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Level sets of certain Neumann eigenfunctions under
deformation of Lipschitz domains

Application to the Extended Courant Property (∗)

Pierre Bérard (1) and Bernard Helffer (2)

ABSTRACT. — In this paper, we prove that the Extended Courant Property fails
to be true for certain smooth, strictly convex domains with Neumann boundary con-
dition: there exists a linear combination of a second and a first Neumann eigenfunc-
tions, with three nodal domains. For the proof, we revisit a deformation argument of
Jerison and Nadirashvili (J. Am. Math. Soc. 13 (2000)). This argument being inter-
esting in itself, we give full details. In particular, we carefully control the dependence
of the constants on the geometry of our Lipschitz domains along the deformations.

RÉSUMÉ. — Dans cet article, nous montrons que la « propriété étendue de Cou-
rant » est fausse pour certains domaines convexes lisses avec condition au bord de
Neumann : il existe une combinaison linéaire d’une première et d’une seconde fonc-
tions propres de Neumann ayant trois domaines nodaux. Pour la démonstration,
nous reformulons un argument de Jerison et Nadirashvili (J. Am. Math. Soc. 13
(2000)). Cet argument étant intéressant en lui-même, nous détaillons la preuve. En
particulier, nous explicitons la dépendance des constantes par rapport à la géométrie
des domaines lipschitziens le long des déformations.

1. Introduction

Let Ω ⊂ Rd be a bounded domain (open and connected), with d > 2. We
assume that Ω is smooth enough, and we consider the eigenvalue problem{

−∆ϕ = µϕ in Ω ,

B(ϕ) = 0 on ∂Ω ,
(1.1)
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where the boundary condition B(ϕ) is either the Dirichlet boundary condi-
tion ϕ|∂Ω = 0, or the Neumann boundary condition ∂ϕ

∂ne
|∂Ω = 0 (here ne

denotes the exterior unit normal).

We write the eigenvalues of (1.1) in nondecreasing order, with multiplic-
ities, starting with the index 1,

µ1(Ω, a) < µ2(Ω, a) 6 µ3(Ω, a) 6 · · · , (1.2)

where a ∈ {d, n} denotes the boundary condition.

Given an eigenvalue µ(Ω, a) of (1.1), we denote by E (µ(Ω, a)) the corre-
sponding eigenspace. Given an eigenfunction ϕ ∈ E (µ(Ω, a)), we denote by

Z(ϕ) = {x ∈ Ω | ϕ(x) = 0} (1.3)

the nodal set of ϕ, and by β0(ϕ) the number of nodal domains (the connected
components of Ω\Z(ϕ)) of the function ϕ.

Given an eigenvalue µ = µ(Ω, a) of (1.1), we denote by κ(µ) the least
index of µ,

κ(µ) = min{k | µk(Ω, a) = µ} . (1.4)

The following classical theorem was proved by R. Courant in 1923, see
for example [16, §VI.6].

Theorem 1.1 (Courant’s nodal domain theorem). — Let µ be an eigen-
value of (1.1), and ϕ ∈ E(µ) a corresponding eigenfunction. Then,

β0(ϕ) 6 κ(µ) . (1.5)

When d = 1, given a finite interval ]α, β[, instead of the eigenvalue prob-
lem for the Laplacian, we consider the Sturm–Liouville eigenvalue problem,{

−y′′ + q y = µ y in ]α, β[ ,
B(y) = 0 at {α, β} ,

(1.6)

where q is a smooth real function on [α, β]. There are striking differences
between the eigenvalue problems (1.6) (d = 1) and (1.1) (d > 2).

First difference. — When d = 1, a classical theorem of C. Sturm [41]
states that the eigenvalues of (1.6) are all simple, and that an eigenfunction
of (1.6), associated with the nth eigenvalue, has exactly n nodal domains.

When d > 2, the eigenvalues of (1.1) may have multiplicities (this is for
example the case for a square with either Dirichlet or Neumann condition
on the boundary). By Courant’s nodal domain theorem, an eigenfunction
of (1.1), associated with the nth-eigenvalue has at most n nodal domains.
However,
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(1) For the round sphere S2, and for the square with Dirichlet bound-
ary condition, examples of A. Stern [7, 8] show that there is no
general lower bound on β0(ϕ) for higher energy eigenfunctions, ex-
cept the trivial bound β0(ϕ) > 2 . Note that the example of the
square suggests that such a statement might not be true for the
Neumann boundary condition, see the paragraph before Proposi-
tion 10.2 in [23].

(2) A theorem of Å. Pleijel [37] shows that the upper bound β0(ϕ) 6
κ(µ) is sharp for finitely many eigenvalues µ only.

Second difference. — Another, not so well-known, theorem of C. Sturm
[42] states that, for n > m > 1, a linear combination

∑n
k=m akVk of eigen-

functions of (1.6), in the range k ∈ {m, . . . , n}, has at least (m − 1), and
at most (n − 1) zeros in the interval ]α, β[. We refer to [11] for a more pre-
cise statement of Sturm’s theorem, and to [18], in particular Theorem 1 in
Section IV.3, for a different point of view.

In dimension d > 2, a similar statement (for the upper bound) appears
in Footnote 1, p. 454 of [16, Chapter VI.6], namely:

Any linear combination of the first n eigenfunctions divides the do-
main, by means of its nodes, into no more than n subdomains. See
the Göttingen dissertation of H. Herrmann, Beiträge zur Theorie der
Eigenwerte und Eigenfunktionen, 1932.

This statement is sometimes referred to as the “Courant–Herrmann theo-
rem” [21, §9.2], or the “Courant–Herrmann conjecture” [19]. We shall call
this statement the Extended Courant Property, and refer to it as the
ECP(Ω, a), when applied to the boundary value problem (1.1), with the
boundary condition a.

In [5], see also [4, 31], V. Arnold points out that the ECP(RP2, g0) is true
for the round metric g0, and that the ECP(RP3, g0) is false, with counterex-
amples constructed by O. Viro [44]. Arnold also claims that ECP(S2, g) is
false for a generic metric g. As far as we understand, the only published proof
that the assertion “the ECP(RP2, g0) is true”, is the real algebraic geometry
proof given in [34, Theorem 1, and second remark on p. 305]. To our knowl-
edge, no proof of the second claim has been published, see [6, Section 5] for
a related result.

Little seems to be known on the ECP. In [10, 12], we give some exam-
ples of domains such that ECP(Ω, a) is false, with either the Dirichlet or the
Neumann boundary condition. However, all these examples are singular (do-
mains or surfaces with cracks), or have a nonsmooth boundary (polygonal
domains). A natural question is whether one can construct counterexamples
to the ECP with a C∞ boundary. Numerical simulations for the equilateral
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triangle with rounded corners (the corners of the triangle are replaced by
circular caps tangent to the sides) suggest that this should be true. Note
however that a triangle with rounded corners is C1, not C2.

The pictures in the first row of Figure 1.1 display the level sets and
nodal domains of a second Neumann eigenfunction φ of the equilateral tri-
angle with rounded corners, as calculated by matlab. The function is almost
symmetric(1) with respect to one of the axes of symmetry of the triangle.
The pictures in the second row display the nodal sets of the function a+ φ
for two values of a. They provide a numerical evidence that ECP is not true
for the equilateral triangle with rounded corners, and Neumann boundary
condition.

Figure 1.1. Level sets of one of the second Neumann eigenfunctions
of the equilateral triangle with rounded corners

In this paper, we prove,

Theorem 1.2. — There exists a one-parameter family of C∞, strictly
convex domains {Ωt, 0 < t < t0} in R2, with the symmetry of the equilateral
triangle Te, such that:

(1) Generally speaking, numerical softwares do not necessarily produce the symmetric
eigenfunctions when an eigenvalue is not simple.
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(1) The family is strictly increasing, and Ωt tends to Te, in the sense of
the Hausdorff distance, as t tends to 0.

(2) For any t ∈ ]0, t0[, the ECP(Ωt, n) is false. More precisely, for each
t, there exists a linear combination of a symmetric 2nd Neumann
eigenfunction and a 1st Neumann eigenfunction of Ωt, with precisely
three nodal domains.

The starting point of the proof of Theorem 1.2 is the fact, established
in [10], that the ECP(Te, a) is false for both the Dirichlet, and the Neumann
boundary conditions on the equilateral triangle. The idea is then to show
that one can find a deformation of Te by smooth strictly convex domains,
in such a way that the symmetric second Neumann eigenfunction deforms
nicely.

Organization of the paper

In Section 2, we revisit a deformation argument given by Jerison and
Nadirashsvili [27] in the framework of the “hot spots” conjecture. The main
result is Lemma 2.14. This argument being interesting in itself, we give
full details. In Section 3, we construct smooth strictly convex approxima-
tions of the equilateral triangle by using the convexity properties of its first
Dirichlet eigenfunction (Proposition 3.1) or its torsion function (Proposi-
tion 3.3). These approximating domains have the symmetries of the equi-
lateral triangle. A key point is that their second Neumann eigenspace has
dimension 2, with a nice symmetry property (Proposition 3.5). In Section 4,
we first construct yet another deformation {Ωt} of the equilateral triangle
(Proposition 4.2), and then complete the proof of Theorem 1.2 using this
deformation.

Remark 1.3. — As pointed out by the anonymous referee, a natural ques-
tion arises from the counterexamples to the Extended Courant Property.
Does there exist a constant C such that every linear combination of the
first n eigenfunctions has at most C n nodal domains, for some constant C.
The answer is no in general. The first examples are constructed in [10, Re-
marks 4.3 and 6.2], by introducing cracks. Further examples are constructed
in [13] for the 2-torus, and in [6] for regular polygons with Neumann bound-
ary condition, for the 2-torus and for the 2-sphere. More precisely, in the
latter case, there exists a metric g on T2 (resp. S2), and an associated eigen-
function Φ of the Laplace–Beltrami operator ∆g, such that the set {Φ > 1}
has infinitely many connected components. Furthermore, the metric g can
be chosen as close as desired from the flat (resp. the round) metric.
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2. A deformation argument

In this section, we revisit a deformation argument of Jerison and Nadi-
rashvili [27, Section 2]. Note that our framework is different: they are inter-
ested in antisymmetric eigenfunctions in domains with two orthogonal lines
of mirror symmetry; we are interested in symmetric eigenfunctions in do-
mains with the symmetries of an equilateral triangle. Because we work with
symmetric eigenfunctions, we need an extra assumption (Assumption 2.4)
which is satisfied by the domains used in the proof of Theorem 1.2, Sec-
tion 4. We also aim at controlling the constants which appear in the analytic
inequalities, and at making sure that they are uniform in a large class of
domains. This aspect is not always taken care of clearly in the literature.

2.1. Geometric framework: the class LM

Let M be a positive constant.

Definition 2.1. — The class LM comprises the sets Ω ⊂ R2 which
satisfy the following conditions.

Ω is convex and open, with 0 ∈ Ω . (2.1)

B(M−1) ⊂ Ω ⊂ Ω ⊂ B(M) , (2.2)
where B(R) denotes the open ball centered at 0, with radius R, and B(R)
denotes the corresponding closed ball.

Ω is symmetric with respect to D := {(u, v) ∈ R2 | u = 0} . (2.3)
∂Ω is regular at D ∩ ∂Ω , (2.4)

i.e. in a neighborhood of m ∈ D∩ ∂Ω, the boundary ∂Ω is piecewise C1, and
∂Ω\{m} is C1.

The domain Ω can be described by a polar equation,
Ω = {(r, θ) | 0 6 r < ρ(θ)} , (2.5)

where the function ρ is a 2π-periodic, Lipschitz function, with Lipschitz con-
stant bounded from above by M .
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We define the domain,
Ω+ := Ω ∩ {(u, v) ∈ R2 | u > 0} . (2.6)

We decompose its boundary ∂Ω+ as
∂Ω+ = Γ t ΓD , (2.7)

with Γ = ∂Ω+ ∩ {u > 0}, and ΓD = D ∩ Ω+.

Notation. — In the sequel, we denote by D both the line, and the mirror
symmetry with respect to the line D. We denote by D∗ the action of the
symmetry D on functions, D∗φ = φ ◦D.

Remarks 2.2. — We note the following properties for later reference.

(1) According to Proposition 2.4.4 in [25], domains satisfying condi-
tions (2.1) and (2.2) satisfy a uniform (i.e. depending only on M)
cone property. It follows from Theorem 2.4.7, and Remark 2.4.8
in [25] that such domains are uniformly Lipschitz domains (i.e., the
boundary is locally the graph of a Lipschitz function, ibidem Defi-
nition 2.4.5).

(2) With the definitions of [20], for such domains, the inclusionH1(Ω) ↪→
L2(Ω) is compact, and we can define eigenvalues using the varia-
tional approach.

(3) The fact that a domain Ω, defined in polar coordinates as in (2.5),
is a Lipschitz domain also follows from Theorem 7.1 of [45].

(4) Let Ω be a domain defined by a polar equation, as in (2.5). Define
the function r(θ) by r(θ) = 1/ρ(θ). If Ω is convex, then the second
derivative of r, in the sense of distributions, is a measure such that
r′′(θ) + r(θ) > 0 , see [17, Chapter 3.4].

We consider the Neumann eigenvalue problem for−∆ in Ω. We denote the
Neumann eigenvalues by νi(Ω), and arrange them in nondecreasing order,
starting with the index 1. We also consider the eigenvalue problems for −∆
in Ω+, with either the Neumann boundary condition on ∂Ω+, or the mixed
boundary conditions, Neumann on Γ and Dirichlet on ΓD. We denote these
eigenvalues respectively by µi(Ω+, nn), and µi(Ω+, nd), and arrange them in
nondecreasing order, starting with the index 1.

We are interested in the least positive eigenvalues of Ω associated with
the symmetry D. More precisely, we introduce
ν−(Ω) := inf{νi(Ω) | i > 2 , ∃ ϕ 6= 0 ,−∆ϕ = νi(Ω)ϕ , D∗ϕ = −ϕ} , (2.8)

and
ν+(Ω) := inf{νi(Ω) | i > 2 , ∃ ϕ 6= 0 ,−∆ϕ = νi(Ω)ϕ , D∗ϕ = ϕ} , (2.9)

where the equations −∆ϕ = νi(Ω)ϕ are to be understood in Ω.
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It is easy to see that
ν−(Ω) = µ1(Ω+, nd) ,
ν+(Ω) = µ2(Ω+, nn) ,
ν2(Ω) = min{ν−(Ω) , ν+(Ω)} .

(2.10)

Remarks 2.3. — About the eigenvalues ν−(Ω) and ν+(Ω).

(1) Because µ1(Ω+, nd) is simple, there is, up to scaling(2) , a unique
anti-symmetric eigenfunction ψΩ of −∆ in Ω, associated with the
eigenvalue ν−(Ω),∫

Ω
ψ2

Ω = 1 and ψΩ|Ω+ > 0 . (2.11)

(2) If ν2(Ω) is a simple eigenvalue, then either ν2(Ω) = ν+(Ω) < ν−(Ω)
or ν2(Ω) = ν−(Ω) < ν+(Ω), and the corresponding eigenfunction is
either invariant, or anti-invariant under D.

(3) If dim E
(
ν2(Ω)

)
> 2, then

E(ν2) = (E(ν2) ∩ S+)⊕ (E(ν2) ∩ S−) ,
with dim E(ν2) ∩ S− 6 1. Here, we have used the notation

Sσ := {φ | D∗φ = σ φ} , σ ∈ {+,−} . (2.12)
(4) If Ω is sufficiently regular, then dim E(ν2) 6 3, see [15, 26].
(5) Let Ti(α) be an isosceles triangle with aperture α ∈ ]0, π[. According

to [32, §10],

ν2(Ti(α)) = ν+(Ti(α)) < ν−(Ti(α)) when 0 < α <
π

3 ,

ν2(Ti(α)) = ν−(Ti(α)) < ν+(Ti(α)) when π

3 < α < π .

There is a bifurcation at π
3 , in which case

ν2

(
Ti
(π

3

))
= ν−

(
Ti
(π

3

))
= ν+

(
Ti
(π

3

))
.

(6) In Section 3, we consider domains Ω which admit the symmetry
group G0 of the equilateral triangle, see (3.7). For such domains,
Proposition 3.5 tells us that

ν−(Ω) = ν+(Ω) = ν2(Ω) = ν3(Ω) < ν4(Ω).

Notation. — In (2.11), and henceforth, we skip the (Lebesgue) measure
dx in the integrals.

We now introduce a technical assumption.

(2) By this, we mean “up to multiplication by a nonzero scalar”.
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Assumption 2.4. — The eigenvalue µ2(Ω+, nn) is simple.

Remark 2.3(6) tells us that Assumption 2.4 is satisfied by convex domains
with the G0 symmetry, see Proposition 3.5, and in particular by the domains
Ωt constructed for the proof of Theorem 1.2.

Remark 2.5. — Provided that Assumption 2.4 is satisfied, there is a D-
symmetric eigenfunction φΩ of −∆ in Ω, associated with ν+(Ω). This eigen-
function is uniquely determined, up-to-sign, by the normalization

∫
Ω φ

2
Ω = 1.

In Lemma 2.14, we will prove that one can actually make a unique choice of
φΩt along a path of domains.

2.2. Preliminary estimates

We shall now examine how the eigenvalues ν±(Ω), and the correspond-
ing eigenfunctions, vary with the domain Ω ∈ LM . For this purpose, and
following [27], we introduce the following distance in the class LM ,

dr(Ω1,Ω2) = ‖ρ1 − ρ2‖∞ , (2.13)
if the domains are defined by the functions ρ1 and ρ2 respectively, as in (2.5).

Note that this distance is bigger than the Hausdorff distance between
open sets contained in a given compact ball D,

dH(Ω1,Ω2) := dH(D\Ω1, D\Ω2) . (2.14)
Here,

dH(K1,K2) := max
{

sup
x∈K1

inf
y∈K2

d(x, y) , sup
x∈K2

inf
y∈K1

d(x, y)
}
, (2.15)

is the Hausdorff distance between the compact sets K1 and K2, and d(x, y)
is the Euclidean distance between the points x, y ∈ R2.

Note that the distance defined in (2.14) does not depend on the choice
of the compact D, once it contains both Ω1 and Ω2.

Notation. — In the sequel, |Ω| denotes the area of a domain Ω. We will
also use the following convention. We use constants Ci, i ∈ N in the state-
ments, and local constants Ci,j , i, j ∈ N inside the proofs. Note that the
constants are not numbered linearly. When a constant appears, we mention
which parameters it depends upon.

Lemma 2.6. — There exists a constant C1(M) such that, for any do-
mains Ω1,Ω2 ∈ LM ,

|Ω1 \ Ω2| 6 C1(M) dr(Ω1,Ω2) . (2.16)
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Proof. — It suffices to notice that

Ω1 \ Ω2 = {(r, θ) | ρ2(θ) 6 r < ρ1(θ)} ,

and to compute the area in polar coordinates. �

Lemma 2.7. — There exists a constant C2(M) such that, for any Ω∈LM ,

max{ν2(Ω) , ν+(Ω) , ν−(Ω)} 6 C2(M) . (2.17)

Proof. — Since Ω ∈ LM , condition (2.2) is satisfied. We then have,
ν2(Ω) 6 δ2(Ω) < δ2(B(M−1)) ,
ν+(Ω) = µ2(Ω+, nn) 6 δ2(Ω+) 6 δ2

(
B(M−1) ∩ {u > 0}

)
,

ν−(Ω) = µ1(Ω+, nd) 6 δ1(Ω+) 6 δ1
(
B(M−1) ∩ {u > 0}

)
,

where we have used δ’s to denote Dirichlet eigenvalues. �

Proposition 2.8. — Under the Assumption 2.4, there exists a constant
C3(M) such that, for any Ω ∈ LM , the normalized eigenfunction ψΩ (de-
fined in Remark 2.3(1)), and the normalized eigenfunction φΩ (defined in
Remark 2.5), belong to the Sobolev space H2(Ω), with corresponding Sobolev
norm less than or equal to C3(M),

‖ψΩ‖H2(Ω) + ‖φΩ‖H2(Ω) 6 C3(M) . (2.18)

Proof. — We refer to [20, proofs of Theorem 3.2.1.2 and 3.2.1.3]. The
point we want to stress here, is that the bound is uniform with respect to
the domains in LM . �

Remark 2.9. — The H2 estimates in the proposition hold for convex do-
mains. For more general Lipschitz domains, there are only Hs estimates,
with s = 3

2 in [27], or s < 3
2 in [39]. A counterexample is given in [20].

Proposition 2.10 (Extension theorem). — For any domain Ω ∈ LM ,
there exists a linear extension operator EΩ, such that for any s > 0,

EΩ : Hs(Ω)→ Hs(Rn) ,

and there exists a positive constant C4(M, s), such that, for all ϕ ∈ Hs(Ω),
‖EΩ(ϕ)‖Hs(Rn) 6 C4(M, s)‖ϕ‖Hs(Ω) ,

EΩ(ϕ)|Ω = ϕ almost everywhere ,
EΩ(ϕ) is D-(anti)symmetric, if ϕ is.

(2.19)

Furthermore, one can choose EΩ(ϕ) with compact support in B(2M).

Proof. — This proposition follows from Theorem 5 in [40, Chapter VI.3]
and interpolation. We again point out that the constant C4(M, s) is uniform
in LM . �
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Finally, we mention the classical Sobolev embedding theorem, in the form
we will use later on. Recall that B(R) is the open ball with center the origin,
and radius R in R2.

Proposition 2.11. — For all α ∈ [0, 1[, the space H2(B(R)) embeds
continuously in C0,α(B(R)). The space H1(B(R)) embeds continuously in
Lp(B(R)) for all p > 2. In particular, for any s, 1 6 s < 2, and for any
ϕ ∈ H2(B(R)), we have ϕ ∈ C0,s−1(B(R)), dϕ ∈ L 2

2−s
(B(R),R2), and there

exists a constant C5(R, s), such that
‖ϕ‖L∞(B(R)) + ‖dϕ‖L 2

2−s
(B(R)) 6 C5(R, s)‖ϕ‖H2(B(R)) . (2.20)

Proof. — See [20, Theorem 1.4.4.1, and equations (1,4,4,3)–(1,4,4,6)], for
the statements, and Adams [1, Chapter IV and V], for the proofs. �

Notation 2.12. — From now on, we choose some s0 ∈ ]1, 2[, and use the
notation,

p0 := p(s0) = 2
2− s0

, and q0 := q(s0) = s0 − 1 > 0 .

2.3. Properties of ν+(Ω) and φΩ

In this section, we are interested in how the D-symmetric eigenfunction
φΩ changes along a deformation Ωt of the domain. Note that in [27], Jerison
and Nadirashvili consider the D-anti-invariant eigenfunctions, in the context
of the “hot spots” conjecture.

Lemma 2.13. — There exists a constant C20(M, s0) such that, for any
domains Ω1,Ω2 ∈ LM ,∣∣ν+(Ω1)− ν+(Ω2)

∣∣ 6 C20 dr(Ω1,Ω2)q0 . (2.21)

Proof. — For the proof, we use the following notation: λi = ν+(Ωi);
φi = φΩi

is a normalized D-invariant eigenfunction of −∆ in Ωi, belonging
to ν+(Ωi), in particular we have

∫
Ωi
φi = 0; Φi = EΩi

(φΩi
) is a D-invariant

extension of φΩi , given by Proposition 2.10. We also introduce the function
Θ2 such that

Θ2 = Φ2 − |Ω1|−1
∫

Ω1

Φ2 , (2.22)

so that
∫

Ω1
Θ2 = 0, and dΘ2 = dΦ2.

Then, ∫
Ω1

Θ2
2 =

∫
Ω1

Φ2
2 − |Ω1|−1

(∫
Ω1

Φ2

)2
. (2.23)
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Writing ∫
Ω1

Φ2 =
∫

Ω2

Φ2 +
∫

Ω1\Ω2

Φ2 −
∫

Ω2\Ω1

Φ2 ,

using the fact that
∫

Ω2
Φ2 =

∫
Ω2
φ2 = 0, Lemma 2.6, Propositions 2.8, 2.10,

and 2.11, we obtain,∣∣∣∣∫
Ω1

Φ2

∣∣∣∣ 6 ‖Φ2‖∞ (|Ω1 \ Ω2|+ |Ω2 \ Ω1|) ,

so that there exists a constant C20,1(M, s0) such that∣∣∣∣∫
Ω1

Φ2

∣∣∣∣ 6 C20,1 dr(Ω1,Ω2) . (2.24)

We also have∫
Ω1

Θ2
2 =

∫
Ω2

Φ2
2 +

∫
Ω1\Ω2

Φ2
2 −

∫
Ω2\Ω1

Φ2
2 − |Ω1|−1

(∫
Ω1

Φ2

)2
.

Using the same arguments as above, as well as (2.2), we obtain that there
exists a constant C20,2(M, s0) such that

1− C20,2 dr(Ω1,Ω2) 6
∫

Ω1

Θ2
2 6 1 + C20,2 dr(Ω1,Ω2) . (2.25)

Similarly, we write∫
Ω1

|dΦ2|2 =
∫

Ω2

|dΦ2|2 +
∫

Ω1\Ω2

|dΦ2|2 −
∫

Ω2\Ω1

|dΦ2|2 . (2.26)

Because (dΦ2)|Ω2 = dφ2, the first integral in the right-hand side is equal
to λ2. Letting Ω be either Ω1 \ Ω2, or Ω2 \ Ω1, we can write∫

Ω
|dΦ2|2 6

(∫
Ω
|dΦ2|2/(2−s0)

)2−s0

|Ω|q0 , (2.27)

with the Notation 2.12.

As above, recalling that dΘ2 = dΦ2, we conclude that there exists a
constant C20,3(M, s0) such that∫

Ω1

|dΘ2|2 6 λ2 + C20,3 dr(Ω1,Ω2)q0 . (2.28)

By symmetry between λ1 and λ2, this completes the proof of the lemma. �

We now consider a family {Ωt}06t6a of domains in the class LM . We use
the notation,

Ωt,+ := Ωt ∩ {u > 0} , (2.29)
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and we decompose the boundary ∂Ωt,+ into two parts, ∂Ωt ∩ {u > 0} and
D ∩Ωt,+. We assume furthermore that the domains Ωt satisfy the Assump-
tion 2.4, i.e., that the eigenvalues ν+(Ωt), or equivalently the eigenvalues
µ2(Ωt,+, nn), are simple.

Call φt an eigenfunction associated with ν+(Ωt), with L2-norm 1. It is
uniquely defined up to sign. Denote its extension EΩt

(φt) by Φt (see, Propo-
sition 2.10). Recall that φt and Φt are both symmetric with respect to D.

We also use the notation,{
λt := ν+(Ωt) = µ2(Ωt,+, nn) ,
µ0 := µ3(Ω0,+, nn) ,

(2.30)

Observe that Assumption 2.4 on Ω0 implies that
λ0 < µ0 . (2.31)

Lemma 2.14. — Let {Ωt}06t6a be a family of domains in the class LM ,
satisfying Assumption 2.4. Assume that dr(Ωt,Ω0) tends to zero when t tends
to zero.

(1) For dr(Ωt,Ω0) small enough, the function φt can be uniquely defined
by the normalization∫

Ωt

φ2
t = 1 and

∫
Ωt∩Ω0

φtφ0 > 0 .

(2) When t tends to zero, Φt|Ω0 tends to φ0 in L2(Ω0). Furthermore, the
family Φt is relatively compact in C0,s0−1(R2), and weakly compact
in H2(R2).

(3) For any k ∈ N, and for any compact K ⊂ Ω0, the functions Φt tend
to φ0 in Ck(K).

Proof of Assertion (1). — We begin as in the proof of Lemma 2.13. For
the time being, φt is well-defined up to sign. Let

Θt = Φt − |Ω0|−1
∫

Ω0

Φt , (2.32)

so that
∫

Ω0
Θt = 0, and dΘt = dΦt. Furthermore, the function Θt is D-

symmetric.

Then, ∫
Ω0

Θ2
t =

∫
Ω0

Φ2
t − |Ω0|−1

(∫
Ω0

Φt
)2

. (2.33)

We introduce the notation,
δ(t) = dr(Ωt,Ω0) .
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The constants C25,i which appear below only depend on M and s0.

Since
∫

Ωt
φt = 0, we conclude as in the proof of Lemma 2.13 that there

exist constants C25,1 and C25,2 such that,{∣∣ ∫
Ω0

Φt
∣∣ 6 C25,1 δ(t) ,∣∣ ∫

Ω0
Φ2
t − 1

∣∣ 6 C25,2 δ(t) .
(2.34)

Using the condition (2.2) to control |Ω0|, it follows that there exist con-
stants C25,3, . . . , C25,5, such that

1− C25,3 δ(t) 6
∫

Ω0

Θ2
t 6 1 + C25,3 δ(t) , (2.35)

and, using Lemma 2.13,∫
Ω0

|dΘt|2 6 λt + C25,4 δ(t)q0 6 λ0 + C25,5 δ(t)q0 . (2.36)

Define the function

Σt := Θt −
(∫

Ω0

Θtφ0

)
Φ0 . (2.37)

Then Σt is D-symmetric and satisfies∫
Ω0

Σt = 0 and
∫

Ω0

Σtφ0 = 0 . (2.38)

It follows from our assumptions and notation that,∫
Ω0

|dΣt|2 > µ0

∫
Ω0

Σ2
t , (2.39)

∫
Ω0

Σ2
t =

∫
Ω0

Θ2
t −

(∫
Ω0

Θtφ0

)2
. (2.40)

Using the fact that (dΦ0)|Ω0 = dφ0, and the variational definition of (λ0, φ0),
we also have ∫

Ω0

|dΣt|2 =
∫

Ω0

|dΘt|2 − λ0

(∫
Ω0

Θtφ0

)2
. (2.41)

From (2.41) and the estimates on Θt, there exists a constant C25,6 such
that ∫

Ω0

|dΣt|2 6 λ0 − λ0

(∫
Ω0

Θtφ0

)2
+ C25,6 δ(t) . (2.42)
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From (2.39), (2.40) and (2.42), it follows that there exist constants such
that ∫

Ω0

|dΣt|2 > µ0

{
1− C25,7 δ(t)−

(∫
Ω0

Θtφ0

)2
}
. (2.43)

and hence ∣∣∣∣∫
Ω0

Θtφ0

∣∣∣∣ > 1− (1 + µ0)C25,8

µ0 − λ0
δ(t)q0 . (2.44)

From (2.44), we deduce that for δ(t) small enough, the integral
∫

Ω0
Θtφ0

is not zero. Note that
∫

Ω0
Θtφ0 =

∫
Ω0

Φtφ0. Write∫
Ω0

Φtφ0 =
∫

Ω0∩Ωt

φtφ0 +
∫

Ω0\Ωt

Φtφ0 ,

and note that the second term tends to zero with δ(t). It follows that∫
Ω0∩Ωt

φtφ0 6= 0 , provided that δ(t) is small enough. This means that we
can choose the sign of φt such that

∫
Ω0∩Ωt

φtφ0 > 0 , provided that δ(t) is
small enough. This proves the first assertion.

Proof of Assertion (2). — We now assume δ(t) to be small enough, so
that we can uniquely determine the eigenfunction φt by ‖φt‖L2(Ωt) = 1,
with

∫
Ω0∩Ωt

φtφ0 > 0. More precisely, by (2.44), there exists a constant
C25,9(M, s0, λ0, µ0) such that∫

Ω0

Φtφ0 > 1− C25,9 δ(t)q0 . (2.45)

Using (2.34), (2.45), and the fact that φ0 is normalized, there exists a
constant C25,10(M, s0, λ0, µ0) such that∫

Ω0

(Φt − φ0)2 6 C25,10 δ(t)q0 . (2.46)

It follows that the functions Φt tend to φ0 in L2(Ω0).

The family {φt, t > 0} is uniformly bounded in the H2(Ωt) (Proposi-
tion 2.8), and hence the family {Φt, t > 0} is uniformly bounded in H2(R2),
with compact support in B(2M) (Proposition 2.10). It follows that it is rel-
atively compact in C0,s0−1(R2), and weakly compact in H2(R2). The second
assertion follows.

Proof of Assertion (3). — Let k be an integer, and let K ⊂ Ω0 be any
compact subset. For t small enough, we have K ⊂ Ωt. By interior regularity,
Φt|K = φt|K is uniformly bounded in Ck+1(K) norm, and hence admits a
convergent subsequence Φtj in Ck(K). Inequality (2.46) shows that the limit
of this subsequence must be φ0. It follows that Φtj converges to φ0 in Ck(K).
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Because the limit is independent of the subsequence, it follows that φt tends
to φ0 in Ck(K). �

Remark. — Here is an alternative argument for the last assertion, which
gives a stronger control of the convergence.

Let χ1, χ2 ∈ C∞0 (Ω0) such that χ2 = 1 on supp(χ1). We have
∆χ1(φt − φ0) = [∆, χ1](χ2(φt − φ0))− χ1(λtφt − λ0φ0)

= [∆, χ1](χ2(φt − φ0))− χ1λt(φt − φ0)
− χ1(λt − λ0)φ0 .

(2.47)

Applying (I −∆)− 1
2 to this equality, and using Lemma 2.13 and (2.46), we

get
‖χ1(φt − φ0)‖H1 6 Cδ(t)

q0
2 .

Hence, for any compact K ⊂ Ω0, we have
‖φt − φ0‖H1(K) 6 Cδ(t)

q0
2 .

Similarly, starting from (2.47), given any k ∈ N, and any compact K, we
obtain,

‖φt − φ0‖Hk(K) 6 C(k,K)δ(t)
q0
2 .

3. Domains with the symmetry of an equilateral triangle

3.1. Preparation

Let Te be the equilateral triangle, with vertices at (0, 0), (1, 0) and ( 1
2 ,
√

3
2 ).

The symmetry group of Te is generated by the mirror symmetries with re-
spect to the side bisectors.

Up to scaling, the positive first Dirichlet eigenfunction of Te is given by
the formula (see [10]),

ξd1(x, y) := sin
(

4πy√
3

)
+ sin

(
2π
(
x− y√

3

))
− sin

(
2π
(
x+ y√

3

))
, (3.1)

which can also be written

ξd1(x, y) = 4 sin
(

2πy√
3

)
sin
(
π

(
x− y√

3

))
sin
(
π

(
x+ y√

3

))
. (3.2)

Proposition 3.1. — The function ξd1 is positive in the interior of Te.
It has a unique critical point at ( 1

2 ,
√

3
6 ), the centroid of the triangle. For

0 < c < maxTe ξ
d
1 , the level curves {ξd1 = c} are smooth strictly convex

curves which have the same symmetries as Te.
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This proposition is a consequence of [14, Corollary 4.6]. We give an ele-
mentary proof using the following lemma [28].

Lemma 3.2. — Let Ω be a convex bounded open set in R2. Let ϕ be
a positive, superharmonic function (∆ϕ < 0) in Ω. If det Hess (log(ϕ)), the
determinant of the Hessian of the function log(ϕ), is positive, then the super-
level sets {ϕ > c} are (strictly) convex.

Proof of the lemma. — Let η := log(ϕ). Then,

ϕ2 ∆η = ϕ∆ϕ− |dϕ|2 .

Since ϕ is positive and superharmonic, it follows that ∆η < 0, so that Hess(η)
has at least one negative eigenvalue. On the other hand, since we work in
dimension 2, the positivity of det Hess(η) implies that both eigenvalues of
Hess(η) have the same sign. It follows that both eigenvalues are negative,
and hence that Hess(η) is negative definite. The function ϕ is (strictly) log-
concave, and the lemma follows. �

Proof of the proposition. — It is easy to see that the only critical points
of the function ξd1 in the closed triangle are the vertices and the centroid. This
function is invariant under the mirror symmetries with respect to the side bi-
sectors of the triangle, and under the rotations with center the centroid, and
angles ± 2π

3 . It follows that its level sets have the same symmetries. Clearly,
ξd1 is positive and superharmonic. It remains to show that det Hess(log ξd1) is
positive. This can be done by brute force. Let ξ := log(ξd1). A Maple-aided
computation gives,

det Hess(ξ) = 4π4

3
N(ξ)
D(ξ) , with

N(ξ) = 2− 2 cos
( 2πy√

3

)
cos
(
π
(
x− y√

3

))
cos
(
π
(
x+ y√

3

))
,

D(ξ) = (ξd1)2 .

(3.3)

The proof of Proposition 3.1 is complete. �

Notation. — We shall now work with the equilateral triangle T0, with
vertices A = (− 1

2 ,−
√

3
6 ), B = ( 1

2 ,−
√

3
6 ) and C = (0,

√
3

3 ), and centroid
O = (0, 0). Making the change of coordinates x = 1

2 + u and y =
√

3
6 + v, in

ξd1 , we obtain a first Dirichlet eigenfunction for T0,

ϕd
1(u, v) = 4 sin π3 (1+2

√
3v) sin π3 (1−3u+

√
3v) sin π3 (1−3u−

√
3v) . (3.4)

Define the function,

f0(u, v) := (1 + 2
√

3v) (1 + 3u−
√

3v) (1− 3u−
√

3v) . (3.5)
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Figure 3.1. Level sets of ϕd
1 (left) and f0 (right)

Proposition 3.3. — The function f0 is positive in the interior of T0. It
has a unique critical point at O, the centroid of the triangle. For 0 < c < 1,
the level curves {f0 = c} are smooth strictly convex curves which have the
same symmetries as T0.

Proof. — We again make use of Lemma 3.2. The first two assertions are
clear. The function f0 is clearly invariant under the symmetries of T0, so
are its level sets. An easy computation gives ∆f0 = −36, so that f0 is
superharmonic. Let g := log(f0). Define the functions Auu, Auv and Avv by
the formulas

Auu = f2
0
∂2g

∂u2 , etc. .

Then,
f4

0 det Hess(g) = AuuAvv − (Auv)2 .

A Maple-aided computation gives,

AuuAvv − (Auv)2 = 324 f2
0 (1 + 6u2 + 6v2) ,

so that

det Hess(g)(u, v) = 324 1 + 6u2 + 6v2

f2
0 (u, v) . (3.6)

This completes the proof of Proposition 3.3. �

Remark 3.4. — Note that the function f0 is (up to scaling) the torsion (or
warping) function of the equilateral triangle, see [24, Section 7]. The square
root of the warping function fΩ is known to be strictly concave, see [30,
Theorem 4.1]
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3.2. Domains with G0-symmetry

Recall that T0 is the equilateral triangle with vertices A, B, and C, and
centroid O. Call DA, DB and DC the bisectors of its sides. The coordinates
are chosen so that DC = {u = 0}, see Figure 3.2.

The isometry group of T0 is the group

G0 =
{
I,DA, DB , DC , R,R

2} . (3.7)

where DA, is the mirror symmetry with respect to the bisector DA, R the
rotation with center 0 and angle 2π

3 .

Figure 3.2. The equilateral triangle T0

To construct smooth counterexamples to ECP, the idea is to start from
the equilateral triangle, and to consider the class LM,0 of domains Ω with
the following properties,{

Ω ∈ LM ,

Ω admits G0 as symmetry group,
(3.8)

see Figure 3.3.

The super-level sets {x ∈ T0 | ϕd
1 > c} of the first Dirichlet eigenfunction,

and the super-level sets {x ∈ T0 | f0 > c} of the torsion function f0 provide
examples of C∞ strictly convex domains Ω with the symmetry group G0,
see Figure 3.1. Another example is the equilateral triangle with rounded
corners, T0,a: replace each corner by an arc of circle, with radius a, centered
on the corresponding bisector, and tangent to the sides. This yields a convex
domain, with C1, piecewise C2, boundary, with symmetry group G0.
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Figure 3.3. A domain Ω in the class (3.8)

One can show that these families of domains belong to the class LM,0 for
some M > 0, see (3.8). In Section 4, in order to prove Theorem 1.2, we shall
consider yet another family, and prove that it is indeed in the class LM for
some M .

We conclude this section with a spectral property of the domains in the
class LM,0.

Proposition 3.5. — Let Ω be a smooth domain in the class (3.8). Then,
the first Neumann eigenvalues of Ω satisfy

0 = ν1 < ν2 = ν3 < ν4 6 · · · (3.9)

More precisely, the eigenspace E(ν2) admits a basis {φ, ψ} such that D∗Cφ =
φ, and D∗Cψ = −ψ. Furthermore, Z(φ) ∩DC = {O}, and Z(ψ) = DC ∩ Ω.

Proof. — The proof is based on the following properties: a Neumann
eigenfunction ξ of Ω has finitely many interior critical zeros, finitely many
boundary zeros, and its nodal set consists of finitely many simple regular
arcs whose end points are either interior critical zeros, or boundary zeros.
We do not need to know the local structure at boundary zeros.

Let ξ 6= 0 be a 2nd Neumann eigenfunction. Assertions (a)–(c) hold for
a simply-connected regular domain.

(a). The nodal set Z(ξ) cannot contain any interior closed curve. —
Indeed, there would otherwise exist an interior nodal domain ω of ξ, for
which we could write ν2(Ω) = δ1(ω) > δ1(Ω), contradicting the inequality
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ν2(Ω) < δ1(Ω) due to Pólya [38] and Szegö [43] (here the δ’s refer to Dirichlet
eigenvalues).

(b). The nodal set Z(ξ) does not contain any interior critical zero. —
Assume this is not the case. Then, there would exist an interior critical x0,
and at least four semi-arcs issuing from x0 and contained in Z(ξ). Continuing
these arcs, we either obtain a closed nodal curve, or reach the boundary
at distinct points. The first case is impossible by (a). In the second case,
because Ω is simply-connected, we would obtain at least four nodal domains,
contradicting Courant’s theorem.

(c). The nodal set of any 2nd Neumann eigenfunction ξ in Ω consists
of a single simple curve without critical zeros, meeting the boundary at two
distinct points. — The fact that such a curve must be simple and without
critical zeros follows from (a) and (b). The fact that its boundary points
must be distinct follows from (a). Assume that there exist two such curves.
By (b), they cannot meet in the interior of Ω. If they had identical boundary
points, we would get a contradiction by (a). In the other case, we would get
a contradiction with Courant’s theorem.

We now assume that Ω has the symmetries of the equilateral triangle.

Let D := DC , and define the set of functions

Sσ := {ϕ | D∗ϕ = σϕ} , σ ∈ {+,−} . (3.10)

Because D is an isometry, D∗ leaves E(ν2) globally invariant, and the
eigenspace decomposes as

E(ν2) = (E(ν2) ∩ S+)⊕ (E(ν2) ∩ S−) . (3.11)

Because the rotation R is an isometry, R∗ leaves E(ν2) globally invariant,
and so does the map

T := R∗ −R∗2 (3.12)
which commutes with the Laplacian ∆.

It is easy to see that D∗ ◦ T = −T ◦D∗, so that

T (E(ν2) ∩ S±) ⊂ E(ν2) ∩ S∓ , (3.13)
ker(T ) = ker(R∗ − I) , (3.14)

and that

Sσ ∩ ker(T ) =
{
ϕ
∣∣ D∗Mϕ = σ ϕ , ∀M ∈ {A,B,C}

}
. (3.15)

The following assertions hold.
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(d). If 0 6= ξ ∈ E(ν2), then R∗ξ 6= ξ. — Indeed, using (c) and the R-
invariance of ξ, Z(ξ) would contain at least three boundary points, contra-
dicting (c).

(e). The dimension of E(ν2) is at least 2. — Indeed, we would otherwise
have dim E(ν2) = 1, and hence, for some 0 6= ξ ∈ E(ν2), R∗ξ = ±ξ. Since
R∗ = I, this would imply that R∗ξ = ξ, contradicting (d).

(f). The dimension of E(ν2) ∩ S− is at most 1. — Indeed, if 0 6= ξ ∈
E(ν2) ∩ S−, then ξ vanishes on D ∩ Ω, and it cannot vanish elsewhere by
Courant’s theorem. This implies that ξ|Ω+ is the first eigenfunction of Ω+
(with mixed boundary conditions), and hence unique up to scaling. This
implies that ξ itself is unique up to scaling.

(g). The dimension of E(ν2)∩ S+ is at least 1. — Indeed, by (e) and (f),
there exists 0 6= ξ 6∈ E(ν2) ∩ S−. This implies that φ := 1

2 (ξ + D∗ξ) is a
nonzero function in E(ν2) ∩ S+.

(h). Both spaces E(ν2)∩S± have dimension 1, and there exists a basis
{φ, ψ} of E(ν2), such that φ is D-symmetric, and ψ D-anti-symmetric. —
Using (3.12), we see that T (ξ) = 0 if and only if R∗ = ξ, so that T is
injective from E(ν2) into itself. Using (3.13) in both directions, we infer that
dim E(ν2) ∩ S± = 1, and the assertion follows.

(i). We have Z(ψ) = D ∩ Ω and Z(φ) ∩ D = {O}. — We have already
proved the first part of the assertion in (f). Up to scaling, we have φ = T (ψ).
Since R(O) = O, the definition of T implies that φ(O) = 0. The fact that
Z(ψ) meets D at exactly one point follows from (a), (c) and the symmetry
of φ. �

Remark 3.6. — Note that the inequality ν2(ω) < δ1(ω) is valid for any
sufficiently regular, bounded domain, without any convexity assumption.
The fact that a second Neumann eigenfunction cannot have a closed nodal
line motivated the “closed nodal line conjecture for a second Dirichlet eigen-
function”, see [36, last paragraph on p. 466, and Conjecture 5] and [29].

Remarks 3.7. — Concerning the multiplicity of ν2, we can mention the
following.

(1) According to [33, Remarks (2), p. 206], if Ω is close enough to T0 in
the sense of the Hausdorff distance, then

dim E (ν2(Ω)) = dim E (ν2(T0)) = 2 .
(2) For any smooth simply-connected domain Ω, dim E (ν2(Ω))63. This

bound was first given by Cheng [15] for smooth simply-connected
compact surfaces without boundary, see also the assertion in [26,
line -8, p. 1170]. In this latter paper, the authors indicate that the
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assumption that Ω is smooth is probably too strong. The smoothness
assumption is used to describe the local behaviour of the nodal set
at a boundary point. In the non-smooth case, it might be possible
to obtain a result on the local structure of the nodal set similar
to the one described by Alessandrini [2] for the Dirichlet boundary
condition. See also [22]

(3) In [35, Theorem 2.3], Lin proved that the second Dirichlet eigen-
space of a smooth convex domain has dimension at most 2.

4. Proof of Theorem 1.2

To prove Theorem 1.2, we apply the deformation technique of Section 2
to a special family of domains in the class LM,0.

4.1. Construction of the family Ωt

Let t be a nonnegative parameter. Introduce the function
f0,t(u, v) = (1 + t+ 2

√
3v) (1 + t+ 3u−

√
3v) (1 + t− 3u−

√
3v) . (4.1)

When t = 0, we recover the function f0 defined by (3.5). When t > 0,
the function f0,t is a torsion function for the triangle T0,t obtained from
T0 by dilation of ratio (1 + t). This equilateral triangle has vertices At =
(− 1+t

2 ,−
√

3(1+t)
6 ), Bt = ( 1+t

2 ,−
√

3(1+t)
6 ) and Ct = (0,

√
3(1+t)

3 ).

An immediate computation gives that
f0,t(A) = f0,t(B) = f0,t(C) = t2(3 + t) . (4.2)

Definition 4.1. — Define the domain Ωt to be the super-level set
Ωt :=

{
f0,t > t2(3 + t)

}
. (4.3)

The triangle T0, the triangle T0,t (dashed line), and a domain Ωt (red
line) are displayed in Figure 4.1, left. The triangle T0, and domains Ωt, with
t = 0.3 (red), t = 0.2 (blue), and t = 0.1 (green), are displayed in Figure 4.1,
right.
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Figure 4.1. Domains Ωt

Let us summarize the properties of the domains Ωt.

Proposition 4.2. — The family of domains {Ωt}06t6 1
2
has the follow-

ing properties.

(1) Ω0 = T0.
(2) For t > 0, the domain Ωt is strictly convex, bounded, and open, with

C∞ boundary. Furthermore, T0 ⊂ Ωt, and A,B,C ∈ ∂Ωt.
(3) The domain Ωt has the symmetry group G0.
(4) The family Ωt is increasing, for 0 < t1 < t2,

Ωt1 ⊂ Ωt2 .

(5) For 0 6 t 6 1
2 , the domains Ωt belong to the class LM for some

positive constant M .

Proof.

Assertion (1). — It is obvious.

Assertion (2). — The first part follows from Proposition 3.3 by dilation
of ratio (1+t). For the second part, note that, by definition of Ωt, the vertices
A,B and C belong to ∂Ωt. The inclusion (of open sets) T0 ⊂ Ωt follows from
the convexity of Ωt.

Assertion (3). — This follows from Proposition 3.3.

Assertion (4). — The domain Ωt can also be defined by {gt > 0}, where

gt(u, v) = f0,t(u, v)− t2(3 + t) = f0(u, v) + 3t− 9t(u2 + v2) .

Let t1 < t2. To prove that Ωt1 ⊂ Ωt2 , it suffices to consider the points
(u, v) ∈ Ωt1\T0. For such (u, v), we have gt1(u, v) > 0 and f0(u, v) 6 0. This
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implies that
3t1(1− 3u2 − 3v2) > −f0(u, v) > 0 ,

and hence that 1− 3u2 − 3v2 > 0. On the other hand, we have

gt1(u, v)− gt2(u, v) = 3(t1 − t2)(1− 3u2 − 3v2) < 0 ,

i.e., gt2(u, v) > 0, or (u, v) ∈ Ωt2 .

Assertion (5). — Since T0 ⊂ Ωt ⊂ T0,t, the domains satisfy condi-
tion (2.2). It remains to show that they satisfy condition (2.5), i.e., that
they can be defined in polar coordinates, as

Ωt = {(r, θ) | 0 6 r < ρ(t, θ)}

where the functions ρ(t, · ) are uniformly Lipschitz. Due to rotational invari-
ance, it suffices to look at the part of ∂Ωt contained in the sector BOC,
see Figure 4.2. This part of the boundary is symmetric with respect to the
bisector DA, so that it suffices to look at the sector BOa. With respect to
the u-axis Ou, the angle θ then varies from −π6 (OB) to π

6 (Oa).

Figure 4.2.

Instead of polar coordinates (ρ, θ), we use “inverse” polar coordinates
(r, θ), where r ρ ≡ 1. The inverse polar equation of the side BC of T0, is

rA(θ) = 2
√

3 cos
(
θ − π

6

)
, for θ ∈

[
−π6 ,

π

6

]
. (4.4)

Let r = r(t, θ) be the inverse polar equation of the arc BC ⊂ ∂Ωt.
Because T0 ⊂ T0,t, we have

1
1 + t

rA(θ) 6 r(t, θ) 6 rA(θ) for θ ∈
[
−π6 ,

π

6

]
. (4.5)
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Using the definition of Ωt, we also have that r(t, θ) is a root of the equation

(1 + 3t) r3 − 9(1 + t) r + 6
√

3 sin3(θ)− 18
√

3 sin(θ) cos2(θ) = 0 . (4.6)
or, equivalently,

(1 + 3t) r3 − 9(1 + t) r − 6
√

3 sin(3θ) = 0 . (4.7)

Looking at the global picture of f−1
0,t (0), it is easy to see that this equation

has one simple root satisfying (4.5). Taking the derivative rθ with respect to
θ, we obtain, (

(1 + 3t) r2 − 3(1 + t)
)
rθ − 6

√
3 cos(3θ) = 0 . (4.8)

Note that
(1 + 3t) r3 − 3(1 + t) r =

(
(1 + 3t) r3 − 9(1 + t) r

)
+ 6(1 + t) r , (4.9)

so that
(1 + 3t) r3 − 3(1 + t) r = 6

(
(1 + t) r +

√
3 sin(3θ)

)
. (4.10)

Using (4.5), we have

(1 + t) r +
√

3 sin(3θ) > 2
√

3 cos
(
θ − π

6

)
+
√

3 cos
(

3
(
θ − π

6

))
, (4.11)

and hence
(1 + 3t) r3 − 3(1 + t) r > 6

√
3 cos

(
θ − π

6

)(
4 cos2

(
θ − π

6

)
− 1
)
. (4.12)

It follows that rθ is positive in the interval ]−π6 ,
π
6 [, and that

0 6 rθ(t, θ)
r(t, θ) 6 tan

(π
6 − θ

)
6
√

3 . (4.13)

Note that r(t, θ) > 2
√

3. This proves that condition (2.5) is satisfied. �

4.2. Proof of Theorem 1.2

The fact that the equilateral triangle T0 provides a counterexample to
ECP(T0, n) follows from the analysis of the level lines of the D-symmetric
second Neumann eigenfunction φT0 , see [10, Section 3]. Some of the levels
lines of φT0 are displayed in Figure 4.3.

Deform the domain T0 =: Ω0 using Proposition 4.2. Denote the normal-
ized D-symmetric eigenfunctions by φt, and their extensions by Φt.

The function φ0 is such that φ0(C) > 0, and φ0(A) = φ0(B) < 0, see
Figure 4.4. According to [10, Section 3], we now choose (and fix) some a > 0,
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Figure 4.3. Level lines of the second symmetric Neumann eigenfunc-
tion of the equilateral triangle

Figure 4.4. Proof of Theorem 1.2.

such that {φ0 + a = 0} consists of two disjoint arcs, symmetric with respect
to the side bisector DC (blue arcs in the figure). We have φ0 + a > 0 in the
connected component of T0\{φ0 + a = 0} which contains O, and φ0 + a < 0
in the two connected components close to the vertices A and B. Choose
A′ and B′ in these connected components. Note that φ0|DC

+ a > 0, and
φ0(A′) + a = φ0(B′) + a < 0.

We now consider the family Ωt. Apply Lemma 2.14 to the family φt, and
get that for t sufficiently small

φt(A′) + a = φt(B′) + a < 0 .
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Call C(t) the intersection point of the bisector DC with ∂Ωt, opposite to
the vertex C.

Claim 1. — For t sufficiently small, φt|[CC(t)] + a > 0.

Indeed, we could otherwise find a sequence tk, tending to zero, and a
point mk ∈ [CC(tk)], such that φtk (mk) +a 6 0. The family Φtk is bounded
in H2 with compact support in B(0, 2M). Hence, there exists a subsequence
t′j which tends to 0, and a function Φ ∈ C0(R2) ∩ H2(R2) such that mk

converges to some m ∈ [CC(0)] and Φt′
j
converges to Φ uniformly in B(2M),

and in particular in T′. Since, by Lemma 2.14, Φt′
j
|T0 converges to φ0 in

D′(T0), it follows that φ0 = Φ|T0 and this extends by continuity to T′. In
particular, we would get Φ(m) + a = φ0(m) + a 6 0. A contradiction.

The claim proves that for t small enough, the points A′ and B′ belong to
distinct connected components of Ωt\{φt+a = 0}, so that φt+a has at least
three connected component (a “positive” one, and two “negative ones”).

In particular this proves that, for t small enough, the domains Ωt provide
a counterexample to the Extended Courant property.

We shall now prove that, for t small enough, φt + a has exactly three
nodal domains.

Lemma 4.3. — Let {ϕn, n > 1} be an orthonomal basis of eigenfunc-
tions of the Neumann problem in a bounded domain Ω, associated with the
eigenvalues 0 = ν1(Ω) < ν2(Ω) 6 . . .. Choose ϕ1 (a constant function) to be
positive. Then, for any a > 0, the set Ω\{ϕn + aϕ1 = 0} has at most (n− 1)
connected components in which ϕn + a is positive.

Remark 4.4. — A statement analogous to Lemma 4.3, for the Dirichlet
problem in Ω, appears as Theorem 1 in [19]. The proof given by Gladwell-Zhu
is similar to the proof of Courant’s nodal domain theorem, and turns out to
apply to both the Dirichlet and the Neumann boundary conditions, hence to
Lemma 4.3. The examples of rectangles with cracks in [10, Section 3] show
that one can a priori not control the number of connected components of
Ω\{ϕn + aϕ1 = 0} in which ϕn + a is negative.

We proceed with the proof that, for t small enough,φt+a has exactly three
nodal domains. According Lemma 4.3, we have to prove that {φt+a<0} has
at most two connected components. The proof goes as follows.

First, we observe that φ0 is naturally defined as a trigonometric poly-
nomial on all R2. Observe that for t small enough, {φ0 + a = 0} ∩ Ωt
consists of two symmetric curves crossing ∂Ωt transversally at the points
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Figure 4.5.

ac(t), ab(t), ba(t), and bc(t). As t tends to 0, these points tend to the inter-
section points of {φ0 + a = 0} with ∂T0, see Figure 4.5.

For ε > 0 small enough, we introduce,

Ω−(a+ ε, φ0, t) := {φ0 + a+ ε 6 0} ∩ Ωt , (4.14)

Ω+(a− ε, φ0, t) := {φ0 + a− ε > 0} ∩ Ωt , (4.15)
and

Ω(a, ε, φ0) := {−ε 6 φ0 + a 6 ε} ∩ Ωt . (4.16)

These domains are displayed respectively in green, blue, and white in
Figure 4.6.

Claim 2. — For t small enough,{
Ω−(a+ ε, φ0, t) ⊂ {φt + a < 0} ,
Ω+(a− ε, φ0, t) ⊂ {φt + a > 0} .

(4.17)

Indeed, if the first inclusion were not true, there would exist a sequence
tn > 0, tending to 0, and xn ∈ Ωtn , such that φtn(xn) + a > 0 and Φtn
bounded in H2. As above, after extraction of a subsequence we can assume
that xn → x∞, and that Φtn tends to Φ in C0. This implies the existence of
x∞ such that Φ(x∞) = φ0(x∞) > −a. But x∞ ∈ Ω−(a+ ε, φ0, 0) leading to
a contradiction. The second inclusion can be proved in a similar way.

As a consequence, for t small enough, there are two symmetric compo-
nents of {φt+a< 0}, each one containing a component of {φ0+a+ε6 0}∩Ωt.
Furthermore, the “positive” component of φt + a contains Ω+(a− ε, φ0, t).
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Figure 4.6. Localization

We deduce from this localization, that a third “negative” connected com-
ponent of φt + a, if any, is necessarily contained in Ω(a, ε, φ0), hence stays
away from the vertices A, B and C.

Claim 3. — The only critical points of the function φ0 in the square
[− 5

8 ,
5
8 ] × [−

√
3

3 ,
√

3
2 ] are the vertices A,B,C, and the mid-point MC of the

side AB.

We refer to [9] for the explicit expression of the Neumann eigenvalues and
eigenfunctions of the equilateral triangle Te. After translation and rotation,
we find that the second Neumann eigenfunction of T0, which is symmetric
with respect to DC is given by the formula,

φ0(u, v) = a0

(
cos 4πu

3 +cos 2π(1−u−
√

3v)
3 +cos 2π(1+u−

√
3v)

3

)
, (4.18)

where a0 6= 0 is a normalizing constant.

It follows that the critical points of φ0 satisfy the equations,sin 2πu
3

{
cos 2πu(1−

√
3v)

3 + 2 cos 2πu
3

}
= 0 ,

sin 2πu(1−
√

3v)
3 cos 2πu

3 = 0 .
(4.19)

The claim follows easily. It is also illustrated by Figure 4.7 which displays
the triangle T0, the square [− 5

8 ,
5
8 ]× [−

√
3

3 ,
√

3
2 ], the zero set of ∂uφ0 (green)

and the zero set of ∂vφ0 (magenta).

Claim 4. — For t small enough, φt + a < 0 has exactly two connected
components.
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Figure 4.7. Localization of the critical points

For the proof, we proceed by contradiction. If not, there exists a sequence
tn → 0, and a connected component ω(tn) of φt + a < 0, which according to
Claim 2 must be contained in Ω(a, ε, φ0).

Let xn ∈ ω(tn) be the point at which φtn achieves its minimum in ω(tn).
We have necessarily ∇φtn(xn) = 0. After extraction of a subsequence if
necessary, we can assume that xn converged to some x∞ which belongs to
T′, and satisfies −ε 6 φ0(x∞)+a 6 ε. There are two possibilities. If x∞ ∈ T0,
using Lemma 2.14, we get that φtn converges to φ0 in a small ball around
x∞ in C1 sense, and this implies that ∇φ0(x∞) = 0. A contradiction with
Claim 3.

The second possibility is that x∞ ∈ ∂T0. Here, we have to use a uniform
boundary regularity for the Neumann Laplacian in Ωt when we are far from
A,B,C. We consider a small ball centered at ∂T0 ∩ {φ0 + a = 0} of radius
r(ε) and containing ∂T0 ∩ {−2ε 6 φ0 + a 6 2ε} (hence x∞). For each t > 0,
we consider a function χ(t, x) with support in the ball, equal to 1 in a fixed
neighborhood of x∞ and such that ∂νχ(t, x) = 0 on ∂Ωt. It is easy to get
such a function C∞ in both variables t and x due to the uniform regularity
of ∂Ω(t) there (for t ∈ [0, t0] with t0 > 0 small enough). We now consider
φ̂t := χ(t, x)φt in Ωt. This is a bounded family in H2, and φ̂t satisfies the
Neumann condition.

We have
−∆φ̂t = [−∆, χ(t, · )]φt + λtφ̂t .

The left hand side is uniformly bounded in H1, and supported in the ball
B(x∞, r(ε)). We have a uniform (with respect to t) regularity of this Neu-
mann problem (with locally C∞ boundary), and we get that the family φ̂t
is bounded in H3(Ω(t)).
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We now extend it in a bounded family Φ̂t ∈ H3
0 (B(0, 2M)). Coming back

to our sequence φtn , we observe that in particular Φ̂tn is a bounded family in
H3

0 (B(0, 2M)). Extracting a subsequence if necessary, we can assume that
Φ̂tn converges in C1(B(0, 2M)) to Φ̂∞. Now we have ∇φ̂tn(xn) tends to
∇Φ̂∞(x∞). For n large enough ∇φ̂tn(xn) = 0 which implies ∇Φ̂∞(x∞) = 0.
Looking at the restriction to T0, we also have Φ̂∞ = χ(0, · )φ0 in T0 in D′(T0),
which extends to T′ by continuity. This implies 0 = ∇Φ̂∞(x∞) = ∇φ0(x∞),
in contradiction with Claim 3. �

Note. — The preceding argument also shows that there cannot exist a
second positive connected component for t > 0 small enough (without mak-
ing use of the theorem of Gladwell and Zhu).
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