ue−φL ∧ ∂f(t).

Recall that dψε and ddcψε are uniformly bounded with respect to ωE and
converge to zero pointwise. Since u and D′u are L2 by assumption, we see
from Lebesgue dominated convergence theorem that the RHS tends to 0.
Therefore the first term of (4.5) tends to 0.

Since ∂u∧∂u is L1, the second term of (4.5) tends to
∫
X◦ ∂u∧∂ue−φLf(t).

We obtain thus∫
X◦

∂u ∧ ∂ue−φLf(t) = (−1)n−1 lim
ε→0

∫
X◦

ψεu ∧D′∂ue−φLf(t). (4.6)

We complete in what follows the proof of the proposition. We have∫
X◦

u ∧ ue−φL ∧ ∂∂f(t)

= lim
ε→0

∫
X◦

ψεu ∧ ue−φL ∧ ∂∂f(t)

= − lim
ε→0

[∫
X◦

∂ψε ∧ u ∧ ue−φL ∧ ∂f(t) +
∫
X◦

ψε ∧ ∂u ∧ ue−φL ∧ ∂f(t)

+ (−1)n
∫
X◦

ψε ∧ u ∧D′ue−φL ∧ ∂f(t)
]

Note that the first term tends to 0 since u is L2. The second term vanishes
because of (4.4). Then we have∫

X◦
u ∧ ue−φL ∧ ∂∂f(t) = (−1)n−1 lim

ε→0

∫
X◦

ψε ∧ u ∧D′ue−φL ∧ ∂f(t).
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Applying again integration by part, the RHS above becomes

lim
ε→0

(−1)n−1
∫
X◦

∂ψε ∧ u ∧D′ue−φLf(t)

+ (−1)n−1
∫
X◦
ψεD

′u ∧D′ue−φLf(t)−
∫
X◦
ψεu ∧ ∂D′ue−φLf(t). (4.7)

As u and D′u are L2, the first term of (4.7) tends to 0, and the second
term of (4.7) tends to

∫
X◦ D

′u∧D′ue−φLf(t). For the third term, as ∂D′u =
ΘhL(L)−D′∂u, we have∫

X◦
ψεu ∧ ∂D′ue−φLf(t)

= −
∫
X◦

ψεu ∧D′∂ue−φLf(t)−
∫
X◦

ψεΘhL(L)u ∧ ue−φLf(t). (4.8)

Combining with (4.6), we obtain

lim
ε→0

∫
X◦

ψεu ∧ ∂D′ue−φLf(t)

= (−1)n
∫
X◦

∂u ∧ ∂ue−φLf(t)−
∫
X◦

ΘhL(L) ∧ u ∧ ue−φLf(t).

All three terms of the RHS of (4.7) have now been calculated and the
sum is just

(−1)n−1
∫
X◦

D′u ∧D′ue−φLf(t) + (−1)n−1
∫
X◦

∂u ∧ ∂ue−φLf(t)

+
∫
X◦

ΘhL(L) ∧ u ∧ ue−φLf(t).

The proposition is thus proved. �

4.2. A characterization of flat sections

Now for applications, we need to generalize [2, Prop. 4.2] and formula [2,
(4.8)] to our singular setting. Following the argument of [2, Prop 4.2], we
have the following.

Proposition 4.5. — We assume that the coefficients bI in the Set-up
condition (A.2) are equal to zero. Let u be a holomorphic section of F on D
such that ∇u(0) = 0. Then u can be represented by a smooth (n, 0)-form u
on X ◦, L2 with respect to hL, ωE, such that

∂u = dt ∧ η
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for some L2-form η which is primitive (with respect to ωE |X◦) on X◦, and

D′u = dt ∧ µ

for some µ satisfying µ|X◦ = 0. Here X◦ := X0 ∩X ◦ is on the central fiber.

Proof. — Let u be the representative constructed in (3.7). We have

D′u = dt ∧ µ ∂u = dt ∧ η.

Then µ|X◦ is orthogonal to the space of L2-holomorphic section by Corol-
lary 4.4.

By Remark 3.2 our representative u has the following property

u ∧ ωE = dt ∧ dt ∧ u1 (4.9)

for some (n, 0)-form u1 on X ◦. It follows that we have

η ∧ ωE = 0 (4.10)

on each fiber Xt.

Moreover, as µ|X◦ is orthogonal to Ker ∂, Theorem 3.6 shows that µ|X◦
is ∂?0 -exact, i.e., there exists a ∂-closed L2-form β0 on X◦ such that

∂?0β0 = µ|X◦ .

Let β̃0 be an arbitrary (globally L2) extension of ?0β0. Then u − dt ∧ β̃0 is
the representative we are looking for. �

The result above produces a representative enjoying nice properties in
restriction to the central fiber; more precisely, the fact that η|X◦ is primitive
ensure that the third term in the RHS of the curvature formula (4.2) has a
(positive) sign at t = 0.

In order to generalize that to each fiber, we consider the case where
u ∈ H0(D,F) is a flat section with respect to hF . For that purpose, we
introduce an additional cohomological assumption.

In the Set-up 2.1, assume that the coefficients bI appearing in (A.2)
vanish. That is to say, hL has analytic singularities in the usual sense. We
let ∆′′t be the Laplace operator on L2-integrable (n, 1)-forms with values
in L on X◦t , taken with respect to ωE , hL. Let us consider the following
assumption.

(A.4) The dimension dim Ker ∆′′t is independent of t ∈ D.

Note that by Bochner formula, we already know that dim Ker ∆′′t < +∞.
Indeed, if α is a ∆′′t -harmonic L2 (n, 1)-form on X◦t , then (3.31) shows
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that α is ∆′t-harmonic and (D′)∗α = 0. In particular, ?α is a L2-holo-
morphic section. Thanks to Remark 3.5, we get an injection Ker ∆′′t ↪→
H0(Xt,Ωn−1

Xt
⊗ Lt). In particular, the former space is finite-dimensional.

The main result of this subsection states as follows.

Theorem 4.6. — In the Set-up 2.1, assume that hL has analytic singu-
larities and that the condition (A.4) above is satisfied.

Let u ∈ H0(D,F) be a flat section with respect to hF . Then, we can find
a continuous (n, 0)-form u on X \ E representing u such that

(i) u is L2 and D′u = 0,
(ii) η|X◦t = 0 for any t ∈ D, and ∂u ∧ ∂u = 0, where η is (as usual)

given by ∂u = dt ∧ η. Moreover, the equality

ΘhL(L) ∧ u = 0 (4.11)

holds true point-wise on X \ E.

Remark 4.7. — Let us collect a few remarks about the theorem.

(a) The content of Theorem 4.6 is clear: it “converts” the abstract data
∂u = 0 and ∇u = 0 into an effective result.

(b) The identity (4.11) is equivalent to saying that the hermitian metric
induced by iΘhL(L) on ΛnT ∗X◦ has u in its kernel.

Proof. — As in the proof of Proposition 4.5, we start with a representa-
tive u given by (3.7) (i.e. constructed via the contraction with the canonical
lifting of ∂

∂t with respect ωE).

Since u is flat on D, we have D′u = dt∧µ where µ|X◦t is L2 and ∂?t-exact
for every t ∈ D. Therefore we can solve the ∂∗-equation fiberwise, namely
there exists a unique L2-form βt on X◦t such that βt is orthogonal to the
Ker ∂?t and such that

∂?tβt = µ|X◦t .

By taking the ∂ in both side and taking into account the fact that βt is
orthogonal to the Ker ∂?t , we obtain

∆
′′

t βt = ∂(µ|X◦t ) on X◦t and βt ⊥ Ker ∆
′′

t . (4.12)

By analogy to the compact case it is expected that the minimal solution
of a ∆′′t equation varies smoothly provided that dim Ker ∆′′t is constant.
We partly confirm this expectation in Proposition 4.8 by showing that it is
continuous; for the moment, we will admit this fact and finish the proof of
the theorem.
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We set
u1 := u− dt ∧ (?tβt).

It is a continuous, fiberwise smooth form on X ◦ and we show now that u1
is a representative for which the points (i)–(ii) above are satisfied.

By construction, D′u1 = 0 on X ◦. By (4.18) of Proposition 4.8 below,
the L2-norm of βt is smaller than the L2-norm of ∂µ|X◦t , i.e.,

‖βt‖L2 6 C‖∂µ|X◦t ‖L2

for some constant C independent of t. Moreover, we recall the estimates in
Lemma 3.3: ∂µ|X◦t is uniformly L2-bounded. Therefore dt∧ (?tβt) is L2 and
so our representative u1 is L2.

We have ∂u1 = dt ∧
(
η + ∂

(
?tβt

))
and since ∂

(
?tβt

)
∧ ωE = ∂βt = 0, it

follows that
∂u1

dt

∣∣∣∣
Xt

∧ ωE = 0. (4.13)

In order to use Proposition 4.1, we show next that we have ∂u1∧∂u1 ∈ L1.
To this end, we write

∂u1 ∧ ∂u1 = dt ∧ η ∧ dt ∧ η + dt ∧ ∂(?tβt) ∧ dt ∧ η (4.14)

+ dt ∧ η ∧ dt ∧ ∂(?tβt) + dt ∧ ∂(?tβt) ∧ dt ∧ ∂(?tβt). (4.15)

By the estimates in Lemma 3.3, η is L2. Then the first term of RHS of (4.14)
is L1. Degree considerations show that we have

dt ∧ ∂(?tβt) ∧ dt ∧ η = dt ∧ ∂t(?tβt) ∧ dt ∧ η, (4.16)

where ∂t is the ∂-operator on Xt. Since ∆′′t βt = ∂µ and βt is of degree (n, 1),
Bochner formula shows that the L2-norm of ∂t(?tβt) is equal to the L2 norm
of the form (D′)?tβt (this is due to the fact that βt is ∂-closed), which in
turn is bounded by the L2-norm of ∂µ. Once again, the estimates provided
by Lemma 3.3 show that the L2-norm of ∂µ|Xt is bounded uniformly with
respect to t. It follows that dt ∧ ∂t(?tβt) is L2.

Therefore dt ∧ ∂(?tβt) ∧ dt ∧ η is L1-bounded by using (4.16). The same
type of arguments show that the two terms in (4.15) are also L1.

We apply Proposition 4.1 for the representative u1 of u. The flatness of
u imply that

cn

∫
X◦

((−1)n∂u1 ∧ ∂u1 + iΘhL(L) ∧ u1 ∧ u1)e−φL = 0.
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Thanks to the assumption iΘhL(L) > 0 combined with (4.13), both two
terms in the integral are semi-positive, and modulo the continuity of the
family (βt) our result is proved. �

The proof of the following result is very similar to the familiar situation in
which the couple of metrics (ωE , hL) are non-singular. We provide a complete
argument because we were unable to find a reference.

Proposition 4.8. — The minimal solution βt in (4.12) varies continu-
ously with respect to t.

Proof. — We have divided our proof in a few steps.

Step 1. — Let (ut) be a family of L-valued, L2 forms of (n, 1)-type on
the fibers of p, such that we have

∆′′t vt = ut (4.17)
on the fiber Xt. If moreover we assume that each vt is perpendicular to
Ker ∆′′t , then we claim that∫

Xt

|vt|2ωEe
−φLdVωE 6 C

∫
Xt

|ut|2ωEe
−φLdVωE (4.18)

for some constant C uniform with respect to t.

Indeed, our claim follows instantly from Corollary 3.12 and (3.33) applied
to u := ?tvt.

Step 2. — Let λ ∈ C such that 0 < |λ| � 1 (we will make this precise
in a moment). We claim that the operator

Aλ,t := λ−∆
′′

t

is invertible, which we show by proving that the equation Aλ,tv = u admits
a solution v, as soon as u is in L2. This can be seen via the usual Riesz
representation theorem, as follows.

We define on L2
n,1 the functional

I(φ) =
∫
Xt

〈u, φ〉e−φLdVωE

We write u = u1 + u2 and φ = φ1 + φ2 according to the decomposition
L2
n,1 = Ker ∆′′t ⊕ (Ker ∆′′t )⊥. Then we have

I(φ) =
∫
Xt

〈u1, φ1〉e−φLdVωE +
∫
Xt

〈u2, φ2〉e−φLdVωE

and then the squared absolute value of the second integral is smaller than∫
Xt

|∆′′t φ|2e−φLdVωE (4.19)
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up to a uniform constant, by Step 1. Therefore, we get

|I(φ)|2 .
∫
Xt

|φ1|2e−φLdVωE +
∫
Xt

|∆′′t φ|2e−φLdVωE . (4.20)

Since ∣∣∣∣∫
Xt

〈φ,∆′′t φ〉dVωE
∣∣∣∣2 6 ∫

Xt

|φ2|2e−φLdVωE ·
∫
Xt

|∆′′t φ|2e−φLdVωE

we see that from (4.20) that

|I(φ)|2 6 Cu,λ
∫
Xt

|λφ−∆′′t φ|2e−φLdVωE (4.21)

as we see from the previous step, provided that |λ| 6 1
2C , where C is the

constant in (4.18). Moreover, Cu,λ is of the form Cλ · ‖u‖2L2 .

Taking φ = u in the identity above, we see that Aλ,t := λ−∆′′t is injective.
Moreover, the functional

J : ImAλ,t −→ C
Aλ,tφ 7−→ I(φ)

is well-defined and continuous by (4.21). In particular, it extends to F =
ImAλ,t and Riesz theorem provides us with an element v ∈ F satisfying

∀ ψ ∈ F, J(ψ) =
∫
Xt

〈v, ψ〉e−φLdVωE and ‖v‖L2 6 Cλ‖u‖2L2 . (4.22)

The equality J(Aλ,tφ) = I(φ) for any φ in L2 shows that Aλ,tv = u. This
concludes this step.

Step 3. — Let λ ∈ C as in the previous step, and let ut be a continuous
L2-family. We show that vt := (λ−∆′′t )−1ut is continuous with respect to t
(with respect to the L2-norm).

It would be sufficient to check the continuity at one point 0 ∈ D. For any
ε > 0 we define the form v0,ε := µεv0 with compact support in X0 \ E. We
then have

‖v0,ε − v0‖L2 6 ε, ‖(λ−∆
′′

0 )v0,ε − (λ−∆
′′

0 )v0‖L2 6 ε

by the properties of (µε)ε>0.

We next construct a smooth extension vε of v0,ε as follows. Let (Ωi)i∈I
be a finite covering of p−1( 1

2D) by coordinate charts, and let (θi)i∈I be a
partition of unity subordinate to this covering. The L-valued form

vε := µε
∑
i

θi(z, t)v0,i
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extends v0,ε and it is compactly supported in X \E. Here we denote by v0,i
is the local expression of v0,ε|X0∩Ωi , extended trivially to Ωi (note that this
is still L2).

Since the metrics ωE , hL are smooth in X \ E,

uε,t := (λ−∆
′′

t )(vε|Xt)

is a smooth L2-family.

By the second part in (4.22) we have

‖vt − vε|Xt‖L2 6 C‖ut − uε,t‖L2 .

As ut and uε,t are continuous with respect to t, we infer that we have
‖vt − vε|Xt‖L2 6 CεO(|t|) + C‖u0 − uε,0‖L2 . It follows that we have

‖vt − vε|Xt‖L2 6 o(1) + Cε

as |t| → 0. The -small- quantity o(1) here depends on ε, but since by con-
struction the family vε|t is continuous with respect to t and its continuity
modulus is independent of ε we infer that vt is continuous at 0.

Now we define the operator Prt :=
∫
λ∈Γ(λ−∆′′t )−1dλ where Γ is a small

circle centered at 0. We have proved above that Prt is continuous with respect
to t. Moreover, Prt coincides with the orthogonal projection onto Ker ∆′′t : we
postpone the proof of this claim for the moment, see the Remark 4.9 below.

Step 4. — This is the main step in the proof of the proposition. Let βt
be the ∂∗-solution on Xt in question. Then

∆
′′

t βt = ∂(µ|X◦t ).

By the estimates in Proposition 4.5, the RHS is L2 and continuous with
respect to t. Let st be a continuous L2-family (continuous with respect to t)
such that s0 = β0. Then we have

λ0st −∆′′t βt = λ0st − ∂(µ|X◦t )

for every t, where 0 < |λ0| � 1 is fixed, small enough as in Step 2. By Step 3,
we can find a continuous family γt such that

λ0st −∆
′′

t βt = λ0γt −∆
′′

t γt

for every t. Then ∆′′t (βt − γ⊥t ) = λ0(st − γt), where γ⊥t := γt − Prt γt is the
projection onto (Ker ∆′′t )⊥.

Now βt is orthogonal to Ker ∆′′t by construction. Then βt−γ⊥t is orthog-
onal to Ker ∆′′t . By Step 1 we thus have

‖βt − γ⊥t ‖L2 6 C‖st − γt‖L2 .
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Note that s0 = γ0 and st and γt are continuous, then ‖βt − γ⊥t ‖L2 = o(1).
By Step 4, γ⊥t is continuous, therefore βt is continuous at 0.

Summing up, the continuity with respect to the L2 norm of (βt)t∈D is
established.

Step 5. — We show here that the form

dt ∧ ?tβt (4.23)

induced by the family (βt)t∈D in (4.12) is continuous on X \ E. This is a
consequence of the fact that the family of operators (∆′′t )t∈D is smooth and
it has a smooth variation when restricted to a compact subset K ⊂ X \ E,
combined with the continuity property established in Proposition 4.8.

Let Ω b X0\E be a small coordinate chart. We can interpret the (∆′′t )t∈D
as family of operators on the forms defined on Ω, since p is locally trivial.
Then we have

∆′′0βt = ∂µt + (∆′′0 −∆′′t )(βt) (4.24)

from which it follows that

∆′′0(βt − β0) = ∂µt − ∂µ0 + (∆′′0 −∆′′t )(βt). (4.25)

The equality (4.25) combined with the usual a-priori estimates for the elliptic
operators imply that

‖βt − β0‖2W 2 6 C
(
‖∂µt − ∂µ0‖2L2 + ‖βt − β0‖2L2

)
+ δt‖βt‖2W 2 (4.26)

where δt → 0 as t→ 0. We infer that

‖βt − β0‖2W 2 6 δt (4.27)

for some (other) function δt tending to zero.

The usual boot-strapping method implies that limt→0 βt = β0 smoothly
on any compact subset in X \ E. In global terms this translates as

dt ∧ ?tβt

is a continuous (n, 0)-form on X \ E, so our lemma is proved. �

Remark 4.9. — For the sake of completeness, we provide the details for
the fact that the linear operator Prt :=

∫
λ∈Γ(λ−∆′′t )−1dλ is the orthogonal

projection onto Ker ∆′′t . Let Ht be the Hilbert space (Ker ∆′′t )⊥. We need to
prove two points:

(i) Prt u = 0 for any u ∈ Ht;
(ii) Prt u = u for any u ∈ Ker ∆′′t .
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For the first point, we have the following equality

(λ−∆′′t )−1 = −
∑
k>0

λkGk+1
t on Ht (4.28)

where Gt is the inverse of the operator ∆′′t restricted to Ht. The sum in (4.28)
is indeed convergent (for the operator norm), given the estimates (4.18) and
the fact that λ belongs to the circle Γ of small enough radius.

It follows that we can exchange integration/sum and then we have∫
λ∈Γ

(λ−∆′′t )−1udλ = −
∑
k>0
Gk+1
t (u)

∫
λ∈Γ

λkdλ (4.29)

and this shows that Prt(u) = 0 for any u ∈ Ht.

For the second point, let u ∈ Ker ∆′′t . For any α ∈ Ker ∆′′t , we have〈u
λ
, α
〉

=
〈

(λ−∆′′t )(λ−∆′′t )−1u

λ
, α

〉
= 〈(λ−∆′′t )−1u, α〉.

Therefore

〈u, α〉 =
∫
λ∈Γ

〈u
λ
, α
〉

dλ =
∫
λ∈Γ
〈(λ−∆′′t )−1u, α〉dλ.

Then u − Prt u is orthogonal to Ker ∆′′ . On the other hand, thanks to the
equality

∆′′t ◦ (λ−∆′′t )−1(u) = (λ−∆′′t )−1 ◦∆′′t u = 0,
we know that Prt u ∈ Ker ∆′′t . Therefore Prt u = u.

Remark 4.10. — Actually the form βt can be obtained as usually via an
integral formula,

βt = −
∫
λ∈Γ

1
λ

(λ−∆′′t )−1(∂µ|X◦t ) (4.30)

which gives the hope that its variation with respect to t is actually smooth.
This can probably be obtained along the same lines as in [13, Thm. 7.5]
modulo the fact that in the present situation, we have to deal with the
additional difficulty induced by the fact that we are working with singular
metrics ωE and hL.

We can now end this section by providing a proof of Theorem A.

Proof of Theorem A. — Up to shrinking D to a punctured disk D1 ⊂ D,
one may assume that the assumptions (A.1)–(A.3) are satisfied (with bI = 0
for each I), cf. Section 2.

Next, there exists another punctured diskD2 ⊂ D1 such that the coherent
sheaf R1p∗(KX/D⊗L⊗I(hL)) is locally free and commutes with base change;
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i.e. its fiber at t ∈ D2 is given by H1(Xt,KXt ⊗ L|Xt ⊗ I(hL|Xt)) and the
dimension of the latter is independent of t ∈ D2. Thanks to Proposition 3.13,
the dimension of the space of harmonic (n, 1)-forms, i.e. dim Ker(∆′′t ), is in-
dependent of t ∈ D2. In other words, the condition (A.4) is satisfied over D2.

Theorem A is now a direct consequence of Theorem 4.6. �

5. A lower bound for the curvature in case of a -relatively- big
twist

Let p : X → D be a smooth, projective family, and let L → X be
a line bundle endowed with a metric hL = e−φL satisfying the following
requirements.

(B.1) There exist a smooth, semi-positive real (1,1)-form ωL as well as an
effective R-divisor E0 on X such that

iΘhL(L) = ωL + [E0]

where we denote by [E0] the current of integration associated to the
R-divisor E0.

(B.2) ωL is relatively Kähler, i.e., ωL|Xt > 0 for every t.
(B.3) The support of the divisor E := Supp(E0) is snc, and transverse to

the fibers of p.

Let

c(φL) := ωn+1
L

ωnL ∧ idt ∧ dt
be the so-called geodesic curvature associated to ωL.

Our goal here is to establish the following result.

Theorem 5.1. — Under the assumptions (B.1)–(B.3) above, let (F , hF )
be the direct image bundle p?

(
(KX/D+L)⊗I(hL)

)
endowed with the L2 met-

ric. Then for every u ∈ H0(D,F) and every t ∈ D, the following inequality
holds

〈ΘhF (F)u, u〉t > cn
∫
Xt

c(φL)u ∧ ue−ϕL (5.1)

where we identify ΘhF (F) with an endomorphism of F by “dividing” with
idt ∧ dt.

Prior to providing the arguments for Theorem 5.1 we propose here the
following problem.
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Question 5.2. — We assume that Y is a foliation on a Kähler manifold
Z. In which cases the bundle KY+L admits a positively curved metric? That
is to say, is there some analogue of the Bergman metric on twisted relative
canonical bundles in the more general contexts of a foliation? If yes, can we
equally obtain a lower bound of the curvature form?

Proof of Theorem 5.1. — The idea of our proof is to construct an ap-
proximation of the metric hL so that the resulting absolutely continuous
part of the associated curvature form has Poincaré singularities along the
support of E. Then we can use the curvature formulas we have obtained in
the previous sections, and finally conclude by a limit argument.

Approximation of the metric. — Let ε > 0 be a (small) positive real
number. We introduce the form

ωε := ωL − ε
∑
i∈I

ddc log log 1
|si|2

(5.2)

where I is the set of irreducible components of E, and si cut outs exactly
one of these for a given i ∈ I, following notation in Section 2. We note that
ωε is positive and has Poincaré singularities along E as soon as the metrics
hi used to measure the norm of si are suitably scaled, which is what we
assume from now on.

Next, we introduce the following weight on L

φε := φL − ε
∑
i∈I

log log 1
|si|2

. (5.3)

Clearly, φε has generalized analytic singularities in the sense of (A.2) in
Set-up 2.1 and it satisfies ddcφε = ωε.

The properties of (φε)ε are collected in the following statement.

Lemma 5.3. — Let (Ω, (z1, . . . , zn, t = zn+1) be a coordinate system on
X adapted to the pair (X , E) as in Set-up 2.1. Then the following hold.

(i) The geodesic curvature c(φε) is uniformly bounded from above.
(ii) We have limε→0 c(φε) = c(φL) point-wise on X \ E.
(iii) For every ε small enough, the multiplier ideal sheaf of hε := e−φε

coincides with I(hL). Moreover, the induced L2 metric, say Hε on
the direct image is smooth, and it converges to hF as ε→ 0.

Proof. — For the point (i), we write c(ωε) = 1/‖dt‖2ωε and the result
follows from the transversality conditions (B.3) and e.g. the estimates for
the coefficients provided in (3.1).

– 900 –



Curvature formula in a singular setting

The point (ii) follows easily from the local smooth convergence φε → φL
on X \ E combined with the positivity requirement (B.2).

As for the third point (iii), the smoothness of Hε and its convergence
to hF is a consequence of the transversality assumption (B.3) by the same
arguments as for Lemma 2.2. As for the statement about multiplier ideal
sheaves, one has clearly I(φε) ⊂ I(φL) while the reverse inclusion is an easy
consequence of (B.1)–(B.3). �

Application of the curvature formula. — We consider u a local holomor-
phic section of the bundle F , and let uε be the representative of u constructed
in (3.7), by using the contraction with the vector field Vε associated to the
metric ωε.

Let
∂uε = dt ∧ ηε, D′uε = dt ∧ µε (5.4)

where D′ = D′ε is the Chern connection corresponding to (L, hε). Moreover
we have

ωε ∧ uε ∧ uε = c(φε)uε ∧ uε ∧ p?(dt ∧ dt) on X \ E

by [3, Lem. 4.2]. Proposition 4.1 then gives

− ∂2

∂t∂t
(‖u‖2Hε) = cn

∫
Xt

c(φε)uε ∧ uεe−ϕε

+
∫
Xt

|ηε|2e−φεdVωε −
∫
Xt

|µε|2e−φεdVωε , (5.5)

since ηε is primitive on fibers of p. We discuss next the terms which occur
in (5.5).

The LHS of (5.5) is equal to

〈ΘHε(F)u, u〉 − ‖P (µε)‖2 (5.6)

by the usual formula of the Hessian of the norm of a holomorphic section of
a vector bundle. Then (5.5) becomes

〈ΘHε(F)u, u〉t = cn

∫
Xt

c(φε)u ∧ ue−ϕε

+
∫
Xt

|ηε|2ωεe
−φεdVωε −

∫
Xt

|µ⊥ε |2ωεe
−φεdVωε , (5.7)

where µε = P (µε)+µ⊥ε is the L2 decomposition of µε according to the Ker ∂
and its orthogonal.
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As observed in [3, Lem. 4.4], we have
∂µε = D′ηε (5.8)

(even if the curvature is not zero!), and actually µ⊥ε is the solution of (5.8)
whose L2 norm is minimal. By [7, Thm. 1.6], we have the precise estimate∫

Xt

|µ⊥ε |2ωεe
−φεdVωε 6

∫
Xt

|ηε|2ωεe
−φεdVωε (5.9)

and then we get

〈ΘHε(F)u, u〉t > cn
∫
Xt

c(φε)u ∧ ue−φε . (5.10)

as consequence of (5.7).

The last step in our proof is to notice that as the parameter ε approaches
zero, the inequality (5.10) implies

〈ΘhF (F)u, u〉t > cn
∫
Xt

c(φL)u ∧ ue−φL . (5.11)

Indeed, we are using Lemma 5.3 for the LHS of (5.10) and Lemma 5.3(i)
combined with dominated convergence theorem for the RHS. Theorem 5.1
is proved. �

In the last lines, we now explain how to deduce Theorem B from Theo-
rem 5.1 above.

Proof of Theorem B. — We start by making the observation that if
π : X ′ → X is a proper birational morphism inducing birational morphisms
X ′t → Xt, then one has

∫
X′t
c(φ′L)u′∧u′e−φ′L =

∫
Xt
c(φL)u∧ue−φL , with the

self-explanatory notation.

Therefore, by blowing up X and restricting the family to a punctured disk
D1 ⊂ D, one can from now on assume that the conditions (B.1) and (B.3)
are satisfied.

Now, one has to show that one can further assume that condition (B.2)
is satisfied. This is a bit more involved and can be shown as follows.

Since
∫
Xt
ωnL > 0 and ωL is smooth, it follows from e.g. [5] that [ωL] is

p-big. In particular, there exists a punctured disk D2 ⊂ D1, an effective,
horizontal R-divisor F and an ample R-line bundle A on X such that

[ωL] = A+ F in H1,1(X ,R). (5.12)
After blowing-up once again and restricting to a smaller punctured disk
D3 ⊂ D2, one can assume without loss of generality that E + F is snc and
transverse to the fiber. Of course, the pull-back of A is not ample anymore,
but there exists an effective divisor G contained in the exceptional locus of
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the blow-up such that A−G is ample. All in all, one will assume from now
on that one has a decomposition (5.12) where A is ample and E + F is snc
and transverse to the fibers.

We pick a strictly psh smooth weight φA on A and set φE (resp. φF ) for
the singular psh weight on the corresponding R-divisor.

For δ > 0, we introduce the psh weight φδ on L defined by

φδ = (1− δ)φL + δ(φA + φF + φE).

Clearly, φδ has analytic singularities along the divisor E + F and (ddcφδ)ac
is a relative Kähler metric for any δ > 0. That is, the metric hL,δ := e−φδ

satisfies (B.2).

Thanks to Theorem 5.1, the proof of Theorem B will be complete once
we show the following

Claim 5.4. — With the notation above, one has

(i) I(φδ) = I(φL) for δ small enough.
(ii) The L2 metric Hδ induced by hL,δ on F is smooth and converges

smoothly to hF when δ → 0.
(iii) For any t ∈ D3 and u ∈ Ft, one has

lim
δ→0

∫
Xt

c(φδ)u ∧ ue−φδ =
∫
Xt

c(φL)u ∧ ue−φL .

Proof of Claim 5.4. — Since φL−φE it is smooth (its curvature is nothing
but ωL), we have I(φL) = I(φE) and I(φδ) = I(φE + δφF ), which coincides
with I(φE) when δ is small enough. This shows (i).

The item (ii) can be proved along the same lines as Lemma 2.2, using the
fact that E + F is snc and transverse to the fibers.

As for item (iii), we have pointwise convergence c(φδ) → c(φL) on a
Zariski open set of each Xt, t ∈ D3, cf. Definition 2.3. Moreover, the Kähler
metric (ddcφδ)ac on X is uniformly bounded above by a fixed Kähler metric
on X (for instance, ωL + ddcφA). In particular c(φδ) is uniformly bounded
above (say over compact subsets of D3) and one can apply Lebesgue domi-
nated convergence theorem to conclude. �

The proof of Theorem B is now complete. �

Remark 5.5. — The following limit argument shows that we can take
D? ⊂ D to be the set of t ∈ D such that the following hold:

• the metric hF is smooth locally near t;
• the fiber Ft coincides with H0 (Xt, (KXt + L)⊗ I(hL|Xt)).
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Let 0 ∈D be a point which satisfies these requirements. Let Ub X \(hL=∞)
be any open subset of X whose closure does not meet the singular locus of
the metric hL. Then we have∫

U∩X0

c(φL)u ∧ ue−φL = lim
t→0

∫
U∩Xt

c(φL)u ∧ ue−φL (5.13)

since all the objects involved are non-singular.

The next observation is that since hF is smooth near 0 (by assumption),
the function t 7→ 〈ΘhF (F)u, u〉t is thus continuous at 0. Theorem B combined
with (5.13) and the positivity of c(φ) shows that we have∫

U∩X0

c(φL)u ∧ ue−φL 6 〈ΘhF (F)u, u〉(0).

It follows that the estimate in (5.1) of Theorem B extends across 0 ∈ D
as well.
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