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Discrete variants of Brunn–Minkowski type inequalities

Diana Halikias (1), Bo’az Klartag (2) and Boaz A. Slomka (3)

ABSTRACT. — We present an alternative, short proof of a recent discrete version
of the Brunn–Minkowski inequality due to Lehec and the second named author. Our
proof also yields the four functions theorem of Ahlswede and Daykin as well as some
new variants.

1. Introduction

Correlation inequalities such as the Fortuin–Kasteleyin–Ginibre (FKG)
inequality are of use in the analysis of several models in probability the-
ory and statistical physics (see, e.g., Grimmett [5, 6]). These inequalities
are closely related to the following four functions theorem of Ahlswede and
Daykin [1]:

Theorem 1.1. — Suppose that f, g, h, k : Zn → [0,∞) satisfy

f(x)g(y) 6 h(x ∧ y)k(x ∨ y) ∀ x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Zn

where

x ∧ y = (min(x1, y1), . . . ,min(xn, yn)),
and x ∨ y = (max(x1, y1), . . . ,max(xn, yn)).

Then ( ∑
x∈Zn

f(x)
)( ∑

x∈Zn

g(x)
)
6

( ∑
x∈Zn

h(x)
)( ∑

x∈Zn

k(x)
)
.
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Theorem 1.1 is usually formulated under the additional assumption that
f, g, h, k are all supported in the discrete cube {0, 1}n. It was suggested by
Gozlan, Roberto, Samson, and Tetali [4] that Theorem 1.1 is connected with
a discrete variant of the Brunn–Minkowski inequality, recently proven by
Lehec and the second named author [8, Theorem 1.4], which is the case
λ = 1/2, n = 1 of the following theorem:

Theorem 1.2. — Let λ ∈ [0, 1] and suppose that f, g, h, k : Zn → [0,∞)
satisfy

f(x)g(y) 6 h(bλx+ (1− λ)yc)k(d(1− λ)x+ λye) ∀ x, y ∈ Zn

where bxc = (bx1c, . . . bxnc) and dxe = (dx1e, . . . , dxne). Then( ∑
x∈Zn

f(x)
)( ∑

x∈Zn

g(x)
)
6

( ∑
x∈Zn

h(x)
)( ∑

x∈Zn

k(x)
)
.

Here brc = max{m ∈ Z ; m 6 r} is the lower integer part of r ∈ R and
dre = −b−rc the upper integer part. A standard limiting argument (see [4,
Section 2.3]) leads from the case λ = 1/2, h = k of Theorem 1.2 to the case
λ = 1/2 of the Brunn–Minkowski inequality in its multiplicative form:

Vol
(
A+B

2

)
>
√

Vol(A) Vol(B),

where A + B = {x + y ; x ∈ A, y ∈ B}, where A,B ⊆ Rn are any Borel-
measurable sets, and Vol( · ) stands for the n-dimensional Lebesgue volume.
The proof in [8] for the case n = 1, λ = 1/2, which involves stochastic
analysis, admits a straightforward generalization to the more general case
described above. An alternative argument using ideas from the theory of
optimal transport was given by Gozlan, Roberto, Samson and Tetali [4].

Our goal in this note is to provide a unified proof of Theorem 1.1 and
Theorem 1.2, which is perhaps as elementary as the original proof of the
four functions theorem by Ahlswede and Daykin [1]. The first issue that we
would like to address, is the identification of the relevant common features
of operations such as

x∧y, x∨y,
⌊
x+ y

2

⌋
,

⌈
x+ y

2

⌉
, bλx+(1−λ)yc, dλx+(1−λ)ye, . . . (1.1)

that are defined for x, y ∈ Zn, with 0 < λ < 1.

Our observation is that these operations T : Zn × Zn → Zn satisfy two
axioms:

(P1) T is translation equivariant: T (x + z, y + z) = T (x, y) + z for all
z ∈ Zn.
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(P2) T is monotone in the sense of Knothe with respect to some decom-
position of Zn into a direct sum of groups Zn = G1×· · ·×Gk. That
is, T = (T1, . . . , Tk) where for each i ∈ {1, . . . , k}:
(i) Ti : (G1 × · · · × Gi) × (G1 × · · · × Gi) → Gi. In other words,

Ti(x, y) depends only on the first i coordinates of its arguments
x, y ∈ G1 × · · · ×Gk.

(ii) There exists a total additive ordering�i onGi such that T (a,b)
i :

Gi × Gi → Gi defined by T
(a,b)
i (x, y) = Ti

(
(a, x), (b, y)

)
for

a, b ∈ G1 × · · · ×Gi−1 satisfies

x1 �i x2, y1 �i y2 =⇒ T
(a,b)
i (x1, y1) �i T (a,b)

i (x2, y2)
for all a, b ∈ G1 × · · · ×Gi−1 and x1, x2, y1, y2 ∈ Gi.

Maps that satisfy a condition similar to (P2) were used by Knothe [9] in
his proof of the Brunn–Minkowski inequality. In the language of stochastic
processes, one could say that the map T is adapted to the filtration induced
by the decomposition Zn = G1×· · ·×Gk, or that the map T cannot see into
the future and it is monotone when conditioning on the past. Recall that a
total ordering � on an abelian group G is a binary relation which is reflexive,
anti-symmetric and transitive, such that for any distinct x, y, either x � y
or else y � x. An ordering � is additive if for all x, y, z,

x � y =⇒ x+ z � y + z.

We remark that the requirement of existence of a total additive ordering on
a finitely-generated abelian group G, forces G to be isomorphic to Z` for
some `.

The standard cartesian decomposition of Zn = Z × · · · × Z into one-
dimensional groups, each of which equipped with the standard order on Z,
attests to the fact that all the examples in (1.1) satisfy properties (P1)
and (P2). In these examples, each Ti is a function from Gi ×Gi to Gi.

Another natural example for an additive, total ordering on Zn (or on
Rn) is the standard lexicographic order relation. Given an additive, total
ordering � on Rn and an invertible, linear map L : Rn → Rn we may
construct another additive, total ordering �L by requiring that x �L y if
and only if Lx � Ly. For an additive, total ordering � on Zn the operations
max(x, y) and min(x, y) are well-defined, and they satisfy properties (P1)
and (P2) with k = 1.

Yet another example for an operation T : Zn × Zn → Zn that satisfies
properties (P1) and (P2) is given by T = (T1, . . . , Tn) where

Ti(x, y) =
{
xi, #{j 6 i ; xj 6= yj} is odd
yi, otherwise.

(1.2)
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We prove the following:

Theorem 1.3. — Let T : Zn×Zn → Zn satisfy properties (P1) and (P2).
Suppose that f, g, h, k : Zn → [0,∞) satisfy

f(x)g(y) 6 h(T (x, y))k(x+ y − T (x, y)) ∀ x, y ∈ Zn.

Then ( ∑
x∈Zn

f(x)
)( ∑

x∈Zn

g(x)
)
6

( ∑
x∈Zn

h(x)
)( ∑

x∈Zn

k(x)
)
.

Clearly Theorem 1.1 and Theorem 1.2 follow from Theorem 1.3. See also
Borell [2, Theorem 2.1] for Brunn–Minkowski type inequalities for operations
other than Minkowski sum with monotonicity properties.

One can relax the monotonicity property (P2) by replacing it with an-
other “exclusion” property, which requires no ordering at all. We formulate
this property, as well as our next theorem, in greater generality, with Zn
replaced by a finitely generated abelian group G, and T : Zn × Zn → Zn
replaced by T : G×G→ G. It is well-known that any such G is isomorphic
to Zn × (Z/p1Z)× · · · × (Z/pkZ) for some powers of primes p1, . . . , pk.

Definition 1.4. — We say that an operation T : G×G→ G is exclusive
if for every finite set A ⊆ G with at least two elements, and all z ∈ G, there
exist distinct x, y ∈ A such that for A1 = A \ {x}, A2 = A \ {y}, and
A3 = A \ {x, y}, the following conditions holds:

(a) {T (x, z − y), T (y, z − x)} 6⊆ T (Ai, z −Ai) for i ∈ {1, 2},
(b) {T (x, z − y), T (y, z − x)} ∩ T (A3, z −A3) = ∅,

where T (Ai, z −Ai) = {T (u, z − v) ; u, v ∈ Ai}.

In the next theorem, we replace (P2) by the following property:

(P2′) There exists a decomposition of abelian groups G = G1 × · · · ×Gk
such that
(i) T = (T1, . . . , Tk) with Ti : (G1×· · ·×Gi)×(G1×· · ·×Gi)→ Gi

for each i.
(ii) For all i ∈ {1, . . . , k} and a, b ∈ G1 × · · · ×Gi−1 the operation

T
(a,b)
i : Gi ×Gi → Gi defined by T (a,b)

i (x, y) = Ti((a, x), (b, y))
is exclusive.

We prove the following:
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Theorem 1.5. — Let (G,+) be a finitely generated abelian group, and
T : G ×G → G satisfy (P1) and (P2′). Suppose that f, g, h, k : G → [0,∞)
satisfy

f(x)g(y) 6 h(T (x, y))k(x+ y − T (x, y)) ∀ x, y ∈ G.
Then (∑

x∈G
f(x)

)(∑
x∈G

g(x)
)
6

(∑
x∈G

h(x)
)(∑

x∈G
k(x)

)
.

The next two sections are devoted to the proofs of the above theorems.
We additionally include a final section with commentary on the applicability
of this work to related inequalities, such as the ones proven by Cordero–
Erausquin and Maurey [3], Iglesias, Yepes Nicolás and Zvavitch [7] as well
as Ollivier and Villani [10]

Acknowledgements

The first named author would like to express her gratitude to the
Kupcinet–Getz International Summer School at the Weizmann Institute for
supporting this research. The second named author was partially supported
by a grant from the Israel Science Foundation (ISF). We thank the anony-
mous referee for the useful comments and suggestions.

2. Proof of Theorem 1.5

The core of this paper is the proof of Theorem 1.5 in the particular case
where T itself is exclusive, which is Proposition 2.2 below. We begin with
the following elementary fact:

Fact 2.1. — Suppose a, b, c, d> 0. If ab6 cd and max{a, b}6max{c, d}
then a+ b 6 c+ d.

Proof. — Pick A > a,B > b such that max{A,B} 6 max{c, d} and
AB = cd = r. Then (A − B)2 6 (c − d)2 and so (a + b)2 6 (A + B)2 =
4r + (A−B)2 6 4r + (c− d)2 = (c+ d)2. �

Recall that under the assumptions of Theorem 1.5 we have f, g, h, k :
G→ [0,∞) satisfying

f(x)g(y) 6 h(T (x, y))k(x+ y − T (x, y)) ∀ x, y ∈ G. (2.1)
For j, z ∈ G denote Fz(j) = f(j)g(z − j) and Hz(j) = h(j)k(z − j). Note
that, by (2.1),

Fz(j) 6 Hz(T (j, z − j)). (2.2)
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We claim that for all i, j, z ∈ G we have

Fz(i)Fz(j) 6 Hz(T (i, z − j))Hz(T (j, z − i)). (2.3)

Indeed, by (2.1) and (P1) we have

Fz(i)Fz(j) = f(i)g(z − i)f(j)g(z − j) = f(i)g(z − j)f(j)g(z − i)
6 h(T (i, z − j))k(z + (i− j)− T (i, z − j))

× h(T (j, z − i))k(z + (j − i)− T (j, z − i))
= h(T (i, z − j))k(z − T (i, z − j))h(T (j, z − i))k(z − T (j, z − i))
= Hz(T (i, z − j))Hz(T (j, z − i)).

Proposition 2.2. — Let (G,+) be a finitely generated abelian group,
and let T : G×G→ G be an exclusive operation that satisfies (P1). Suppose
that f, g, h, k : G→ [0,∞) satisfy

f(x)g(y) 6 h(T (x, y))k(x+ y − T (x, y)) ∀ x, y ∈ G.

Then (∑
x∈G

f(x)
)(∑

x∈G
g(x)

)
6

(∑
x∈G

h(x)
)(∑

x∈G
k(x)

)
.

Proof. — We need to prove that∑
j,z∈G

Fz(j) 6
∑
j,z∈G

Hz(j).

Fix z ∈ G. It is sufficient to prove that for every finite set A ⊆ G,∑
j∈A

Fz(j) 6
∑

j∈T (A,z−A)

Hz(j). (2.4)

We proceed to prove so by induction on n = |A|.

Induction base. — For n = 0 the statement is vacuous, as the empty
sum equals zero. For n = 1 the statement holds by (2.2).

Induction step. — Assume n > 2 and that the statement holds for all
m 6 n − 1. Let A ⊆ G with |A| = n. By assumption, there exist distinct
x, y ∈ A such that assertions (a) and (b) of Definition 1.4 are satisfied. By
switching x with y if necessary, we may assume that Fz(x) 6 Fz(y). By (2.3)
we have

Fz(x)Fz(y) 6 Hz(T (x, z − y))Hz(T (y, z − x)). (2.5)

Case 1. — Assume Fz(y) > max{Hz(T (x, z − y)), Hz(T (y, z − x))}.
Then, it follows from (2.5) that

Fz(x) 6 min{Hz(T (x, z − y)), Hz(T (y, z − x))}. (2.6)
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The induction hypothesis for A1 = A \ {x} tells us that∑
j∈A1

Fz(j) 6
∑

j∈T (A1,z−A1)

Hz(j). (2.7)

By adding inequalities (2.6) and (2.7), and using property (a) of Defini-
tion 1.4, we obtain the desired inequality (2.4).

Case 2. — Assume Fz(y) 6 max{Hz(T (x, z−y)), Hz(T (y, z−x))}. Since
Fz(x) 6 Fz(y), we may apply (2.5) and Fact 2.1 and obtain

Fz(x) + Fz(y) 6 Hz(T (x, z − y)) +Hz(T (y, z − x)). (2.8)
Note that T (x, z− y) 6= T (y, z− x) as T (y, z− x)− T (x, z− y) = y− x 6= 0.
Therefore, by combining (2.8) with the induction hypothesis for A3 = A \
{x, y} and property (b), we deduce the inequality (2.4). This completes our
proof. �

Proof of Theorem 1.5. — We proceed by induction on k, the number of
groups participating in the decomposition of G given in (P2′). For k = 1, the
statement is equivalent to that in Proposition 2.2. Assume next that k > 2
and that the statement holds true for k − 1.

Denote G′ = G2 × · · · ×Gk. For a, b ∈ G1 and x′, y′ ∈ G′ denote
fa(x′) = f(a, x′), ga(x′) = g(a, x′), ha(x′) = h(a, x′), ka(x′) = k(a, x′).

Fix a, b ∈ G1. For i ∈ {2, . . . , k}, define T ′i : (G2 × · · · × Gi) × (G2 ×
· · · × Gi) → Gi by T ′i (x, y) = Ti

(
(a, x), (b, y)

)
, and T ′ : G′ × G′ → G′ by

T ′ = (T ′2, . . . , T ′k). Note that T ′ satisfies (P1) and (P2′) with respect to this
decomposition. The assumptions of the theorem tell us that

fa(x′)gb(y′) 6 hT1(a,b)(T ′(x′, y′))ka+b−T1(a,b)(x′ + y′ − T ′(x′, y′)
)

∀ x′, y′ ∈ G′.
By the induction hypothesis, it follows that( ∑
x′∈G′

fa(x′)
)( ∑

x′∈G′
gb(x′)

)
6

( ∑
x′∈G′

hT1(a,b)(x′)
)( ∑

x′∈G′
ka+b−T1(a,b)(x′)

)
.

For every a ∈ G1 set

F (a) =
∑
x′∈G′

fa(x′), G(a) =
∑
x′∈G′

ga(x′), H(a) =
∑
x′∈G′

ha(x′)

and K(a) =
∑
x′∈G′

ka(x′).

Rewriting the previous inequality, we have for all a, b ∈ G1,
F (a)G(b) 6 H(T1(a, b))K(a+ b− T1(a, b)).
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Since T1 : G1 ×G1 → G1 is an exclusive map satisfying (P1), we may apply
Proposition 2.2 and conclude that( ∑

a∈G1

F (a)
)( ∑

a∈G1

G(a)
)
6

( ∑
a∈G1

H(a)
)( ∑

a∈G1

K(a)
)
.

This completes the proof. �

3. Proof of Theorem 1.3

Theorem 1.3 is an immediate consequence of Theorem 1.5 due to the
following observation:

Lemma 3.1. — Suppose T : Zn × Zn → Zn satisfies properties (P1)
and (P2). Then T satisfies property (P2′).

Proof. — We first show that T1 is exclusive. To this end, let m > 2 and
z ∈ G1. Suppose A = {x1, . . . , xm} ⊆ G1, where x1 ≺1 · · · ≺1 xm. Here
a ≺1 b means that a �1 b and a 6= b. Set x = x1, y = xm, and recall
that A1 = A \ {x}, A2 = A \ {y}, and A3 = A \ {x, y}. For a finite subset
S ⊆ G1 we write maxS and minS for the maximal and minimal elements
with respect to the total order �1. By properties (P1) and (P2) we have
max
v,w∈A1

T1(w, z − v)− min
v,w∈A1

T1(v, z − w) = T1(xm, z − x2)− T1(x2, z − xm)

= xm − x2 ≺1 xm − x1 = T1(xm, z − x1)− T1(x1, z − xm).
Therefore, {T1(x1, z − xm), T1(xm, z − x1)} 6⊆ T1(A1, z − A1). A similar
argument shows that the same holds for A2. This verifies condition (a) of
Definition 1.4. To verify condition (b) of Definition 1.4, note that if m = 2
then A3 = ∅, and hence condition (b) holds trivially. Otherwise, letting
v = min{xi+1 − xi ; i ∈ {1, . . . ,m− 1}} � 0, we have

max
v,w∈A3

T1(v, z − w) = T1(xm−1, z − x2)

� T1(xm − v, z − x1 − v) = T1(xm, z − x1)− v ≺ T1(xm, z − x1).
Therefore, T1(xm, z − x1) 6∈ T1(A3, z − A3). Similarly, T1(x1, z − xm) 6∈
T1(A3, z−A3), which verifies condition (b) of Definition 1.4. Hence T1 is an
exclusive map. We proceed by induction on the number of groups k in the
decomposition of G given in property (P2). For k = 1, we verified above that
the statement holds for T = T1.

Let k > 2 and assume that the statement holds for a decomposition
into k − 1 groups. Fix a1, b1 ∈ G1 and let G′ = G2 × · · · × Gk. For i ∈
{2, . . . , k}, define T ′i : (G2 × · · · ×Gi)× (G2 × · · · ×Gi)→ Gi by T ′i (x, y) =
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Ti
(
(a1, x), (b1, y)

)
and T ′ : G′ ×G′ → G′ by T ′ = (T ′2, . . . , T ′k). Note that T ′

satisfies (P1) and (P2) with respect to this decomposition. By the induction
hypothesis, T ′ satisfies (P2′).

This means that for all i ∈ {2, . . . , k} and a = (a1, a
′), b = (b1, b

′) ∈
G1 × · · · × Gi−1, the map T

(a,b)
i = T

′ (a′,b′)
i is exclusive. Since a1 and b1

are arbitrary, it follows that T (a,b)
i is exclusive for all i ∈ {1, . . . , k} and

a, b ∈ G1 × · · · ×Gi−1, and thus T satisfies (P2′). �

Remark 3.2. — Using Lemma 3.1, one can show that the operations
in (1.1) do not satisfy (P2) without decomposing Zn into a direct sum of
more than one group. To see this, consider e.g., T (x, y) = x ∨ y, defined for
x, y ∈ Z2. By Lemma 3.1, it is sufficient to show that T is not exclusive.
A direct inspection of the set A = {(−1,−1), (−1, 1), (1,−1), (1, 1)} ⊂ Z2

and the point z = (0, 0) ∈ Z2 shows that T indeed violates the conditions of
Definition 1.4.

4. Related inequalities

4.1. Continuous Brunn–Minkowski type inequalities

The classical Brunn–Minkowski inequality states that for any two non-
empty Borel-measurable subsets of Rn, one has

Vol(A+B)1/n > Vol(A)1/n + Vol(B)1/n.

In its equivalent dimension-free form, it states that for any λ ∈ [0, 1],
Vol(λA+ (1− λ)B) > Vol(A)λ Vol(B)1−λ.

A functional form of the Brunn–Minkowski inequality, known as the
Prékopa–Leindler inequality, states that for any Borel functions f, g, h :
Rn → [0,∞) and any λ ∈ [0, 1] such that f(x)λg(y)1−λ 6 h(λx + (1 − λ)y)
for all x, y ∈ Rn, we have(∫

Rn

f(x) dx
)λ(∫

Rn

g(x) dx
)1−λ

6
∫
Rn

h(x) dx. (4.1)

See, e.g., the first pages in Pisier [11] for proofs of these inequalities. When
λ = 1/2 and h = k, the analogy between Theorem 1.2 and the Prékopa–
Leindler inequality is evident, see [4, Section 2.3] for a standard limiting
argument that leads from Theorem 1.2 to (4.1). For λ 6= 1/2, a similar limit-
ing argument leads to a weighted variant of the Prékopa–Leindler inequality
due to Cordero–Erausquin and Maurey [3]:
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Theorem 4.1. — Let λ ∈ [0, 1]. Suppose f, g, h, k : Rn → [0,∞) are
measurable functions satisfying

f(x)g(y) 6 h(λx+ (1− λ)y)k((1− λ)x+ λy) ∀ x, y ∈ Rn.

Then (∫
Rn

f(x) dx
)(∫

Rn

g(x) dx
)
6

(∫
Rn

h(x) dx
)(∫

Rn

k(x) dx
)
.

Note that for λ = 1/2 and h = k, Theorem 4.1 coincides with (4.1).
We omit the details of the standard limiting argument leading from Theo-
rem 1.2 to Theorem 4.1, as they are almost identical to the argument in [4,
Section 2.3]. Another inequality in the spirit of Theorem 4.1 is the following
limit case of Theorem 1.1. Again, the limiting argument is standard and it
is omitted.

Theorem 4.2. — Suppose f, g, h, k : Rn → [0,∞) are Borel functions
satisfying

f(x)g(y) 6 h(x∧y)k(x∨y) ∀ x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn (4.2)

where

x ∧ y = (min(x1, y1), . . . ,min(xn, yn)),
and x ∨ y = (max(x1, y1), . . . ,max(xn, yn)).

Then (∫
Rn

f(x) dx
)(∫

Rn

g(x) dx
)
6

(∫
Rn

h(x) dx
)(∫

Rn

k(x) dx
)
.

Another possibility, is to replace the operations x ∧ y and x ∨ y in (4.2)
by the operations min(x, y) and max(x, y) with respect to the standard lex-
icographic order on Rn. The conclusion of Theorem 4.2 holds true in this
case as well, being a limiting case of Theorem 1.3, as the reader may verify.

4.2. A discrete Brunn–Minkowski inequality I

In Ollivier and Villani [10], a Brunn–Minkowski type inequality with
curvature terms is proved on the discrete hypercube. A simplified version of
their inequality, without curvature, states that for any sets A,B ⊆ {0, 1}n
one has

#M >
√

#A · #B, (4.3)
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where M is the set of all midpoints of pairs (a, b) with a ∈ A and b ∈ B. In
the terminology of [10], a point m = (m1, . . . ,mn) ∈ {0, 1}n is a midpoint
of two points a, b ∈ {0, 1}n if mi = ai whenever ai = bi, and

#{1 6 j 6 n ;mj = aj} = #{1 6 j 6 n ;mj = bj}+ ε

with ε ∈ {−1, 0, 1}, i.e., essentially half of the remaining bits of m coincide
with those of a and the other half with those of b.

We show that inequality (4.3) holds for a much smaller subset of mid-
points. For example, let us use the operation T given in (1.2). Recall that
T (a, b) = (T1(a, b), . . . , Tn(a, b)) is defined by:

Ti(a, b) =
{
ai, #{j 6 i : aj 6= bj} is odd
bi, otherwise.

It is clear that T (a, b) is one of the midpoints of a and b in the sense of [10],
as well as the point a+ b− T (a, b). Denote

M−1 =
⋃
a∈A
b∈B

T (a, b), M+
1 =

⋃
a∈A
b∈B

(a+ b− T (a, b)), M1 = M−1 ∪M
+
1 ,

and let f = 1A, g = 1B , h = 1M−1
, k = 1M+

1
be the indicator functions of

A, B, M−1 and M+
1 . Applying Theorem 1.3 with the above operation T we

obtain √
#A ·#B 6

√
#M−1 ·#M

+
1 6 #M1.

This inequality implies (4.3) since M1 ⊂M . Our inequality is quite flexible,
as there is nothing canonical about the specific definition (1.2) of the map T ,
and moreover the analysis applies for subsets of Zn and not only for subsets
of {0, 1}n.

4.3. A discrete Brunn–Minkowski inequality II

Recently, the following inequality was proven by Iglesias, Yepes Nicolás
and Zvavitch [7]:

Theorem 4.3. — Let λ ∈ [0, 1]. For any two bounded non-empty sets
K,L ⊆ Rn, we have

Gn(λK + (1− λ)L+ (−1, 1)n)1/n > λGn(K)1/n + (1− λ)Gn(L)1/n,

where Gn(M) denotes the number of lattice points in M ⊆ Rn.
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We recover a multiplicative version of Theorem 4.3 for λ = 1/2: Let
f = 1K , g = 1L, h = 1 1

2 (K+L)+(−1,0]n and k = 1 1
2 (K+L)+[0,1)n . Note that

for every x ∈ K and y ∈ L, we have⌊
x+ y

2

⌋
∈ K + L

2 − [0, 1)n and
⌈
x+ y

2

⌉
∈ K + L

2 + [0, 1)n,

which implies that f(x)g(y) 6 h(bx+y
2 c)k(dx+y

2 e) for all x, y ∈ Zn. By The-
orem 1.2, we have√

Gn(K)Gn(L) 6

√
Gn

(
K + L

2 + [0, 1)n
)
Gn

(
K + L

2 + (−1, 0]n
)

6 Gn

(
K + L

2 + (−1, 1)n
)
,

as follows also from Theorem 4.3 via the arithmetic/geometric means in-
equality.

Remark 4.4. — We conclude this paper with a little remark on the case
of a finite abelian group, where G = (Z/p1Z) × · · · × (Z/pnZ). There are
no additive, complete orderings on such groups. Therefore, in order to apply
Theorem 1.3 for four functions f, g, h, k : G→ [0,∞), one option is to define

f̃(x) =
{
f(π(x)) 0 6 x1 < p1, . . . , 0 6 xn < pn

0 otherwise,

where π : Zn → (Z/p1Z) × · · · × (Z/pnZ) = G is the projection map, and
similarly to define g̃, h̃, k̃. In the case where the four functions f̃ , g̃, h̃, k̃ :
Zn → [0,∞) satisfy the assumptions of Theorem 1.3, we obtain the inequality(∑

x∈G
f(x)

)(∑
x∈G

g(x)
)
6

(∑
x∈G

h(x)
)(∑

x∈G
k(x)

)
.
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