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Dirichlet twists of GL,-automorphic L-functions and
hyper-Kloosterman Dirichlet series *)

JEANINE VAN ORDER (V)

ABSTRACT. — We calculate mean values of GL,-automorphic L-functions twisted
by primitive even Dirichlet characters of prime-power conductor, at arbitrary points
within the critical strip, by derivation of special Voronoi summation formulae. Our
calculation is novel in that the twisted sum can be expressed in terms of the average
itself, and also that it sees the derivation of various new summation formulae in
the setting of prime-power modulus. One consequence, as we explain, is to show
the analytic continuation and additive summation formulae for hyper-Kloosterman
Dirichlet series associated to GLy-automorphic L-functions.

RESUME. — Nous calculons les valuers moyennes des fonctions L automorphes
sur GL,, tordues par des caractéres de Dirichlet primitifs et pairs, du conducteur
une puissance d’un nombre premier, & des points arbitraires dans la bande critique,
en dérivant des formules de sommation spéciales du type Voronoi. Notre calcul est
nouveau car la somme est exprimé en termes de la moyenne elle-méme, et aussi qu’il
voit la dérivation de diverses nouvelles formules de sommation dans le regime des
puissances d’un nombre premier. Une conséquence, comme nous ’expliquons, est de
montrer les prolongations analytiques et des formules de sommation additive pour
les séries de Dirichlet hyper-Kloosterman associées aux fonctions L automorphes
sur GL,,.

1. Introduction

Let 7 = ®,m, be a cuspidal automorphic representation of GL,(Aq)
of conductor N and unitary central character w for n > 2. Suppose the
achimedean component 7, of 7 is spherical and parametrized by a diagonal
matrix diag(p;)7_;. We consider the standard L-function

As,7) = L(s, moe)L(s,7) = [ L(s,m,)
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of m, whose Euler factors L(s,,) at an unramified places v are given by the
n-fold products

L ) [T, (- Cvj(m)vfs)_l if v is finite
8, y) = J: . .
szl Ir(s — pj(my)) if v = oo is the real place,

where the (o (m,)); and (1;(7)); denote the corresponding Satake param-
eters of the local representations m,. More precisely, we shall consider twists
A(s,m ® x) = L(s,m)L(s,7 ® x) of this standard L-function by primitive,
even Dirichlet characters y as follows.

Fix a prime number p which does not divide IV, and let S > 2 be any
integer. Let § € C be any complex number inside the critical strip 0 < R(4) <
1. We derive various exact summation formulae in the style of Lavrik [8] and
Voronoi [16] to describe the mean values

Xo(md)= =t X Lmen),

x mod p?

primitive,x(—1)=1

where ¢*(p?) = ¢(p?) — ¢(p?~1) denotes the number of primitive Dirichlet
characters xy mod p”, and the sum runs over all primitive even Dirichlet
characters x of conductor p?. To be clear, we average over the finite parts
of the completed L-functions A(s, 7 ® x), whose archimedean components
are each given by L(s,Ts) (independently of the choice of x), where the
main difficulty and novelty is to compute the implicit polar term directly.
We note that this average is of interest for several reasons, one being the
applications to the generalized Ramanujan conjecture (at the real place)
via the argument of Luo-Rudnick—Sarnak [10, §1]. To be more concrete, we
derive the following formulae in terms of the L-function coefficients a(m)
of m. Let W(m) denote the root number of L(s, ), so that the functional
equation for the standard L-function reads A(s,7) = W(w)A(1 —s,7). Fix a
rational prime p not diving N. Given an integer S > 1 and a coprime class ¢
modulo p?, consider the n-dimensional hyper-Kloosterman sum of modulus
p? evaluated at c:

X1 + e + x
Ko = 3 e,
Z1,...,Tn mod pﬁ
Z1...Tp=c mod pB

Here (as usual) e(z) = exp(2miz). We consider natural sums of these hyper-
Kloosterman sums,

Kl,(£c,p”) =Kl (c,p”) + Kl (—c,p") = > e (

Z1,...,Tyn mod pl3
z1...Ttpn=2c mod pﬁ

PP '
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Dirichlet twists of GLp-automorphic L-functions

Given any choice of real number Z > 0, we derive the following summation
formula for the twisted sum in the approximate functional equation formula
for Xg(m,d) (see Lemma 3.2 and Proposition 4.3) in the course of showing of
Theorems 6.7, 6.8, and Corollary 6.9 below. Writing to ¢ denote the multi-
plicative inverse of a class ¢ mod p?, and taking k(s) to be the Mellin trans-
form of some smooth and compactly supported function (see Lemma 3.1),
or in fact any such test function with £(0) = 1 if the generalized Ramanujan
conjecture for 7 at the real place is known, we derive the summation formula

p W(mw(p®)(Np"?)s—0
¢(p) pL

Ly 1 K imﬁpﬁ)/ k(—s)L(l—s—i—&,%oo)(mZ )‘S@

m>1 R(s)=2 S L(*S + 0, 7Too) anﬁ 271
(’m,p):l

- k(—s+(1—20) (Z\° ds

=X Z1 g a(m)/ R=s+({1—0)) (4 ds

g(m,0)+ Z m Jpeyes 5 (10 ~) o

m>1
m==+1 mod pﬁ

m==+1 mod p
m#=+1 mod p®

In particular, we compute the average Xg(m,d) as a residue term directly,
which is a nontrivial calculation. The value in this calculation is to illus-
trate the derivation through successive Voronoi summation formulae, where
the explicit nature of the prime-power modulus setting reveals the struc-
ture of passage clearly. Such summation formulae are not accessible via any
of the existing works on Voronoi, among them those of Miller—Schmidt [11],
Goldfeld-Li [3, 2] or Ichino-Templier [4], or the more recent works of Miller—
Zhou [12] and Kiral-Zhou [7]. This is a consequence of the delicate analysis
required to deal with the implicit and non-admissible choice of archimedean
weight function, which leads to the (indirect) derivation of the residual term
Xg(ﬂ',é).(l) Unlike these other works, we also make use of the setting of
prime-power modulus, where the hyper-Kloosterman sums which appear af-
ter unraveling the n-th power Gauss sums can be evaluated explicitly in

(1) The aforementioned works require smooth and compactly supported test functions,
or else work directly on the level of Dirichlet series in the range of absolute convergence.
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the style of Salié (see Proposition 6.1). This calculation with its intermedi-
ate summation formulae suggests potential applications to the calculation of
higher moments of L-functions, as well as to estimation in the style of Luo—
Rudnick—Sarnak [10], although we do not pursue such applications here.
Note as well that we restrict to the setting of cuspidal representations for
simplicity, and that a similar summation formula could be derived for coeffi-
cients of Eisenstein series. In this way, our calculations should also imply the
analytic continuation and corresponding functional equations for Eisenstein
series on GL, (Aq) twisted by additive characters and hyper-Kloosterman
sums. To spell out this latter point in a related special case, we explain in a
final section Section 7 how to derive the analytic continuation and functional
equations of the following class of hyper-Kloosterman Dirichlet series: Given
a coprime class h mod p? and s € C (first with R(s) > 1), we first consider
the series defined by

a(m)

Rn(m, hp’s) = Y Kl (£mh, p)
m>1
(m,p)=1

= S A (11, ) + Kl (—mh,p®)) . (1L1)
m>=1 m
(’m,p):l

We prove the following theorems as a direct consequence of the calculations
described above.

THEOREM 1.1. — Let 7 be a cuspidal GL,,(Aq)-automorphic represen-
tation for n > 2 with level N, central character w, and L-function coefficients
a(m) as above. Let

: r(=)
F(s) = L(1 — 8, Ts0) _ —B4ns Hj,l 2

L(s, 7o) T 1—\(%>

j=1

denote the quotient of archimedean factors appearing in the functional equa-
tion (6.3) for L(s,m® x) below. Fix a rational prime p which does not divide
N. Let B > 1 be any integer, and h any coprime class modulo p°.

(A) The Dirichlet series R, (m, h,p?,s) has an analytic continuation to
all s € C, and satisfies the following additive functional identity:
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Dirichlet twists of GLp-automorphic L-functions
(i) If B > 2, then for R(s) < 0 (after analytic continuation)

R (m, h,p?, s) = W(ﬂ')w(pﬁ)N%7Sp”5(175)F(3)

¢(p) Z a(m) . 1 Z a(m)

1— 1—

p m>1 mee p m>1 mee
m=+hN mod pﬁ m=+hN mod p571

m#+hN mod p?

(ii) If B =1, then for R(s) < 0 (after analytic continuation)

Rn(m, hyp,s) = W(r)NZ*F(s)

« | pr=9(p) 3 a(m) 2 3 a(m)

mi—s p— 3 mi—s
m2>=1 m>1
m==£hN mod p m#Z+hN mod p
+ 2 ()L 5 )
— (- -8,
p—3

(B) Let ¢ be any smooth function on y € Rsg which decays rapidly at
0 and oo, and let ¢*(s) = [, qi)(y)ysd?y denote its Mellin transform
(when defined). Let us also write ® = ®(¢) to denote the function

on y € R~ defined for a suitable choice of real number o € R~ by
the integral transform

* S ds
O(y) = ¢ (s)F(s)y"
(=) i
n 1—s—pi
* _ﬂ_;,_nsl_[j:ll—‘( 2 : ) s ds
=, T e ey )
(=) II= F(T)

(i) If B > 2, then we have for any coprime class h mod p? the
summation formula
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> a(m) Kl (£mh, p°)é(m)
(et

C Wmw NEs | 2P a(m) m
WV | S q>( )
mEihN/mod pﬁ

Loy a(m) o <m>
ro = m Np?
m=txhN mod pB

m#+hN mod p”?

(ii) If 8 =1, then we have for any coprime class h mod p the sum-
mation formula

> alm) Kl (£hN, p)p(m) = W (w) N2 F(s)

m>1
(m,p)=1
a(m) m 2 a(m) m
" ¢ — o
rew] X0 Se(gn) - S e
mzj:hﬁ mod p mq‘éihﬁ mod p
2
ey 3 ()
p= m>=1 m
Remark 1.2. — Let us note that although the main (residual) calculations

in the body of this work cannot be recovered by existing Voronoi summation
formulae, the simpler Voronoi formulae of Theorem 1.1(A) and (B) above
can be derived from those of Miller—-Schmidt [11] after taking a sum over
additive characters to reduce to Ramanujan sums. To be more precise, one
can consider a sum over coprime residue classes a mod p? of sums of the
form

5 a(@e(aq)’

B
m>1 p
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Dirichlet twists of GLp-automorphic L-functions

to which the theorems of [11] apply. Thus taking another coprime class h mod
p?, we have that

s (D)5 2 ()0

a mod pﬂ m21 m21 a mod pﬁ
(ap?)=1 (ap?)=1
a(m)
= E cps(m — h),
ms
m2>1

where c,s () denotes the Ramanujan sum of modulus p” at r. Since we have
the well-known relation

B p? o(p?)
e (r) = <<pﬂ,r>> @ )’

we deduce in the case of 8 > 2 (via the contribution of the Mébius function
to cps (m—h)) that the additional hyper-Kloosterman sums of moduli divid-
ing p? in the formula of [11] vanish. Thus the formulae of Theorem 1.1(A)
and (B) can be recovered from [11], although we give a different (streamlined)
proof.

We also consider the setting corresponding to twists by GLi(Aq) as
follows. Let us again fix £ a primitive Dirichlet character of conductor ¢
prime to p. Given n > 1 an integer, 5 > 1 an integer, h a coprime class
modulo p?, and s € C (first with R(s) > 1), we consider the Dirichlet series
defined by

R (& h,p’s) = Z %@Kln(imh,pﬁ)

m2=1
(m,p)=1
m>=1 m
(m,p)=1
as well as
1
Z £(m) 4 Z £(m) it 8> 2
m>1 me p m>1 me
m=h mod pB m=+h mod p571
(&, p?, 5) = m £ mod p?
2
ms p—3 ms
m2=1 m2>1
m=%4h mod p m#Z=+h mod p
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THEOREM 1.3. — Fiz an integer n > 1. Fiz a prime number p. Let € be
any primitive Dirichlet character of conductor q prime to p. Let 7(§) denote
the standard Gauss sum of £&. Fiz an integer § > 2, and let h be any coprime
class modulus pP.

(A) The Dirichlet series 89 (&, h,p?,s) has an analytic continuation to
all s € C, and satisfies the following additive functional identity.
(i) If B > 2, then we have for s € C with R(s) < 0 (after analytic
continuation) the functional identity

F 1—s o
(& h,p?,5) = £ T(€)g o p 07 <7r551£<§))>ﬁ2_1(§,qh,pﬁ, 1—s).
2
(if) If B =1, then we have for s € C with R(s) < 0 (after analytic
continuation) the functional identity

— e [T
ﬁ?z(§7 hvpa 8) - T(f)q <7T F(E))

| e E R =)+ D (14 25,0 ) L0058

Here, €,(s,&)~! denotes the Euler factor at p of L(s, &), so that
ep(s,&)L(s, &) = L®) (s, &) denotes the incomplete L-function of
&, with the Euler factor at p removed.

(B) Supposen = 2. Let ¢ be a smooth function ony € R which decays
rapidly at 0 and oo, and let ¢p*(s) = fooo qb(y)ysd?y denote its Mellin
transform (when defined). Let us also write ® = ®(¢) to denote the
function on y € R~ defined for a suitable choice of real number
o € R-1 by the integral transform

2= [ o) (wsérr((i;)> ya

(i) If B > 2, then we have for any coprime class h mod p® the
summation formula

Y &m)Kly(£mh, p’)d(m)

m2>1

(m,p)=1
_ 58,8 &(m) — el T
=0 3 S Ks(mip o ).
(m,p)=1

(ii) If 8 =1, then we have for any coprime class h mod p the sum-
mation formula
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Dirichlet twists of GLp-automorphic L-functions

> &(m) Kl (£mh, p)g(m)

m>1
(m,p)=1

S (a(2)50(%))
(m,p)=1

Here, ® denotes the function on y € Rsq defined by the modi-
fied integral transform

~ ) 1—s s
W)= [ 0 ©els8) <w8-zrr((§))> vt
2

(=9)

It is curious that while these latter results are derived almost entirely via
the functional equations for L(s,7®x) or L(s,£® x), with a modest amount
of harmonic analysis, the series &, (7, h, p?, s) and even £ (¢, h,p?, s) do not
seem to be well-understood or so far much developed. At the same time, it
seems likely they have a crucial role to play in the estimation of the moments
Xp(m, ), and hence in subsequent progress towards to the generalized Ra-
manujan conjecture. As well, it seems likely this perspective could shed light
on the open problem of calculating higher moments of L-functions, not only
through natural links with Eisenstein series, but also through the scope it
suggests for using p-adic Fourier theory (see e.g. [14]) as a tool for estima-
tion. The work is therefore written with this perspective in mind, and with
many of the lesser-known details for the case of prime-power modulus 5 > 2
described in full, so that other cases that we omit for simplicity such as
Eisenstein series or n = 1 could be derived mutatis mutandis in the same
way.
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2. Some background

Fix x a primitive even Dirichlet character of conductor ¢ prime to N.
Recall that for R(s) > 1 we consider

L(s,m®x) = Z a(m)x(m)m=°.
m2>=1
(m,q)=1
Recall too that this forms one component of the standard L-function
A(s,m) = L(8, o) L(s, ), where

n n _(s=m)) S — L.
L(s,mc) = HFR(S — pg) = Hﬂ' z I‘<2'u])
j=1 j=1

denotes the archimedean component, defined in terms of the Satake pa-
rameters (u;)7_;. Note that when 7o is unitary, {f;} = {—u;}. Let 0o =
max; (R(s;))}—; denote the maximal real part of any of these parameters, so
that L(s, 7o) is entire in the half plane R(s) > dy. Note that the generalized
Ramanujan/Selberg conjecture predicts dg = 0, and also that we have the
following unconditional bounds towards this conjecture:

THEOREM 2.1 (Luo-Rudnick-Sarnak, [10, Theorem 1.2]). — Let # =
), T be a cuspidal automorphic representation of GLy,(Aq) with unitary
central character. If the component T, is spherical and parametrized by
diag(p;)j—1, then for each index 1 < j < n, we have the bound [R(u;)| <
1 1

2 n2F1c

Remark 2.2. — Better approximations towards the conjecture (e.g. to-
wards Selberg’s eigenvalue conjecture [15]) exist for n = 2, where the current
record is 7/64 by Kim-Sarnak [6].

3. Functional equations

Given a continuous or piecewise continuous function f on z € R, let
f*(s) = fooo f(z)2* 9 denote its Mellin transform. We start with the follow-
ing choice of test function k(s) (cf. [10, §3]).
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Dirichlet twists of GLp-automorphic L-functions

LEMMA 3.1. — Fiz g € C°(Rso) a smooth test function. Let
~TI (o4 ) ot
j=1

Then, the Mellin transform G*(s) = [;° G(x)z* L of G(s) satisfies the re-
lation

H —s+ 7).

In particular, G*(0) = [[j_, fi; and G*(fih) = -~ = G*(fin) = 0. If we
assume additionally that H?Zl fi; # 0, then the (holomorphic) function k(s)
defined by

G*(s)
H?:1 Hj

satisfies the properties that k(0) =1 and that k(G1) = --- = k() = 0.

k(s) = (3.1)

Proof. — The claim is easy to deduce using integration by parts, or
even simply the known formula for the Mellin transform of (z-L)"g(z) as

(=s)"g"(s)- .

Let us henceforth take k(s) = G*(s) to be the Mellin transform defined
in (3.1), imposing the additional condition?) that 15 G(x)%’” = 1 so that
k(0) = 1. Let x be any primitive even Dirichlet chapter of conductor ¢ prime
to the conductor N of w. Note that the completed L-functions A(s,7®@7) =
L(5, oo ® Xoo)L(s,T®x) and A(s,7) = L(s, T ) L(s,7) then have the same
archimedean components L($, oo ® Xoo) = L(8, o). We can then write the
functional equation of the finite part of the L-function L(s,7 ® x) in this
setup as

L(s,m®x)

= wmtan) (T2 vyt (B 2Ty 10— sme )

L(s,Tx0)
[T (=)
I, r(5)

x L(1—s,7@x ")

—W(W)w(q)x(N)(T(X)> (g a3

(2) Note that [10] take such a Mellin transform g*(s) (denoted k(s) = f*(s)) as the
test function in their approximate functional equation. However, there is typo in [10] on
the line before equation (3.6), i.e. the condition should read fooo f(:v)df =1.
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Here (again), W(m) denotes the root number of A(s,7), and w = w, the
central character of 7. Let us also write F(s) to denote the quotient of
archimedean factors in this functional equation:

F(s) = L(Ll(; jrj;O) g Hﬁ:l FF(<2H)) . (3.2)

j=1 2

Let us now consider the following smooth and rapidly decaying functions
ony € Ryy:

e L (3.3
and
Valw) =Voaw) =5 [ R9F-s 0L ()
T Sy (s)=2 s
We can apply a standard contour argument to the integral
% BRRCUSREE X)Zs% (3.5)
to derive the following useful formula.
LEMMA 3.2. — Let x be a primitive even Dirichlet character of conduc-

tor q coprime to the level N of m. Let Z > 0 be any real number. Let § be
any complex number with 0 < N(§) < 1. Then, we have

Lemox)= > M%(m)

mo Z
m>1
(m,q)=1

x (Ngrykoo 3 A (m)y, (ﬁ;) . (3.6)

Proof. — The result is a standard; see [10, Lemma 3.2]. O

The functions V;(x) and Va(z) decay rapidly as follows. Let us first review
how to apply the Stirling approximation theorem to estimate the quotient
of gamma factors appearing in the second function V5(x):
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LEMMA 3.3. — Given s € C, write s = o + it for t # 0. Then, for
o =R(s) fixzed and |S(s)| = +oo0, we have

n 1—s—p; n — —0—l;
Hj:l F(T> o Hj:l I1—s— Nj|1/2 =

=i
[T F(S;W) [limy [s = pyl77rom2

Jj=1

Proof. — See the discussion in [5, Chapter 5, A4]. Stirling’s asymptotic
formula implies that

l—s—[; ) i
H?Zl F(%) ~ H;}=1 |1 —s— ﬁj‘liai‘l’jil/Qe*lt‘i
[T 1F(S_2M) - H?=1 |s — pj|o—ri—1/2e~1t3
j:
— H?:l |1 — S5 — ﬁj‘l/zioiﬂj . -

[ Js =yl

LEMMA 3.4. — Let 8y = max;(R(%;)). The functions V1(z) and Va(x)
are bounded as follows:

(i) For each of j = 1,2, Vi(x) = Oc (=) for any choice of C > 0
when x > 1, i.e. as x — 0.
(i) Vi(z) = 1+0a(z?) for any choice of A > 1 when 0 < z < 1, i.e. as
xz — 0.
(iil) Va(z) <o 1+ Ozt RO =%=¢) yhen 0 < 2 < 1, i.e. as x — 0.

Proof. — The result follows from the same standard contour argument
given in [10, Lemma 3.1]. O

Finally, let us record the following observation for future use. Recall that
do = max;j—1,2(R(7;)).

PROPOSITION 3.5. — Let ¢ denote the function defined on a real vari-
able © € Rsg by doo(x) = x_(l_‘s)Vg(fglx), where fg > 0 is some arbitrary
fizxed real number. We have the following integral presentation of this func-
tion ¢oo () for any x € Rsq: For any choice of real number o in the interval

max(dp, 1 — R(0)) < o < 3 —R(J),

) = (-0 k(=5 + (1 -9))
¢oo( )_/éR(s)—afﬂ S—(l—(S)

> ﬂ_—%—&-n(s—l)

o r(5) \ Las
Mor(=5=)) >
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Proof. — Recall that the cutoff function Va(z) is defined explicitly for
any r € Ryp as

_ . H": F 1+5*5*ﬁj

T —.
n —s+0—p;
s ., T (%) 27
Recall too that the function k(s) is holomorphic and bounded for |J(s)| —
oo, with the additional properties k(0) = 1 and k(f1) = -+ = k(fin) = 0.

Now, it is easy to see that the quotient of gamma factors in the kernel has
polesas s =1 — (1 —9),...,8 = i, — (1 — §). We may therefore move the
line of integration in this definition (3.8) to the left, avoiding these poles.
That is, we may also define

7_1 F 1+S—§—ﬂj
(o) S H_?:l F<75+§7/4’j ) 27

so long as

mjax(O,S?(ﬁj)—(lf%((;))) <o <2

Let us now return to the function ¢ (z) = m’(lf‘s)VQ(f[;lx). Observe (using
the definition) that we have

n 14+s—0—[i; s
[ BN
(2) S H;?:l r (#) fs/) 2mi

n 14+s—0—[;
_ fs k‘(—S) ﬂ_—%—l-n(—s—&-&) . Hj:l F( 2 ) —s—(
B S
2)

( H;LZI F(—s+§—w) 27

:/ fsf(lf(s)k(—SJr (1-9))
@+a-@) " s—(1-0)

X 7T7%+n(75+1) .

1-5) ds.

H?:1 F(S_zﬁJ) _, ds
T
o)

where in the last step we change variables s — s — (1 — §). Thus for s € C
with R(s) = o in the interval

27’

mjax(l—%(é),%(ﬁj)) < o0 < 2+ (1—-%R()),
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we may write

/ o= 5)k +(1-9))
(1—5)

IT;- F(S_zﬁ]) o ds

w | r—34n(=s+1) =1 S—
I F<1—8—uj ) 27
Jj=1 2

This shows the stated presentation of ¢, (). O

4. Average values

Fix a prime p which does not divide the dimension n or the conductor
N of 7. Fix 8 > 1 an integer. Let ¢*(p®) denote the number of primitive
Dirichlet characters x mod p®. Hence,

S CHIICEHE

p||p?

where the factor of (1—2/p) is omitted if 8 > 2 (as we shall usually assume).
To derive our working expressing for the average Xg(m,d), we begin with the
following basic formulae, which although classical do not seem to be so well-
known in the setting of prime-power modulus.

PROPOSITION 4.1. — Fixz an integer 8 > 2. We have for any integer
m =1 that
> x(m)
x mod pﬁ

primitive,x(—1)=1
*(p?) if m = +1 mod p”®
P’ if m = £1 mod p®~land m # +1 mod p”

0 otherwise.

EA

In the case that 8 =1 corresponding to prime modulus, we also have the
formula

0 if m=0mod p
Z x(m) = @—1 if m = +1mod p
x mod p? —1 otherwise.

primitive,x(—1)=1
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Proof. — Fix integers m > 1 and 8 > 1. Let us first consider the sum
over primitive characters y mod p?, which via the Mobius inversion formula

([5, (3.8)]) is
B
dooxtm)= > @) <p>

px
x mod p” 0<z<pB

X#X0 p®|(m—1,p")

Here, i denotes the Mébius function. It is easy to see from this formula that
for B > 2 we have the relations

©*(p®) if m = 1 mod p®
Z x(m) =< —¢(@®1) ifm=1modp’ ! and m # 1 mod p”
x mod p” 0 otherwise,

X#Xo

using that p(p?) —p(p?~1) = p*(p”) and that u(p?) = 0. To detect relations
for the subset of even characters x(—1) = x(1), we compute

> ) (MED DY ey X e

x mod pﬂ x mod pﬂ x mod pﬁ
X#Xo X#Xo0 X7#X0

The stated relations are then easy to derive. The well-known case of § =1
(cf. [10, (3.11)]) can also be derived in this way, using the relations

©*(p) if m=+1modp

Z x(m) =<0 if m = 0mod p O
x mod p -1 otherwise.
X#Xo

Using this result, we now derive the following basic but crucial result for
our calculations. Fix an integer n > 1. Given a residue class r prime to the
modulus p” (and hence 7 prime to p), let us write Kl, (r, p”) to denote the
classical hyper-Kloosterman sum evaluated at r:

o e i
Koof)= Y o).
g p
T1yeney z, mod p
T1...xn =7 mod pB

Here, we write e(z) = exp(2mix). We also use the notation Kl; to denote the
corresponding Ramanujan sum. Given a coprime residue class 7 mod p?, let
us write 7 to denote the multiplicative inverse of r mod p®.
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LEMMA 4.2. — Let n > 1 be any integer.

(i) Given an integer B = 2, we have for any integer r coprime to p that
B
_ n p
> a0 = 2 (@00 4 KL ().

x mod pﬁ
primitive,x(—1)=1

where the sum ranges over primitive, even Dirichlet characters

x mod p?.
(ii) In the case of prime modulus corresponding to = 1, we also have

for any integer r coprime to p that

) _ 1) (KL (r,p%) + Kl (—r,p)) — (—1)",

> e = (%

x mod p
primitive,x(—1)=1

where the sum ranges over primitive, even Dirichlet characters
x mod p.
Proof. — Let us start with (i). Opening up the sum, we have the identi-

fication

> X(r)T (00"

x mod p?
primitive,x(—1)=1

- ¥ S @ z)e (W)

x mod pB Z1,...,¢n mod ph

primitive,x(—1)=1
Switching the order of summation and using the relations of Proposition 4.1,
we then obtain
* (B .
©*(p”) 3 ot At
2 P

@1,...,n mod p?

x1...rpn=xr mod pﬁ
e’ Z o[ Tt At an
2 P

T1,...,Tn mod pB
Z1...xn==+7 mod p’ 1

z1...x,Z+r mod pﬁ

Now, consider the second sum in this expression, which after writing y =

T1...Tp—17 mod pﬂ is the same as
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3 e(%pﬁw)

Z1,...,2y, mod p°
T1...Tp==r mod p‘;*l
z1...TnZEr mod pB

- 3 e(W) 3 ﬂ_le@;). (4.1)

T1,eyTp—1 mod ph zp, =4y mod p
TpZ+y mod pﬂ

Observe that each class z,, in the inner sum can then be written as x, =
+y +1pP~! for some 1 <1 <p—1,

IpP—1 _ IpP—1
() D (L) (T
p? PP P
z, =%y mod p? ! 1<I<p—1

TnZ+y mod pP

l
() () Z 6)
p p 1<i<p—1 p
Using the well-known identity Zlglgp—l e(%) = —1, it is then easy to see

that the sum (4.1) is equal to

P

_ Z ﬁ e<$1+...+$n> :—(Kln(T,pﬁ)+K1n(—T,pB))~

x mod pﬁ
primitive,x(—1)=1

:<<P*(Pﬁ)+2¢(p51)> | Z ﬁ €<$1+'p'5'+$n>.

The stated formula then follows, using that ¢*(p”) = (p”) — p(p®~1).

To derive (ii) (cf. [10, (3.19)]), we open up the sum and switch the order
of summation to obtain
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x mod p
primitive,x(—1)=1

=Y Y x@a)e (M)

x mod p T1yeny z,, mod pP
primitive,x(—1)=1

Z Z x(71 ...z, T)e <M) .

T1,...,2n mod pP x mod p
primitive,x(—1)=1

Using Proposition 4.1 to evaluate in the inner sum then gives us the expres-

() 2, ()

T1yeney T, mod p
z1...tpn=%xr mod p

B 3 e<x1+~'~+xn>

X1yeney z, mod p p
T1...xprZ+1 mod p

-(v) 2 ()

Z1,...,Zn mod p
z1...tpn=%xr mod p

T T
— E e e E el —
x1 mod p p T, mod p p

z1#1 mod p TnZ1 mod p

- (‘/’(2”) - 1> 3 e (M‘) — (=)™ O

Z1,...,Zn mod p p
z1...tpn=%xr mod p

Using these relations, we can now derive the following moment formula
(assuming 8 > 2 for simplicity):

PROPOSITION 4.3. — Fiz a prime p which does not divide the conductor

N of m, and let 8 > 2 be any integer. We have for any choice of real parameter
Z > 0 the following average formula:

Xﬁ(ﬂ’é) = Xﬁyl(ﬂ—a(sa Z) +Xﬁ,2(7ra57 Z), (4.2)
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where
XBJ(TF,(S, Z)
a(m) m 1 a(m) m
- Z) T o - 4.
mz;l w i (2) w(p) ngl V(7))
m==+1 ;od pﬂ m=%+1 IIl/Od pﬁgl
m#Z+1 mod p
W (m)w(p®)(Nphn)z—9
Xﬁz(w,d,Z)_< p > (m)w (p ;(ﬂp )
¢(p) (p?)=
a(m mJZ — _
x Z (12%(1\/'&1) (Kln(mN,pﬁ)-l-Kln(—mN,pﬁ)). (4.4)
m2>=1 m D
(m,p)=1

Proof. — Using formula Lemma 3.2, we can decompose the average

IR Y O)

Xg1(m,0,2) :=
pal ) @*(p?)

Xp(m,0) into sums

x mod p* m21

primitive,x(—1)=1 (m,p)=1

2 00\ oy
. > wmet’) () i

x mod pﬁ
primitive,x(—1)=1

oy iy (2,

m>1
(m,p)=1

To evaluate Xg1(m,d,2Z), we switch the order of summation, then use

(4.1) to evaluate the inner sum:

Xﬁ’l (7T, 5, Z)
—1
_ (¢ ) a(m) . rm
-(77) T vz X e
mz=1 x mod pﬂ
(m,p)=1 primitive,x(—1)=1
a(m) ., (m\ (@) a(m) ., (m
: "(3)- “(3)
m%:l m? Z/) ¢r(p) mé:l m? Z
m=+1 mod p”® m=+1 mod p® 1
m#Z+1 mod PP

The stated formula is then easy to derive from the fact that ¢*(p%) =
(p—1)%pP2 for B > 2.
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To evaluate the twisted sum Xgo(7,d, Z), let us first open up the sum
and switch the order of summation:

Z W (m)w(p”)x(N) (T(X)> (Np8)3-9

x mod pﬁ
primitive,x(—1)=1

m) mZ
X Z ml 5 ‘/’2 Npﬂn
m>1
(m,p)=
Npﬁn 5—
= W(m(p?) %
p 2

a(m) mZ — (N n
<Y Wn(34) X @
m21 x mod p”?
(m,p)=1 primitive,x(—1)=1

Now, we can use Lemma 4.2 to evaluate the inner sum in this latter expres-
sion as
= n SD(PB) B N
Y. XWm)r(0)" = =5 (Kl (mN,p”) + Kl (~=mN,p?)) .

x mod pﬁ
primitive,x(—1)=1

Substituting this back into the previous expression then gives

8 Bnyi—5
@ W () (pﬂ) . %
p 2
S “(m>v2< mZ ) (KL (mN, p?) + KL,(-mN, p%))
m>1 m176 Nan n ’ n 9 b
(m,p)=1

2 () 5 (NpPm)z—o
Xpo(m, 6 L W(n N et L
a(m) mZ = 8 = 3
X mz;l mléVQ(Nan)(Kln(mN,p ) + KL, (—mN, p?)).
(m,p)=1

The stated formula for X5 (7, d, Z) then follows after taking into account that
for g > 2,

2 e(”) _ (=1pt  p
e*(pP) 2 (p—1)2p%=2  o(p)

(4.5)

O
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5. Preliminary estimates

Let us now consider the following preliminary estimates for Xg(m,d),
using the theorem of Molteni [13] (cf. [9]). Hence, we begin by stating the
following result (“Ramanujan on average”):

THEOREM 5.1 (Molteni, [13, Theorem 4]). — Let 7 be a cuspidal auto-
morphic representation of GL,(Aq) of conductor N, with L-function coef-
ficients a(m) as above. Then, for any choice of ¢ > 0, we have that

> Bl e

1<m<x

Let us now return to the setup of Proposition 4.3 above.

LEMMA 5.2. — We have for any choice of 1 < Z < pP~! and for any
choice of A > 1 and C > 0 the estimate

Xy (m,6,2) = 1+ 04(Z4) + O,y ((0)" 7€ 2°).

Here, we write 0 € [0,1/2] to denote the best known approximation towards
the generalized Ramanujan conjecture (with 8 = 0 conjectured). Hence, tak-
ing C > 0 — R(5) sufficiently large gives us the lower bound

Xﬁ’l(TF,(S,Z)>>1. (51)

Proof. — Let us first consider the contribution from the first coefficient
m=11in Xg1(m,9,Z):

a(1)V; @) =V (;) =1+04(Z27%).

Here, we have used that a(1) = 1 in the first equality, and then the estimate
of Lemma 3.4 to bound the contribution of V;(Z~!) (which lies in the region
of moderate decay).

To deal with the remaining contributions m > 2 in the expression (4.3),
notice that m must satisfy one of the constraints m = +1 mod p? or else
m = 41 mod p®~! with m # 41 mod p”. On the other hand, observe that
since we have chosen 1 < Z < p’~! each of the remaining contributions
m > 2 must satisfy the condition m > Z. Hence for each such m > 2, we
have by the estimate of Lemma 3.4 that

1% (%) = O¢ ((T;)C> for any choice of constant C' > 0.
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We can then bound the coefficient corresponding to each contributing term
as

aﬁ:;) " (%) — O¢ (meféR(é)fC’ZC) '

Expanding out the arithmetic progressions which define the sum of remaining
contributions, we obtain

a(£1+pPt) (14 pPt 1 a(£1+pP~ 1) (14 pflt
Z B+)0 Vi - Z B—14)6 Vi
(1 + pPt) 7 »(p) = (1 +pP~1¢) Z

<<C,p Z(pﬁt)e—ﬂ%(é)—CZC_
t>1

t>1

That is, the sum of remaining contributions is bounded above in modulus

by Z¢(p?)?RO=C T 1C. O
LEMMA 5.3. — We have for any choices of Z > 1 and & > 0 the (coarse)
estimate

Xﬁ 2(7T, 5, Z) Lpme p—g (Npﬂn)%+6N§R(d)+82_(1+%(6)+5).

Proof. — Put fz = Np’"Z~1. Using the classical bound Kl,(c,p”) <
(n—1)

(p?)~= together with Theorem 5.1 and Lemma 3.4 (iii), it follows that

Xp2(m,8,2) <pme (0°) " E(NPP)E-RON(N f)ROVHe fy.

The stated bound follows after expanding and grouping together like
terms. ]

6. Calculation of the twisted sum

We now consider the twisted sum X o(m,d, Z), taking for granted the
result of Lemma 5.2. That is, let us choose some unbalancing parameter
1 < Z < pP~1 of the form Z = p* with 1 < u < 8 — 1, and consider

p W(mwp®)(Np")z—?

Xﬁ72(ﬂ-a 6) pu) =

¢(p) 7
a(m) m — —
x z;l ml_JX/Q(Nan_u)(Kln(mN,pﬂ)—kKIn(—mN,pﬂ)). (6.1)
(m,p/):l
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6.1. Evaluation of hyper-Kloosterman sums

Let us now suppose that 5 > 4.

THEOREM 6.1 (“Salié”). — Suppose that p does not divide n. Assume
without loss of generality that the exponent 8 > 4 is even, say B = 2« for
a > 2. Then for any integer ¢ prime to p® (and hence prime to p),

n— — 1 w
Klo(c,p”) =p"C7) Y e (W) : (6.2)
w mod p* p
w™=c mod p®

where the sum runs over all n-th roots of ¢ mod p®.

Proof. — The result is supposedly classical, though the main reference
is [1, Theorem C.1] (cf. [5, Lemma 12.2]). Note however that the statement
of [1, Theorem C.1] in fact depends on a choice of lifting of root modp®
(i.e. their notation r'/" refers to a lifting of a root of  mod p® to p>*). O

6.2. Reduction to twists by additive characters

Given a class ¢ mod p?, let 9. denote the additive character defined by
Pe(m) = e (;—?) Let us also write 1.(£m) = ¥.(m) + 1.(m) to lighten
notation. Given 5 > 1 an integer, let (p%)n denote the n-th power residue
symbol. Hence, (1%)“ = 1 if any only if there exists a coprime class [ mod p?
with {" = ¢ mod p®. Note that by Hensel’s lemma, (p%)n = 1 if any only if
(%)n =1.

PROPOSITION 6.2. — Suppose that p does not divide n. Assume again

(without loss of generality) that 8 > 4 is even, say B = 2a with o > 2. Then,
the twisted sum Xg o(m,d,p") is equal to

p W(mw(p®)(Npm?)z—? (n— 1w + 2@
¢ (p) pF 2 2, B
x mod pB w mod p<

(2)n=1 w™ =z mod p~

a(m) (EmN m
X Z ¢t(_x) Z ( ),:fll(—é )‘/2<an5—7¢>'

t mod p# ( m})l .
m,p)=
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Proof. — We apply Fourier inversion to the function K : (Z / pﬁZ) — C

defined by
(n—l)w+cw) o T
el ———— if (%), =1
> (" )

ﬁ(c) = w mod p&
w"™=c mod p®

0 otherwise.

Hence,

where R(t) denotes the Fourier transform at the additive character deter-
mined by the class ¢ mod p®:

A=pt ¥ ﬁ(x)e<;§>.

= mod pP

Using this relation, we find that for any integer ¢ prime to p?,

Reoy=p? > > 3 6((”1)W+xw>6<ctm>

B B
t mod p? x mod p# w mod p* p p

w" =z mod p<

and hence

RO+ 8-c)=p" Y > 6<(n_1)w+xw>

pﬁ
t mod p# x mod p# w mod p®
w"=x mod p®

(e (5) e (55)

Using Proposition 6.1, it follows that
KL, (¢, p”) + Kl (c, p”)
n_1
= (") (8(0) + £(~0))

e Y Y S e((n—l)w+xw>

pﬁ
t mod p? z mod p? w mod p*
w"=x mod p®

(e (57) < (55)
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Substituting this back into (4.4), and switching the order of summation, we
derive

Xp,2(m, 0,p")
p W(mw@®)(Np"")E =0, ns a(m) m
- 8 S I W 3 e
¢(p) p2 me1 Np
(m,p):l

y Z Z Z e((n—l)w—i—xw)

pB
t mod p# x mod p# w mod p®
w" =z mod p*

tmN — tx —tmN —tz
X e 75 + e 76 .
p p

which after re-arranging terms is equal to the stated formula. g

6.3. Voronoi summation for additive twists

We now derive special Voronoi summation formulae (with polar terms) for
the twisted sum Xg (7, d, p*) via Proposition 6.2, using nothing more than
the functional equation for L(s, ™ ® x). Recall that this functional equation
is given explicitly by

L(s,m® x) = W(m)w(p®) x(N) N~ p= s (y)"
DT (552
I (*2)

Again (as in (3.2) above), we shall write F(s) to denote the quotient of
archimedean factors appearing in (6.3).

1—s,7®@x ). (6.3)

6.3.1. Functional identities for additive twists

We begin with the following Corollary to Lemma 4.2 above:

COROLLARY 6.3. — Let m be any integer prime to p. Given 5 > 2 an
integer, we have that

(p”;%(p”;)_w(;ﬁ) S xmr). (64)

x mod p?
primitive,x(—1)=1
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and in the case of f =1 corresponding to prime modulus p that

m m 2 _
‘ () e (_) -2 S Xm0 - ()" | (65)
p p P x mod p
primitive,x(—1)=1
Proof. — Specialize Lemma 4.2 to n = 1, then isolate the sums of additive
characters in each case. O

Given 8 > 1 any integer, and h any coprime class modulo p?, let us now
consider the Dirichlet series defined on s € C (first with £(s) > 1) by

a2 () o))

m>=1
(m,p)=1

We now show that D(7, h,p?, s) has an analytic continuation to s € C via
the following functional identities. Let us again (for any n > 1 and 8 > 1)
write K1, (£c, p?) = Kl,,(c, p?) + Kl,,(—c, p”) to simplify expressions.

PROPOSITION 6.4. — We have the following additive functional identi-
ties for the Dirichlet series D(m, h,pP,s).

(i) If B > 2, then we have for any coprime class h mod p? the additive
functional identity

D(m, h,p?,5) = W(m)w(p?) N> —p =) F(s)

a(m) NT}
x 0y i Klna (m B, pF).
m>1
(m,p)=1
(ii) In the case of B =1 corresponding to prime modulus p, we also have
the additive functional identity

D(r, h,p, s) = W(m)w(p)N?~p' " F(s)
3 M(Klnl(imw,p)+(—1)"( 2 >{1_6p(8)6p(1—8)]>7

1-s 1—ns
m -3
m2>=1 p p

(m,p):1

where €,(s)~" denotes the Euler factor at p of L(s, ), and &,(s)~"

that of L(s, 7).

Proof. — Let us start with (i). Hence for ®(s) > 1, we open up the sum
and use (6.4) to obtain
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2 alm
D(m,h,p’,s) = —5 Z X(mh)7(x) Z ( s)
e(p”) , .
x mod p m>
primitive,x(—1)=1 (m,p)=1
2 Y j—
~ o) Z X(R)T(x)L(s,T®X). (6.6)
x mod p?

primitive,x(—1)=1

Applying the functional equation (6.3) to the inner Dirichlet series L(s,7®),
we then obtain

Dwmmﬂﬁzgégwwwwﬁw%%”“F@
xS XINRIFEPARTIL( - 57 ),
x mod pﬁ

primitive,x(—1)=1

which after using that 7() = 7(x) (and hence that 7(x)7(X) = |7(x)|* = p”)
gives us the identity

Din. by’ ) = s W(mlp )V E " 07 F (s
X > X(NR) ()" L1 —s,7®%) (6.7)

x mod p’3
primitive,x(—1)=1

after analytic continuation. Let us now suppose that R(s) < 0, in which case
we can open up the Dirichlet series on the right of (6.7) and interchange
summation to obtain

o W(mw(p” )N P F (s)

e(p?)
a(m) v 1
X Z s Z X(hNm)T(x)" .
m2>1 x mod p”®
(m,p)=1 primitive,x(—1)=1

Using (6.4) to evaluate the inner sum, we then obtain (after analytic contin-
uation) the identity

D(x, h,p?,5) = W(m)w(p?) N> ~p’ == F(s)
X Z a(m) Kl,_1(£Nhm,p”).

ml—s
m=>1
(m,p)=1
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Let us now consider (ii). Hence for $(s) > 1, we open up the sum and
use (6.5) to obtain

D(ﬂ-7 h7p’ 5)

2 _ — n
-2 Y X)L 8 ) — (—1)"ep(5)L(s, )
p—3
x mod p
primitive,x(—1)=1
Applying the functional equation (6.3) to each of the inner Dirichlet series,
we then obtain
2

SV @)V (s)

x| p7™ Y X(AN)T(OT(0)" L(1—s, T@x)— (—1)"e(s)L(1—5,7) |,
x mod p
primitive,x(—1)=1

which after using again that 7(Y) = 7(x) gives us (after analytic continua-

tion) the expression

D(m,hypy5) = —— W (m)o(p)N 3~ F(s)

p S XN L5 F 8 D (s)L(1L-57) | (65)
x mod p
primitive,x(—1)=1

Let us now suppose that $(s) < 0. We can then expand the Dirichlet series
on the right of (6.8) to obtain

L Wrw(p)NEF(s)
« pfns+1 Z X(hN)T(X)nil Z % - EP(S) Z fn(lTTz
X mod p m21 m>1

primitive,x(—1)=1 (m,p)=1

— WV ()

ot S B Y M0 - s 3 A
m>=1 x mod p m>=1

(m,p)=1 primitive,x(—1)=1 (m,p)=1
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Now, observe that we may use Lemma 4.2 to evaluate the inner sum in this
latter expression as

> ENmr)nt = PRl (mAN p) + (1)

x mod p
primitive,x(—1)=1

which gives us

WEe@N = Fe) [ Y A, e, p)
m2>1 m
(m,p)=1

a(m)
Z ml—s ?
m=>=1
(m,p)=1

+ (=)t - ep(s)ép(l — S)]p _3

or equivalently
W (m)w(p)N2~"p' " F(s)

X m%:l z@ <Kln_1(j:th,p) + (=" (;3) {1 — EP(S;EE}S)D
(m,p)=1

Hence (after analytic continuation), we derive the stated functional identity
for D(m, h,p,s). |

Let us also consider the following hyper-Kloosterman Dirichlet series.
Let 8 > 2 be an integer. Here, we consider the Dirichlet series defined for a
coprime residue class h mod p® and s € C (first with R(s) > 1) by

a(m)

K1, (£mh, p°)
mS

ﬁﬂ(ﬂ',h,pﬂ,s): Z

m>1

(m,p)=1

= Z “(”Z) (KL, (mh, p”) + KL, (=mh,p")) . (6.9)
m>1 m
(m7p):1

- 662 —



Dirichlet twists of GLp-automorphic L-functions

PRrROPOSITION 6.5. —  Assume that 8 > 2. The Dirichlet series
A(m, h,pP, s) satisfies the functional identity

Rn(m, hypP,5) = W(m)w(pP)NE—5prP1=9) p(s)

@ Z a(m) 1 Z ;ln(m) (6.10)

p m>1 p m>1
m=+hN mod p* m=+hN mod p®~!
m#z+hN mod p”®

for ®(s) < 0 (after analytic continuation).

Proof. — Observe that Lemma 4.2 gives us for R(s) > 1 the relation

2 a(m) n
R’n(ﬂ-) hapﬂ7 S) = 90(])’8) Z W Z X(mh)T(X)
mz21 mod p?
(m,p)=1 primﬁive,x(pfl)zl
2 =\
= 2P Z x(h)7(X)"L(s,m® x).
x mod pﬁ

primitive,x(—1)=1

Applying the functional equation (6.3) to each L(s,7m ® x), we then obtain
(after analytic continuation)

Ero mZ X7 ()"
primitive,x(—1)=1
X (W(m)w@ ) (N)NE=p= s ()" F(s)L(1 ~ 5,7 @ X))
= W(mw(p )N%’spﬁ"(1 DF(s) Y. x(hN)L(1—s5,7@X).
so( 7) oy

primitive,x(—1)=1

Note that in the last step, we use that 7()7(x) = 7(x)7(x) = |7(x)|* = p°.
Hence, we derive the expression
2 1
Rn(m, b, pP,s) = ——W (m)w(p?)N2=2p 1= (s
( ) 0P (m)w(p”) (s)
X > x(AN)L(1 — s,7®%) (6.11)

x mod PP
primitive,x(—1)=1

after analytic continuation. Let us now suppose that R(s) < 0, so that we
can expand the absolutely convergent Dirichlet series on the right hand side
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of this latter expression as

Z X(AN)L(1 — 8,7 @) = Z fn(lrﬂ Z x(hINm).

x mod pﬁ m21 x mod pﬂ
primitive,x(—1)=1 (m,p)=1 primitive,x(—1)=1

Applying the quasi-orthogonality relations of Proposition 4.1 to the inner
sum, this latter expression equals

¢*(p°) Z a(m) e Z a(m)
2 mlfs 2 mlfs :
m2=1 m2>1
m=+hN mod p” m=+hN mod p” !
m#+hN mod p?

Substituting this back into the previous expression, we see that &, (f, h,p?, s)

can be expressed for R(s) < 0 (after analytic continuation) as

L W)W NI B9 p(s
@(pB)W( Jw(p”)N=""p F(s)

*(pP a(m) p-1 a(m
<P(2p) > (m) (") 3 (m)

m>1 m>1
m=xhN mod pﬁ m=xhN mod p571
m#+hN mod p?

Simplifying the scalar terms, using that ¢*(p®) = (p — 1)2pP~2 for 8 > 2,
we derive the stated result. O

6.3.2. Derivation of formulae

Let ¢ be any continuous or piecewise continuous function on R which
decays rapidly as 0 and oo, and let ¢*(s) = fooo d)(x)ms% denote its Mellin
transform (when defined). Note that the only property we shall require of
this of this function ¢ is that its Mellin transform be defined, and that it
can be recovered from its Mellin transform by the inversion formula ¢(z) =
f(g) ¢*(s)z~ = for a suitable choice of o € R so that ¢*(s) is analytic
and the integral absolutely convergent for R(s) = o.

THEOREM 6.6 (Voronoi summation formula). — Let 7 = ®,m, be a
cuspidal automorphic representation of GL,(Aq) for n > 2, with L-function

coefficients a(m) and conductor N. Let p be a prime which does not divide
N. Let ¢ be a smooth on R~g which decays rapidly at 0 and oo, and let ¢
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denote the function defined on y € R for suitable choice of real number
o € Ry by the integral transform

H?:1 F<17527ﬁj) ds

S

O(y) = ¢*(s) [ w2 — Yo
(—o) H?:1F< 2#.7) 2mi

(i) Given an integer 3 > 2, we have for each coprime class h mod p?
the summation formula

> a(m)Kly(£mh,p)p(m)

m>1
(m,p)=1
m
= W(r)wp®)Nip? Z>1 ) e (em N p )q)(Nan)'
(m,p)=1

(ii) In the case of B = 1 corresponding to prime modulus p, we also have
the summation formula

3" a(m)Kli(£mh, p)é(m)
m2=1
(m,p)=1

= wimavip| 30 (K)o ()

m
m2>1
(m,p)=1

— (-1 Z

’EM—‘

Here, & denotes the modified function defined on y € Rsq by the
integral transform

Hy:lP(l_Z_FU) ep(s)y° ds

®y)= | ¢(s) |7 FT"e _
(o) I r(24)

2’

where €,(s) denotes the multiplicative inverse of the Euler factor at
p of L(s,7).
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Proof. — In either case, we use the Mellin inversion theorem ¢(x) =
f(g) ¢*(S)I75;—7fi to express the sum as
> a(m)Kly(£mh,p”)p(m)
m2>1
(m,p):l

_ N 5 o ds

o ARGCLEE =
Switching the range of integration to R(s) = —o, then applying the cor-
responding additive functional identity of Proposition 6.4 to the Dirichlet
series in remaining integral, the stated formula (in each case) follows. O

Let us now consider the corresponding Voronoi summation formulae we
obtain after replacing the generic choice of well-behaved weight function ¢
with the function ¢, appearing in Proposition 3.5 above. More specifically,
let us now consider what happens when we take as the weight function in
Theorem 6.6 the function defined on y € R by doo(y) := y_(l_‘s)Vz(fEly%
where V4 is the cutoff function of rapid decay defined in (3.4) above, and
fs := Np?~* = Np™#Z~1 is now taken to be the length of its region of
moderate decay (according to our choice of unbalancing parameter Z = p*).
Recall that in the definition (3.4) of the cutoff function V3 (x), we introduced
a holomorphic test function k(s) := G*(s)/(]_[?:1 fi;) from Lemma 3.1, and
that this function satisfies the convenient properties k(0) = 1 and k(1) =
o= k(jin) = 0.

THEOREM 6.7 (Voronoi summation with the weight function ¢o). —
Let 1 = ®,m, be a cuspidal automorphic representation of GL,(Aq) for
n > 2, with L-function coefficients a(m). Fiz 6 € C with 0 < R(4) < 1. Let
oo denote the function defined on y € Rsg by doo(y) = yf(l";)Vg(fﬁ_ly),
where fg = Np™~% for some fived real parameter 0 < u < B — 1 is the
length of the region of moderate decay for the cutoff function Va(y). Let us
for this choice of u write ®,, to denote the function on y € R~¢ defined for
any choice of real number 1 < o < 3 —R(d) by the integral transform

(i) Given an integer 8 > 2, we have for each integer h prime to p the
summation formula
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> a(m) Kl (£mNh, p’) oo (m)

m>1

(m,p)=1

= W(@w(p?)N EpfAn=0) N (N ()" LS, T @ X)

Xmodpﬂ

primitive,x(—1)=1

W (7)w(p? )N 2 p? a(m) =t 8

T Ny Y. = Kl (EmNR,p )@y (m).
m>1
(m,p)=1

(ii) In the case of B = 1 corresponding to prime modulus p, we also have
the summation formula

> a(m)Kly(£mh, p)poc(m)

x| Py D X(INR)T(0" L @ X) — ep(1 — ) L(4,7)
x mod p
primitive,x(—1)=1

W(%)@(p)N%p a(m) N n
+ P | 50 (s (W) + (1) 25 ) ()

m2=1

Z as;n) &)u(pnm)

SRR

n 2
—(~1) Pl

Here, ®,, denotes the function defined on y € Rsq by the modified
integral transform

Fuly) = /( . e (]f)();;

where €p(s) again denotes the multiplicative inverse of the Euler
factor at p of L(s, 7).

Proof. — We proceed in the same way as for Theorem 6.6 (but spelling
out all details), viewing Proposition 3.5 above as an explicit form of the
Mellin inversion theorem. Hence, fix any real number ¢ in the interval 1 <
0 < 3—R(J). Then for any 8 > 1, Proposition 3.5 (with fz = Np™#~%) gives

- 667 —



Jeanine Van Order

us the expression

~ d
m2>1 a{m) Kly(Emh,p) () = | DI o $)0%(s) 5 (612)
(m7p/):1
where
e p—-n k(=s+(1-9)
95 (s) =[5 WF( s+1)
- k(=5 + (1= 0) 4 ina) [l= r(s;uj) o

Jj=1

= B s — (1 _ 5) l—[n F<_S+21_#j)
denotes the Mellin transform of ¢ (s) in this region 1 < o < 3 — R(0).

Suppose first that 8 > 2. We shift the range of integration in (6.12)
to R(s) = —o, crossing poles at s = fi; for each 1 < j < n of vanishing
residues, i.e. since k(fiy) = -+ = k(fin) = 0 thanks to the construction of
k(s) in Lemma 3.1 above. We also cross a simple pole at s = 1 — 0 of residue

Rese—1-5 (D(7, b, p”, 8)¢%(5))
= Ress:lfé <D(%a h,pﬁa S)f;_(l_é) WF(S)>
= D(7, h,p®, 1 —6)F(1—4)

I, T ()
[T (=)

Recall that we can calculate the value D(7, h, p”,1 — §) using analytic con-
tinuation as in (6.7) above. To be precise, let us write F(s) to denote the
corresponding quotient of contragredient archimedean components

n 1—s—p;
L(1 - s8,7s) Hj:IF( S2 ”)

Fs) = 2= M0) _—gna

L(s,T0) I F<ﬂ>

= D(7,h,p?, 1= o)x= 27010

j=1 2
Using the calculation (6.7), we then have the formula
2 1 —
D(;ﬂ h7pﬁ7 1- 6) =—— W(r w(pﬁ)Né_§pB(l_n(l_6))F(6)
ErRAAL
X > X(NR)7(X)" L8, 7 @ x),

x mod pﬁ
primitive,x(—1)=1
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from which it follows that

D(%,h7pﬁ7 1-6)F(1—-0)= ﬁﬁ) . W(%)w(pﬁ)]vé" B(1—n(1—5))
x> X(NRTR)" LG T @ X),
Xmodpﬁ

primitive,x(—1)=1

To be clear, we have used the fact that the quotients of archimedean factors
F(§)F(1 — 0) cancel out:

_ L1 —5,Ts0) L(1—5+1,7s)
F(s)F(-s+1) = :
(s)F(=s+1) L(5, 7o) L(—s+1,7ms)
noop(lzs—wg\ pfszhs
ﬁ+n57%+n(1*3)H]:1 ( > ) ( 2 )_1 (614)

= 2 =

Lo r(s5) (=)

Let us now consider the remaining integral (first with shorthand notations
introduced above)

ds
27

/ D(F, by 5) %0 (5) =

Since we are now in the range of absolute convergence for the Dirichlet series
D(7, h,p®,s), we may invoke the functional identity of Proposition 6.4 (i)
above to obtain the expression

[ 9 [WEBEAIN 0 R

ds

§ Kl + Ayl —=

% n1L(EmNAp7) | 5o
m>1
(m,p)=1

—w@Ee )N Y WK, (EmVE )

m2=1
(m,p)=1
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Opening up the definition (3.7) of ¢%_(s), this expression is then seen to be
given more precisely by

W (7)@(p”)Nip? 3 a(m) Kl,_1(+mNh,p?)

féia m>=1
(m,p)=1
mfs \° k(=s+ (1-9)) = ds
g /(a> (Np’”) s—(1-90) F(s)F(=s+1)5,

where the product of quotients of archimedean factors F(s)F(—s+1) cancels
out identically as in (6.14) above. Now, using that fz = Np"?~* we obtain
the even more precise expression

Kl,_1(£mNh,p”)

Putting this together with the residue term, we then derive the stated for-
mula (i).

W (7)@(p® )N 2p” Z a(m)
nB—u\1—34
(Npnh=u) s oom
(m,p)=1

Let us now consider (ii), starting with the integral presentation (6.12).
Shifting the range of integration to R(s) = —o, we cross poles at s = [i; for
each 1 < j < n of vanishing residues thanks to the fact that k(f;) = 0 for
each 1 < j < n by Lemma 3.1 above. We also cross a simple pole at s =1—§
of residue

Ress:1—5 (D(%a h,p, S)(,szo (8))

= Res;—1_5 (D(7~T7 h,p, S)fg
= D(7, h,p,1 —0)F(1—90)

sy k(=s + (1-8)
s—(1—9) F(s)>

I, T ()
o (=)

=D(7, h,p,1— 6)7T_g+"(1_5)
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which we can calculate thanks to analytic continuation as in (6.8) above as

L W@wpN = p 0 YT X(NR)T(0)" T LG, T @ x)

x mod p
primitive,x(—1)=1

—ep(1 = 08)L(6,m)

Here again, in the last equality, we use that F(1 — §)F(6) = 1. To evaluate
the remaining integral

ds

D(%a h7p7 S)¢;(S)T7
(=) i

we apply the functional identity of Proposition 6.4 (ii) to the Dirichlet series
D(7, h,p, s) to obtain

_, WEREIN P )

X Z a(m) (Kln_l(ith,p)

m>=1 mlfs
o 2 co(s)ep(1 ) d
n EprlS)E — S % S
s (5) [1- 252 ) o
— W(FE(p)N? “(m<1 mNh ”2>
W( ) (p)N p = m Kﬂ 1:t N p) ( 1) p_3
(m,p)=1
ds
$)o5(s)=—
X/( o)( ) ( )2m
)W EEEN
a(m) mp™\° = . ds
<X /()(an) (5)ep )62 () o
(m,p)=1
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which after using the definition (3.7) of the Mellin transform ¢%(s) is given
more precisely by

W( sz .

(m,p):l
mfs \" gy K8+ (1) as

X /(—a) (anﬁ) F(S)WF(—S 4 1)%

Ly 23W(%>w<pw;p
p p f
X ;; (%?)F@%®M;jﬁﬁeﬁws+uﬁf
(m,p)=1

Using again that F(s)F(—s+1) = 1, as spellt out in (6.14) above, this latter
expression is the same as

w N2 9
a f1 W)y W; (Kln L (£mNh, p) + (- 1)np_3>
(m,p)=1
mfs \* k(=s+(1-96)) ds
x/w)(NP”ﬁ) s—(1-0) 2mi
1, 2 W(HB((p)NEp
S fg 2
a(m mfs\"_ , k(=s+(1—20)) ds
" mz;l 7 (@) <N) SO0 8 om
(m,p)=1

Now, using that fz = Np™#~%, this latter expression simplifies to give the
stated formula. O

We can now derive a Voronoi summation formula to describe the sum
Xp2(m, 0, p") defined in (4.4) above.

THEOREM 6.8 (Voronoi summation formula for the twisted sum
Xp2(m,8,p")). — Suppose that 8 > 4 is even, say § = 2a for o > 2. Fizing
a real parameter 0 < u < B —1 as above, let us again write ®,, to denote the
function ony € R defined for any choice of real number 1 < o < 3—R(0)
by the integral transform
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The twisted sum Xgo(m,0,p") defined in (4.4) above can be described equiv-
alently by the formula

Xp2(m, d,p")

pﬂ(l 3) Z Z e((n—l)w—i—:vw)

pﬁ
z mod p” w mod p*
( V=1 w™ =z mod p®

2 Y or®@LG Ty

x mod p?
primitive,x(—1)=1

w(P)¢py (—2) (1-6) 2 —\n—1
+ E DY p"Y @*(pﬁfy) E : T(X)" T L(6, T ® X)
x mod pP~Y
primitive,x(—1)=1

x [ p™ > ()" L6, 7 @ x) — p" e (1 — 6)L(6, )

x mod p
primitive,x(—1)=1

+ pU(l_é) (61,$ + 62,w + 63,;3) )

where

v(p) =
(m,p):l
w(p)_u(x a(m _ n
Gy = —— M 3 ( )Kln_l(j:m,pﬁ V), (p"m),
o) i, P =om

(m,p)=1
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and

p w1 (—x)

Gy =
’ ©(p) pA=t

)

y Z: CE(TZT) (Kln_l(im,p) + (_1)npi?)> (I)u(pn(ﬁ—l)m)

(m,p)=1

s D D Nl

p p—3 o]
(m,p)=1

Proof. — Let us keep all of the setup of Proposition 6.2 and Theorem 6.7.
Hence, we start with the formula

Xﬁ’Q(ﬂ—v 9, pu) =

p
DD
x Y di(e) Y almu(EmN)gu(m).

p W(mwp®)(Np?)z—?
¢(p) e
(n—1w+xw
e —pﬁ
z mod p? w mod p*
(2)n=1 w” =z mod p®
t mod pP m=>1
(m,p)=1

Let us first divide the t-sum into classes which are coprime to p, plus a sum
over multiples of p as follows:

g _ P W (m)w(p®)(Np™):—0
1= 38
¢(p) pz

" Z Z e((n—l)w+xw>

pﬁ
z mod pB w mod p*
(£),=1 w" =z mod p*
P

XY enl@) Yo alm)un(EmN)de(m) (6.15)

h mod pB mz21
(h,pﬁ):1 (m,p)=1

and
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p
> Za 6((711]));”%)

(2)n=1 w" =z mod p*
<Y ) Y i (EmN)oa(m). (616)
1<ysp-1 m2>1
(m,p)=1

We us start with the sum S over coprime classes (6.15). It is easy to see
from Theorem 6.7 that

p W(mw(p )( PR 2 B N BUn(1-8)
o (P Dwtaw
xrr%p wrgp ( pﬁ >

n_—

( )"—1 w"™=x mod p®

Y. ven@ Y X(WNN)T(R"LE T X)

h mod p? x mod p?
(h,p?)=1 primitive,x(—1)=1
L P W (m)w(p®)(Np™)E =0 W (F)w(p®) N 2 p”
¢ (p) p% (NprB—u)i=s
(n—1Nw+zw
Z Z ¢ I
x mod p w mod p®

( V=1 w"™=x mod p®

> w0 X

h mod pB mz1

(h.p?)=1

e 1j:thNp YD, (m),

which after grouping together and cancelling out like scalar terms (using the
basic identity (4.5)) equals

> 5 e((n—l}))?;}—kﬂu)

wmodp medP
( Yn=1 w" =z mod p*

p
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D D ( g Y. X)L T )
h mod p” X mod p?
(h,p?)=1 primitive,x(—1)=1

+ OB N7 () 3 a(::) KL, 1 (£mh, p”) @ (m) |,

<,0(p) h mod p”® m21
(h,pg):1 (m,p):1

and which after switching the order of summation (in each of the two sums)
is the same as

75 Z Z e<(n—1)w+xw>

P
a:modp wmodp
(&)p,=1 w"™=x mod p®
P

S1=

2 o _

) > T LG T ex) Y X(h)on(z)
x mod Pﬁ h mod pﬁ

primitive,x(—1)=1 (}hpﬁ):l

4pu=9_P_ Z ) > von(@) Kly_y(£mh, p”)

<p(p) m21 h mod p”®
(m.p)=1 (hp?)=1

Let us now consider the inner sums over coprime residue classes h mod p?
appearing in this expression:

> = X e (-5) (6.17)

h mod pB h mod pB
(h,p?)=1 (hp?)=1

and
Z Q/J_h(l‘) Kln_l(ﬂ:mﬁ,pﬁ)

h mod pﬁ
(h,p?)=1

- ¥ e(—f)?) 3 e(W) (6.18)

h mod p” T1,.e@n—1 mod p”
(h,p?)=1 Z1...Tp_1=+mh mod p”
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We argue that the first sum (6.17) can be evaluated by taking the Fourier
transform of the additive character:

_ zh -
hn%d:pﬁX(x)e <—pﬂ> = x(=2)7(%). (6.19)
(h,p?)=1

This formula is in fact classical (see e.g. [5, (3.12)]). Using this identity
(6.19), we may then compute using (6.18) as follows. Notice that we may
use Lemma 4.2 to evaluate

h mod pB
(h,p?)=1
2 zh = "
- Ly (ﬂ) S R0t
wip h mod pﬁ p x mod pB
(h,p®)=1 primitive,x(—1)=1

which after switching the order of summation is the same as

9 B e xh
o X xmr Y e (5).
Xmode hmodpﬂ
primitive,x(—1)=1 (hapﬁ):l

Using that

> xime (~5) = xt-alru),

h mod pﬂ
(h,p?)=1

this latter expression is then evaluated as
2
X(—xm)T(x)".
o(p?) 2 (em)700

x mod pB
primitive,x(—1)=1

Applying Lemma 4.2 again to evaluate this latter expression, we then obtain
the identity

h —
> e <_xﬂ> Kl (&mh, p*) = K, (£mz, p°)
h mod pB b
(h,p?)=1

for the inner sum (6.18). Using these identities for (6.17) and (6.18), we then
obtain the expression
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pﬁﬂ

s, — Z Z e((n—l)w+xw>

P
x mod p W mod p“
( Yn=1 w" =z mod p*

’ -\

So7 X arrieaex)
x mod pB

primitive,x(—1)=1

D u(1-9) a(m) B
+—=D Kln(imxap )(I)u (m)
¢(p) mé:l m

(m,p)=1

Let us now consider the sum Sy over classes given by powers of p (6.16).
We decompose this sum as
52 = Z SQ,y7

1<y<B~y
where each sum S, is defined by

p W(mw(p’)(Np")s

j
2

2D DR DR (MW”) b p(a)

xmodp medP
(2),=1 w"™=x mod p®
p

X Z wpy imN)d)oo( )

m21
(m,p)=1
We first evaluate the sums S, in the range 1 < y < f—2 using the argument

of Theorem 6.7 (i) above. Hence, let us consider the inner sum S5 defined
by

S5, = S a(m)y (EmN)du(m)
m>1
(m,p)=1

= > a(m)Kh(EmN,p? V)¢ (m),
m2>1
(m,p)=1
where (recall) ¢oo(y) = y*(lf‘s)VQ(fﬁ_ly) for fs = Np"#~% as above (with
B8 >4and 0 < u < §—1 fixed). Fixing a real number o in the interval
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1 <o < 3—%R(0), we can use the integral presentation of ¢ (y) given in
Proposition 3.5 above to describe this sum S5 , as

ds
o2mi’

St,= [ PGNP0 )5
(o)
where the Mellin transform ¢?*_(s) is given explicitly as in (3.7) above as

s k(s + (1= 9))
o) = gy R LD )
aoHs )y M- r ()
(1 — 5) H;'l:1 F<1—52_Mj) .

Shifting the range of integration to R(s) = —o, we cross poles at s = [i; for
each 1 < j < n of vanishing residues (thanks to Lemma 3.1). We also cross
a simple pole at s = 1 — § of residue

_f,B

Resg—1-s5 (D(’TT, Na p,ny, s)¢;0(3)) = D(%7 N7 pﬂiya 1- 5)F(5)
Now, we can calculate the residue via analytic continuation as in (6.7) above:

D(%a N7pﬁ_y7 11— 6)F(6)

2 1 —
— W (Ao (pP VYN~ 2pB—9)(1—n(1=0)F{ _§
=) (M@ (™) p (1-9)
X > XINN)T(X)" L6, 7 @ x) | F(0)
x mod p? ¥
primitive,x(—1)=1
2
— W (F)@(p? v )N~ 2 pB-v)(1-n(1-4))
p(pP=Y) e

x Z ()" L(6, T ® X),

x mod p?~¥

primitive,x(—1)=1

using again that F(1 — 0)F(8) = 1. To evaluate the remaining integral

— ds
D(7,N,p?7Y,s)p"
o (T, N, 7Y, 8) s (8) 5
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we use that —o < 0 allows us to apply the functional identity of Proposi-
tion 6.4 (i) to D(7, N,pP~Y,s):

D@ N,p*™,5) = W(H(p’ ) Ni==pl—» (=1 Fi(s)

a(m) Tar B

x> K1 (Em NN, p77),
m2>=1
(m,p)=1

This gives us the expression

¢5o(s) |W(@@(p?Y)NE—spfnU=ns) B s)

(—o

a(m _ ds
X Z m(kZ Kl,_1(£m, p?v)| ==

271
m>1
(m,p)=1
—wEEe N Y g )
m2>1
(m,p)=1
m S, ds
X /(J) (an(ﬁ_y)> F(S)%o(s)%,

which after expanding the definition of the Mellin transform ¢%_(s) is given
more explicitly by

W@ NI a(m) ,
= Y.~ Khoa(Em,ph)
B m>=1
(m7p):1

mfsy \* k(s +(1-9)) s
8 /(0.) <Np”(ﬁ—y)> s—(1—-0) F(-s+1)F(s)—
_ W@Ee@E?Y)Nap

> aE:;) Kl 1 (£m,p” )

-5
fﬁ m>1
(m,p)=1
mfs “k(—s+(1-90)) ds
% w(—9) 1-0) 2mi
(—0o) Np 87( - ) ™
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Here again, we use that F((—s + 1)F(s) = 1. Since fz = Np"#~%, the latter
integral expression equals

W (F)@(p®¥)Nzpi—v 3 a(m)

B-y
(Np7LB_u)1_6 Kln—l(im7p )

m>1
(m,p)=1

y / (mNp"B_“)S k(=s+(1-19)) ds
(—o)

N B0 ) T s—(1-0) 2mi
W (R)@(p* )N pf-upr(1-) a(m )3, ("
_ W(E( s )n@)l_a S A gy, G,y ), ().
p m>1
(m,p)=1

Hence, putting this latter expression together with the residue term, we have
shown (for 1 <y < 8 — 2) that

2 T)w - -1 —1 —n(l1—
Siy:WW(w)w(pﬁ V) N3 p(B-y)(A-n(1-06))
x Y Lo eY)
x mod p?~¥
primitive,x(—1)=1
W (F)w(pP~v)Nzph-vpu(i=0) a(m) o .
+ (anﬂ)l—(s Z>1 m Kln—1(:|:m,p )(Pu(p m)
(m,p)=1

It then follows (from the definition) that

p W(mw(p®)(Np"?): =0
Say = =5
©(p) p
2 1
W@ (P V)N pBmy)(-n(1=9))
@(pP=v) (M=)

y Z Z e((n—l)w+xw)

pﬂ
z mod p? w mod p*
(£),=1 w"=z mod p*
P

XPp(—z) Y T()"TLEGT®Y)

x mod pP~Y
primitive,x(—1)=1
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p W(mw(p®) (N nﬁ)%*é.W(%)w(pﬁ*y)]\f%pﬁ*ypu(lfé)
©(p) 7 (NpnBy1=3

. e((nl)erﬂcw)

pB

x

(4

od p w mod p®
V=1 w" =z mod p*

g

SR

(m) -
X Yy (—x a4 Kl,_1(£m, B=Nd,, (p™m).
pr (=) mz;l - (£m, p”~¥) @y (p"m)

(m,p)=1
Now, we can simplify this latter expression by grouping together (and can-
celling out) like scalar terms, using that W (7)) = W () (so that W(m)W (7) =
W ()2 = 1), that w(p’)B(p"7) = w(p?)@(p*)B(p7) = w(p?), and that the
remaining scalar terms can be simplified as in (4.5) above (since § —y > 2).
Hence, we obtain

Sy = ; Y x (= ey e )

p’ pY
xmodp ’medP
( V=1 w" =z mod p®

2
ny(1-75) | —\n—1 u(1—9)
x |p T > T(X)" L6, m®x) +p
x mod pf~Y

primitive,x(—1)=1

‘ %p) > aE:;) Kl, 1 (£m, p° =) &, (p"m)
m>1

(m,p)=1

Let us now consider the case of y = f—1 (corresponding to the case of prime
modulus), starting with

Sipa= 3 alm)ys-i(EmN)de(m)
m>1
(m,p):l

= Y a(m)KlL(EmN,p)ée(m).
m2>1
(m,p)=1

Once again, we use the result of Proposition 3.5, which for any choice of real
number 1 < o < 3 — R(4) gives

SS,Bfl = ( )D(%,W,p,s)dé‘;o(S)ﬁ-
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Shifting the range of integration to R(s) = —o, we cross poles at s = fi; for
each 1 < j < n of vanishing residues (thanks to Lemma 3.1), as well as a
simple pole at s = 1 — § of residue

Ress—1-s (D(%, N,p, s)qﬁ’go(s)) = D(7,N,p,1—0)F(4).

Again, we can compute this residue term via analytic continuation as in (6.8)
above to obtain

2

= mW(%)w(p)N‘S_%F(l —6)

x | pt—n(1=9 Z ()" LS, T @ x) — & (1 — 0)L(,7) | | F(6)

x mod p
primitive,x(—1)=1
2 WEE(E)N
= —W((mw
p—3 P

x| pt =Y > T(X)" 'L, m @ x) = &(1 = 0)L(6,7) |,
x mod p
primitive,x(—1)=1
where we use the cancellation of archimedean factors F(§)F(1 —d) = 1. To
evaluate the remaining integral

ds

D7, N, p, 5)0% () o
 DEFp 90

we apply the additive functional identity of Proposition 6.4(ii) to D(7, N, p, s)
to obtain
W(@@(p)N*F(s)
(=o)

3 (s )+ (-2 1= P o )5

= om p— pl—ns 27
(m,p)=1
ol a(m) n_ 2
=W@z(p)N7p Y Kl,_1(+m,p) + (—-1)"——
p—3
m2=1
(m,p)=1

< (F) Pt
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oy A (32) e Feloso5

Expanding out the definition of ¢%_(s), this latter expression is given more
explicitly by

Wiz T 5N2p > ° (Kln 1(Em,p) + (- 1)"2>

f m2>1 p_3
(m,p)=1
(—o) Npn 3—(1—5) 211
 W@E@@)Nep 12 a(m)
EEEARES mZ "
(m,p)=1
mfs\® =, .,  Kk(=s+(1-9)) ds
x /(_U) (N) F(s)ey (o)~ o g P+ D

which after using (again) that F(S)F(l — s) =1 is the same as

T 2 (s + (125
(m,p):l

S Ga) e

 W@E@@Nip 1, 2 a(m)
e

mfs\’_ , k(—s+(1-190)) ds
X — _
/U)< N > @) =500 am
Expanding out the scalar contribution fz = N PP~ then gives us the even
more explicit expression

W (7) sz 2
> Kl (£m, )yt
(Np”ﬁ = ( 1(dm,p) + (1) p3)
(m.p)=1

o (mNeryHosrd-o) o
(—o) an S — (1 — (S) 211
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W(®@(p)Nzp 1 2 a(m)

(1) —— E
nB—u\1—4§ _

(Npr#=)1=0 p p=3 = m

(m,p)=1

S, () RS

from which we derive that

DG N, p, s)6% () 2

(=) 2mi

= g | 3 {02 e

(m,p)=1

D p—3 e

(m,p)=1

Putting this together with the residue term then gives the formula

2 1
S = WHFm(p)N°~2
26-17 3 (T)w(p)N°~2
x pl—n(l—5) Z T()Z)n_lL((s, ™R X) - Ep(l - 6)L(67 ﬂ-)
x mod p
primitive,x(—1)=1
WEEENIp| = alm) : (6=t
Wim)w(p)Nzp S Kl (£m, —1)"— ) P, (p" )
gt | X S () + (7 2 Jaurom)
(m,p)=1

from which we derive

So,p-1 1= 55

D D M e LG

x mod pﬁ w mod p*
(2),=1 w"=z mod p*
P

- 685 —



Jeanine Van Order

« | prra-9 3 T(X)"'L(6, 7 @ X) — & (1 — ) L(6, )

x mod p
primitive,x(—1)=1

p W(m)w(p®)(Np#)z—?
¢(p) T

DD MIES e

x mod pB w mod p*
(2),=1 w"=z mod p*
P

M EDIN 50 (K1 s+ (1) 2 )0,

nB—u)1—a4
(Np ’ ) m>=1 p
(m,p):l
1 2 a(m)
- () O, (p"m) |,
p p—3 &5 0m
(m,p):l

which after grouping together and cancelling out like scalar terms is the
same as

p 1 ((n—l)w—f—xw) 51
Sop_1=——— el ————— | Y1 (x)w(p” )
21 = L mzdj WZ 3 po1 (@)

(%)":1 w" =z mod p*

“‘m

x prPG=O| [ p1=n(=0) $™ (@n=1L(5 1 @ ) — &, (1-8)L(5, )

x mod p
primitive,x(—1)=1

Nz _ a(m " n(B—
iS00 2 )0 Dm)
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p p= 3 m>=1 m

(m,p)=1

PPI-3) (n—Dw+a@\ P (@)w(p’?)
=5 ) Z e( P > . ph-1

x mod pﬁ w mod p
(&),=1 w"=z mod p*
pin

2
x| | p? Y (0L T x) — " e (1 8)L(8, )

pp)| p-3 N

primitive,x(—1)=1

+ pu1=9) Z % (Kln_l(:l:m,p) + (_1)n2> (I)u(pn(ﬁ—l)m)

m>1 p— 3
(m,p)=1

D p—3 Spm
(m,p)=1

Putting together all of the pieces (separating out residues), we derive the
stated formula. O

COROLLARY 6.9. — Keep the hypotheses of Theorem 6.8 above. We also
have the summation formula

Xp2(m,0,p")
L 5 2 -
= 5 Z Kl, (z,p") e Z X(—2)7(X)"L(§, ™ @ X)
p 5 ©*(p”) .
x mod p x mod p
(F)n=1 primitive,x(—1)=1
w py w v (—) _ 2 —\n—
+ Z %p Ly(l 5) *( ﬁiy) Z T(X)n 1L(6, T ® X)
1Sy<p-2 p L x mod p? Y

primitive,x(—1)=1

x | p™ > ()" L6, @ x) — p" e, (1 — §)L(6,7)

x mod p
primitive,x(—1)=1
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eru(lié) (61735 + 62795 + 63,3;)

Proof. — We see a direct substitution of the formula of Proposition 6.1
above to derive the stated formula. O

Using this latter summation formula, we can now derive the following
simplification.

LEMMA 6.10. — We have the following identity for any exponent g = 4
and any integer n = 2:

> Klu(a,p”) Kl (Ema, p¥) = o1 —=5 > X(m)
5 e(p?) 5
x mod p X mod p
(%)nzl primitive,x(—1)=1
Proof. — Since 8 > 4, we argue that the z-sum is the same as the sum

over all coprime classes  mod p?, i.e. as the sum is supported only classes

x mod p” such that (3)n =1 (by Proposition 6.1). Thus, we have
Z Kl, (z,p”) K, (£mz, p°) = Z Kl, (z,p”) Kl, (£maz, p°),
z mod pB z mod pB
(Z)n=1 (z,p”)=1

which after applying Lemma 4.2 to describe each of the sums Kl,, (+mz, p”)
is the same as

2 - n
m Z Kln(a:,pﬁ) Z X(max)T(x)".
x mod pﬁ x mod Pﬁ

(z,p%)=1 primitive,x(—1)=1

Switching the order of summation, and opening up each of the sums
Kl, (z,p?), we obtain

o ) X(m)7(x)" > e (W)

P
SD( ) x mod pB Y1se--,Yn—1 mod ph

primitive,x(—1)=1
_ Y1 .- -Yn—1

x mod pB
(z,p”)=1

Changing variables to evaluate the inner z-sum as

5 xele (T < )70 = 101 o))
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we then obtain

oy X e(r)

Y1se-3Yn—1 mod pf

X S Xy Y )T (),

x mod pB
primitive,x(—1)=1

which after using that 7(x)"7(X) = 7(x)" 7 (x)|? = 7(x)" " 'p” is the
same as

5 y1+~--+yn_1> 2
p e
2 ( PP ©(p?)

Y1se-:Yn—1 mod pP

X Z X(my; .. .yn_l)T(X)"*l.

x mod pﬁ
primitive,x(—1)=1

Switching the order of summation in this latter expression, we then compute

8 L v(m)r n—lT —\n—1
() 2; R(m)r (0",

primitive,x(—1)=1

which after using that 7(x)"~'7(x)" ' = (|7(x)]?)*" ! = p?»~1 gives the
stated formula. O

COROLLARY 6.11. — Corollary 6.9 gives us the following expression for
the twisted sum Xgo(m,0):

2
L(,m® x
¢*(p?) 2 P ( )
x mod p
primitive,x(—1)=1

+pr Y “(77:) Sum) - —— 3 g )

m

= ¢ (p) =

m=+1 mod p”® m==+1 mod p°? !
m#+1 mod p*
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Equivalently, we have for any exponent f = 4 and for any real parameter
u > 0 the average formula

Xﬁ(ﬂ-a 5) = _pu(175) Z a(m) (I)u(m) - L Z a(m) q)u(m)

=om pln) &= m

m=+1 mod p” m=+1 mod p”’ !
m#+1 mod p*

+ Xgo(m,0,p%).

Proof. — Tt is easy (and classical) to show that

> x(@) Kl (z,p%) = (0™ (6.20)
z mod pB

(£)n=1

Using this identity (6.20), it is then easy to see that

1 2 B
“An > Kln(l'ypﬂ)i*( 7 > X(@)7(X)"L(, 7 ® X)
b « mod p” P x mod p?
(F)n=1 primitive,x(—1)=1
1 2 " —\n
= Bn or (P > 700" ()" L(d, 7 @ x)
PP o (p?) s
x mod p

primitive,x(—1)=1

= cp*(2p5) Z L4, 7 ® x).

x mod pﬁ
primitive,x(—1)=1

Here, in the last step, we use that 7(x)"7(X)" = (|7(x)|?)" = p®™. This gives
the stated residue term for the formula. To evaluate each of the remaining
terms in the expression of Corollary 6.9 after switching the order of sum-
mation in this way, we argue using the orthogonality of additive characters
that each of the remaining terms except for the sums &; , must vanish. To
evaluate the sum over & ,, we apply Lemma 6.10:

Z Kl,( xp “(1_5)61vz
zmodp

(;) =1

Y Kt 3
m2z
):

w(Emaz, p?) P, (m)

xmodp

(2)n=1 (
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= L Py A S g 8 K () [ (m)

x mod pﬂ
(m,p)=1 (£)n=1

— pu(1=9) 2 3 a(m) > xX(m) |®.(m)

m2=1 x mod pB
(m,p)=1 primitive,x(—1)=1

_ a(m 1 a(m
= e) =
(m,p)=1 77L5:t1(pﬁ71)
m#Z+1 mod p?

Here, in the last step, we use (4.1) (as well as (4.5)). This proves the stated
formula for the twisted sum. |

6.4. Some estimates

We now determine the rate of decay of the dual function corresponding
to the weight function ¢, defined on y € R by ¢doo(y) := y*(l";)Vg(fl;ly)

appearing in Proposition 3.5, where fz = N pP7 =% denotes the length of the
region of non-negligible summation of Xz o(m,d,p*) as defined (4.4) above.
Let us write d = R(J) and 09 = max(R(f1), R(F=2)) to lighten notations.

LEMMA 6.12. — Fizing a real parameter u € R as above, let ®,, denote
the dual weight functions appearing in Theorems 6.7 and 6.8. Hence, we let
®,, denote the function defined on y € Rsq by the integral transform

for 1 <o <2+ (1—249). We have for any choice of constants C > 0 and
B > 1 the bounds

e
Oc <(py) ) fy>p" e as o
1-6 B
,(L) +0p ((y) > ify <p*, ie as L — 0.
pu pY ’ p*

The modified weight functions 5u (y) are estimated in a completely analogous
way.

— 0

- 691 -



Jeanine Van Order

Proof. — We estimate the integral by a variation of the standard contour
argument used to derive Lemma 3.4 above. Let us simplify the discussion by
writing x = yp~". Hence, the task is to estimate the integral

/ k(s +(1-0) . ds
(—o) S — (1 — (5) 27TZ

To estimate the behaviour as  — oo, we move the line of integration to the
left to derive the bound

D, (y) = Oc(z™) = Oc ((yp~)~¢)  for any choice of C' > 0.

To estimate the behaviour as x — 0, we move to the right, crossing a
simple pole at s = 1 — § of residue

k(=s+(1-9) o\ _ _ 1
— ReSS:1_5 (8_(1_6)1' = —X .
The remaining integral is then seen easily to be bounded as Op(2?) for any

choice of constant B > 1 to derive the stated estimate in this region. O

We now at last return to the issue of bounding the twisted sum
Xg,2(m, d, p*), with notations and conventions as above (so that 0 < v < f—1
is our fixed real parameter).

LEMMA 6.13. — Taking any choice of real parameter 0 < u < 8 —1, we
have for any choice constant C' > 0
2
Xpa(m o,p*) = -1+ —— > LErex)
©*(p?) < raod P

primitive,x(—1)=1
+0c <pu<1fd+0>pﬁ<ef<1fsfe<6>>70)))’

where 0 < 6 < 1/2 denotes the best known approzimation towards the gen-
eralized Ramanujan conjecture for GL,(Aq)-automorphic forms. Equiva-
lently, we have the estimate

Xg(m,8) = 1+ Xpgo(m,6,p") + Oc (pu<1—d+0)p6<e—<1—ma>>—c>>)_

Proof. — Using Corollary 6.11 above (derived from Theorem 6.8 and
Corollary 6.9), it will suffice to estimate

elr) =

(m,p)=1 m=+1 mod p571
m#Z+1 mod p?
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Since 0 < u < 8 — 1, the description of the decay of the weight function ®,,
in Lemma 6.12 implies that the only contribution in the region of moderate
decay comes from m = 1, this being

1-5
P9, (1) = pr1=0) (_ <p1u> L Op (p—uB)> — 140 (pu(l—d—B))

for any choice of B > 1. Using a variation of the argument given for Lem-
ma 5.2 above, with Lemma 6.12 in place of Lemma 3.4, we see that each of
the remaining contributions m = +1 mod p® is bounded above by

pu(1—5)m9—1—cpuc = Ocg (pu(l—d+C)p/3(€—(1—§}E(6))—C’)>

for any choice of constant C' > 0. Since the sum over contributions will be
dominated by least m > 2 such that m = +1 mod p®, we obtain the stated
bound after taking B > 1 — § to be sufficiently large. O

6.5. Some remarks on hyper-Kloosterman Dirichlet series

Let us now explain how we could have worked directly with the hyper-
Kloosterman Dirichlet series &, (r, h,p?,s) to establish a relevant Voronoi
summation formula via the additive functional identity 6.5 to describe the
twisted sum Xg o(m, 6, p*).

THEOREM 6.14. — Let ¢, denote the function defined on y € Rsq by
boo(y) =y~ 1DV (f5y) as above (where fg = Np™#~"), and let ., denote
the integral transform defined in Theorem 6.7 (cf. Lemma 6.12). We have
for any coprime residue class h mod p? the Voronoi summation formula

ST alm) Ky (£mh, p?)doo (m)
m2>1
(m,p?)=1

= WEREENTE . 2 Y NLEr9Y)

x mod p?
primitive,x(—1)=1

S _1 w(l—
+ W(@m(p? )N~ 2ph0 . pr1=0)

m>1 m>=1
m=+hN mod p? m=+hN mod p?~*
m#Z+hN mod pB
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Proof. — Using Proposition 3.5 above, we have for any choice of 1 < 0 <
3 — R(0) the integral presentation

_ . ds
Z a(m) Kln(imh7pﬁ)¢oo(m) = /( )ﬁ"(ﬂ', h7p67 S)d)oo(s)%?
m>1 g
(m,p)=1
where
. s—(- k(s + (1 —9))
= _— — 1
n Sl
_ s—(-0)k(=s+ (1 -9)) L Bn(—st1) [lj= F( 2 )
B — — n 1—s—p; ’
Shifting the line of integration to R(s) = —o, we cross poles of vanishing
residues at s = fi; for each j = 1,...,n (thanks to the construction of k(s)

in Lemma 3.1 above), as well as a simple pole of residue
Reso(1-5) (Rn (T 1,7, 5)0% (5)) = K (7, 1y, 1 = ) F(6).
Again, we can evaluate this residue via analytic continuation as in (6.11)

(with F(1 — 6)F(8) = 1) to derive

ﬁﬂ(%a hapﬁa 1- 6)F(5)
= 2 w@EEONY Y LG R e X).

B
e(p?) Ny
primitive,x(—1)=1

To evaluate the remaining integral

ds
ﬁn ~a h7 67 : o
[ R o)

we apply the additive functional identity

R (T, h, P, 8) = W(F)w(p?)N2—spP U= F(s)

¢(p) Z a(m) 1 Z a(m)
1— 1—
p m>1 e p m>1 m=—¢
m=+hN mod pB m=+hN mod pﬂ71
m#z+hN mod p”®

of Proposition 6.5 to obtain
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W (%)@(p? )N 2 p"?

»(p) a(m)/ . — ( m >S ds

x | —= E ) F(8)| —= | —

p m>1 l (—U)(ZS (£)F1e) Np™? ) 2mi
m=+hN mod p?

1 a(m " — m \° ds

_ = Z ( ) / qSOO(S)F(S) (N nﬁ) 27 |

p m>1 m  J(-o) p T
m=+hN mod p?~1

m#Z+hN mod p?

which after expanding out the explicit definition of the Mellin transform
#%.(s) (as above) and using that F(s)F(—1+s) = 1 and that fz = Np"#~4,
is the same as

ds _ WHoE*)Np

ﬁn(%7 h7pﬁ7 S)Q%O(S)f =
(—0) 21 (anﬁfu)lfzs

#(p) 3 ag;n)@u(m)—l 3 a(m)q)u(m)

p m2>1 p m>=1

m=+hN mod p? m=+hN mod p#~*
m#Z+hN mod pB
Simplifying scalar terms, and putting this together with the residue, we
obtain the stated formula. O

Hence, we derive the same recursive formula for the average:

COROLLARY 6.15. — Assume that B > 2. The twisted sum Xg 2(f,0,p")
defined in (4.4) above can be described equivalently for any choice of real
parameter u > 0 by

2
L(6,m @ X)
©*(p°) 2 5
x mod p
primitive,x(—1)=1

a(m 1 a(m
+ pu(l—é) Z ( )(I)u(m) _ Z ( )<I>u(m)
m2>1 m m2=1 m
m==+1 mod p”® m=+1 mod p
m#Z=+1 mod pB

B—1
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Proof. — The result is immediate after grouping together like scalar
terms. ]

7. Hyper-Kloosterman Dirichlet series at large

We can now give the proofs of Theorems 1.1 and 1.3 for the hyper-
Kloosterman Dirichlet series (1.1):

Proof of Theorem 1.1(A). — The first claim (i) appears in Proposi-
tion 6.5. For (ii), fix s € C with R(s) > 1. Expanding the absolutely conver-
gent Dirichlet series and applying Lemma 4.2 (ii), we obtain

a(m)
h = K1, (+mh,
Rn(m, h,p,s) 2 . (£mh, p)
(m,p)=1

2 a(m . .
= y, A > Xm0+ (-1 |,
p—3 m
m21 x mod p
(m,p)=1 primitive,x(—1)=1

which after switching the order of summation is the same as

2
ﬁn(ﬂ7hapa S) = f?) Z X(h)T(Y)nL(&ﬂ'@X) + (71)nL(57ﬂ-)
p x mod p
primitive,x(—1)=1

Applying the functional equation (6.3) to each of the L-functions L(s, 7 ® )

and L(s, ) then gives us

’ﬁﬂ(’]ra hapv 8) = p%gW(W)NéisF(S)

wp) Y. X(NLA-sFX) + (-1)"L(1—s7) |,
x mod p
primitive,x(—1)=1

which (by the analytic continuation of L(s, 7 ® x) and L(s,)) is valid for
any s € C. Let us now assume that $(s) < 0, in which case we can open up
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the absolutely convergent Dirichlet series

Y xMIi-sFen= Y xaN) Y Amxm

1-s
m
x mod p x mod p m>1
primitive,x(—1)=1 primitive,x(—1)=1 (m,p)=1
a(m) 5 _
= Z 1-s X(th)
m
m>1 x mod p
(m,p)=1 primitive,x(—1)=1

in the latter expression. Evaluating the inner sum via the relation of Propo-
sition 4.1 then gives us

> Ay oevm)

m2>1 x mod p

(m,p)=1 primitive,x(—1)=1
p— 3 a(m) a(m)
B 2 Z ml—s - Z ml-s .
m>1 m=>1
m=+hN mod p m#Z=+hN mod p

Using this relation in the previous expression for &, (m, h, p, s) then gives the
stated functional identity. O

Proof of Theorem 1.1(B). — The proof in either case follows from The-
orem 1.1(A) via Mellin i 1nver51on as in Theorem 6.6. Hence for (i), choosing

o € R suitably so that ¢(y f(g) o*( 27”, we have that
d
S a(m) Kl (£mh, pP)o(m) = [ °(s) Z ) 11 (b, P, )
m>1 (@) m>1 me 2mi
(m.p)=1 (m,p)=1
= [ 6@ h
- (U) n b 7p ) 271_7:'

Shifting the range of integration to R(s) = —o, we then apply the additive
functional identity of Theorem 1.1(A)(i) to derive the stated formula. The
proof of (ii) follow in the same way for Theorem 1.1 (B)(ii). O

Proof of Theorem 1.3(A). — Let us first consider (i), hence with 5 >
Taking s € C with R(s) > 1, we open up the absolutely convergent D1r1chlet
series and apply Lemma 4.2 to obtain the identification

f{’%('f,h,pﬁ)=23g n(Emh,p”)
m2=1
_ 5 —\n
= o7 Y. xmh)r(x)"
m2=1 mod p?
(m7p) 1 prim?(tiveo,x(pfl):1
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Switching the order of summation, we then obtain

2
&’ =—— > xWT(R"L(5,¢x)
e(p”) P
x mod p
primitive,x(—1)=1

Applying the classical functional equation

to this latter expression, we then obtain the identification

°) 2
() >'<p(p5)

(0" L(1 — 5, €X),

(%
T
QT

w\»—A

RO (& h,ps) = PP )X (g)T(€) <7TS
X Z x(h

x mod pB
primitive,x(—1)=1

which is valid for any s € C (thanks to the analytic continuation of the
Dirichlet series L(s,{x)). Let us now consider this latter expression at a
complex variable s with R(s) < 0, where we can expand out as

Y e ®LO - 5.6
e(p?) 5

x mod p
primitive,x(—1)=1

2
L e 2O

x mod pP m21
primitive,x(—1)=1 (m,p)=1
f 2 e
= > 7) > x(hgm)T(x)" "
m2=1 x mod ;DB
(m,p)=1 primitive,x(—1)=1

Applying Lemma 4.2 (or Proposition 4.1 if n = 1) to evaluate the inner sum,
we then find that
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mz21 m <,0(p5 x mod pﬁ
(m,p)=1 primitive,x(—1)=1
m N
= Z é.(1_) Kln—l(imh%pﬁ)
ml—s
m>1
(m,p)=1
if n > 2, and
&m) 2 _
Y. 207) > x(hgm)
m2>=1 x mod pB
(m,p)=1 primitive,x(—1)=1
_ Z &m) 2 (") Z §(m)
= ml—s gO(pﬁ) 2 = ml—s
m=+hq mod p” m=+hq mod p® !

m#Z+hqg mod pﬁ

if n = 1. Substituting these expressions back into the previous (analytic
continuation) formula for 82 (¢, h, p?, s), we then obtain for R(s) < 0 (after
analytic continuation) the stated additive functional identity

e -
R h,p%,5) = g pP (7T (€) (”5_2 r((i))> R 16 hg, %1 = s).
2

Let us now show (ii), hence with 8 = 1. Again we start with s € C having
R(s) > 1, opening up the absolutely convergent Dirichlet series and applying
Lemma 4.2 to obtain

m
REnp= Y K, (mh,p)
m>1
(m,p)=1

2 £(m) \n n
=5 > 5 > xR+ (-1 |,
b m>1 x mod p
(m,p)=1 primitive,x(—1)=1

which after switching the order of summation is the same as

ﬁ(’r)L(g’ h7p7 5)

-l T 060 + (1) e O L)
primiﬁ\zgf(fl)zl
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Again, we write €,(s,£) ™! to denote the Euler factor at p of L(s,£), so that
ep(s,€)L(s, &) = L(p)( ,&) denotes the Dirichlet series with the Euler factor
at p removed. Applying the functional equations

L(s,&x) = (9p”)*¢0")x(9) (&) (%) (778% ) ) L(1 — 5,€x)

(5 o e
r(z))“l )

to this latter expression, we then obtain the identification

(NI

L(s, ) = q°7(§) (WS

_ =S 5_%1—‘(153) 2
ﬁ%(&vhapa 8) =4q T(§) (77' F(%) ) pfg

PE) D x(h) ()" T L= 5,80+ (1) ep(5,§) L(1—5,9) |,
primii(‘i\]z:l,of(g 1)=1

which is valid for all s € C (again by the analytic continuation of the Dirich-
let series L(s,&x) and L(s,&)). Let us now assume that R(s) < 0. Hence,
we can expand out the absolutely convergent Dirichlet series in this latter
expression, switching the order of summation to derive

Y e L0 - 6
p x mod p
primitive,x(—1)=1

2 X(m) } : ) (7)1
= j ml—s X(hqm)T(X) !
b m>1 x mod p
(m,p)=1 primitive,x(—1)=1

If n > 2, then we can apply Lemma 4.2 to evaluate the inner sum so that

2 n—
m Z x(hg)T(X)" ' L(1 = s,€x)
x mod p
primitive,x(—1)=1

- > X X0 (11, (b, p) + (—1)")

m>=1
(m,p)=1

If n =1, then we simply apply Proposition 4.1 to evaluate
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2 n
Y e - 6
p x mod p
primitive,x(—1)=1

_ Z E(m) _ 2 Z £(m)
- 1— _ 1—s"
m>1 mee p 3 m>1 mee
m=thqg mod p m#Z+hqg mod p

Substituting these expressions back into the previous formula for £2 (¢, h, p, s)

then proves the claim. O
Proof of Theorem 1.3(B). — In either case, we expand for a suitable
choice of real number ¢ > 1, shifting the range of integration to R(s) = —o:
3 N 0 3 ds
> )KL (Emhp )o(m) = | 6" ()R hp78)
m>1 (o) ™
(m,p)=1

ds
= [ SOREn

Suppose first that f > 2. Applying the functional identity of Theo-
rem 1.3 (A)(i) to &,(&, h, p®, s) gives

()80 (6. P 5) 35
0 (5) 806 )5

1F 1—s L d
7)p? /( ;b*(S)(qpﬁ)’s (ﬁSQ IE(Q)))ﬁ%_l(&hq,pﬁ,lS)%si,

which after expanding the absolutely convergent Dirichlet series 82 (¥, hq,
p?,1 - s) equals

(=9o)

Y 5 ) k1, 1 (£mhg, p?)

m>=1
<f e @—J&g)) () &

(m,p)=1
- 701 —




Jeanine Van Order

This shows (i). For =1, we apply Theorem 1.3(A)(i) to &2 (&, h,p, s) to find

3

SR hp g
=r(@ewp [ ' (W‘“‘i Pp())> (o) S T 1 013

+ (1" () /( IR (wFF(())> IO s

) (_1),17(5)])33/(_0?*(8) (WS_EFF(ZE;U ey (s, )L (1 — s,@%,

which after expanding out the absolutely convergent Dirichlet series is the
same as

, £(m) o e AT
oo & et [ oo T )(2) 3
(m,p)=1)

—1)"r 5(7771) (g FS—%F(%) m SE

(1)) mZ u /(_U)w)( F(;))(q) o
(m,p)=1

()2 £(m) o[-t TG o a () ds

+ (1T mZ m /(U?U( e ) p<,g><q> &
(m,p)=1
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