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The Poincaré-Lefschetz pairing viewed on Morse
complexes (*)

FrANGOIS LAUDENBACH (V)

ABSTRACT. — Given a compact manifold with a non-empty boundary and
equipped with a generic Morse function (that is, no critical point on the bound-
ary and the restriction to the boundary is a Morse function), we already knew how
to construct two Morse complexes, one yielding the absolute homology and the other
the relative homology. In this note, we construct a short exact sequence from both
of them and the Morse complex of the boundary. Moreover, we define a pairing of
the relative Morse complex with the absolute Morse complex which induces the in-
tersection product in homology, in the form due to S. Lefschetz. This is a very first
step in an ambitious approach towards Ac-structures built from similar data.

RESUME. — Considérons une variété compacte & bord non vide munie d’une fonc-
tion de Morse générique ; en particulier sans point critique sur le bord mais dont la
restriction au bord est une fonction de Morse. Dans un article antérieur, avec cette
donnée et des gradients bien choisis, nous avons construit deux complexes de Morse,
I’un calculant ’homologie absolue de la variété et I’autre son homologie relative au
bord.

Dans la présente note, nous construisons une suite exacte courte a partir de ces
deux complexes et du complexe de Morse du bord. En outre, nous definissons une
forme bilinéaire du complexe absolu avec le complexe relatif qui induit la forme d’in-
tersection en homologie, dans sa forme due & S. Lefschetz. Il s’agit la d’une étape
élémentaire dans une démarche plus ambitieuse vers les structures multiplicatives
d’ordre supérieur (structures Ao;) que 'on peut construire avec des données simi-
laires.

(*) Recu le 9 mars 2019, accepté le 16 janvier 2020.
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Francois Laudenbach
1. Introduction

We are given an n-dimensional compact manifold M with a non-empty
boundary OM and a Morse function f : M — R which is generic with respect
to the boundary, meaning that f has no critical point on the boundary and
that the restriction fy of f to OM is a Morse function. It is well-known that
the set of critical points of f5 is divided into two types + and —:

crit fp = crit™ fo Ucrit™ f5. (1.1)

A point z belongs to crit™ f5 (resp. crit™ fp) if it is a critical point of fa
and the differential d f(x) is positive (resp. negative) on a tangent vector at
« pointing outwards.)

We have introduced in [3] the notion of quasi-gradients(®) positively (resp.
negatively) adapted to f. Such vector fields, noted respectively noted X+ and
X, satisfy:

e X vanishes only in crit f U crit™ f5 and (df, X T) > 0 elsewhere;
e X~ vanishes only in crit f U crit™ fy and (df, X ) < 0 elsewhere.

The zeroes of both of them are assumed hyperbolic, implying the existence
of local stable and unstable manifolds. The quasi-gradient X (resp. X )
is required to be tangent to the boundary near crit™ f5 (resp. crit™ f3).
Globally, both X+ and X~ are nowhere pointing outwards along OM. As a
consequence, their flows are positively complete, and hence, global unstable
manifolds exist. By taking inverse images of the local stable manifolds by the
positive semi-flow, global stable manifolds are also defined (see Section 3).

These invariant submanifolds are denoted by W*(z, X*) and W*(x, X*)
respectively when x is a zero of the considered quasi-gradient. If x € crit f,
the dimension of W*(z, X*) (resp. W¥(z, X 7)) is equal to the Morse index
of fat z. If x € crit™ fp, the dimension of W*(z, X ) is equal to the Morse
index of fs at x; but, if x € crit™ f5, we have

dim W*(x, XT) = Ind,, fs + 1. (1.2)

It makes sense to assume X+ Morse-Smale (mutual transversality of sta-
ble and unstable manifolds); this property is open and dense. An orientation
is chosen on each stable (resp. unstable) manifold arbitrarily when dealing
with X (resp. X ). This makes the unstable (resp. stable) manifolds co-
oriented and allows us to put a sign on the orbits in W (x, X T)NW%(y, X )
when the sum of the codimensions is equal to n — 1; and similarly for X .

(1) Here, we choose to introduce notations which are more suggestive than in [3].
) In [3], these vector fields are named pseudo-gradients though they vanish at points
of OM where df does not vanish. So, we prefer to name them quasi-gradients.
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The Poincaré-Lefschetz pairing viewed on Morse complexes

Thus, two Morse complexes C, (f, X T) and C,(f, X ) are built whose ho-
mologies are respectively isomorphic to H,(M,dM;Z) and to H,(M;Z).®3)
By abuse of notation, we first neglect to mention the choice of orientations;

this will be corrected in 3.1 for further need. For brevity, they are also noted
Ct and C; .

To be more precise, C’,j is freely generated by crity f Ucrit}i‘_l fa (note the

shift in the grading due to (1.2)) while C)  is freely generated by crit; f U

crity fp. The differential 1 := 8X" evaluated on a generator x € CF s
given by the algebraic counting of orbits of X' ending at x and starting
from generators of C,j_l. And similarly for the complex C, . The present
note is aimed at proving two results which are stated below.

THEOREM 1.1. — Let Xy be a Morse—Smale descending pseudo-gradient
of fa on the boundary OM and let Ci(f9,Xo) be the associated Morse com-
plex. Then for suitable adapted quasi-gradients X~ and X, there ewist a
quasi-isomorphic extension &(f, X7) of the complex C..(f, X ™) and a short
ezact sequence of complexes

0— Cu(fo, Xo) — Co(f,X7) — C.(f, XT) — 0. (1.3)

The second result is stated right below. I should add that Theorem 1.2
corrects something which was poorly said at the end of [3].

THEOREM 1.2. — Here, M is assumed oriented. For a generic choice of
the adapted quasi-gradients X+ and X ~, there is a pairing at the chain level

Ck(fa X+) Y Cn—k(faXi) = Z
which induces the intersection pairing in homology
v H (M, 0M;Z) @ Hy—o(M;Z) — Z

Intitially, this note was thought of as the beginning of an article on multi-
plicative structures, namely As-algebra structures, on Morse complexes [1].
It appeared that the pairing C;7 @ C,,_, — Z was not of the same type in
nature as the multiplications of these A..-structures. Therefore, I decided to
separate this piece from [1].

2. A short exact sequence

We first describe the suitable adapted quasi-gradients X and X~ in
Theorem 1.1. Let Xy be a vector field on M which is a Morse-Smale de-
scending pseudo-gradient of fy and gives rise to the usual Morse complex of

(3) For defining the differential of these complexes, only the local stable manifolds are
needed.
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the boundary C.(fs, Xg); its differential is denoted by 9sas. By partition of
unity, one easily constructs a quasi-gradient X of f which extends Xg. This
X is tangent to the boundary, and hence it is not an adapted quasi-gradient.
But it satisfies X - f < 0 everywhere except at the critical points of f and
fa, where it vanishes with some non-degeneracy condition. The flow of X
is complete, positively and negatively as well. Therefore, one can make X
Morse-Smale.

When z € crit, f, the unstable W*(z, X) coincides with W*"(x, X5) =
R* and is contained in the boundary. The stable manifold W*(x, X) is dif-
feomorphic to ]R;ak and is bounded by W#(x, X3). In the same way, when
Yy € Crit; fa, the unstable manifold W*(y, X) coincides with the unstable
manifold W*(y, X5) = R"~!~* and is contained in the boundary. Moreover,
the unstable manifold W#(y, X) is diffeomorphic to ]R’;(;l and is bounded by
ws (y, X@).

Remark 2.1. — Since X is tangent to the boundary there are no connect-
ing orbits of X descending from z € crit™ fg to y € crit f. Similarly, there
are no connecting orbits of X descending from z € crit f to y € crit™ f3.

We now change X to X~ = X +Y, which will be negatively adapted to f,
just by adding a small vector field Y which satisfies the following conditions:

(i) Y vanishes on a closed neighborhood U of crit™ fy in M;
(ii) Y points inwards along M \ U and satisfies Y - f < 0 everywhere;
(iii) Y vanishes away from a neighborhood of 9 M.

Similarly, —X can be perturbed to X, which will be positively adapted
to f; just take XT = —X + Z where Z is a small vector field vanishing
on a neighborhood V of crit* f3 in M, pointing inwards along OM ~ V
and satisfying Z - f > 0 everywhere. The perturbations Y and Z are small
enough so that Remark 2.1 still applies. So, X~ and X will be the desired
quasi-gradients of Theorem 1.1.

PROPOSITION 2.2. — Assume crit fg is empty. Then the Morse complex
Ci(fa,Xg) embeds as a subcomplex of C.(f,X ). Moreover, one has the
following short exact sequence:

0 — Culfa, Xo) == Cu(f, X ™) — Cu(f, XT) — 0.
Proof. — The embedding i is induced by the inclusion

crit fog = crit™ fo — (crit fUecrit™ fa) .
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The Poincaré-Lefschetz pairing viewed on Morse complexes

We have to prove that ¢ is a chain morphism. This will follow from equalities
(2.1) and (2.2) below. Let = € crity, fo = crit, fs. By Remark 2.1 applied to
X, for every y € critg_1 f we have

(0" z,y) = 0. (2.1)

If y € crit,_; fs, the intersection W*(z, X ) N W} (y, X ), which is
transverse in M, can be pushed by an f-preserving isotopy to W*(z, Xg) N
Wi (y, Xp), which is a transverse intersection in OM — note that W (y, X»)
is the boundary of Wj (y, X ™). Then, the signed number of connecting
orbits is the same for both quasi-gradients and we have

(0”2, y) = (Oomw, ). (2.2)

For the exactness of the sequence, observe that the complex C.(f, X )
is generated by the critical points of f. Both vector fields X+ and X~ are
approximations of the Morse—Smale vector field X (up to sign). Therefore,
for every x € crity f and y € critgy_1 f, the signed number of connecting
orbits is the same when counted with X~ or X T:

(0Fx,y) = (0" x,y).

The quotient kills crit™ fy, which generates the image of C.(fs, X5), and
also the connecting orbits from crit f to crit™ fy. The exactness follows. [J

Proof of Theorem 1.1. — Tt was shown in [3, Lemma 2.4],(Y) that there
is a C%-small deformation, supported in a neighborhood U of crit™ fs, of
the generic Morse function f to a new generic Morse function f’ with the
following property: each x € crit, fs becomes a critical point of positive type
and index k. The degree of = as generator of C(f’) is k+ 1. This is obtained
at the cost of a new critical point 2’ € int M for f/, of index k and close
to x. The two critical points z and 2’ of f’ are indeed linked by a unique
gradient line; since x belongs to the boundary, this pair is not cancellable
but its fusion cancels 2’ only and changes the type of z from + to —.

Arguing this way with the function — f leads to the following. There exists
a CY-small deformation of f, supported in a neighborhood V of crit™ fs, to
some generic function f having the following property: fa = fo and each
T e crit: fo becomes a critical point of negative type and index k, that is,
x € crity fa. This is made at the cost of a critical point & € int M for fof
index k + 1 and close to x and satisfying

o~ o~

f@) > f(x).

(4) After that [3] appeared, I was informed that a similar lemma exists in [5] in a
setting where only the Morse inequalities are discussed.
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The extension which is mentioned in Theorem 1.1 consists of adding to C~
a pair of new generators {z,Z} for each x € crit* fy. More precisely,

Culf,X7) = Cu(f, X7)

for some quasi-gradient X- negatively adapted to f According to [3], the
new complex is quasi-isomophic to the old one C,(f, X ). Since the restric-
tion fy = ﬂa M has no critical point of positive type, Proposition 2.2 applies
and there is an exact sequence

0 — Ci(fo, Xo) — Cu(f, X7) — Cu(f, XT) — 0,

where X+ denotes a suitable vector field positively adapted to f In order
to identify the quotient in this exact sequence, it is necessary to specify this
vector field X+.

In its support V, the modification from f to fis modelled similarly to the
birth of a pair of critical points in usual Morse Theory. The model produces
also a descending quasi-gradient X of f from the quasi-gradient X of f,
which coincides with X out of V and on M. Then, —X (which is tangent
to the boundary) is changed to X+ by adding a vector field Z which is small
with respect to X and satisfies the conditions (i)—(iii) up to sign.

CLAIM. — The bijection j : crit™ fa U crit f — critf which maps x €
crit™ fo to T € crit f and which is the identity on crit f C crit f induces a
chain isomorphism C,(f, XT) = C.(f, XT).

Proof of the claim. — Say x € crit',: fa. On the one hand, each X-orbit
descending from x to y € crity f gives rise to an X-orbit from 7 to y and
hence, an X *+-orbit from y to Z. Similarly, each X-orbit on M descending
fromztoy € crit;; 1 fa gives rise to an X+-orbit from 7 to Z. And conversely.
Making j an identification, this proves the following:

X = 0X+7.

On the other hand, we have to consider y € critiyo f and compute its two
differentials with respect to X~ and X+ and evaluate them at z (recall that
x has degree k + 1 in C;F). When x and y have consecutive critical values,
as a consequence of Remark 2.1, there are no X T-connecting orbits from z
to critgie f.

But, if their critical values are not consecutive, one could have a broken
X-orbit from y to  made of an orbit from y to z € crit;,; fo and an orbit
from z to  on OM. By using the deformation formula X* = —X + 7, such a
broken orbit gives rise to an X T-orbit from z to y, and hence to an X+-orbit
from Z to y. Then, such connecting orbits may exist. Conversely, by looking
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at the fusion of the pair (z,7) we get that every X T-orbit from Z to y is
produced by an X T-orbit from z to y. Then, via j the following equality
holds true: R

(0% ya) = (0% 4,7).
This finishes the proof of the claim and Theorem 1.1 follows. U

3. Global stable manifolds and application to intersection pairing

We now discuss the question of global stable manifolds for adapted quasi-
gradients. We only consider X~ in the definition below; there is a similar
definition for X+. If x € @M is a critical point of negative type, so far we
have only considered its local stable manifold W} _(z, X ™). If = is of index
k, it is a small half-disc D" ~* whose planar boundary lies in a level set of f
and spherical boundary lies in M. Since the flow of X ~, noted X, at time
t, is positively complete, the following definition makes sense:

DEFINITION 3.1. — For x € crit fUcrit™ (fs), the global stable manifold
of x with respect to X~ is defined as the union

W, X )= (X7) T (Wie(e, X))
t>0

Under mild assumptions, it is a (non-proper) submanifold with boundary
and its closure is a stratified set. The following assumption (Morse-Model-
Transversality) is made in what follows.

For every x € crit fUcrit™ fs and y € crit™ fy, the neighborhood
Uy of y in OM where X~ is tangent to the boundary is mapped (MMT)
by the flow transversely to W _(z, X 7).

Notice that if X~ is Morse—Smale, the transversality condition is satisfied
along a small neighborhood U of the local unstable manifold W} (y, X ).
Then, after some small perturbation of X~ on U, \ U destroying the tan-
gency of X~ to M, condition (MMT) is fulfilled for the pair (y, ). Thus,
condition (MMT) is generic among the negatively adapted vector fields.

PROPOSITION 3.2. — If the negatively quasi-gradient X ~ is Morse—Smale
and fulfils condition (MMT) then the following holds:

(1) The global stable manifold W*(x, X ) is a submanifold with bound-
ary (non-closed in general); its boundary lies in OM .

(2) If z lies in the frontier of W3(x, X ™) in M, then it belongs to the
stable manifold of some critical point y in crit f Ucrit™ fy such that
dimWe(y, X ) < dim W#(z, X 7).
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This statement also holds for stable manifolds of critical points in crit fU
crit™ fp with respect to positively adapted vector fields.

Proof.

(1). — According to the Implicit Function Theorem, the conclusion is
clear near any point where X~ is transverse to the boundary. Near a point
z of Uy, it follows from (MMT).

(2). — This fact is well known in the case of closed manifolds. It is an
easy consequence of the Morse-Smale assumption. The proof is alike if the
boundary is non-empty. O

Remark 3.3. — Due to the transversality assumptions, a small pertur-
bation of X~ (resp. X*) moves each of stable and unstable manifolds by
a small isotopy, and hence, preserves the complex C; (resp. C;F) up to a
canonical isomorphism.

As a consequence, without changing the above-mentioned complexes, we
are allowed to assume that the X ~-unstable manifolds of crit f U crit™ fy
intersect the global X T-stable manifolds of crit f U crit™ f transversely.

3.1. Where an abusive notation is corrected

If the orientation of some of the unstable manifolds is changed then
the differential of the considered Morse complex (absolute or relative) is
changed by a non-trivial isomorphism. So, to understand the role of the ori-
entability of M in what follows, it will be better to replace C.(f, X ) with
Co(f, X, E;) where e denotes the chosen orientation map which associates
an orientation of W*(x, X ) with each = € crit f U crit™ fs. Note that e
orients the unstable manifolds regardless of the quasi-gradient since they all
have isotopic germs at the critical points. And similarly for C,(f, X ). Ac-
tually, we will only apply this change of notation at the places where it will
be crucial.

3.2. The Poincaré-Lefschetz isomorphism

At the homology level, this isomorphism is a isomorphism
P:H.(M,0M;Z)— H" *(M;Z),

We wish to describe it by means of our Morse complexes in order to deduce
a Morse theoretical description of the homological intersection. There are
several steps to achieve.
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The Poincaré-Lefschetz pairing viewed on Morse complexes

Step 1. — First, we recall that there is a natural isomorphism at the
homology level

L(f,X7): H, (C’*(f,Xf)) — H.(M;7Z).

Indeed, we have described in [3] a canonical process for removing the critical
points of f5 of negative type. Once this is done, the unstable manifolds of
X~ emerging from crit(f) yield a cell decomposition of M (see [2](®)) whose
homology is canonically isomorphic to the singular homology of M (see [4,

p. 90]).

We now explain the naturality of this isomorphism. Let (g,Y ™) be an-
other pair of generic Morse function and negatively adapted quasi-gradient.
The choice of a generic path v from (g,Y ™) to (f, X ) gives rise to some
simple homotopy equivalence

Vx :C*(gayi)ﬁc*(vai) (31)

well defined up to the orientations.(®) At each time that ~ crosses a stratum
corresponding to a codimension-one defect of genericity of the pair (function,
negatively adapted quasi-gradient) this yields an elementary modification of
the Morse complex, indeed a quasi-isomorphism [3]. One checks at each oc-
currence that this quasi-isomorphism is compatible to the isomorphism with
H.(M;Z). Finally, 7, is the composition of all these quasi-isomorphisms. It
induces an isomorphism [v,] in homology making the next diagram commute:

H, (C(g,Y ™))~ B (CL(f, X))

\ \LI*(ﬁX) (3.2)
I.(g,Y7)

H.(M;Z)
By taking the transpose of all morphisms of chain complexes we get a similar

diagram in cohomology made of isomorphisms:

']

H* (C*(g,Y ™ ))<—H" (C*(f,X7))
I"(£,X7)
H*(M;Z)
Note that a change of orientations of some unstable manifolds has the same
effect on [v.] and on I.(—, —). So, the commutativity of the above diagrams
is not affected.

I"(9,Y")

(5) In this reference, a stronger assumption is made on the vector field which implies
this cell decomposition to be a CW-complex. Without this assumption, the cell decom-
positon has only the homotopy type of a CW-complex. This is sufficient for our discussion.

(6) The creation/cancellation times of pair of critical points along v do not allow us
to carry orientations along the path.
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Step 2. — We can do the same for the Morse complex C,(f, X ) which
calculates the relative homology. Here, we will use the stable manifolds of
X7 that we introduced in the beginning of Section 3. More precisely, there
is a canonical process, similar to the one above-mentioned for the complex
C.(f, X ™), which removes the positive type critical points of fs. After re-
moving them, the stable manifolds of X associated with crit f give rise to
a filtration of M starting from OM:

aMCM[l]C-~-CM[k]C~-~CM[n]=M.

Here, M) is the union of M and the closure of the stable manifolds of X +
converging to crity f. The cellular homology associated with this filtration
gives a canonical isomorphism

I*(f7X+) : H, (C*(faX+>) - H*(MvaM;Z)'

Moreover, this isomorphism is natural with respect to change of function
and quasi-gradient in the same sense as it is detailed in Step 1 above.

Step 8. — Here comes the important point for orientations. Let 5}“ be
a choice of orientations of the stable manifolds of X*. Since M is oriented,
the unstable manifolds of X+ are not only co-oriented but they are also
oriented.()” The latter orientations are denoted by &7 .

We recall that X is a negatively adapted quasi-gradient of — f; we denote
it by Y~ := X when it is considered as a descending quasi-gradient of — f.
So, we have a chain complex C\.(—f, Y_,E:f) where £, is determined by

E}r by the rule
e, = 5]%. (3.3)

By applying the functor Hom(—,Z) we have its dual, a co-chain complex,
C*(—f, Y, 6}) By construction of C, we have

N Cu(f, Xﬂs?) — C"‘*(—ﬁY‘,E}‘) . (3.4)
This equality means same generators and same differential; only the grading
is reversed. It induces the equality H,.(C.(f, X“',e}')) = H" *(C"*(—f,
Y-, sj;)) and by combining it with the isomorphims I.(f, X*) and

I"*(—f,Y ™) we get a description at the Morse complex level of the
Poincaré-Lefschetz isomorphism:

P:H,(M,0M;Z) — H"*(M;Z).

(7) Here, some convention has to be used, for instance: co-or(-)A or(-)= or(M).
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3.3. Application to the intersection pairing

We are interested in describing a pairing at the chain level
g Ck(fa XJr) ® Cn—k(vai) —Z

which induces the intersection pairing in homology. This is achieved in the
following way.

At the homology level the Poincaré-Lefschetz isomorphism P carries the
intersection product

v H (M, 0M;Z)® H,—«(M,Z) - Z
to the evaluation map ev : H" *(M;Z) ® H,—«(M;Z) = 7.

After what was done in the previous subsection, we only have to under-
stand this evaluation map in the setting of Morse homology. First, there is
a canonical evaluation map

ev=_(—,—):C" (=, Y )RChu(—f,Y )= Z

which on the basis elements is the Kronecker product. A more sophisticated
way to say the same thing is to count the transverse intersection W#(x, Y ~)N
W(y,Y ™) for every pair of critical points of the same degree, that is both in
crity fU crit;A fo for some integer k. Here, it is essential Y~ to be Morse—
Smale for avoiding undesirable orbits connecting points of the same degree.

We choose a generic path® T' from (f, X~) to (—f,Y ™) which yields
a quasi-isomorphism T, : C’n_*(f,X_,eJI) — C’n_*(—f,Y_,ej%). Thanks
to (3.4), the desired evalution map is given by
oc=evo(n.®L,). (3.5)
If necessary, by Remark 3.3 we may approximate X ~ in order to make mutu-
ally transverse W*(z, X*) and W(y, X ) for every x € crity, f Ucrit} | fo
and y € crit,,_p fUcrit,_, fo.

CramM. — For every pair of cyclesa € Cr(f, XT) and 8 € Cp_r(f, X ),
the geometric formula for o(a, B) is given by counting the signed intersection
number of the respective stable and unstable manifolds entering in the linear
combinations forming o and (3.

(8) First, choose a generic path (f¢) in the space of functions; then, complete with
a path of quasi-gradients. For this second step, use the convexity of the set of quasi-
gradients adapted to f; for a given t. If the function f: has a codimension-one singularity,
the involved critical point needs to be a zero of X of corank one and the previous argument
still works.
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Indeed, by (3.2) the cycles 8 and T',(8) are homologous in M. Therefore,
they have the same algebraic intersection with the cycle a. Notice that the
frontier of the involved invariant manifolds does not appear in this counting
since it is made of invariant manifolds of less dimension.

COROLLARY 3.4. — The pairing o induces the homological intersection.
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