
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
SOONSIK KWON, TADAHIRO OH AND HAEWON YOON

Normal form approach to unconditional well-posedness of nonlinear
dispersive PDEs on the real line

Tome XXIX, no 3 (2020), p. 649-720.

<http://afst.centre-mersenne.org/item?id=AFST_2020_6_29_3_649_0>

© Université Paul Sabatier, Toulouse, 2020, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sciences
de Toulouse Mathématiques » (http://afst.centre-mersenne.org/), im-
plique l’accord avec les conditions générales d’utilisation (http://afst.
centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet
article sous quelque forme que ce soit pour tout usage autre que l’utilisation
à fin strictement personnelle du copiste est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la présente men-
tion de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://afst.centre-mersenne.org/item?id=AFST_2020_6_29_3_649_0
http://afst.centre-mersenne.org/
http://afst.centre-mersenne.org/legal/
http://afst.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Annales de la faculté des sciences de Toulouse Volume XXIX, no 3, 2020
pp. 649-720

Normal form approach to unconditional well-posedness
of nonlinear dispersive PDEs on the real line (∗)

Soonsik Kwon (1), Tadahiro Oh (2) and Haewon Yoon (3)

ABSTRACT. — In this paper, we revisit the infinite iteration scheme of normal
form reductions, introduced by the first and second authors (with Z.Guo), in con-
structing solutions to nonlinear dispersive PDEs. Our main goal is to present a sim-
plified approach to this method. More precisely, we study normal form reductions
in an abstract form and reduce multilinear estimates of arbitrarily high degrees to
successive applications of basic trilinear estimates. As an application, we prove un-
conditional well-posedness of canonical nonlinear dispersive equations on the real
line. In particular, we implement this simplified approach to an infinite iteration of
normal form reductions in the context of the cubic nonlinear Schrödinger equation
(NLS) and the modified KdV equation (mKdV) on the real line and prove uncondi-
tional well-posedness in Hs(R) with (i) s > 1

6 for the cubic NLS and (ii) s > 1
4 for

the mKdV. Our normal form approach also allows us to construct weak solutions to
the cubic NLS in Hs(R), 0 6 s < 1

6 , and distributional solutions to the mKdV in
H

1
4 (R) (with some uniqueness statements).

RÉSUMÉ. — Dans cet article, nous revisitons le schéma d’itération infinie des ré-
ductions de forme normale, introduit par les premier et deuxième auteurs (avec
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Z.Guo), dans la construction des solutions des EDP dispersives non linéaires. Notre
objectif principal est de présenter une approche simplifiée à cette méthode. Plus
précisément, nous étudions les réductions de forme normale dans un cadre abstrait
et nous réduisons les estimations multilinéaires de degrés arbitraires aux applica-
tions successives des estimations trilinéaires fondamentales. Comme application,
nous montrons que des équations dispersives non linéaires canoniques sont incon-
ditionnellement bien-posées sur la droite réelle. En particulier, nous implémentons
cette approche simplifiée à l’itération infinie des réductions de forme normale dans
le contexte de l’équation de Schrödinger non linéaire cubique (NLS) et de l’équation
de KdV modifiée (mKdV) sur la droite réelle et nous prouvons qu’elles sont incondi-
tionnellement bien posées dans Hs(R) avec (i) s > 1

6 dans le cas pour NLS cubique
et (ii) s > 1

4 dans le cas pour mKdV. Notre approche de forme normale nous permet
également de construire solutions faibles au NLS cubique dans Hs(R), 0 6 s < 1

6 , et
solutions de distribution au mKdV dans H

1
4 (R) (avec certaine forme d’unicité).

1. Introduction

1.1. Main results

In this paper, we study the Cauchy problem for some canonical nonlin-
ear dispersive equations on the real line. More specifically, we consider the
following cubic nonlinear Schrödinger equation (NLS):{

i∂tu = ∂2
xu± |u|2u

u|t=0 = u0 ∈ Hs(R),
(x, t) ∈ R× R, (1.1)

and the modified KdV equation (mKdV):{
∂tu = ∂3

xu± ∂x(u3)
u|t=0 = u0 ∈ Hs(R),

(x, t) ∈ R× R, (1.2)

where a solution u is complex-valued in (1.1) and is real-valued in (1.2).

The Cauchy problems (1.1) and (1.2) have been studied extensively by
many mathematicians. In particular, multilinear harmonic analysis played
an important role in establishing well-posedness of these equations in low
regularities. Moreover, these equations are known to be one of the simplest
examples of completely integrable equations [31, 32, 43, 44] and such inte-
grable structures play an important role in establishing a priori bounds for
these equations in the low regularity setting [29, 23]. In the following, how-
ever, we will not focus on such an integrable structure in an explicit manner.
Our main goal in this paper is to introduce a new methodology to establish
well-posedness of (1.1) and (1.2) (with stronger uniqueness) without relying
on heavy harmonic analysis or complete integrability.
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Normal form approach to unconditional Well-posedness on R

Let us briefly go over the well-posedness theory of (1.1) and (1.2). We
say that the Cauchy problem (1.1) or (1.2) is locally well-posed in Hs(R)
if given u0 ∈ Hs(R), there exists a unique solution u ∈ C([−T, T ];Hs(R))
to the equation for some T = T (u0) > 0. Moreover, we impose that the
solution map: u0 ∈ Hs(R) 7→ u ∈ C([−T, T ];Hs(R)) be continuous. If we
can take T > 0 to be arbitrarily large, we say that the Cauchy problem is
globally well-posed. As we see below, one often needs to employ an auxiliary
function space XT to establish well-posedness. As a result, we have unique-
ness of solutions only in C([−T, T ];Hs(R)) ∩XT . In this case, we say that
uniqueness holds conditionally. If, instead, uniqueness holds in the entire
C([−T, T ];Hs(R)), then we say that the Cauchy problem is unconditionally
(locally) well-posed in Hs(R). See [19]. Unconditional uniqueness is a notion
of uniqueness which does not depend on how solutions are constructed. In the
following, we summarize the known analytical results on the well-posedness
of (1.1) and (1.2).

A basic strategy for proving local well-posedness of (1.1) or (1.2) is to
write the equation in the Duhamel formulation:(1)

u(t) = e−it∂
2
xu0 ∓ i

∫ t

0
e−i(t−t

′)∂2
x |u|2u(t′) dt′

and solve the corresponding fixed point problem. When s > 1
2 , Sobolev’s

embedding theorem allows us to prove local well-posedness of the cubic
NLS (1.1) in Hs(R) via the contraction mapping principle. In [42], Tsut-
sumi used the Strichartz estimates and proved local well-posedness of (1.1)
in L2(R), which immediately implied global well-posedness in L2(R) thanks
to the L2-conservation. Note that the uniqueness holds conditionally in [42]
due to the use of the Strichartz spaces. By refining the analysis, Kato [19]
proved unconditional well-posedness of (1.1) in Hs(R), s > 1

6 .

Another approach, inherited from quasilinear hyperbolic problems, relies
on the energy estimates. In [18], Kato studied the mKdV (1.2) from a view-
point of a hyperbolic equation and proved its local well-posedness in Hs(R),
s > 3

2 . In Kato’s proof, the dispersive part ∂3
x did not play any role. In [20],

Kenig–Ponce–Vega exploited the dispersive nature of the equation in the
form of local smoothing and maximal function estimates and proved local
well-posedness of (1.2) in Hs(R), s > 1

4 , via the contraction mapping prin-
ciple. See also [41] for another proof of the local well-posedness in H 1

4 (R),
utilizing the Fourier restriction norm method (i.e. the Xs,b-spaces). By com-
bining the Xs,b-spaces with weights and the I-method, Kishimoto [24] then

(1) Here, we only write the Duhamel formulation of the cubic NLS (1.1).
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proved global well-posedness of (1.2) in H
1
4 (R).(2) Note that uniqueness

in [14, 20, 24, 41] holds only conditionally. More recently, by combining the
Fourier restriction norm method and the energy method, Molinet–Pilod–
Vento [33] proved unconditional well-posedness of (1.2) in Hs(R), s > 1

3 .

In the following, we present a new method for proving well-posedness
of (1.1) and (1.2) on the real line. More precisely, we apply normal form
reductions to the equation infinitely many times and transform it into an
new equation. While this new equation involves nonlinear terms of arbitrarily
high degrees, it turns out that these nonlinear terms can be estimated in a
rather straightforward manner by successive applications of a basic trilinear
estimate (called a localized modulation estimate) without using any auxiliary
function spaces such as the Strichartz spaces and theXs,b-spaces. As a result,
we obtain the following unconditional well-posedness of (1.1) and (1.2).

Theorem 1.1. — Let s > 1
6 . Then, the cubic NLS (1.1) is uncondition-

ally globally well-posed in Hs(R).

Theorem 1.2. — Let s > 1
4 . Then, the mKdV (1.2) is unconditionally

globally well-posed in Hs(R).

Theorem 1.2 for the mKdV (1.2) extends the previous unconditional
uniqueness result in Hs(R), s > 1

3 , by Molinet–Pilod–Vento [33] to s > 1
4 ,

thus almost matching the local well-posedness result in H 1
4 (R) [20, 41]. On

the other hand, Theorem 1.1 for the cubic NLS (1.1) was already proven
in [19]. Let us stress, however, that the main purpose of this paper is to
introduce a new method for constructing solutions to nonlinear dispersive
PDEs on the real line (and on Rd in general) via (a simplified approach
to) an infinite iteration of normal form reductions, which can be applied to
different classes of dispersive equations. In our previous work [15], we intro-
duced an infinite iteration of normal form reductions to construct solutions
to nonlinear dispersive PDEs in the periodic setting. In particular, we proved
unconditional uniqueness of the cubic NLS on the circle T in Hs(T), s > 1

6 .
On the one hand, the present work can be viewed as an extension of [15]
to the non-periodic case. On the other hand, novelty of this work lies in
presenting a simplified approach in treating multilinear estimates appearing
in this normal form approach.

(2) In [24], Kishimoto first proved an endpoint local well-posedness of the KdV equation
in H−

3
4 (R) and then combined it with the I-method and the Miura transform to establish

global well-posedness of the mKdV (1.2) in H
1
4 (R). In [14], Guo independently proved

local well-posedness of the KdV equation in H−
3
4 (R). His argument, however, does not

seem to lead to the claimed global well-posedness as it is presented in [14] due to the use
of the function spaces non-compatible with the I-method.
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Normal form approach to unconditional Well-posedness on R

In order to make sense of the cubic nonlinearity in (1.1) or (1.2) as
a distribution, we need to have u ∈ L3

loc(R). In view of the embedding:
H

1
6 (R) ⊂ L3(R), we see that s > 1

6 is necessary for proving unconditional
uniqueness for (1.1) and (1.2) within the framework of the L2-based Sobolev
spaces. Moreover, it is known that the solution map for the mKdV (1.2):
u0 ∈ Hs(R) 7→ u ∈ C([−T, T ];Hs(R)) fails to be locally uniformly continu-
ous for s < 1

4 [6, 21]. Noting that a Picard iteration yields smoothness of a
solution map, we see that the regularity restriction s > 1

4 is needed to prove
local well-posedness of (1.2) via a Picard iteration (even with conditional
uniqueness). Hence, Theorems 1.1 and 1.2 are (almost) sharp in the regime
where a Picard iteration is applicable by some other consideration. We also
point out that well-posedness of (1.1) for s < 0 and (and (1.2) for s < 1

4 ,
respectively) is a long-standing open problem. See [7, 8, 27, 28] for existence
results (without uniqueness) below these threshold regularities.

While we need s > 1
6 in order to make sense of the cubic nonlinearity

NNLS(u) := |u|2u as a distribution, our normal form argument allows us to
establish an a priori bound on the difference of two (smooth) solutions for
the cubic NLS (1.1) in L2(R). This allows us to establish an existence result
of certain weak solutions. Before we state our next result, let us recall the
following two notions of weak solutions.

We first recall the notion of weak solutions in the extended sense. See [4,
5, 15].

Definition 1.3. — Let 0 6 s < 1
6 and T > 0.

(i) We define a sequence of Fourier cutoff operators to be a sequence
of Fourier multiplier operators {TN}N∈N on S ′(R) with multipliers
mN : R→ C such that
• mN has a compact support on R for each N ∈ N,
• mN is uniformly bounded,
• mN converges pointwise to 1, i.e. limN→∞mN (ξ) = 1 for any
ξ ∈ R.

(ii) Let u ∈ C([−T, T ];Hs(R)). We say that NNLS(u) exists and is equal
to a distribution v ∈ S ′(R×(−T, T )) if for every sequence {TN}N∈N
of (spatial) Fourier cutoff operators, we have

lim
N→∞

NNLS(TNu) = v

in the sense of distributions on R× (−T, T ).
(iii) (weak solutions in the extended sense) We say that u ∈ C([−T, T ];

Hs(R)) is a weak solution of the cubic NLS (1.1) in the extended
sense if
• u|t=0 = u0,
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• the nonlinearity NNLS(u) exists in the sense of (ii) above,
• u satisfies (1.1) in the distributional sense on R × (−T, T ),
where the nonlinearity NNLS(u) is interpreted as above.

See also [13] for a similar notion of weak solutions, where the nonlinearity
is defined as a distributional limit of smoothed nonlinearities.

Next, we introduce the following notion of sensible weak solutions. See [12,
37, 39].

Definition 1.4 (sensible weak solutions). — Let 0 6 s < 1
6 and T > 0.

Given u0 ∈ Hs(R), we say that u ∈ C([−T, T ];Hs(R)) is a sensible weak
solution to the cubic NLS (1.1) on [−T, T ] if, for any sequence {u0,m}m∈N of
Schwartz functions tending to u0 in Hs(R), the corresponding Schwartz solu-
tions um with um|t=0 = u0,m converge to u in C([−T, T ];Hs(R)). Moreover,
we impose that there exists a distribution v such that NNLS(um) converges
to v in the space-time distributional sense, independent of the choice of the
approximating sequence.

By using the equation, the convergence of um to u in C([−T, T ];Hs(R))
implies that NNLS(um) converges to some v in the space-time distributional
sense. Hence, the last part of Definition 1.4 is not quite necessary. We, how-
ever, keep it for clarity.

Note that sensible weak solutions are unique by definition. See [17, 22] for
analogous notions of solutions (with uniqueness embedded in the definition).
On the other hand, weak solutions in the extended sense are not unique in
general. In fact, Christ [5] proved non-uniqueness of weak solutions in the
extended sense for the renormalized cubic NLS on T in negative Sobolev
spaces. These notions of weak solutions in Definitions 1.3 and 1.4 are rather
weak and we need to interpret the cubic nonlinearity NNLS(u) as a (unique)
limit of smoothed nonlinearities NNLS(TNu) or the nonlinearities NNLS(um)
of smooth approximating solutions um. This in particular implies that weak
solutions in the sense of Definitions 1.3 or 1.4 do not have to satisfy the
equation even in the distributional sense.

Our normal form approach yields the following result without relying on
any auxiliary function spaces.

Theorem 1.5. — Let 0 6 s < 1
6 . Then, the cubic NLS (1.1) is globally

well-posed in Hs(R)

• in the sense of weak solutions in the extended sense and
• in the sense of sensible weak solutions.
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Normal form approach to unconditional Well-posedness on R

As for the mKdV (1.2), our normal form argument provides an a priori
bound in H

1
4 (R). In this regularity, the cubic nonlinearity ∂x(u3) makes

sense as a distribution and thus we do not need the notion of weak solutions
in the extended sense in Definition 1.3. On the other hand, we can define
sensible weak solutions to the mKdV (1.2) as in Definition 1.4.

Theorem 1.6. — The mKdV (1.2) is globally well-posed in H
1
4 (R) in

the sense of sensible weak solutions. These solutions are indeed distributional
solutions to (1.2).

Note that solutions constructed in Theorems 1.5 and 1.6 agree with those
from the previous well-posedness results in [20, 41, 42]. This easily follows
from the unconditional uniqueness in higher regularities (for example, in
Theorems 1.1 and 1.2) and the conditional well-posedness results in low
regularities [20, 41, 42], which provides uniqueness as a limit of classical so-
lutions. We point out, however, that the importance of Theorems 1.5 and 1.6
does not lie in their statements but in the method of the construction of so-
lutions. Our normal form approach transforms the equations (1.1) and (1.2)
to the normal form equations (see (1.8) and (3.38)), at least for smooth so-
lutions belonging to Hs(R) with s > 1

6 for the cubic NLS and s > 1
4 for

the mKdV. We then prove unconditional global well-posedness of the nor-
mal form equations in Hs(R) with the regularities specified in Theorems 1.5
and 1.6, i.e. s > 0 for the cubic NLS and s > 1

4 for the mKdV. See The-
orem 3.18 below. Then, Theorems 1.5 and 1.6 follow as corollaries to this
unconditional well-posedness on the normal form equation.

Lastly, note that while Theorems 1.1, 1.2, 1.5, and 1.6 claim global-in-
time results, it suffices to prove these theorems only locally in time thanks
to the (conditional) global well-posedness [10, 24, 42]. More precisely, in the
following, we perform local-in-time construction of solutions on a time in-
terval of length T = T (‖u0‖Hs) > 0 with s > 0 for the cubic NLS (1.1)
and s > 1

4 for the mKdV (1.2). Noting that the global well-posedness results
in [10, 24, 42] provide an a priori estimate of the form: supt∈[−T,T ] ‖u(t)‖Hs .
C(‖u0‖Hs , T ) for any T > 0, we can simply iterate the local-in-time argu-
ment to prove Theorems 1.1, 1.2, 1.5, and 1.6. Since our analysis is of local-
in-time nature, the focusing/defocusing nature of the equations does not
play any role. Hence, we assume that the equations are defocusing, i.e. with
the − signs in (1.1) and (1.2).

Remark 1.7. — In [38], Y. Wang and the second author introduced the
notion of enhanced uniqueness, which is uniqueness among all solutions (with
the same initial data) equipped with some smooth approximating solutions.
They used an infinite iteration of normal form reductions for the fourth or-
der cubic NLS (4NLS) in negative Sobolev spaces and proved such enhanced
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uniqueness. This notion of enhanced uniqueness allows us to compare so-
lutions belonging to various auxiliary functions spaces (so that the cubic
nonlinearity makes sense in some appropriate manner). On the one hand,
this notion was useful in [38] since there was no known (conditional) well-
posedness for 4NLS in negative Sobolev spaces at that time. We point out,
however, that such notion becomes useless once we have (i) conditional well-
posedness in relevant low regularity and (ii) unconditional well-posedness in
high regularities. In such a case, this notion of enhanced uniqueness coin-
cides with uniqueness as a limit of classical solutions. This is precisely the
situation for the cubic NLS and the mKdV under consideration.

1.2. Normal form approach

In this subsection, we briefly explain our strategy for proving Theo-
rems 1.1, 1.2, 1.5, and 1.6. As mentioned above, our main tool is the nor-
mal form method. In particular, we apply normal form reductions to (1.1)
and (1.2) infinitely many times to transform them into new equations. These
new equations involve infinite series of nonlinearities of arbitrarily high de-
grees and thus are more complicated algebraically than the original equa-
tions. As we see later, however they are easier to handle analytically. Namely,
we renormalize the equations into analytically simpler equations at the ex-
pense of algebraic and notational complexity.

In the following, we consider the cubic NLS (1.1) as an example. Letting
v(t) = eit∂

2
xu(t) denote the interaction representation of u, we can rewrite

the equation (1.1) as(3)

∂tv = N (v) := F−1

{
i

∫
ξ=ξ1−ξ2+ξ3

e−iΦ(ξ̄)t
3∏
j=1

v̂(ξj , t)dξ1dξ2

}
, (1.3)

where the modulation function(4) Φ(ξ̄) is defined by
Φ(ξ̄) = Φ(ξ, ξ1, ξ2, ξ3) = ξ2 − ξ2

1 + ξ2
2 − ξ2

3

= 2(ξ2 − ξ1)(ξ2 − ξ3) = 2(ξ − ξ1)(ξ − ξ3). (1.4)
Note that the last two equalities hold under the condition ξ = ξ1−ξ2+ξ3. We
point out that it is natural to consider the equation in terms of the interaction
representation if we want to exploit the oscillatory factor e−iΦ(ξ̄)t in (1.3).

(3) For simplicity of the exposition, we drop the complex conjugate sign on v̂(ξ2).
(4) In [41], this phase function is referred to as a resonance function. For our analy-

sis, resonance does not play any important role. Instead, modulation (as in the Fourier
restriction norm method) plays an important role. For this reason, we refer to Φ(ξ̄) as a
modulation function.
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Normal form approach to unconditional Well-posedness on R

Such a formulation in terms of the interaction representation is classical and
already appears in the work of Kato [18] in the context of the (generalized)
KdV equation. By integrating (1.3) in time, we obtain

v(t) = u0 +
∫ t

0
N (v)(t′)dt′. (1.5)

On the one hand, when s > 1
2 , we can easily estimate (1.5) by the algebra

property of Hs(R). On the other hand, when s 6 1
2 , we must exploit the

dispersion, namely, the oscillation coming from the oscillatory factor e−iΦ(ξ̄)t

in (1.3). This is often manifested in the form of the Strichartz estimates
and/or the Fourier restriction norm method. In the following, we simply
rely on integration by parts. By taking the spatial Fourier transform of (1.5)
and (formally) integrating by parts,(5) we have

v̂(ξ) = û0(ξ)−
∫
ξ=ξ1−ξ2+ξ3

e−iΦ(ξ̄)t′

Φ(ξ̄)

3∏
j=1

v̂(ξj , t′)dξ1dξ2
∣∣∣∣t
t′=0

+
∫ t

0

∫
ξ=ξ1−ξ2+ξ3

e−iΦ(ξ̄)t′

Φ(ξ̄)
∂t

( 3∏
j=1

v̂(ξj , t′)
)

dξ1dξ2dt′. (1.6)

Note that we have gained a full power of the modulation thanks to Φ(ξ̄)
in the denominator. Compare this with the usual application of the Fourier
restriction norm method where one only gains ∼ 1

2 -power of the modulation.

At this point, there are several issues in (1.6). First, note that the modula-
tion function Φ(ξ̄) appearing in the denominator may be 0. This corresponds
to the so-called resonance. Even if Φ(ξ̄) 6= 0, integration by parts does not
seem to help if Φ(ξ̄) is small, corresponding to the nearly resonant case. In
order to resolve this issue, we separately estimate the contributions from
(i) nearly resonant case: |Φ(ξ̄)| 6 N and (ii) (highly) non-resonant case:
|Φ(ξ̄)| > N for some parameter N = N(‖u0‖Hs) > 1. In particular, we per-
form integration by parts only in the non-resonant case (ii). Thanks to the
restriction on the modulation, we can estimate the contribution from the
nearly resonant case (i) in CtH

s
x, s > 0 (and s > 1

4 for the mKdV), in a
straightforward manner. See Lemmas 2.3 and 2.6.

The second issue is that we have increased the degree of the nonlinearity
in (1.6). In view of (1.3), the last term in (1.6) is now quintic. Indeed, by

(5) In fact, this integration by parts basically corresponds to the (Poincaré–Dulac)
normal form reduction. See the introduction of [15] by the first two authors (with Z.Guo),
relating the integration-by-parts (or differentiation-by-parts) procedure with the normal
form reductions. See Arnold [1] for a general discussion of the Poincaré–Dulac normal
form reductions in the finite dimensional setting.
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assuming that the time derivative falls on the first factor, we can write the
last term in (1.6) as

∼
∫ t

0

∫
ξ=ξ1−ξ2+ξ3

e−iΦ(ξ̄)t′

Φ(ξ̄)
N̂ (v)(ξ1, t′)

3∏
j=2

v̂(ξj , t′)dξ1dξ2dt′

∼
∫ t

0

∫
ξ=ξ1−ξ2+ξ3
ξ1=ζ1−ζ2+ζ3

e−i(Φ(ξ̄)+Φ(ζ̄))t′

Φ(ξ̄)

3∏
k=1

v̂(ζk, t′)
3∏
j=2

v̂(ξj , t′)dζ1dζ2dξ1dξ2dt′,

(1.7)

where Φ(ζ̄) := Φ(ξ1, ζ1, ζ2, ζ3). The main idea is to perform integration by
parts once again. In order to exploit the oscillation of e−i(Φ(ξ̄)+Φ(ζ̄))t′ , we
separately estimate the contributions from (i) nearly resonant case: |Φ(ξ̄) +
Φ(ζ̄)| 6 N1 and (ii) non-resonant case: |Φ(ξ̄) + Φ(ζ̄)| > N1 for some suitable
threshold N1 > 1.(6) Then, we integrate (1.7) by parts only in the non-
resonant case (ii), thus introducing a septic nonlinearity.

By formally iterating this procedure indefinitely, we arrive at the following
normal form equation:

v(t) = u0 +
∞∑
j=2
N (j)

0 (v(t′))
∣∣∣∣t
t′=0

+
∫ t

0

∞∑
j=1
N (j)

1 (v(t′)) dt′, (1.8)

where N (j)
0 (v) and N (j)

1 (v) are (2j − 1)- and (2j + 1)-multilinear terms,
respectively. See (3.38) below. These multilinear terms N (j)

0 (v) and N (j)
1 (v)

appear as a result of (j − 1)-many iterations of the normal form reductions.
Then, the main task is to estimate each term of the infinite series in (1.8) in
the CtHs

x-norm in a summable manner. There are, however, three potential
difficulties:

(1) The degrees of the nonlinearities can be arbitrarily high.
(2) In performing integration by parts in the Jth step, the number of

factors on which the time derivative falls is 2J + 1. Thus, the con-
stants grow like 3 · 5 · 7 · . . . · (2J + 1).

(3) Our multilinear estimates need to provide small constants on the
terms without time integration, i.e. on the boundary terms, such as
the second term on the right-hand side of (1.6) and N (j)

0 (v) in (1.8).
(We can introduce small constants for the terms inside time integra-
tion by making the time interval of integration sufficiently short.)

In Section 3, we will treat these issues and prove that the normal form
equation is unconditionally well-posed (Theorem 3.18). Theorems 1.1, 1.2,

(6) As we see later, we choose N1 ∼ |Φ(ξ̄)|1−δ for some δ ∈ (0, 1). See (3.7).
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1.5, and 1.6 then follow as corollaries to this unconditional well-posedness of
the normal form equation.

In [15], we implemented an infinite iteration of normal form reductions
sketched above in the context of the cubic NLS on the circle T. In particular,
we introduced the notion of ordered trees (see Definition 3.3) and indexed
all the multilinear terms by such ordered trees, handling the issues (1), (2),
and (3). Moreover, in handling the multilinear estimates, we exploited the
discrete structure of the spatial frequency space Z = (T)∗ in the form of the
divisor counting argument. In the non-periodic setting, such number theo-
retic tools are no longer available. In this paper, we change our viewpoint and
view these multilinear terms as iterative compositions of trilinear operators
(see Definition 3.13 and (3.26)) with modulation restrictions. We first estab-
lish trilinear localized modulation estimates in Section 2 as a fundamental
building block. Then, by applying such trilinear localized modulation esti-
mates in an iterative manner, we estimate the multilinear terms of arbitrarily
high degrees, appearing in (1.8). This provides a simplified framework for
implementing an infinite iteration of normal form reductions.(7)

Lastly, let us mention the role of two different topologies for this normal
form argument. Roughly speaking, we

(i) establish a priori estimates in a stronger topology (in Hs(R) with
s > 0 for the cubic NLS and s > 1

4 for the mKdV) but
(ii) justify all the formal computations in a weaker topology (in the

Fourier–Lebesgue space FL∞(R) defined in (1.9) below) for
smoother solutions (s > 1

6 for the cubic NLS and s > 1
4 for the

mKdV), thus making sense of the identity (1.8) in the distributional
sense.

By formally performing an infinite iteration of normal form reductions, we
derive the normal form equation (1.8) in Section 3. In establishing a pri-
ori estimates in Hs(R), we estimate each multilinear term in the Hs-norm
with s > 0 for the cubic NLS and s > 1

4 for the mKdV. In Section 4, we
justify all the formal computations performed in Section 3, in particular the
integration-by-parts steps, where we switch time derivatives and integrations
over spatial frequencies. See (1.6) for example. For this purpose, we work in
a weaker topology. Indeed, we justify all the steps of the normal form reduc-
tions for each fixed frequency ξ ∈ R of the interaction representation v̂(ξ)
(and hence of each multilinear term in (1.8)). It is in this step where we need

(7) During the preparation of this manuscript, we learned that Kishimoto [25, 26]
independently used a similar abstraction of a basic multilinear estimate as a fundamental
building block in the application of an infinite iteration of normal form reductions to prove
unconditional well-posedness for various dispersive PDEs in the periodic setting.
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to assume a higher regularity: s > 1
6 for the cubic NLS and s > 1

4 for the
mKdV. In the case of the mKdV, we also need to handle the derivative loss
in the equation. In particular, in each step of the normal form reductions
(i.e. integration by parts), we use the equation (1.2) to replace ∂tv̂ by the
cubic nonlinearity (see (2.14)), which introduces a derivative loss at each
step. Since we work for each fixed ξ ∈ R, the derivative loss in the first “gen-
eration” (i.e. in the original equation) does not cause any problem. We then
shift part of the derivative loss up by one generation to reduce the derivative
loss in the last generation. See Subsection 4.2 for a further discussion.

1.3. Remarks and comments

A precursor to this normal form approach appeared in the work of Babin–
Ilyin–Titi [2] for the KdV on T, establishing unconditional well-posedness
of the KdV in L2(T). See also [30] for an analogous unconditional well-
posedness result for the periodic mKdV in H 1

2 (T). Note that two iterations
were sufficient in [2, 30]. In [15], we further developed this normal form ap-
proach and introduced an infinite iteration scheme of normal form reductions
in the context of the cubic NLS on the circle. By performing normal form
reductions infinitely many times, we proved unconditional well-posedness of
the periodic cubic NLS in H 1

6 (T). In this series of work, the viewpoint of un-
conditional well-posedness was first introduced in [30], while the viewpoint
of the (Poincaré–Dulac) normal form reductions was first introduced in [15].

More recently, by combining an infinite iteration of normal form reduc-
tions and the Cole–Hopf transform, we proved unconditional global well-
posedness for the quadratic derivative NLS on T for small mean-zero initial
data [9]. Moreover, this method allowed us to construct an infinite sequence
of invariant quantities under the dynamics. Kishimoto [25] adapted our infi-
nite iteration approach and proved unconditional well-posedness for higher
dimensional NLS, the Zakharov system on Td, d = 1, 2, the derivative cubic
NLS on T, the Benjamin–Ono and modified Benjamin–Ono equations in the
periodic setting.

One may naturally expect that an infinite iteration of normal form re-
ductions is needed to prove Theorem 1.1 for the cubic NLS on the real line
just as in the periodic case [15].(8) It is, however, to our surprise to see that

(8) We point out recent works [40, 3] on the construction of solutions to the cubic NLS
on the real line via an infinite iteration of normal form reductions. Their implementation
of normal form reductions follows closely the original argument in [15] and unconditional
uniqueness in modulation spaces (including Theorem 1.1 above) is established. In [12], this
construction was extended to almost critical Fourier–Lebesgue and modulation spaces.
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we also need to perform normal form reductions infinitely many times in
proving Theorem 1.2 for the mKdV on the real line. This is in sharp con-
trast with the mKdV on the circle, where two iterations were sufficient [30].
In this paper, we chose to study the cubic NLS (1.1) and the mKdV (1.2) as
canonical examples. As in the periodic case [25], our method of an infinite
iteration scheme of normal form reductions is fairly general that it can be
applied to study a wide variety of equations in the Euclidean space Rd of
general dimensions.

This normal form approach has various applications beyond establishing
unconditional uniqueness. It has been used to exhibit nonlinear smooth-
ing [11], to prove a good approximation property in proving symplectic non-
squeezing [16], and establishing effective energy estimates with smoothing
in proving quasi-invariance of Gaussian measures on periodic functions un-
der dispersive PDEs [36].(9) More recently, the second author introduced a
way to perform normal form reductions infinitely many times in establishing
energy estimates [35, 38]. In particular, the notion of ordered trees was ex-
tended to that of ordered bi-trees to accommodate normal form reductions
on energy quantities. Note that such an infinite iteration of normal form re-
ductions on an energy quantity basically amounts to adding infinitely many
correction terms in the I-method terminology, going far beyond the known
application of the I-method [10], where only finitely many correction terms
were considered.

The main novelty of this paper is to reduce multilinear estimates to suc-
cessive applications of a basic trilinear localized modulation estimate and in
fact to reduce the entire problem of proving unconditional well-posedness to
simply proving two basic trilinear estimates (i.e. localized modulation esti-
mates in the strong norm and in the weak norm: Lemmas 2.3 and 4.1 for
the cubic NLS and Lemma 2.6 and 4.9 for the mKdV). Such reduction can
easily be implemented in the context of our previous work [15, 35, 38], except
for [9] where the algebraic property of the equation played an important role
inducing cancellation of resonant terms via symmetrization at each step of
the normal form reductions. See also the concluding remark at the end of
this paper.

This paper is organized as follows. In Section 2 we establish crucial trilin-
ear estimates (localized modulation estimates) for the cubic NLS (1.1) and
the mKdV (1.2). In Section 3, we perform an infinite iteration of normal form
reductions and derive the normal form equation. We carry out a computa-
tion in Section 3 at a formal level. In Subsection 3.4, we prove unconditional
local well-posedness of the normal form equation in Hs(R) with s > 0 for the

(9) Such an application of normal form reductions in energy estimates is more classical
and precedes the work of [2].

– 661 –



Soonsik Kwon, Tadahiro Oh and Haewon Yoon

cubic NLS and s > 1
4 for the mKdV (Theorem 3.18) and discuss the proofs

of Theorems 1.1, 1.2, 1.5, and 1.6, assuming that smooth solutions satisfy
the normal form equation. In Section 4, we justify the formal computation
in Section 3 and then conclude the proofs of the main theorems.

Notations

We use A . B to denote an estimate of the form A 6 CB for some
constant C > 0, which may vary from line to line and depend on various
parameters. We also use A ∼ B to denote A . B . A, while we use A� B
to denote A 6 εB for some small absolute constant ε > 0. We use a+ to
denote a+ε for arbitrarily small ε� 1, where an implicit constant is allowed
to depend on ε > 0 (and it usually diverges as ε→ 0).

Given a function f on R, we define its Fourier transform by

F(f)(ξ) = f̂(ξ) =
∫
R
f(x)e−2πixξdx.

We drop the harmless factor of 2π in the following. We define the Fourier–
Lebesgue space FLp(R), p > 1, by the norm:

‖f‖FLp = ‖f̂‖Lp . (1.9)

Any summation over capitalized variables such as N1, N2, . . . are pre-
sumed to be dyadic, i.e. these variables range over dyadic numbers of the
form 2k, k ∈ Z>0. We also use the following shorthand notations: ξij and
ξi−j for ξi + ξj and ξi − ξj , respectively.

Given dyadicN > 1, we use PN to denote the Littlewood–Paley projector
onto the spatial frequencies {|ξ| ∼ N}. Given k ∈ Z, we use Πk to denote
the (spatial) frequency projector onto the interval [k, k + 1):

Πkv(ξ) = 1[k,k+1)(ξ) · v(ξ). (1.10)

We use S(t) to denote the linear propagator for the linear Schrödinger
equation: i∂tu = ∂2

xu and the Airy equation: ∂tu = ∂3
xu, depending on

the context. Namely, S(t) = e−it∂
2
x for the linear Schrödinger equation and

S(t) = et∂
3
x for the Airy equation. Then, given a function u on R × R, we

define its interaction representation v by
v(t) = S(−t)u(t). (1.11)

We mainly perform our analysis in terms of the interaction representation.

In the following, we only consider positive times for the simplicity of the
presentation.
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2. Localized modulation estimates

In this section, we establish crucial trilinear estimates (called localized
modulation estimates) for the cubic NLS (1.1) and the mKdV (1.2). See
Lemmas 2.3 and 2.6. While their proofs are very elementary, these trilinear
estimates constitute a fundamental building block for multilinear estimates
on the nonlinear terms (of arbitrarily high degrees) appearing in the normal
form reductions in Section 3.

2.1. Localized modulation estimates for the cubic NLS

We first consider the cubic NLS (1.1). On the Fourier side, we write (1.1)
as

i∂tû(ξ) = −ξ2û(ξ)−
∫
ξ=ξ1−ξ2+ξ3

û(ξ1)û(ξ2)û(ξ3)dξ1dξ2. (2.1)

Let v(t) = S(−t)u(t) be the interaction representation defined in (1.11).
Then, we have v̂(ξ, t) = e−iξ

2tû(ξ, t).

Define a trilinear operator N (v1, v2, v3) by

N̂ (v1, v2, v3)(ξ, t) := i

∫
ξ=ξ1−ξ2+ξ3

e−iΦ(ξ̄)tv̂1(ξ1)v̂2(ξ2)v̂3(ξ3)dξ1dξ2, (2.2)

where the modulation function Φ(ξ̄) is as in (1.4). With this notation, we
can write (2.1) as

∂tv = N (v, v, v). (2.3)

Remark 2.1.

(i) When there is no confusion, we simply denote v̂(ξ, t) and N̂ (v1,v2,v3)
by v(ξ, t) and N (v1, v2, v3) in the following. For example, we write
(2.2) as

N (v1, v2, v3)(ξ, t) = i

∫
ξ=ξ1−ξ2+ξ3

e−iΦ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2

under this convention. Note that while the equation (2.3) can be
interpreted as an equation on the physical side or on the Fourier
side under this convention, this does not cause any confusion in
terms of its meaning. A similar comment applies to other multilinear
operators.
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(ii) Due to the presence of the time-dependent phase factor e−iΦ(ξ̄)t,
the trilinear expression N (v1, v2, v3) is non-autonomous and in fact
depends on t. For simplicity of notations, however, we suppress
such t-dependence when there is no confusion. We also set N (v) =
N (v, v, v), when all the three arguments are identical. We apply this
convention to all the multilinear operators appearing in this paper.

For M > 1 and α ∈ R, we also define trilinear operators Nα
6M , Nα

>M ,
and Nα

M with modulation restrictions:

Nα
6 (>)M (v1, v2, v3)(ξ, t) := i

∫
ξ=ξ1−ξ2+ξ3

|Φ(ξ̄)−α|6 (>)M

e−iΦ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2,

(2.4)
Nα
M (v1, v2, v3)(ξ, t) := Nα

62M (v1, v2, v3)(ξ, t)−Nα
6M (v1, v2, v3)(ξ, t)

= i

∫
ξ=ξ1−ξ2+ξ3
|Φ(ξ̄)−α|∼M

e−iΦ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2,

where |Φ(ξ̄) − α| ∼ M is a shorthand notation for M < |Φ(ξ̄) − α| 6 2M .
The following trilinear operator also plays an important role in our analysis:

IαM (v1, v2, v3)(ξ, t) := i

∫
ξ=ξ1−ξ2+ξ3
|Φ(ξ̄)−α|∼M

e−iΦ(ξ̄)t

Φ(ξ̄)− α
v1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2.

We also define Iα>M in an obvious manner. In the subsequent part of this
paper, we use the following conventions:

• When α = 0, we drop the superscript and simply write NM ,N6M ,
. . . , for N 0

M ,N 0
6M , . . . .

• In Section 3, these multilinear operators appear in an iterative man-
ner. For clarity, we often write Nα

|Φ(ξ̄)−α|∼M for Nα
M , thus explicitly

showing the variable of restriction.

Remark 2.2. — Recall that the (time) resonance corresponds to Φ(ξ̄) = 0.
Thus, the term N 0

6M corresponds to the nearly resonant contribution to the
nonlinearity N (with the cutoff size M).

We now state the localized modulation estimates for the cubic NLS. These
trilinear estimates play a key role in our analysis in Section 3.
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Lemma 2.3 (Localized modulation estimates for the cubic NLS). — Let
s > 0. Then, we have

‖Nα
6M (v1, v2, v3)‖Hs . 〈α〉0+M

1
2 +

3∏
j=1
‖vj‖Hs , (2.5)

‖Nα
6M (v)−Nα

6M (w)‖Hs . 〈α〉0+M
1
2 +(‖v‖2Hs + ‖w‖2Hs

)
‖v − w‖Hs , (2.6)

for any M > 1 and α ∈ R.
Remark 2.4. — Recall that the trilinear operator Nα

6M (v1, v2, v3) de-
pends on t ∈ R in an non-autonomous manner. Hence, strictly speaking,
we should have written the first estimate (2.5) as

sup
t∈R
‖Nα

6M (v1, v2, v3)‖Hs . 〈α〉0+M
1
2 +

3∏
j=1
‖vj‖Hs .

Note that, in the definition (2.4), the non-autonomous parameter t ∈ R ap-
pears only in the oscillatory factor e−iΦ(ξ̄)t. We, however, do not make use
of this oscillatory factor in the proof of (2.5). See (2.7) below. In particu-
lar, (2.5) holds uniformly in t ∈ R. In view of this observation, we simply
write (2.5) with the understanding that the estimate holds uniformly in the
non-autonomous parameter t ∈ R. We use this convention for all the multi-
linear estimates appearing in this paper.

Let us also note that the “spatial” estimate (2.5) immediately implies the
following space-time estimate:

‖Nα
6M (v1, v2, v3)‖L∞

T
Hsx
. 〈α〉0+M

1
2 +

3∏
j=1
‖vj‖L∞

T
Hsx

for all vj ∈ L∞([−T, T ];Hs(R)). The same remark also applies to the other
multilinear estimates.

Proof. — In the following, we only present the proof of (2.5), since the
second estimate (2.6) on the difference follows from (2.5) and the multi-
linearity of Nα

6M . By the triangle inequality with s > 0, we have 〈ξ〉s .
〈ξ1〉s〈ξ2〉s〈ξ3〉s under ξ = ξ1 − ξ2 + ξ3. Hence, it suffices to prove (2.5) for
s = 0.

By duality, the desired estimate (2.5) follows once we prove∣∣∣∣∣
∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6Mv1(ξ1)v2(ξ2)v3(ξ3)v4(ξ)dξ1dξ2dξ

∣∣∣∣∣
. 〈α〉0+M

1
2 +

4∏
j=1
‖vj‖L2 (2.7)
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for all non-negative functions v1, . . . , v4 ∈ L2
ξ(R).

Case 1: min(|ξ2−1|, |ξ2−3|) 6 1. — Let ζ = ξ2 − ξ1 = ξ3 − ξ. Without
loss of generality, we assume that |ζ| 6 1. Then, it follows from Hölder’s
inequality that

LHS of (2.7) =
∣∣∣∣ ∫
|ζ|61

∫
ξ1

v1(ξ1)v2(ξ1 + ζ)dξ1
∫
ξ3

v3(ξ3)v4(ξ3 − ζ)dξ3dζ
∣∣∣∣

6

∥∥∥∥∫
ξ1

v1(ξ1)v2(ξ1 + ζ)dξ1
∥∥∥∥
L∞
ζ

∥∥∥∥∫
ξ3

v3(ξ3)v4(ξ3 − ζ)dξ3
∥∥∥∥
L∞
ζ

.
4∏
j=1
‖vj‖L2 .

This proves (2.7).

Case 2: min(|ξ2−3|, |ξ2−1|) > 1. — Without loss of generality, assume
that ξ − ξ3 > 1. Under |Φ(ξ̄)− α| 6M , it follows from (1.4) that

α−M
2(ξ − ξ3) 6 ξ − ξ1 6

α+M

2(ξ − ξ3) . (2.8)

Then, by the standard Cauchy–Schwarz argument with (2.8), we have

LHS of (2.7) 6
∥∥∥∥ ∫

ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6Mv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ3
∥∥∥∥
L2
ξ

‖v4‖L2

6 sup
ξ

(∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6Mdξ1dξ3
)1

2 4∏
j=1
‖vj‖L2

6 sup
ξ

(∫
1<ξ−ξ3.|α|+M

M

ξ − ξ3
dξ3
)1

2 4∏
j=1
‖vj‖L2

. 〈α〉0+M
1
2 +

4∏
j=1
‖vj‖L2 , (2.9)

where we used the assumption that |ξ− ξ1| > 1 and |Φ(ξ̄)| 6 |α|+M in the
third inequality. This completes the proof of Lemma 2.3. �

Next, we estimate the trilinear operators IαM and Iα>M .

Lemma 2.5. — Let s > 0. Then, we have

‖IαM (v)‖Hs . 〈α〉0+M−
1
2 +‖v‖3Hs , (2.10)

‖IαM (v)−IαM (w)‖Hs . 〈α〉0+M−
1
2 +(‖v‖2Hs+‖w‖2Hs

)
‖v−w‖Hs , (2.11)
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and

‖Iα>M (v)‖Hs . 〈α〉0+M−
1
2 +‖v‖3Hs , (2.12)

‖Iα>M (v)−Iα>M (w)‖Hs . 〈α〉0+M−
1
2 +(‖v‖2Hs+‖w‖2Hs

)
‖v−w‖Hs , (2.13)

for any M > 1 and α ∈ R.

Proof. — In the following, we only prove (2.10) and (2.12) since (2.11)
and (2.13) follow in a similar manner.

Note that we did not exploit the oscillatory nature of the exponential
factor e−iΦ(ξ̄)t in the proof of Lemma 2.3. See (2.7). Hence, by Lemma 2.3,
we have

‖IαM (v)‖Hs =
∥∥∥∥∫ξ=ξ1−ξ2+ξ3
|Φ(ξ̄)−α|∼M

e−iΦ(ξ̄)t

Φ(ξ̄)− α
v(ξ1)v(ξ2)v(ξ3)dξ1dξ2

∥∥∥∥
Hs

.
1
M

∥∥∥∥ ∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|∼M

3∏
j=1
|v(ξj)|dξ1dξ2

∥∥∥∥
Hs

. 〈α〉0+M−
1
2 +‖v‖3Hs .

This proves (2.10). Similarly, we have

‖Iα>M (v)‖Hs =
∥∥∥∥ ∫ξ=ξ1−ξ2+ξ3
|Φ(ξ̄)−α|>M

e−iΦ(ξ̄)t

Φ(ξ̄)− α
v(ξ1)v(ξ2)v(ξ3)dξ1dξ2

∥∥∥∥
Hs

6
∑
N>M
dyadic

∥∥∥∥∫ ξ=ξ1−ξ2+ξ3
N<|Φ(ξ̄)−α|62N

e−iΦ(ξ̄)t

Φ(ξ̄)− α
v(ξ1)v(ξ2)v(ξ3)dξ1dξ2

∥∥∥∥
Hs

. 〈α〉0+
∑
N>M
dyadic

N−
1
2 +‖v‖3Hs

. 〈α〉0+M−
1
2 +‖v‖3Hs .

This proves (2.12). �

2.2. Localized modulation estimates for the mKdV

In this subsection, we perform similar analysis on the mKdV (1.2) and
establish localized modulation estimates on the relevant trilinear operators.
Let v(t) = S(−t)u(t) be the interaction representation defined in (1.11).
Then, we have v̂(ξ, t) = eiξ

3tû(ξ, t).
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Define a trilinear operator N (v1, v2, v3) by(10)

N (v1, v2, v3)(ξ, t) := −i
∫
ξ=ξ1+ξ2+ξ3

ξeiΨ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2, (2.14)

where the modulation function Ψ(ξ̄) is given by

Ψ(ξ̄) = Ψ(ξ, ξ1, ξ2, ξ3) = ξ3 − ξ3
1 − ξ3

2 − ξ3
3

= 3(ξ1 + ξ2)(ξ2 + ξ3)(ξ3 + ξ1). (2.15)

Here, the last equality holds under the condition ξ = ξ1 + ξ2 + ξ3. With this
notation, we can write the mKdV (1.2) as

∂tv = N (v). (2.16)

As before, we define several trilinear operators. Given M > 1 and α ∈ R,
we let

Nα
6(>)M (v1, v2, v3)(ξ, t) :=−i

∫
ξ=ξ1+ξ2+ξ3
|Ψ(ξ̄)−α|6(>)M

ξeiΨ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2,

Nα
M (v1, v2, v3)(ξ, t) :=−i

∫
ξ=ξ1+ξ2+ξ3
|Ψ(ξ̄)−α|∼M

ξeiΨ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2.

We also define the following trilinear operator:

IαM (v1, v2, v3)(ξ, t) := −i
∫
ξ=ξ1+ξ2+ξ3
|Ψ(ξ̄)−α|∼M

ξeiΨ(ξ̄)t

Ψ(ξ̄)− α
v1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2

and define Iα>M in an obvious manner.

We now present the localized modulation estimates for the mKdV. While
the proof does not employ any sophisticated analytical tools, it is more
involved than the proof of Lemma 2.3.

Lemma 2.6 (Localized modulation estimates for the mKdV). — Let s >
1
4 . Then, we have

‖Nα
6M (v1, v2, v3)‖Hs . 〈α〉0+M

1
2 +

3∏
j=1
‖vj‖Hs , (2.17)

‖Nα
6M (v)−Nα

6M (w)‖Hs . 〈α〉0+M
1
2 +(‖v‖2Hs+‖w‖2Hs

)
‖v−w‖Hs , (2.18)

for any M > 1 and α ∈ R.

(10) We follow the conventions introduced in Remark 2.1.
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Proof. — In the following, we only present the proof of (2.17), since the
second estimate (2.18) on the difference follows from (2.17) and the multilin-
earity of Nα

6M . By the triangle inequality: 〈ξ〉σ . 〈ξ1〉σ〈ξ2〉σ〈ξ3〉σ for σ > 0
under ξ = ξ1 + ξ2 + ξ3, it suffices to prove (2.17) for s = 1

4 .

By duality, the desired estimate (2.17) follows once we prove

∣∣∣∣∣
∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m(ξ̄)
3∏
j=1

vj(ξj)v4(ξ)dξ1dξ2dξ

∣∣∣∣∣
. 〈α〉0+M

1
2 +

4∏
j=1
‖vj‖L2 (2.19)

for all non-negative functions v1, . . . , v4 ∈ L2
ξ(R), where the multiplier m(ξ̄)

is given by

m(ξ̄) = m(ξ, ξ1, ξ2, ξ3) = |ξ|〈ξ〉 1
4

〈ξ1〉
1
4 〈ξ2〉

1
4 〈ξ3〉

1
4
. (2.20)

By the standard Cauchy–Schwarz argument, we have

LHS of (2.19)

6

∥∥∥∥∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m(ξ̄)
3∏
j=1

vj(ξj)dξ1dξ2
∥∥∥∥
L2
ξ

‖v4‖L2

6 sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m
2(ξ̄)dξ1dξ2

)1
2 4∏
j=1
‖vj‖L2 . (2.21)

Hence, it suffices to show that

sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m
2(ξ̄)dξ1dξ2

)1
2

. 〈α〉0+M
1
2 +. (2.22)

In the following, we either prove (2.22) or directly establish (2.19).
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Case 1: |ξ| . 1. — By Cauchy–Schwarz, Hölder’s, and Young’s inequal-
ities followed by Hölder’s inequality, we have

LHS of (2.19) .
∥∥∥∥∫

ξ=ξ1+ξ2+ξ3

3∏
j=1
〈ξj〉−

1
4 vj(ξj)dξ1dξ2

∥∥∥∥
L2
|ξ|.1

‖v4‖L2
ξ

.

∥∥∥∥∫
ξ=ξ1+ξ2+ξ3

3∏
j=1
〈ξj〉−

1
4 vj(ξj)dξ1dξ2

∥∥∥∥
L∞|ξ|.1

‖v4‖L2

.
3∏
j=1
‖〈ξj〉−

1
4 vj(ξj)‖L3/2

ξj

‖v4‖L2 .
4∏
j=1
‖vj‖L2 .

In the following, we consider the case |ξ| � 1. Without loss of generality,
we assume that |ξ12| > |ξ23| > |ξ31|.

Case 2: |ξ| � 1 and |ξ31| 6 |ξ23| 6 1. — In this case, we have |ξ + ξ3| =
|ξ31 + ξ23| . 1. Since |ξ| � 1, this yields

|ξ12| = |ξ − ξ3| ∼ |ξ| � 1. (2.23)

Moreover, we have |ξ1| ∼ |ξ2| ∼ |ξ3| ∼ |ξ| � 1. Thus, we have

m(ξ̄) ∼ |ξ| 12

in this case. Let ζ1 = ξ23, ζ2 = ξ31, and ζ3 = ξ12. Then, it follows from (2.15)
that

Ψ(ξ̄) = 3ζ1ζ2ζ3. (2.24)

In the following, we freely use (partial) changes of variables between ξ1, ξ2,
ξ3, ξ and ζ1, ζ2, ζ3. Note that we have |ζ2| 6 |ζ1| 6 1.

Subcase 2.a: |α| .M . — For fixed |ξ| � 1, the condition |Ψ(ξ̄)−α| 6M
with (2.23) and (2.24) implies that

|ζ2| 6 |ζ1|
1
2 |ζ2|

1
2 .

(|α|+M)1
2

|ξ| 12
.
M

1
2

|ξ| 12
.

Then, by a change of variables and Cauchy–Schwarz inequality, we have

LHS of (2.19) .
∑
N�1
dyadic

N
1
2

∫
|ζ2|.M1/2

N1/2

(∫
|ξ1|∼N

v1(ξ1)v3(−ξ1 + ζ2)dξ1
)

×
(∫
|ξ|∼N

v2(ξ − ζ2)v4(ξ)dξ
)

dζ2
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.M
1
2 ‖v2‖L2‖v3‖L2

∑
N�1
dyadic

‖PNv1‖L2‖PNv4‖L2

.M
1
2

4∏
j=1
‖vj‖L2 ,

yielding (2.19). Here, PN denotes the Littlewood–Paley projector onto the
spatial frequencies {|ξ| ∼ N}.

Subcase 2.b: |α| � M . — For fixed M > 1, write |α| ∼ 2KM for some
K ∈ N. Note that we have

K ∼ log
(
|α|
M

)
. (2.25)

If |ζ2| . M1/2

|ξ|1/2 , then we can proceed as in Subcase 2.a. Hence, we assume
that

|ζ1| > |ζ2| �
M

1
2

|ξ| 12
in the following.

If |ζ1| & |α|+M
M1/2|ξ|1/2 ∼ |α|

M1/2|ξ|1/2 , then the condition |Ψ(ξ̄) − α| 6 M

implies that

|ζ2| .
|α|+M

|ζ1||ξ|
.
M

1
2

|ξ| 12
,

thus reducing to the previous case. Therefore, it remains to consider the case

M
1
2

|ξ| 12
� |ζ1| �

|α|
M

1
2 |ξ| 12

∼ 2KM 1
2

|ξ| 12
, (2.26)

where K satisfies (2.25).

Now, suppose that |ζ1| ∼ 2kM1/2

|ξ|1/2 for some 1 6 k 6 K. Then, for fixed ξ
and ζ1, the condition |Ψ(ξ̄)− α| 6M implies that

α−M
3|ζ1|

6 |F (ζ2)| 6 α+M

3|ζ1|
, (2.27)

where F (ζ2) is defined by

F (ζ2) = ζ2
2 − (2ξ − ζ1)ζ2. (2.28)

Note that the graph of F (ζ2) is a parabola with a vertex ∼ (ξ,−ξ2) in view
of |ζ1| 6 1 � |ξ|. In particular, the slope of this parabola when |ζ2| 6 1 is
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−2ξ +O(1). Hence, it follows from (2.27) and the assumption on the size of
|ζ1| that ζ2 belongs to an interval Ik = Ik(ζ1, ξ) of length

|Ik(ζ1, ξ)| ∼
M

|ζ1||ξ|
∼ M

1
2

2k|ξ| 12
. (2.29)

Then, from (2.26) and (2.29), we obtain

LHS of (2.22) . sup
ξ
|ξ| 12

( K∑
k=1

∫
|ζ1|∼ 2kM1/2

|ξ|1/2

∫
ζ2∈Ik(ζ1,ξ)

1 dζ2dζ1
)1

2

. sup
ξ
|ξ| 14M 1

4

( K∑
k=1

∫
|ζ1|∼ 2kM1/2

|ξ|1/2

2−kdζ1
)1

2

. K
1
2M

1
2 . 〈α〉0+M

1
2 ,

where the last inequality follows from (2.25).

Case 3: |ξ| � 1 and |ξ31| 6 1 < |ξ23| 6 |ξ12|. — In this case, we have
|ξ2| ∼ |ξ| � 1 and 〈ξ1〉 ∼ 〈ξ3〉. Thus, we have

m(ξ̄) ∼ |ξ|
〈ξ1〉

1
2
. (2.30)

Subcase 3.a: |ξ1| & |ξ|. — Since |ξ| � 1 > |ξ31| = |ξ − ξ2|, we have
|ξ23 + ξ12| = |ξ + ξ2| ∼ |ξ|. By the triangle inequality with |ξ23| 6 |ξ12|, we
have |ξ12| & |ξ| � 1. Let F (ζ2) be as in (2.28). Then, noting that

F ′(ζ2) = 2ζ2 − 2ξ + ζ1 = −ξ12 + ζ2 = −ξ12 +O(1),

it follows from (2.27) that ζ2 belongs to an interval I = I(ζ1, ξ) of length

|I(ζ1, ξ)| .
M

|ζ1||ξ|
6
M

|ξ|
(2.31)

for each fixed ξ and ζ1 and hence for each fixed ξ and ξ1 = ξ − ζ1. Given
k ∈ Z, let Πk be the frequency projector onto the interval [k, k + 1) defined
in (1.10). Then, using a variant of the Cauchy–Schwarz argument (2.21)
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with (2.30) and (2.31), we have

LHS of (2.19)

6

∥∥∥∥ ∑
|k|�1

∫
|ξ1|∈[k,k+1)

∫
|ζ2|61

1|Ψ(ξ̄)−α|6M ·m(ξ̄)

× v1(ξ1)v2(ξ − ζ2)v3(−ξ1 + ζ2)dζ2dξ1
∥∥∥∥
L2
ξ

‖v4‖L2

6 sup
|k|�1

sup
ξ

(∫
|ξ1|∈[k,k+1)

∫
ζ2∈I(ζ1,ξ)

1|Ψ(ξ̄)−α|6M ·m
2(ξ̄)dζ2dξ1

)1
2

×
∑
|k|�1

2∑
`=0
‖Πkv1‖L2‖Π−k−`v3‖L2‖v2‖L2‖v4‖L2

.M
1
2

4∏
j=1
‖vj‖L2 . (2.32)

Subcase 3.b: |ξ1| � |ξ|. — In this case, we have |ζ1| ∼ |ξ|. Then, arguing
as in Subcase 3.a, we conclude that ζ2 belongs to an interval I = I(ζ1, ξ) of
length

|I(ζ1, ξ)| .
M

|ζ1||ξ|
∼ M

|ξ|2

for each fixed ξ and ζ1 = ξ − ξ1. In particular, we have

sup
|k|�1

sup
ξ

(∫
|ξ1|∈[k,k+1)

∫
ζ2∈I(ζ1,ξ)

1|Ψ(ξ̄)−α|6M ·m
2(ξ̄)dζ2dξ1

)1
2

.M
1
2 .

The rest follows as in (2.32).

Case 4: |ξ| � 1 and |ξ12|, |ξ23|, |ξ31| > 1. — Noting that max(|ξ12|, |ξ23|,
|ξ31|) & |ξ| � 1, the condition |Ψ(ξ̄)− α| 6M with (2.15) implies that

|α|+M & max(|ξ|, |ξ12|, |ξ23|, |ξ31|). (2.33)

In the following, the size relation of |ξ12|, |ξ23|, |ξ31| does not play any role.
Without loss of generality, assume that |ξ1| > |ξ2| > |ξ3|.

Subcase 4.a: |ξ1| ∼ |ξ| � |ξ2| > |ξ3|. — In this case, by viewing Ψ as a
function of ξ2 for fixed ξ and ξ3, we have |∂ξ2Ψ(ξ̄)| ∼ |(ξ−ξ3)(ξ−2ξ2−ξ3)| =
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|ξ12||ξ1−2| & |ξ|2 � 1. Hence, with (2.33), we have

LHS of (2.22) . sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M
|ξ|2

〈ξ2〉
1
2 〈ξ3〉

1
2

dξ2dξ3
)1

2

.M
1
2

(∫
|ξ3|�|ξ|

1
〈ξ3〉

dξ3
)1

2

.M
1
2 (log |ξ|)1

2 . 〈α〉0+M
1
2 +,

yielding (2.22).

Subcase 4.b: |ξ1|, |ξ2| & |ξ| � |ξ3|. — Note that, in the first step of (2.21),
we can perform Cauchy–Schwarz inequality in ξ2 instead of ξ. Then, (2.19)
follows once we prove

sup
ξ2

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m
2(ξ̄)dξ1dξ3

)1
2

. 〈α〉0+M
1
2 +. (2.34)

If |ξ1| ∼ |ξ2| � |ξ| � |ξ3|, then |ξ + ξ1| ∼ |ξ2|, and |ξ23| ∼ |ξ2|. Then, by
viewing Ψ as a function of ξ1 for fixed ξ2 and ξ3, we have

|∂ξ1Ψ(ξ̄)| = |ξ23(ξ + ξ1)| & |ξ2|2 (2.35)

and thus

LHS of (2.34) . sup
ξ2

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M
|ξ| 32
〈ξ3〉

1
2

dξ1dξ3
)1

2

.M
1
2 sup
ξ2

1
〈ξ2〉

1
4

(∫
|ξ3|�|ξ2|

1
〈ξ3〉

1
2

dξ3
)1

2

.M
1
2 . (2.36)

If |ξ1| ∼ |ξ2| ∼ |ξ| � |ξ3|, we have

max(|ξ + ξ1|, |ξ + ξ2|) & |2ξ + ξ12| = |3ξ − ξ3| ∼ |ξ|.

Without loss of generality, assume that |ξ+ ξ1| & |ξ|. (Otherwise, we switch
the role of ξ1 and ξ2 in (2.34).) Then, (2.35) and hence (2.36) hold in this
case as well.

Subcase 4.c: |ξ1|, |ξ2|, |ξ3| & |ξ|. — In this case, we have

max(|ξ + ξ1|, |ξ + ξ2|, |ξ + ξ3|) & |3ξ + ξ123| = 4|ξ|. (2.37)

Without loss of generality, assume that |ξ + ξ1| & |ξ|. Then, by viewing Ψ
as a function of ξ1 for fixed ξ2 and ξ3, we have

|∂ξ1Ψ(ξ̄)| ∼ |ξ23(ξ + ξ1)| & |ξ||ξ23|. (2.38)
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Note that, By performing Cauchy–Schwarz inequality in ξ3 instead of ξ in
the first step of (2.21), it suffices to prove

sup
ξ3

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m
2(ξ̄)dξ1dξ2

)1
2

. 〈α〉0+M
1
2 +. (2.39)

From (2.38) and (2.33), we have

LHS of (2.39) . sup
ξ3

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M |ξ|dξ1dξ2
)1

2

.M
1
2 sup
ξ3

(∫
16|ξ23|.|α|+M

1
|ξ23|

dξ2
)1

2

. 〈α〉0+M
1
2 +.

This completes the proof of Lemma 2.6. �

Remark 2.7. — While the simple Cauchy–Schwarz argument (2.21) works
for most of the cases in the proof of Lemma 2.6, it does not seem to work for
Case 2 in the endpoint case: s = 1

4 . We point out that the Cauchy–Schwarz
argument suffices for Case 2 in the non-endpoint case: s > 1

4 .

As an immediate corollary to Lemma 2.6, we obtain the following lemma.
The proof is analogous to that of Lemma 2.5.

Lemma 2.8. — Let s > 1
4 . Then, we have

‖IαM (v)‖Hs . 〈α〉0+M−
1
2 +‖v‖3Hs ,

‖IαM (v)− IαM (w)‖Hs . 〈α〉0+M−
1
2 +(‖v‖2Hs + ‖w‖2Hs

)
‖v − w‖Hs ,

and

‖Iα>M (v)‖Hs . 〈α〉0+M−
1
2 +‖v‖3Hs ,

‖Iα>M (v)− Iα>M (w)‖Hs . 〈α〉0+M−
1
2 +(‖v‖2Hs + ‖w‖2Hs

)
‖v − w‖Hs ,

for any M > 1 and α ∈ R.

3. Normal form reductions

In this section, we implement an infinite iteration scheme of normal form
reductions at a formal level. We perform normal form reductions in an it-
erative manner, transforming part of the nonlinearity into nonlinearities of
higher and higher degrees. In the end, we formally arrive at an equation
involving infinite series of nonlinearities of arbitrarily high degrees (Subsec-
tion 3.4).
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Such an infinite iteration of normal form reductions was first introduced
in Guo–Kwon–Oh [15] in proving unconditional well-posedness of the cubic
NLS on T. While the implementation of normal form reductions in [15] was
systematic, the multilinear estimates heavily depended on the structure of
the equation as well as some elementary number theory (the divisor counting
argument). In the following, we perform normal form reductions in a rather
abstract manner. This allows us to handle the cubic NLS (1.1) and the
mKdV (1.2) in an identical manner by applying the localized modulation
estimates obtained in Section 2.

Before proceeding further, we need to set up some notations. In the fol-
lowing, we simply denote the Fourier coefficient v(ξ) = v̂(ξ) by vξ. When the
complex conjugate sign on vξ does not play any significant role, we drop the
complex conjugate sign. We often drop the complex number i and simply
use 1 for ±1 and ±i.

In the following presentation of normal form reductions, we restrict our
attention to the cubic NLS (1.1). In view of the localized modulation esti-
mates (Lemmas 2.6 and 2.8), one can easily modify the argument to handle
the mKdV (1.2). All the computations in this section (such as switching
summations and integrals) are formal, assuming that u (and hence v) is
a smooth solution. In Section 4, we justify our formal computations when
u ∈ CtHs

x with (i) s > 1
6 for the cubic NLS and (ii) s > 1

4 for the mKdV,
respectively.

3.1. Notation: index by trees

When we apply a normal form reduction, i.e. integration by parts as
in (1.6),(11) a time derivative can fall on any of the factors vξj , transforming
the nonlinearity into that of a higher degree. In each step of normal form
reductions, we need to keep track of where a time derivative falls. which may
be a cumbersome task in general. In [15], we introduced the notion of ordered
trees for indexing such terms arising in the general steps of normal form
reductions. In order to carry out our analysis, we will need to supplement
more notations related to ordered trees in the following.

Definition 3.1. — Given a partially ordered set T with partial order
6, we say that b ∈ T with b 6 a and b 6= a is a child of a ∈ T , if b 6 c 6 a
implies either c = a or c = b. If the latter condition holds, we also say that
a is the parent of b.

(11) In fact, we proceed without an integration symbol in the following. Namely, we
perform differentiation by parts.
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As in [4, 34], our trees refer to a particular subclass of ternary trees.

Definition 3.2. — A tree T is a finite partially ordered set satisfying
the following properties:

• Let a1, a2, a3, a4 ∈ T . If a4 6 a2 6 a1 and a4 6 a3 6 a1, then we
have a2 6 a3 or a3 6 a2.
• A node a ∈ T is called terminal, if it has no child. A non-terminal
node a ∈ T is a node with exactly three children denoted by a1, a2
and a3.(12)

• There exists a maximal element r ∈ T (called the root node) such
that a 6 r for all a ∈ T . We assume that the root node is non-
terminal.
• T consists of the disjoint union of T 0 and T ∞, where T 0 and T ∞
denote the collection of non-terminal nodes and terminal nodes, re-
spectively.

Note that the number |T | of nodes in a tree T is 3j + 1 for some j ∈ N,
where |T0| = j and |T ∞| = 2j + 1. We use T (j) to denote the collection of
trees of the jth generation, namely, with j parental nodes.

Next, we recall the notion of ordered trees introduced in [15]. Roughly
speaking, an ordered tree “remembers how it grew”.

Definition 3.3. — We say that a sequence {Tj}Jj=1 is a chronicle of J
generations, if

• Tj ∈ T (j) for each j = 1, . . . , J ,
• Tj+1 is obtained by changing one of the terminal nodes in Tj, de-
noted by p(j), into a non-terminal node (with three children), j =
1, . . . , J − 1.

Given a chronicle {Tj}Jj=1 of J generations, we refer to TJ as an ordered tree
of the Jth generation. We use T(J) to denote the collection of the ordered
trees of the Jth generation. Note that the cardinality of T(J) is given by

|T(J)| = 1 · 3 · 5 · . . . · (2J − 1) =: cJ (3.1)

Remark 3.4. — Given two ordered trees TJ and T̃ J of the Jth generation,
it may happen that TJ = T̃ J as trees (namely as graphs) while TJ 6= T̃ J
as ordered trees according to Definition 3.3. Henceforth, when we refer to
an ordered tree TJ of the Jth generation, it is understood that there is an
underlying chronicle {Tj}Jj=1.

(12) Note that the order of children plays an important role in our discussion. We refer
to aj as the jth child of a non-terminal node a ∈ T . In terms of the planar graphical
representation of a tree, we set the jth node from the left as the jth child aj of a ∈ T .
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Definition 3.5.

(i) Given an ordered tree TJ ∈ T(J) with a chronicle {Tj}Jj=1, we define
a “projection” πj, j = 1, . . . , J , from TJ to subtrees in TJ of one
generation by setting
• π1(TJ) = T1,
• πj(TJ) to be the tree formed by the three terminal nodes in Tj \
Tj−1 and its parent, j = 2, . . . , J . Intuitively speaking, πj(TJ)
is the tree added in transforming Tj−1 into Tj.

We use r(j) to denote the root node of πj(TJ) and refer to it as the
jth root node. By definition, we have

r(j) = p(j−1). (3.2)

Note that p(j−1) is not necessarily a node in πj−1(TJ).
(ii) Given j ∈ {1, . . . , J − 1}, p(j) appears as a terminal node of πk(T )

for exactly one k ∈ {1, 2 . . . , j − 1}. In particular, p(j) is the `th
child of the kth root note r(k) for some ` ∈ {1, 2, 3}. We define the
order of p(j), denoted by #p(j), to be this number ` ∈ {1, 2, 3}.

(iii) We define the essential terminal nodes π∞j (TJ) of the jth generation
by setting

π∞j (TJ) := πj(TJ)∞ ∩ T ∞J = (Tj \ Tj−1) ∩ T ∞J .

By definition, π∞j (TJ) may be empty. Note that {π∞j (TJ)}Jj=1 forms
a partition of T ∞J .

We record the following simple observation. This will be useful in Sub-
sections 3.3 and 4.3.

Remark 3.6. — Let T ∈ T(J) be an ordered tree. Then, for each fixed
j = 2, . . . , J , there exists a path(13) a1, a2, . . . , aK , starting at the root node
r = r(1) and ending at the jth root node r(j) such that ak 6= r(`) for any
k = 1, . . . ,K and ` > j + 1. Namely, we can move from r(1) to r(j) without
hitting a root node of a higher generation.

More concretely, given r(j), we know that it appears as a terminal node
of πj1(T ) for exactly one j1 ∈ {1, 2 . . . , j − 1}. Similarly, r(j1) appears as a
terminal node of πj2(T ) for exactly one j2 ∈ {1, 2 . . . , j1−1}. We can iterate
this process, which must terminate in a finite number of steps with jk = 1.
This generates the shortest path r(jk), r(jk−1), . . . , r(j1), r(j) from r(1) to r(j)

and we denote it by P (r(1), r(j)). Similarly, given a ∈ T \ {r(1)}, one can
easily construct the shortest path from r(1) to a since a is a terminal node
of πk(T ) for some k. We denote this shortest path by P (r(1), a).

(13) A path is a sequence of nodes a1, a2, . . . , aK such that ak and ak+1 are adjacent.
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Given an ordered tree, we need to consider all possible frequency assign-
ments to nodes that are “consistent”.

Definition 3.7. — Given an ordered tree T ∈ T(J), we define an index
function ξξξ : T → R such that

ξa = ξa1 − ξa2 + ξa3 (3.3)

for a ∈ T 0, where a1, a2, and a3 denote the children of a. Here, we identified
ξξξ : T → R with {ξa}a∈T ∈ RT . We use Ξ(T ) ⊂ RT to denote the collection
of such index functions ξξξ.

Remark 3.8.

(i) If we associate functions va = va(ξa) to each node a ∈ T , then the
relation (3.3) implies that va = va1 ∗ va2 ∗ va3 .

(ii) For the mKdV, we need to replace (3.3) by ξa = ξa1 + ξa2 + ξa3 .

Given an ordered tree TJ ∈ T(J) with a chronicle {Tj}Jj=1 and associated
index functions ξξξ ∈ Ξ(TJ), we use superscripts to keep track of “generations”
of frequencies.

Consider T1 of the first generation. We define the first generation of fre-
quencies by (

ξ(1), ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3
)

:= (ξr, ξr1 , ξr2 , ξr3),
where rj denotes the three children of the root node r.

In general, the ordered tree Tj of the jth generation is obtained from Tj−1
by changing one of its terminal nodes a ∈ T ∞j−1 into a non-terminal node.
Then, we define the jth generation of frequencies by(

ξ(j), ξ
(j)
1 , ξ

(j)
2 , ξ

(j)
3
)

:= (ξa, ξa1 , ξa2 , ξa3),
where aj denotes the three children of the node a ∈ T ∞j−1. Note that the
parent node a is nothing but the jth root node r(j) defined in Definition 3.5.

Our main analytical tool is the localized modulation estimates from Sec-
tion 2. Hence, it is important to keep track of the modulation for frequencies
in each generation. We use µj to denote the corresponding modulation func-
tion introduced at the jth generation. Namely, we set(14)

µj = µj
(
ξ(j), ξ

(j)
1 , ξ

(j)
2 , ξ

(j)
3
)

:=
(
ξ(j))2 − (ξ(j)

1
)2 +

(
ξ

(j)
2
)2 − (ξ(j)

3
)2

= 2
(
ξ

(j)
2 − ξ(j)

1
)(
ξ

(j)
2 − ξ(j)

3
)

= 2
(
ξ(j) − ξ(j)

1
)(
ξ(j) − ξ(j)

3
)
,

(14) For the mKdV, the modulation function µj is given by

µj :=
(
ξ(j)
)3
−
(
ξ

(j)
1
)3
−
(
ξ

(j)
2
)3
−
(
ξ

(j)
3
)3
.
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where the last two equalities hold in view of (3.3). We also use the following
shorthand notation:

µ̃j :=
j∑

k=1
µk.

3.2. Normal form reductions: second and third generations

We are now ready to perform normal form reductions. As we mentioned
earlier, we only consider the cubic NLS (1.1) in Hs(R), s > 0, in the follow-
ing. Since our implementation is carried out at an abstract level, a minor
modification suffices for the mKdV in Hs(R), s > 1

4 .

Fix dyadic N > 1 (to be determined later). We first write (2.3) as

∂tv = N (v) = N6N (v) +N>N (v)

=: N (1)
1 (v) +N (1)

2 (v).

By Lemma 2.3, we can estimate the low modulation part:

‖N (1)
1 (v)‖Hs = ‖N6N (v)‖Hs . N

1
2 +‖v‖3Hs (3.4)

for s > 0. The main point is that the restriction |Φ(ξ̄)| 6 N provides a
restriction on the possible range of frequencies.

The high modulation part N (1)
2 (v) = N>N (v) with |Φ(ξ̄)| > N can not

benefit such a frequency restriction. In this case, we exploit a rapid oscil-
lation due to the high modulation, introducing cancellation under a time
integration. For this purpose, we iteratively apply differentiation by parts
and transform N (1)

2 (v) into infinite series of multilinear terms.

Let C0 denote the domain of N (1)
2 (v) = N>N (v):

C0 :=
{
|µ1| > N

}
. (3.5)

By taking differentiation by parts(15) with (2.3), we have

N (1)
2 (v)(ξ, t) = N>N (v)(ξ, t)

=
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0e
−iµ1t

∏
a∈T∞1

vξa

(15) When we apply differentiation by parts, we keep the minus sign on the second
term for emphasis.
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= ∂t

[∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a∈T∞1

vξa

]

−
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1
∂t

( ∏
a∈T∞1

vξa

)

= ∂t

[∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a∈T∞1

vξa

]

−
∑
T2∈T(2)

∫
ξξξ∈Ξ(T2)
ξξξr=ξ

1C0

e−i(µ1+µ2)t

µ1

∏
a∈T∞2

vξa

=: ∂tN (2)
0 (v)(ξ, t) +N (2)(v)(ξ, t). (3.6)

From Lemma 2.5, we have the following estimate on the boundary term
N (2)

0 (v).

Lemma 3.9. — Let s > 0. Then, we have

‖N (2)
0 (v)‖Hs . N−

1
2 +‖v‖3Hs ,

‖N (2)
0 (v)−N (2)

0 (w)‖Hs . N−
1
2 +(‖v‖2Hs + ‖w‖2Hs

)
‖v − w‖Hs .

Next, we decompose the frequency space into

C1 :=
{
|µ1 + µ2| 6 53|µ1|1−δ

}
(3.7)

and its complement Cc1,(16) where δ > 0 is a small constant. Then, we
decompose N (2) as

N (2) = N (2)
1 +N (2)

2 , (3.8)

whereN (2)
1 := N (2)|C1 is defined as the restriction ofN (2) on C1 andN (2)

2 :=
N (2)−N (2)

1 , namely N (2)
2 is the restriction of N (2) on Cc1. Note that we have

N>N = ∂tN (2)
0 +N (2)

1 +N (2)
2

at this point. Thanks to the restriction (3.7) on the modulation, we can
estimate the first term N (2)

1 . However, we do not have a direct control of
N (2)

2 . In the following, we apply another normal form reduction to N (2)
2 .

(16) Clearly, the number 53 in (3.7) does not play any role at this point. However, we
insert it to match with (3.23). See also (3.15) and (3.21).
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Lemma 3.10. — Let s > 0. Then, we have

‖N (2)
1 (v)‖Hs . N−

δ
2 +‖v‖5Hs , (3.9)

‖N (2)
1 (v)−N (2)

1 (w)‖Hs . N−
δ
2 +(‖v‖4Hs + ‖w‖4Hs

)
‖v − w‖Hs , (3.10)

for 0 < δ < 1.

Proof. — We only present the proof of (3.9) since (3.10) follows in a sim-
ilar manner in view of the multilinearity of N (2)

1 . Moreover, by the triangle
inequality, it suffices to prove (3.9) for s = 0. From (3.6) and (3.8) with (3.7),
we have

N (2)
1 (v)(ξ, t)

=
∑
T2∈T(2)

∫
ξξξ∈Ξ(T2)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a1∈π∞1 (T2)

vξa1
· 1C1e

−iµ2t
∏

a2∈π∞2 (T2)

vξa2

=
∑
T2∈T(2)

∫
ξξξ∈Ξ(T2)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a1∈π∞1 (T2)

vξa1

∫
ξξξ(2)∈Ξ(π2(T2))
ξξξ

(2)
r(2) =ξ(2)

1C1e
−iµ2t

∏
a2∈π∞2 (T2)

vξa2

=
∑
T2∈T(2)

∫
ξξξ∈Ξ(T2)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a1∈π∞1 (T2)

vξa1
· N µ1

653|µ1|1−δ(v)(ξ(2), t).

In the second line, we slightly abused notations in the domain of the second
integration for clarity since, strictly speaking, it is already included in the do-
main of the first integral. Note that the second integral is over three variables
{ξa2}a2∈π∞2 (T2), while the first integral is over two variables {ξa1}a1∈π∞1 (T2),
with one constraint ξξξr = ξ.

Then, from Lemmas 2.3 and 2.5 with (3.1) and (3.5), we have

‖N (2)
1 (v)‖L2 .

∑
T2∈T(2)

∑
M>N
dyadic

‖IM (v, v,N µ1
653|µ1|1−δ(v))‖L2

.
∑
M>N
dyadic

M−
1
2 +‖v‖2L2‖NM

.53M1−δ(v)‖L2

. N−
δ
2 +‖v‖5L2 .

This proves (3.9). �

Next, we apply a normal form reduction to N (2)
2 . On the support of N (2)

2 ,
namely, on C0 ∩ Cc1, we have

|µ1 + µ2| > 53|µ1|1−δ > N1−δ. (3.11)
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By applying differentiation by parts once again, we have

N (2)
2 (v)(ξ) = ∂t

[ ∑
T2∈T(2)

∫
C0∩Cc1

ξξξ∈Ξ(T2), ξξξr=ξ

e−i(µ1+µ2)t

µ1(µ1 + µ2)
∏

a∈T∞2

vξa

]

−
∑
T2∈T(2)

∫
C0∩Cc1

ξξξ∈Ξ(T2), ξξξr=ξ

e−i(µ1+µ2)t

µ1(µ1 + µ2)∂t

( ∏
a∈T∞2

vξa

)

= ∂t

[ ∑
T2∈T(2)

∫
C0∩Cc1

ξξξ∈Ξ(T2), ξξξr=ξ

e−i(µ1+µ2)t

µ1(µ1 + µ2)
∏

a∈T∞2

vξa

]

−
∑
T3∈T(3)

∫
C0∩Cc1

ξξξ∈Ξ(T3), ξξξr=ξ

e−i(µ1+µ2+µ3)t

µ1(µ1 + µ2)
∏

a∈T∞3

vξa

=: ∂tN (3)
0 (v)(ξ) +N (3)(v)(ξ). (3.12)

We can easily estimate the boundary term N (3)
0 (v) as follows.

Lemma 3.11. — Let s > 0. Then, we have

‖N (3)
0 (v)‖Hs . N−1+ δ

2 +‖v‖5Hs , (3.13)

‖N (3)
0 (v)−N (3)

0 (w)‖Hs . N−1+ δ
2 +(‖v‖4Hs + ‖w‖4Hs

)
‖v − w‖Hs , (3.14)

for 0 < δ < 1.

Proof. — We only present the proof of (3.13) since (3.14) follows in a sim-
ilar manner. Moreover, by the triangle inequality, it suffices to prove (3.13)
for s = 0. We proceed as in the proof of Lemma 3.10. By an iterative appli-
cation of Lemma 2.5 with (3.11), we have

‖N (3)
0 (v)‖L2 6

∥∥∥∥∥ ∑
T2∈T(2)

∫
C0∩Cc1

ξξξ∈Ξ(T2), ξξξr=ξ

ei(µ1+µ2)t

µ1(µ1 + µ2)
∏

a∈T∞2

vξa

∥∥∥∥∥
L2

.
∑

T2∈T(2)

∑
M>N
dyadic

‖IM (v, v, Iµ1
>53|µ1|1−δ(v))‖L2

.
∑
M>N
dyadic

M−
1
2 +‖v‖2L2‖IM&53M1−δ(v)‖L2

. N−1+ δ
2 +‖v‖5L2 ,

yielding the desired estimate (3.13). �

As in the first step, we decompose N (3) as

N (3) = N (3)
1 +N (3)

2 ,
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where N (3)
1 is the restriction of N (3) onto

C2 :=
{
|µ̃3| 6 73|µ̃2|1−δ

}
∪
{
|µ̃3| 6 73|µ1|1−δ

}
(3.15)

and N (3)
2 := N (3) −N (3)

1 . At this point, we have

N>N =
3∑
j=2

∂tN (j)
0 +

3∑
j=2
N (j)

1 +N (3)
2 .

As before, the modulation restriction (3.15) allows us to estimate the first
term N (3)

1 .

Lemma 3.12. — Let s > 0. Then, we have

‖N (3)
1 (v)‖Hs . N−

1
2 +‖v‖5Hs , (3.16)

‖N (3)
1 (v)−N (3)

1 (w)‖Hs . N−
1
2 +(‖v‖4Hs + ‖w‖4Hs

)
‖v − w‖Hs , (3.17)

for 0 < δ < 1.

Proof. — We only present the proof of (3.16) since (3.17) follows in a sim-
ilar manner. Moreover, by the triangle inequality, it suffices to prove (3.16)
for s = 0. As in the proof of Lemma 3.10, with a slight abuse of notations,
we have

N (3)
1 (v)(ξ, t) =

∑
T3∈T(3)

∫
ξξξ∈Ξ(T3)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a1∈π∞1 (T3)

vξa1

×
∫
ξξξ(2)∈Ξ(π2(T3))
ξξξ

(2)
r(2) =ξ(2)

1Cc1
e−iµ2t

µ̃2

∏
a2∈π∞2 (T3)

vξa2

×
∫
ξξξ(3)∈Ξ(π3(T3))
ξξξ

(3)
r(3) =ξ(3)

1C2e
−iµ3t

∏
a3∈π∞3 (T3)

vξa3
. (3.18)

Note that the last integral is over three variables {ξa3}a3∈π∞3 (T3), while the
first and second integrals are over two and two variables (or one and three
variables) {ξa1}a1∈π∞1 (T3) and {ξa2}a2∈π∞2 (T3), with one constraint ξξξr = ξ.

We first consider the case |µ̃3| 6 73|µ̃2|1−δ. For each fixed ordered tree
T3 ∈ T(3), each septilinear term in (3.18) can be written as

N (3)
1
∣∣
T3

= I|µ1|>N

(
v, v, Iµ1

|µ2+µ1|>53|µ1|1−δ
(
v, v,N µ̃2

|µ3+µ̃2|673|µ̃2|1−δ(v, v, v)
))

(3.19)
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or
N (3)

1
∣∣
T3

= I|µ1|>N

(
Iµ1
|µ2+µ1|>53|µ1|1−δ(v, v, v), v,N µ̃2

|µ3+µ̃2|673|µ̃2|1−δ(v, v, v)
)

(3.20)

up to permutations of terminal nodes within a subtree of one generation.
In the following, we only consider (3.19) since (3.20) can be estimated in a
similar manner. By dyadically decomposing µ1 and µ̃2, we have

(3.19)∼
∑
N1>N
dyadic

∑
N2&N

1−δ
1

dyadic

I|µ1|∼N1

(
v,v,Iµ1

|µ̃2|∼N2

(
v, v,N µ̃2

|µ3+µ̃2|673|µ̃2|1−δ(v,v,v)
))
.

Then, by Lemmas 2.3 and 2.5, we can estimate (3.19) as

‖(3.19)‖L2 .
∑
N1>N
dyadic

∑
N2&N

1−δ
1

dyadic

N
− 1

2 +
1 ‖v‖2L2

×
∥∥Iµ1
|µ̃2|∼N2

(
v, v,N µ̃2

|µ3+µ̃2|673|µ̃2|1−δ(v, v, v)
)∥∥
L2

.
∑
N1>N
dyadic

∑
N2&N

1−δ
1

dyadic

N
− 1

2 +
1 N

− 1
2 +

2 ‖v‖4L2

×
∥∥1|µ̃2|∼N2 · N

µ̃2
|µ3+µ̃2|673|µ̃2|1−δ(v, v, v)

∥∥
L2

.
∑
N1>N
dyadic

∑
N2&N

1−δ
1

dyadic

N
− 1

2 +
1 N

− δ2 +
2 ‖v‖7L2

. N−
1
2−

δ
2 + δ2

2 +‖v‖7L2 .

Next, we consider the case |µ̃3| 6 73|µ1|1−δ. In this case, we need to
estimate the terms of the form (3.19) and (3.20) with |µ3 + µ̃2| 6 73|µ̃2|1−δ
replaced by |µ3 + µ̃2| 6 73|µ1|1−δ. Proceeding as before with Lemmas 2.3
and 2.5, we have

‖(3.19)‖L2 .
∑
N1>N
dyadic

∑
N2&N

1−δ
1

dyadic

N
− 1

2 +
1 N

− 1
2 +

2 ‖v‖4L2

×
∥∥1|µ̃2|∼N2 · N

µ̃2
|µ3+µ̃2|673|µ1|1−δ(v, v, v)

∥∥
L2

.
∑
N1>N
dyadic

∑
N2&N

1−δ
1

dyadic

N
− 1

2 +
1 N

− 1
2 +

2 N
1
2−

δ
2 +

1 ‖v‖7L2

. N−
1
2 +‖v‖7L2 .

This completes the proof of Lemma 3.12. �
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As in the previous step, we can not estimate N (3)
2 in a direct manner.

Hence, we perform the third step of normal form reductions:

N (3)
2 (v)(ξ) = ∂t

[ ∑
T3∈T(3)

∫
C0∩Cc1∩C

c
2

ξξξ∈Ξ(T3), ξξξr=ξ

e−iµ̃3t∏3
j=1 µ̃j

∏
a∈T∞3

vξa

]

−
∑
T4∈T(4)

∫
C0∩Cc1∩C

c
2

ξξξ∈Ξ(T4), ξξξr=ξ

e−iµ̃4t∏3
j=1 µ̃j

∏
a∈T∞4

vξa

=: ∂tN (4)
0 (v)(ξ) +N (4)(v)(ξ).

The boundary term N (4)
0 (v) can be estimated as in Lemmas 3.9 and 3.11.

As for N (4)(v), we decompose it as N (4) = N (4)
1 + N (4)

2 corresponding to
the restrictions onto

C3 =
{
|µ̃4| 6 93|µ̃3|1−δ

}
∪
{
|µ̃4| 6 93|µ1|1−δ

}
(3.21)

and its complement Cc3, respectively. On the one hand, the modulation re-
striction (3.21) allows us to estimate N (4)

1 as in Lemmas 3.10 and 3.12. On
the other hand, we apply the fourth step of normal form reductions to N (4)

2 .
In this way, we continue normal form reductions in an indefinite manner. In
the next subsection, we describe this procedure in the general Jth step.

3.3. General Jth step

In this subsection, we discuss the general Jth step in this normal form
procedure. Given an ordered tree T ∈ T(J), we introduce the following
multilinear operators S0(T ; · ) and S1(T ; · ), which allow us to estimate
the multilinear terms (associated with the ordered tree T ) in an efficient
manner. For simplicity of notations, we set Mj by

Mj := max(|µ̃j |, |µ1|).

Definition 3.13. — Let k = 0, 1. Then, we define S0 and S1 as map-
pings:

T ∈
∞⋃
j=1

T(j) 7−→ a (2j + 1)-linear map Sk(T ; · ) on S(R)⊗2j+1, k = 0, 1,

by the following rules. Let v ∈ S(R).

Definition of S0(T ; v):

(i) Replace a terminal node (denoted as “ ”) by v.
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(ii) Replace the Jth root node r(J) (denoted as “ ”) by the trilinear
operator I µ̃J−1

|µJ+µ̃J−1|>(2J+1)3M1−δ
J−1

whose arguments are given by the
functions associated with its three children (namely v in this case).

(iii) Let j = J − 1. Replace the jth root node (denoted as “ ”) by the
trilinear operator I µ̃j−1

|µj+µ̃j−1|>(2j+1)3M1−δ
j−1

whose arguments are given
by the functions associated with its three children. Repeat this process
for j = J − 2, J − 3, . . . , 2.

(iv) Replace the root node r = r(1) (denoted as “ ”) by the trilinear oper-
ator I|µ1|>N whose arguments are given by the functions associated
with its three children.

Definition of S1(T ; v):

(i) Replace a terminal node (denoted as “ ”) by v.
(ii) Replace the Jth root node r(J) (denoted as “ ”) by the trilinear

operator N µ̃J−1

|µJ+µ̃J−1|6(2J+1)3M1−δ
J−1

whose arguments are given by the
functions associated with its three children (namely v in this case).

(iii) Let j = J − 1. Replace the jth root node (denoted as “ ”) by the
trilinear operator I µ̃j−1

|µj+µ̃j−1|>(2j+1)3M1−δ
j−1

whose arguments are given
by the functions associated with its three children. Repeat this process
for j = J − 2, J − 3, . . . , 2.

(iv) Replace the root node r = r(1) (denoted as “ ”) by the trilinear oper-
ator I|µ1|>N whose arguments are given by the functions associated
with its three children.

Note that the only difference between the two definitions appears in
Step (ii). The operators S0(T ; · ) and S1(T ; · ) are a priori defined from
S(R)⊗2j+1 to S ′(R). In the following, we show that they are bounded on
L2(R).

Remark 3.14. — In the above definition, we only defined S0(T ; v) and
S1(T ; v), namely, when all the 2j + 1 arguments are identical. Let us now
describe how to define Sk(T ; v1, . . . , v2j+1), k = 0, 1, in general.

Given a tree T ∈ T(j), label its terminal nodes by a1, . . . , a2j+1 (say, by
moving from left to right in the planar graphical representation of the tree).
Given functions v1, . . . , v2j+1 ∈ S(R), we only need to modify Step (i) in
Definition 3.13 as follows:

(i′) Replace terminal nodes a` ∈ T ∞ by v`.
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Before proceeding further, let us consider the following examples of or-
dered trees of the third generation:

T =

r = r(1)

r(2)

r(3)
T ′ =

r = r(1)

r(2) r(3)

It is easy to see that S1(T ; v) and S1(T ′; v) correspond to the septilinear
terms (3.19) and (3.20), respectively.

Next, let T be the collection of formal sums of elements in
⋃∞
j=1 T(j).

Then, we extend the definitions of S0 and S1 to elements in T by imposing
the “additivity”:

Sk

(∑
α∈A
T α; ·

)
:=
∑
α∈A

Sk(T α; · ) (3.22)

for a finite index set A. With this definition, we can write N (3)
0 (v) and

N (3)
1 (v) from the previous subsection as

N (3)
0 (v) = S0

( ∑
T ∈T(2)

T ; v
)

and N (3)
1 (v) = S1

( ∑
T ∈T(3)

T ; v
)
.

Now, we are ready to discuss the general Jth step of the normal form
reductions. Define Cj by

Cj =
{
|µ̃j+1| 6 (2j + 3)3M1−δ

j

}
=
{
|µ̃j+1| 6 (2j + 3)3|µ̃j |1−δ

}
∪
{
|µ̃j+1| 6 (2j + 3)3|µ1|1−δ

}
(3.23)

for j ∈ N. Then, after J steps, we have

N (J)
2 (v)(ξ) =

∑
TJ∈T(J)

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ ), ξξξr=ξ

e−iµ̃J t∏J−1
j=1 µ̃j

∏
a∈T∞

J

vξa

= ∂t

[ ∑
TJ∈T(J)

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ ), ξξξr=ξ

e−iµ̃J t∏J
j=1 µ̃j

∏
a∈T∞

J

vξa

]

−
∑

TJ+1∈T(J+1)

∫
C0 ∩

⋂J−1
j=1

Ccj∩CJ
ξξξ∈Ξ(TJ+1), ξξξr=ξ

e−iµ̃J+1t∏J
j=1 µ̃j

∏
a∈T∞

J+1

vξa

−
∑

TJ+1∈T(J+1)

∫
C0 ∩

⋂J

j=1
Ccj

ξξξ∈Ξ(TJ+1), ξξξr=ξ

e−iµ̃J+1t∏J
j=1 µ̃j

∏
a∈T∞

J+1

vξa
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=: ∂tN (J+1)
0 (v)(ξ) +N (J+1)

1 (v)(ξ) +N (J+1)
2 (v)(ξ). (3.24)

As in the previous subsection, let

N (J+1) := N (J+1)
1 +N (J+1)

2 . (3.25)

In view of Definition 3.13, we have

N (J+1)
0 (v) = S0

( ∑
T ∈T(J)

T ; v
)

and N (J+1)
1 (v) = S1

( ∑
T ∈T(J+1)

T ; v
)
. (3.26)

In the following, we estimate N (J+1)
0 and N (J+1)

1 for general J ∈ N. As for
the last term N (J+1)

2 in (3.24), we perform a normal form reduction once
again and obtain (3.24) with J replaced by J+1. In Section 4, we show that
the remainder term N (J+1)

2 tends to 0 in an appropriate sense as J →∞.

Lemma 3.15. — Let s > 0. Then, we have

‖N (J+1)
0 (v)‖Hs . N−

J
2 + J−1

2 δ+‖v‖2J+1
Hs , (3.27)

‖N (J+1)
0 (v)−N (J+1)

0 (w)‖Hs . N−
J
2 + J−1

2 δ+(‖v‖2JHs + ‖w‖2JHs
)
‖v − w‖Hs ,

(3.28)

for 0 < δ < 1.

Proof. — We only present the proof of (3.27) since (3.28) follows in a
similar manner. Note that there is an extra factor ∼ J when we estimate
the difference in (3.28) since |a2J+1 − b2J+1| .

(∑2J+1
j=1 a2J+1−jbj−1)|a− b|

has O(J) many terms. This, however, does not cause a problem since the
constant we obtain decays like a power of a factorial in J (as we see below
in (3.32)). The same comment applies to Lemma 3.16 below.

Moreover, we claim that it suffices to prove (3.27) for s = 0. When s > 0,
we argue as follows. Fix an ordered tree T ∈ T(J) and an index function
ξξξ ∈ Ξ(T ) with ξξξr = ξ. By the triangle inequality, we have maxk=1,2,3〈ξ(j)

k 〉 >
1
3 〈ξ

(j)〉, since we have ξ(j) = ξ
(j)
1 − ξ(j)

2 + ξ
(j)
3 . Hence, there exists at least

one terminal node a ∈ T ∞ such that

〈ξ〉s 6 3Js〈ξa〉s.

Note that the constant grows exponentially in J . However, this exponen-
tial growth does not cause a problem thanks to the factorial decay in the
denominator in (3.32) below.
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From (3.22) and (3.26), we have

‖N (J+1)
0 (v)‖L2 6 cJ sup

T ∈T(J)
‖S0(T ; v)‖L2 , (3.29)

where cJ = |T(J)| as in (3.1). We now decomposeS0(T ; v) into dyadic pieces
in terms of modulations µ̃j . Given dyadic Nj , j = 1, . . . , J , define M̃j by

M̃j := max(Nj , N1). (3.30)

With N̄ = (N1, . . . , NJ), we define S0,N̄ (T ; v) by making the following mod-
ifications in Steps (ii), (iii), and (iv) of the definition of S0(T ; v):

(ii) I µ̃J−1

|µJ+µ̃J−1|>(2J+1)3M1−δ
J−1

=⇒ I µ̃J−1
|µJ+µ̃J−1|∼NJ ,

(iii) I µ̃j−1

|µj+µ̃j−1|>(2j+1)3M1−δ
j−1

=⇒ I µ̃j−1
|µj+µ̃j−1|∼Nj ,

(iv) I|µ1|>N =⇒ I|µ1|∼N1 .
Then, we have

S0(T ; v) ∼
∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .
∑

NJ>(2J+1)3M̃1−δ
J−1

dyadic

S0,N̄ (T ; v). (3.31)

Fix an ordered tree T ∈ T(J). In view of Remark 3.6, we can estimate
S0,N̄ (T ; v) by applying Lemma 2.5 in a successive manner in the following
order:

I|µ1|∼N1 , I
µ1
|µ2+µ1|∼N2

, I µ̃2
|µ3+µ̃2|∼N3

, . . . , I µ̃J−1
|µJ+µ̃J−1|∼NJ .

Then, it follows from Lemma 2.5 with (3.29), (3.31), and (3.30), that

‖N (J+1)
0 (v)‖L2 6 cJ sup

T ∈T(J)
‖S0(T ; v)‖L2

. cJ
∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .

∑
NJ>(2J+1)3M̃1−δ

J−1
dyadic

N
− 1

2 +
1

J∏
j=2

N
− 1

2 +
j ‖v‖2J+1

L2

.
cJ∏J

j=2(2j + 1) 3
2−

∑
N1>N
dyadic

N
− J2 + J−1

2 δ+
1 ‖v‖2J+1

L2 (3.32)

. N−
J
2 + J−1

2 δ+‖v‖2J+1
L2 .

This completes the proof of Lemma 3.15. �

A similar argument yields the following bounds on N (J+1)
1 (v).
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Lemma 3.16. — Let s > 0. Then, we have

‖N (J+1)
1 (v)‖Hs . N−

J−1
2 + J−2

2 δ+‖v‖2J+3
Hs , (3.33)

‖N (J+1)
1 (v)−N (J+1)

1 (w)‖Hs.N−
J−1

2 + J−2
2 δ+(‖v‖2J+2

Hs +‖w‖2J+2
Hs

)
‖v−w‖Hs ,

for 0 < δ < 1.

Proof. — Arguing as in the proof of Lemma 3.15, it suffices to prove (3.33)
for s = 0. From (3.22) and (3.26), we have

‖N (J+1)
1 (v)‖L2 6 cJ+1 sup

T ∈T(J+1)
‖S1(T ; v)‖L2 . (3.34)

As in the proof of Lemma 3.15, we decompose S1(T ; v) into dyadic pieces in
terms of modulations µ̃j . With N̄ = (N1, . . . , NJ+1), we define S1,N̄ (T ; v)
by making the following modifications in Steps (ii), (iii), and (iv) of the
definition of S1(T ; v) (with J replaced by J + 1):

(ii) N µ̃J
|µJ+1+µ̃J |6(2J+3)3M1−δ

J

=⇒ N µ̃J
|µJ+1+µ̃J |∼NJ+1

,

(iii) I µ̃j−1

|µj+µ̃j−1|>(2j+1)3M1−δ
j−1

=⇒ I µ̃j−1
|µj+µ̃j−1|∼Nj ,

(iv) I|µ1|>N =⇒ I|µ1|∼N1 ,

where M̃j is as in (3.30). Then, we have

S1(T ;v)∼
∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .

∑
NJ>(2J+1)3M̃1−δ

J−1
dyadic

∑
NJ+162−1·(2J+3)3M̃1−δ

J
dyadic

S1,N̄ (T ;v). (3.35)

Fix an ordered tree T ∈ T(J + 1). Proceeding as before, we can estimate
S1,N̄ (T ; v) by applying Lemmas 2.3 and 2.5 in a successive manner in the
following order:

I|µ1|∼N1 , I
µ1
|µ2+µ1|∼N2

, . . . , I µ̃J−1
|µJ+µ̃J−1|∼NJ , N

µ̃J
|µJ+1+µ̃J |∼NJ+1

.
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We first consider the contribution from the case M̃J ∼ NJ . It follows
from Lemmas 2.3 and 2.5 with (3.34), (3.35), and (3.30) that

‖N (J+1)
1 (v)‖L2 6 cJ+1 sup

T ∈T(J)
‖S1(T ; v)‖L2

. cJ+1
∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .
∑

NJ>(2J+1)3M̃1−δ
J−1

dyadic

N
− 1

2 +
1

J∏
j=2

N
− 1

2 +
j

×
∑

NJ+162−1·(2J+3)3N1−δ
J

dyadic

N
1
2 +
J+1‖v‖

2J+3
L2

. cJ+1(2J + 3) 3
2 +

∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .
∑

NJ>(2J+1)3M̃1−δ
J−1

dyadic

N
− 1

2 +
1 N

− δ2 +
J

×
J−1∏
j=2

N
− 1

2 +
j ‖v‖2J+3

L2

.
cJ+1(2J + 3) 3

2 +∏J−1
j=2 (2j + 1) 3

2−

∑
N1>N
dyadic

N
− 1

2 +
1 N

− δ2 + δ2
2 +

1 N
− J−2

2 + J−2
2 δ+

1 ‖v‖2J+3
L2

.
∑
N1>N
dyadic

N
− J−1

2 + J−3
2 δ+ δ2

2 +
1 ‖v‖2J+3

L2 . N−
J−1

2 + J−3
2 δ+ δ2

2 +‖v‖2J+3
L2 .

Next, we consider the contribution from the case M̃J ∼ N1. Proceeding
as above, we have

‖N (J+1)
1 (v)‖L2

6 cJ+1 sup
T ∈T(J)

‖S1(T ; v)‖L2

. cJ+1
∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .
∑

NJ>(2J+1)3M̃1−δ
J−1

dyadic

N
− 1

2 +
1

J∏
j=2

N
− 1

2 +
j

×
∑

NJ+162−1·(2J+3)3N1−δ
1

dyadic

N
1
2 +
J+1‖v‖

2J+3
L2

– 692 –



Normal form approach to unconditional Well-posedness on R

. cJ+1(2J + 3) 3
2 +

∑
N1>N
dyadic

∑
N2>53M̃1−δ

1
dyadic

. . .

∑
NJ>(2J+1)3M̃1−δ

J−1
dyadic

N
− δ2 +
1

J∏
j=2

N
− 1

2 +
j ‖v‖2J+3

L2

.
cJ+1(2J + 3) 3

2 +∏J
j=2(2j + 1) 3

2−

∑
N1>N
dyadic

N
− J−1

2 + J−2
2 δ+

1 ‖v‖2J+3
L2

. N−
J−1

2 + J−2
2 δ+‖v‖2J+3

L2 .

This completes the proof of Lemma 3.16. �

Remark 3.17. — As mentioned at the beginning of this section, we can
perform an analogous analysis for the mKdV (1.2). In this case, it follows
from Lemmas 2.6 and 2.8 that Lemmas 3.15 and 3.16 hold for s > 1

4 .

3.4. Normal form equation

After the Jth step of the normal form reductions, we transformed the
original equation (2.3) to

∂tv(ξ) = N6N (v)(ξ) +N>N (v)(ξ)

=
J+1∑
j=2

∂tN (j)
0 (v)(ξ) +

J+1∑
j=1
N (j)

1 (v)(ξ) +N (J+1)
2 (v)(ξ). (3.36)

By iterating this procedure indefinitely, we formally(17) arrive at the follow-
ing limit equation:

∂tv(ξ) = ∂t

( ∞∑
j=2
N (j)

0 (v)(ξ)
)

+
∞∑
j=1
N (j)

1 (v)(ξ). (3.37)

(17) This means that the derivation can be easily justified for smooth solutions but
not for rough solutions. Here, we assume that the remainder term N (J+1)

2 (v)(ξ) tends to
0 as J → ∞. In Section 4, we justify all the computations for rough functions, namely,
u ∈ CtHs with s > 1

6 for the cubic NLS and s > 1
4 for the mKdV.
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Integrating (3.37) in time and applying the Fourier inversion formula, we
obtain the following normal form equation:

v(t) = Γu0(v)

:= u0 +
[ ∞∑
j=2
N (j)

0 (v(t))−
∞∑
j=2
N (j)

0 (u0)
]

+
∫ t

0

∞∑
j=1
N (j)

1 (v(t′))dt′.

(3.38)

Theorem 3.18. — The normal form equation (3.38) is unconditionally
locally well-posed in Hs(R) with

(i) s > 0 for the cubic NLS (1.1) and (ii) s > 1
4 for the mKdV (1.2).

(3.39)

Proof. — Given u0 ∈ Hs(R), let R = 1 + ‖u0‖Hs . Given T > 0, we use
B2R to denote the closed ball of radius 2R in CTH

s := C([0, T ];Hs(R))
centered at the origin. By (3.4), Lemmas 3.9–3.12, 3.15, and 3.16, we have

‖Γu0(v)‖CTHs 6 ‖u0‖Hs + C

J∑
j=2

N−
j−1

2 + j−2
2 δ+(‖v‖2j−1

CTHs
+ ‖u0‖2j−1

Hs

)
+ CT

{
N

1
2 +‖v‖3CTHs +

J∑
j=2

N−
j−2

2 + j−3
2 δ+‖v‖2j+1

CTHs

}
(3.40)

for s satisfying (3.39). Note that the estimate (3.4) on N (1)
1 is the only esti-

mate with a positive power of N . However, it appears inside the time integral
in (3.38). This allows us to (i) choose N = N(R) & 1, guaranteeing the con-
vergence of the geometric series in (3.40) for v ∈ B2R, and then (ii) choose
T = T (N) = T (R) > 0 sufficiently small to control TN 1

2 +‖v‖3CTHs . A similar
estimate also holds on the difference ‖Γu0(v)−Γu0(w)‖CTHs for v, w ∈ B2R.
Then, by a standard fixed point argument, we can show that the normal
form equation (3.38) is locally well-posed in C([0, T ];Hs(R)), provided that
s satisfies (3.39). While the fixed point argument yields this uniqueness only
in the ball B2R ⊂ C([0, T ];Hs(R)), we can apply a standard continuity ar-
gument to upgrade uniqueness to that in the entire C([0, T ];Hs(R)) (by pos-
sibly shrinking the local existence time). See Remark 2.9 in [9] for example.
Lastly, by considering the difference of two solutions v1, v2 ∈ C([0, T ];Hs(R))
to (3.38), we also obtain

‖v1 − v2‖CTHs . ‖v1(0)− v2(0)‖Hs

for small T = T (‖v1(0)‖Hs , ‖v2(0)‖Hs) > 0. This proves Theorem 3.18. �

In the following, we sketch the proofs of Theorems 1.5 and 1.6, assuming
that smooth solutions to the cubic NLS (1.1) (or the mKdV (1.2)) satisfy
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the normal form equation (3.38) (which we will show in the next section). By
starting with two smooth solutions u1, u2 ∈ C([0, T ];H∞(R)) to the cubic
NLS (1.1) (or the mKdV (1.2)), the above analysis yields

‖u1 − u2‖CTHs . ‖u1(0)− u2(0)‖Hs (3.41)
for s satisfying (3.39). The difference estimate (3.41) in particular implies the
convergence of approximating solutions (to a unique limiting function), yield-
ing the local well-posedness in the sense of sensible weak solutions claimed
in Theorems 1.5 and 1.6. See [37] for details. Furthermore, arguing as in [15],
we can also show that solutions to the normal form equation (3.38) are in-
deed weak solutions in the extended sense to the original equation. Since the
argument is straightforward, we omit details.

If we justify that solutions to the cubic NLS in C([0, T ];Hs(R)), s > 1
6

(and s > 1
4 for the mKdV), indeed satisfy the normal form equation (3.38),

then the difference estimate (3.41) yields uniqueness. Since our analysis does
not involve any auxiliary function spaces, such uniqueness is unconditional,
thus establishing Theorems 1.1 and 1.2. In the next section, we justify all the
steps of the normal form reductions and thus the derivation of the normal
form equation (3.38) under the regularity assumption above.

4. Unconditional well-posedness

In this section, we present the proof of Theorems 1.1 and 1.2. In view
of the (conditional) well-posedness results in Hs(R): s > 0 for the cubic
NLS [42] and s > 1

4 for the mKdV [10, 20, 24], we focus on proving uncondi-
tional uniqueness, locally in time. As mentioned above, the main task is to
make the formal computations in Section 3 rigorous. Once this is achieved,
the difference estimate (3.41) yields unconditional uniqueness. In the follow-
ing, we justify

(i) the application of the product rule and
(ii) switching time derivatives and integrals in spatial frequencies (for

each fixed ξ ∈ R)

in the normal form reductions (3.6), (3.12), and (3.24). Moreover, we show
that

(iii) the remainder term N (J+1)
2 (v)(ξ) in (3.36) tends to 0 as J → ∞

(for each fixed ξ ∈ R).(18)

(18) This part is not explicitly written in [15]. It is, however, easy to see that the
computation in [15, (5.3)] and its generalization for the Jth generation (which follows as
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It is crucial to note that we verify (i)–(iii) for each fixed ξ ∈ R, namely, in
a weaker topology than the Hs-topology used in Section 3. Moreover, while
all the multilinear estimates (Lemmas 3.9–3.12, 3.15, and 3.16) for the cubic
NLS in Section 3 hold for s > 0, we need an extra regularity s > 1

6 in
justifying (i), (ii), and (iii). As for the mKdV, the regularity s > 1

4 suffices
for the multilinear estimates in Section 3, while a slightly higher regularity
s > 1

4 is needed for justifying the normal form reductions.

4.1. Unconditional well-posedness for the cubic NLS

Let u be a solution to (1.1) in C(R;Hs(R)) for some s > 1
6 and let v be

the corresponding interaction representation defined by (1.11). On the one
hand, by Sobolev’s inequality, we have |u|2u ∈ C(R;L1(R)). On the other
hand, it follows from (2.2) and (2.3) that v̂(ξ) satisfies

∂tv̂(ξ, t) = ie−itξ
2
F(|u|2u)(ξ, t)

for each ξ ∈ R. Hence, by Riemann–Lebesgue lemma, we conclude that v̂(ξ)
is a C1-function in t for each fixed ξ ∈ R. This justifies (i) the application of
the product rule in Section 3, provided that s > 1

6 .

Next, we justify the exchange of time derivatives and integrals in spatial
frequencies. Before proceeding further, we first need to present several mul-
tilinear estimates. From (2.3) with Hausdorff–Young’s inequality, Sobolev’s
inequality, and the unitarity of the linear propagator S(t) = e−it∂

2
x , we have

‖∂tv‖FL∞ = ‖N (v)‖FL∞ 6 ‖u‖3L3 . ‖u‖3H1/6 = ‖v‖3H1/6 , (4.1)

where the FL∞-norm is defined in (1.9). Note that the same estimate holds
for Nα

M and Nα
6M .(19)

We also need the following FL∞-estimates, i.e. uniform estimates in spa-
tial frequencies. Our main goal is to prove Lemma 4.3 below, controlling the
FL∞-norms of the multilinear terms N (J+1)(v) and N (J+1)

2 (v) in terms of
the H 1

6 -norm of v.

a minor modification of [15, Lemma 3.11] with (4.1) below) would imply (iii) for the cubic
NLS on T.

(19) In this case, we simply take the absolute values of the Fourier coefficients of each
argument and drop a modulation restriction. For example, we have

‖NαM (v)‖FL∞ 6
∥∥F−1(|v̂|)

∥∥3
L3 .

∥∥F−1(|v̂|)
∥∥3
H1/6 = ‖v‖3

H1/6 ,

where we used the fact that the H
1
6 (R) is a Fourier lattice in the last step.
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Lemma 4.1 (Localized modulation estimates for the cubic NLS in the
weak norm). — Given ε > 0, there exists Cε > 0 such that

‖Nα
6M (v1, v2, v3)‖FL∞ 6 CεM

1
2 min
j=1,2,3

(
‖vj‖FL∞

3∏
k=1
k 6=j

‖vk‖Hε
)

(4.2)

for any M > 1 and α ∈ R.

Proof. — By duality, (4.2) follows once we prove(20)

∣∣∣∣∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6Mv1(ξ1)v2(ξ2)v3(ξ3)v4(ξ)dξ1dξ2dξ
∣∣∣∣

.M
1
2 min
j=1,2,3

(
‖vj‖L∞

ξ

3∏
k=1
k 6=j

‖〈ξ〉εvk‖L2
ξ

)
‖v4‖L1

ξ
(4.3)

for all non-negative functions v1, . . . , v4 ∈ L2
ξ(R).

Case 1: max(|ξ2−1|, |ξ2−3|) 6 1. — Let ζ = ξ2 − ξ1 and ζ̃ = ξ2 − ξ3.
Then, thanks to the restriction |ζ|, |ζ̃| 6 1, we have

LHS of (4.3)

6 sup
ξ

∣∣∣∣ ∫
|ζ|61

∫
|ζ̃|61

v1(ξ + ζ̃)v2(ξ + ζ + ζ̃)v3(ξ + ζ)dζ̃dζ
∣∣∣∣ · ‖v4‖L1

ξ

. min
j=1,2,3

(
‖vj‖L∞

ξ

3∏
k=1
k 6=j

‖vk‖L2
ξ

)
‖v4‖L1

ξ
.

Case 2: max(|ξ2−3|, |ξ2−1|) > 1. — Without loss of generality, assume
that ξ − ξ3 > 1. Proceeding as in (2.9) with (2.8), we have

LHS of (4.3)

6

∥∥∥∥∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6Mv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ3
∥∥∥∥
L∞
ξ

‖v4‖L1
ξ

6 sup
ξ

(∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6M 〈ξ3〉
−εdξ1dξ3

) 1
2

× ‖v1‖L2
ξ
‖v2‖L∞

ξ
‖〈ξ〉εv3‖L2

ξ
‖v4‖L1

ξ

(20) Recall our convention of denoting v̂(ξ) by v(ξ) when there is no confusion. See
Remark 2.1.
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6 sup
ξ

(∫
ξ−ξ3>1

M

(ξ − ξ3)〈ξ3〉ε
dξ3
)1

2

‖v1‖L2
ξ
‖v2‖L∞

ξ
‖〈ξ〉εv3‖L2

ξ
‖v4‖L1

ξ

.M
1
2 ‖v1‖L2

ξ
‖v2‖L∞

ξ
‖〈ξ〉εv3‖L2

ξ
‖v4‖L1

ξ
. (4.4)

An analogous computation yields

LHS of (4.3) .M 1
2 ‖v1‖L∞

ξ
‖v2‖L2

ξ
‖〈ξ〉εv3‖L2

ξ
‖v4‖L1

ξ
. (4.5)

Lastly, with 〈ξ − ξ3〉ε = 〈ξ1 − ξ2〉ε . 〈ξ1〉ε〈ξ2〉ε, we have
LHS of (4.3)

6

∥∥∥∥∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6Mv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ3
∥∥∥∥
L∞
ξ

‖v4‖L1
ξ

6 sup
ξ

(∫
ξ=ξ1−ξ2+ξ3

1|Φ(ξ̄)−α|6M 〈ξ − ξ3〉
−εdξ1dξ3

)1
2
( 2∏
j=1
‖〈ξ〉εvj‖L2

ξ

)
× ‖v3‖L∞

ξ
‖v4‖L1

ξ

6 sup
ξ

(∫
ξ−ξ3>1

M

(ξ − ξ3)〈ξ − ξ3〉ε
dξ3
)1

2
( 2∏
j=1
‖〈ξ〉εvj‖L2

ξ

)
‖v3‖L∞

ξ
‖v4‖L1

ξ

.M
1
2

( 2∏
j=1
‖〈ξ〉εvj‖L2

ξ

)
‖v3‖L∞

ξ
‖v4‖L1

ξ
. (4.6)

Putting (4.4), (4.5), and (4.6), we obtain (4.3) in this case. �

As a corollary to Lemma 4.1, we have the following estimates on IαM and
Iα>M .

Lemma 4.2. — Given ε > 0, there exists Cε > 0 such that

‖IαM (v)‖FL∞ 6 CεM−
1
2 ‖v‖2Hε‖v‖FL∞ ,

‖Iα>M (v)‖FL∞ 6 CεM−
1
2 ‖v‖2Hε‖v‖FL∞ ,

for any M > 1 and α ∈ R.

Let N (J+1) be as in (3.25). Then, from (3.24), we have

N (J+1)(v)(ξ)

=
∑

TJ+1∈T(J+1)

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ+1), ξξξr=ξ

e−iµ̃J+1t∏J
j=1 µ̃j

∏
a∈T∞

J+1

vξa

=
∑

TJ∈T(J)

∑
b∈T∞

J

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ ), ξξξr=ξ

e−iµ̃J t∏J
j=1 µ̃j

∂tvξb
∏

a∈T∞
J
\{b}

vξa . (4.7)
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Now, given TJ ∈ T(J), we label its terminal nodes by a1, . . . , a2J+1. Then,
it follows from Definition 3.13 and (4.7) with (3.22) and Remark 3.14 that

N (J+1)(v) =
∑

TJ∈T(J)

2J+1∑
k=1

S0

(
TJ ; vk

)
, (4.8)

where vk = (v, . . . , v, ∂tv︸︷︷︸
kth spot

, v, . . . , v). Compare this with N (J+1)
0 in (3.24)

and (3.26).

Lemma 4.3. — Let N (J+1)(v) be as in (3.25). Then, we have

‖N (J+1)(v)‖FL∞ . N−
J
2 + J−1

2 δ‖v‖2J+3
H1/6 , (4.9)

‖N (J+1)
2 (v)‖FL∞ . N−

J
2 + J−1

2 δ‖v‖2J+3
H1/6 , (4.10)

for 0 < δ < 1.

Proof. — We use the representation (4.8) for N (J+1)(v). Proceeding as
in the proof of Lemma 3.15(21) with Lemma 4.2, we have

‖N (J+1)(v)‖FL∞ . N−
J
2 + J−1

2 δ‖v‖2JHε‖∂tv‖FL∞ . (4.11)

Then, (4.9) follows from (4.11) and (4.1). The second estimate (4.10) dif-
fers from (4.9) only in the modulation restriction CcJ for ∂tv (viewed as a
cubic term). Noting that the product estimate (4.1) holds even with the
modulation restriction, we see that the second estimate (4.10) follows in an
analogous manner. �

Remark 4.4. — Note that we do not make use of the oscillatory factor in
establishing the estimates (4.1), (4.9), and (4.10). In particular, the integrals
in spatial frequencies in (4.1), (4.9), and (4.10) converge absolutely.

Let us now consider the first step of the normal form reductions. By
rearranging (3.6), we have

∂t

[∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a∈T∞1

vξa

]
=
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

∂t

(
1C0

e−iµ1t

µ1

∏
a∈T∞1

vξa

)

=
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0e
−iµ1t

∏
a∈T∞1

vξa +
∑
T1∈T(1)

∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1
∂t

( ∏
a∈T∞1

vξa

)

= N (1)
2 (v)(ξ)−N (2)(v)(ξ).

(21) Note that we have an O(J) loss due to the summation in k. This, however, does
not cause any trouble thanks to the fast decay in (3.32).
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Then, in view of Lemma 4.3 with Remark 4.4, we can justify the switching of
the time derivative and the integration in the first equality above by applying
Fubini’s theorem to the integrated (in time) formulation.

Similarly, by rearranging (3.24), we have

∂t

[ ∑
TJ∈T(J)

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ ), ξξξr=ξ

e−iµ̃J t∏J
j=1 µ̃j

∏
a∈T∞

J

vξa

]

=
∑

TJ∈T(J)

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ ), ξξξr=ξ

∂t

(
e−iµ̃J t∏J
j=1 µ̃j

∏
a∈T∞

J

vξa

)

= N (J)
2 (ξ)−N (J+1)(ξ)

in the general case. Once again, in view of Lemma 4.3 with Remark 4.4, we
can justify the switching of the time derivative and the integration in the
first equality above by applying Fubini’s theorem to the integrated (in time)
formulation

Lastly, it follows from (4.10) in Lemma 4.3 that, for each fixed ξ ∈ R,
the remainder term N (J+1)

2 (v)(ξ) tends to 0 as J → ∞, provided that
u ∈ C(R;H 1

6 (R)). This justifies the derivation of the normal form equa-
tion(22) (3.38) and hence the difference estimates (3.4) and (3.41) for the
cubic NLS. By iterating the local-in-time argument, this yields uncondi-
tional uniqueness in the class C(R;H 1

6 (R)). This completes the proof of
Theorem 1.1.

Remark 4.5. — As in [15], it is also possible to justify the exchange of
time derivatives and integrals in spatial frequencies in the distributional
sense under a milder regularity assumption that v ∈ C(R;L2(R)). Given a
family {fξ}ξ∈R of temporal distributions in D′t. we define

∫
fξdξ ∈ D′t by〈∫

fξdξ, φ
〉

:=
∫
〈fξ, φ〉dξ (4.12)

for φ ∈ Dt, provided that the integral on the right-hand side is well defined
(in the Lebesgue sense) for each φ ∈ Dt. Then, as a distributional derivative,

(22) At this point, the normal form equation (3.38) is justified only for each fixed
ξ ∈ R on the Fourier side. In view of Lemmas 3.15, and 3.16, we can a posteori show
that the normal form equation (3.38) indeed holds in C([0, T ];H

1
6 (R)). See the proof of

Proposition 2.1 in [37]. A similar comment applies to the mKdV.
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∂t
∫
fξdξ ∈ D′t is given by〈
∂t

∫
fξdξ, φ

〉
= −

〈∫
fξdξ, ∂tφ

〉
(4.12)= −

∫
〈fξ, ∂tφ〉dξ =

∫
〈∂tfξ, φ〉dξ

(4.12)=
〈∫

∂tfξdξ, φ
〉
,

provided that
∫
fξdξ is well defined in the sense of (4.12). Namely, we have

∂t

∫
fξdξ =

∫
∂tfξdξ (4.13)

as elements in D′t, as long as
∫
fξdξ exists. Compare this with Lemma 5.1

in [15]. As usual, we have〈∫
fξdξ, φ

〉
=
∫
〈fξ, φ〉dξ =

∫∫
fξ(t)φ(t)dtdξ (4.14)

for locally integrable functions fξ(t).

Now, let us consider the exchange of the time differentiation and the
integration in spatial frequencies in (3.6). Lemma 3.9 with s = 0 states that,
for almost every ξ ∈ R, the integral

N (2)
0 (v)(ξ) =

∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a∈T∞1

vξa(t) =:
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

X(ξξξ, t)

converges absolutely and uniformly on compact time intervals, if v ∈
C(R;L2(R)). Then, for almost every ξ ∈ R, we have

〈N (2)
0 (v)(ξ), φ〉 =

〈∫
ξξξ∈Ξ(T1)
ξξξr=ξ

X(ξξξ), φ
〉

(4.12)=
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

〈X(ξξξ), φ〉

(4.14)=
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

∫
X(ξξξ, t)φ(t)dt

=
∫
N (2)

0 (v)(ξ, t)φ(t)dt,

where the last equality follows from Lemma 3.9 and Fubini’s theorem, since
the right-hand side is absolutely integrable for v ∈ C(R;L2(R)) and φ ∈ Dt.
This in particular show that ∫

ξξξ∈Ξ(T1)
ξξξr=ξ

X(ξξξ)
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is well defined as an integral of temporal distributions in the sense described
above. Therefore, from (4.13), we conclude that, for almost every ξ ∈ R,

∂t

[∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0

e−iµ1t

µ1

∏
a∈T∞1

vξa

]
=
∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0∂t

(
e−iµ1t

µ1

∏
a∈T∞1

vξa

)
.

in the (temporal) distributional sense. A similar argument can be used to
justify the exchange of the time differentiation and the integration in the
Jth step of the normal form reductions in this mild sense, provided that
v ∈ C(R;L2(R)). We, however, point out that the justification of (i) and (iii)
requires a higher regularity of s > 1

6 , which is sufficient for switching time
derivatives and integrals in the usual sense.

4.2. Unconditional well-posedness for the mKdV

In this subsection, we discuss the proof of Theorem 1.2. As in Subsec-
tion 4.1, our goal is to justify (i), (ii), and (iii) in the normal form reductions
for the mKdV (1.2). While the structure of the argument follows closely that
of the proof of Theorem 1.1, we need to reformulate the problem in order to
handle the derivative in the nonlinearity.

Given a solution u to (1.2), let v be the corresponding interaction rep-
resentation defined by (1.11). It follows from (2.14) and (2.16) that v̂(ξ)
satisfies

∂tv̂(ξ, t) = −iξeitξ
3
F(u3)(ξ, t)

for each ξ ∈ R. Arguing as in Subsection 4.1, we see that v̂(ξ) is a C1-function
in t for each fixed ξ ∈ R, provided that u ∈ C(R;H 1

6 (R)) ⊂ C(R;L3(R)).
This justifies (i) the application of the product rule in the normal form
reductions, provided that s > 1

6 .

Next, we discuss the issues (ii) and (iii). For this purpose, we first need
to review the normal form reductions in Section 3. By writing out the first
step (3.6) of the normal form reductions for the mKdV, we have

N (1)
2 (v)(ξ, t) =

∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0ξe
iµ1t

∏
a∈T∞1

vξa

= ∂t

[∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0ξ
(1) e

iµ1t

µ1

∏
a∈T∞1

vξa

]

−
∑
T2∈T(2)

∫
ξξξ∈Ξ(T2)
ξξξr=ξ

1C0

( 2∏
j=1

ξ(j)

)
ei(µ1+µ2)t

µ1

∏
a∈T∞2

vξa
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= ∂tN (2)
0 (v)(ξ, t) +N (2)(v)(ξ, t). (4.15)

The main issue here is the derivative loss in the last generation. More pre-
cisely, an analogue of the FL∞-estimate (4.1) on ∂tv does not hold for the
mKdV, even if we use the H 1

4 -norm on the right-hand side. We instead have
the following lemma.

Lemma 4.6. — The following estimate holds:∣∣∣∣ ∫
ξ=ξ1+ξ2+ξ3

|ξ| 14 v1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2
∣∣∣∣ . 3∏

j=1
‖vj‖H1/4 (4.16)

for any ξ ∈ R.

Proof. — Without loss of generality, assume that |ξ1| & |ξ| and set
w1(ξ1) = 〈ξ1〉

1
4 v1(ξ1). Then, by Hausdorff–Young’s inequality followed by

Sobolev’s inequality, we have

LHS of (4.16) .
∥∥F−1(|w1| ∗ |v2| ∗ |v3|)

∥∥
L1
x

6 ‖F−1(|w1|)‖L2‖F−1(|v2|)‖L4‖F−1(|v3|)‖L4

6
3∏
j=1
‖vj‖H1/4 .

This proves Lemma 4.6. �

Remark 4.7. — Let σ0 > 0. Then, proceeding as in the proof of Lem-
ma 4.6, we have

sup
ξ

∣∣∣∣ ∫
ξ=ξ1+ξ2+ξ3

|ξ|σ0v1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2
∣∣∣∣ . 3∏

j=1
‖vj‖Hσ

for σ > max(σ0,
1
4 ). Note that the regularity restriction on σ is sharp by

considering the case |ξ1| ∼ |ξ| � |ξ2|, |ξ3| and its permutations. In particular,
when σ = 1

4 , we can absorb precisely 1
4 -power of |ξ| in this trilinear estimate.

On the one hand, Lemma 4.6 shows that we can absorb 1
4 -derivative

in the second generation. On the other hand, we still need to handle the
remaining 3

4 -derivative. We can resolve this issue by reformulating the normal
form reductions as follows. By the construction, we have ξ(2) = ξ

(1)
k for

some k ∈ {1, 2, 3}. See (3.2) and Definitions 3.3 and 3.5. Hence, we can
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rewrite (4.15) as

N (1)
2 (v)(ξ, t) = |ξ| 34

∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0 sgn(ξ)|ξ| 14 eiµ1t
∏

a∈T∞1

vξa

= |ξ| 34 · ∂t

[∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0 sgn(ξ)|ξ| 14 e
iµ1t

µ1

∏
a∈T∞1

vξa

]

− |ξ| 34
∑
T1∈T(1)

∑
p(1)∈T∞1

∫
ξξξ∈Ξ(T1)
ξξξr=ξ

1C0 sgn(ξ)|ξ| 14 |ξp(1) |
3
4

× eiµ1t

µ1
M(v)(ξp(1))

∏
a∈T∞1 \{p(1)}

vξa

= ∂tN (2)
0 (v)(ξ, t) +N (2)(v)(ξ, t),

where sgn(ξ) = ±1 denotes the sign(23) of ξ and M(v) = M(v, v, v) is
defined by

M(v1, v2, v3)(ξ, t)

:= −i
∫
ξ=ξ1+ξ2+ξ3

sgn(ξ)|ξ| 14 eiΨ(ξ̄)tv(ξ1)v(ξ2)v(ξ3)dξ1dξ2. (4.17)

In particular, we have shifted 3
4 -derivative up by one generation so that

there is only 1
4 -derivative in the second generation, for which Lemma 4.6

is applicable. Similarly, with (3.2) and Remark 3.6, we can express N (J+1)

appearing in the Jth step as
N (J+1)(v)(ξ)

=
∑

TJ+1∈T(J+1)

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ+1), ξξξr=ξ

(J+1∏
j=1

ξ(j)
)
eiµ̃J+1t∏J
j=1 µ̃j

∏
a∈T∞

J+1

vξa

= |ξ| 34
∑

TJ∈T(J)

∑
p(J)∈T∞

J

∫
C0 ∩

⋂J−1
j=1

Ccj

ξξξ∈Ξ(TJ ), ξξξr=ξ

sgn(ξ)|ξ| 14

×

( ∏
j∈#P (r(1),p(J))\{1}

|ξp(j−1) |
3
4 · sgn(ξp(j−1))|ξp(j−1) |

1
4

)

×

( ∏
j /∈#P (r(1),p(J))

ξr(j)

)
|ξp(J) |

3
4

eiµ̃J t∏J
j=1 µ̃j

M(v)(ξp(J))
∏

a∈T∞
J
\{p(J)}

vξa .

(4.18)

(23) When ξ = 0, we have N (1)
2 (v)(ξ, t) = 0 and hence we may assume ξ 6= 0.
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Here, P (r(1), p(J)) is the shortest path from r(1) to p(J) defined in Remark 3.6
and #P (r(1), p(J)) is defined by

#P (r(1), p(J)) =
{
j ∈ {1, . . . , J} : r(j) ∈ P (r(1), p(J))

}
. (4.19)

Note that 1 ∈ #P (r(1), p(J)).

In view of (3.24), we see that N (J+1)
1 and N (J+1)

2 are given by (4.18) after
modifying the frequency restriction to C0∩

⋂J−1
j=1 C

c
j ∩CJ and C0∩

⋂J
j=1 C

c
j ,

respectively. Then, we have the following ξ-dependent estimates, replacing
the FL∞-estimates in Lemma 4.3 for the cubic NLS.

Lemma 4.8. — Let s > 1
4 . Then, we have

|N (J+1)(v)(ξ)| . |ξ| 34N− J3 + J−1
3 δ+‖v‖2JHs‖v‖3H1/4 , (4.20)

|N (J+1)
2 (v)(ξ)| . |ξ| 34N− J3 + J−1

3 δ+‖v‖2JHs‖v‖3H1/4 , (4.21)
for 0 < δ < 1 and ξ ∈ R.

We present the proof of this lemma in the next subsection. On the one
hand, the estimates in Lemma 4.8 depend on ξ ∈ R. On the other hand,
we only need to justify the normal form reductions for each fixed ξ ∈ R.
Hence, this ξ-dependence does not cause any trouble. In fact, once we have
Lemma 4.8, we can proceed as in Subsection 4.1 and justify

(ii) switching time derivatives and integrals in spatial frequencies and
(iii) the remainder term N (J+1)

2 (v)(ξ) tends to 0 as J → ∞ (for each
fixed ξ ∈ R)

in the normal form reductions.

4.3. Proof of Lemma 4.8

We conclude this paper by presenting the proof of Lemma 4.8. We first
need to introduce new trilinear operators. For j ∈ {1, 2, 3}, M > 1, and
α ∈ R, define trilinear operators Nα

j,6M and Iαj,M by
Nα
j,6M (v1, v2, v3)(ξ, t)

:=
∫
ξ=ξ1+ξ2+ξ3
|Ψ(ξ̄)−α|6M

|ξ| 14 |ξj |
3
4 eiΨ(ξ̄)tv1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2,

Iαj,M (v1, v2, v3)(ξ, t)

:=
∫
ξ=ξ1+ξ2+ξ3
|Ψ(ξ̄)−α|∼M

|ξ| 14 |ξj |
3
4
eiΨ(ξ̄)t

Ψ(ξ̄)−α
v1(ξ1)v2(ξ2)v3(ξ3)dξ1dξ2. (4.22)
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As in Section 2, we also define Nα
j,M , Nα

j,>M , and Iαj,>M in an analogous
manner.

Lemma 4.9 (Localized modulation estimates for the mKdV in the weak
norm). — Let s > 1

4 . Then, we have

‖Nα
j,6M (v1, v2, v3)‖FL∞ . max{|α|,M} 1

12M
1
2 ‖vj‖FL∞

3∏
k=1
k 6=j

‖vk‖Hs (4.23)

for any j ∈ {1, 2, 3}, M > 1, and α ∈ R, where the implicit constant is
independent of j ∈ {1, 2, 3}.

We postpone the proof of Lemma 4.9 to the end of this section. As an
immediate corollary to Lemma 4.9, we have the following estimates on Iαj,M
and Iαj,>M .

Lemma 4.10. — Let s > 1
4 . Then, we have

‖Iαj,M (v1, v2, v3)‖FL∞ . max{|α|,M} 1
12M−

1
2 ‖vj‖FL∞

3∏
k=1
k 6=j

‖vk‖Hs ,

‖Iαj,>M (v1, v2, v3)‖FL∞ . max{|α|,M} 1
12M−

1
2 ‖vj‖FL∞

3∏
k=1
k 6=j

‖vk‖Hs ,

for any j ∈ {1, 2, 3}, M > 1, and α ∈ R, where the implicit constant is
independent of j ∈ {1, 2, 3}.

Now, we are ready to prove Lemma 4.8 (and hence Theorem 1.2), as-
suming Lemma 4.9. Given T ∈ T(J), we first define S̃0(T , v) by making
the following modifications in Steps (ii), (iii), and (iv) of the definition of
S0(T ; v) in Definition 3.13:

(ii) and (iii): Let j = 2, . . . , J . Recall the definitions of #P (r(1), p(J)) and
the order #p(j) of p(j) from (4.19) and Definition 3.5.
• If j ∈ #P (r(1), p(J)), then we make the following change:
I µ̃j−1

|µj+µ̃j−1|>(2j+1)3M1−δ
j−1

=⇒ I µ̃j−1

#p(k),|µj+µ̃j−1|>(2j+1)3M1−δ
j−1

,

where Iαj,M is as in (4.22) and p(k) is the unique node such
that p(k) ∈ πj(T )∞ ∩ P (r(1), p(J)).

• If j /∈ #P (r(1), p(J)), we do not make any modification.

(iv): I|µ1|>N =⇒ |ξ| 34 I#p(k),|µ1|>N , where p
(k) is the unique node such

that p(k) ∈ π1(T )∞ ∩ P (r(1), p(J)).
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Given T ∈ T(J), we label its terminal nodes by a1, . . . , a2J+1. Then, it
follows from the definition above for S̃0(T ; · ) and (4.18) with (3.22) and
Remark 3.14 that

N (J+1)(v) =
∑
T ∈T(J)

2J+1∑
k=1

S̃0 (T ; vk) , (4.24)

where vk = (v, . . . , v, M(v)︸ ︷︷ ︸
kth spot

, v, . . . , v). Compare this with (4.8).

Lemma 4.6 with (4.17) yields

‖M(v)‖FL∞ . ‖v‖3H1/4 . (4.25)

Then, a slight modification(24) of the proof of Lemma 3.15 with Lemmas 2.8
and 4.10 and (4.25) yields the first estimate (4.20) in Lemma 4.8. The only
difference between N (J+1)(v) and N (J+1)

2 (v) is the modulation restriction
CcJ in the last generation. In particular, N (J+1)

2 (v) can be expressed as (4.24)
with an extra modulation restriction onM(v). Since the proof of Lemma 4.6
remains true with such a modulation restriction, the second estimate (4.21)
in Lemma 4.8 follows in an analogous manner. This completes the proof of
Lemma 4.8 and hence the proof of Theorem 1.2, assuming Lemma 4.9.

It remains to prove Lemma 4.9. The remaining part of this paper is
devoted to the proof of Lemma 4.9.

Proof of Lemma 4.9. — For convenience, let Aj = {1, 2, 3} \ {j}. Then,
by duality, (4.23) follows once we prove∣∣∣∣∣
∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · |ξ|
1
4 |ξj |

3
4

3∏
k=1

vk(ξk)v4(ξ)dξ1dξ2dξ

∣∣∣∣∣
. max{|α|,M} 1

12M
1
2 , ‖vj‖FL∞

( ∏
k∈Aj

‖vk‖Hs
)
‖v4‖FL1 (4.26)

(24) In particular, in (3.32), we replace N−
1
2 +

1
∏J

j=2 N
− 1

2 +
j by

N
− 1

2 + 1
12 +

1

J∏
j=2

(
N
− 1

2 +
j max(N

1
12
j−1, N

1
12
j )
)
6

J∏
j=1

N
− 1

3 +
j .

– 707 –



Soonsik Kwon, Tadahiro Oh and Haewon Yoon

for all non-negative functions v1, . . . , v4 and j ∈ {1, 2, 3}. Given s > 1
4 and

j ∈ {1, 2, 3}, define ms,j(ξ̄) by

ms,j(ξ̄) = |ξ| 14 |ξj |
3
4∏

k∈Aj 〈ξk〉
s
. (4.27)

When s = 1
4 , we simply denote m 1

4 ,j
by mj . By a variant of the Cauchy–

Schwarz argument, we have

LHS of (4.26) 6
∥∥∥∥∫

ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · |ξ|
1
4 |ξj |

3
4

3∏
k=1

vk(ξk)
∥∥∥∥
L∞
ξ

‖v4‖L1
ξ

6 sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m
2
s,j(ξ̄)dξ1dξ2

)1
2

× ‖vj‖FL∞
∏
k∈Aj

‖vk‖Hs‖v4‖L1
ξ
. (4.28)

Hence, it suffices to show that

sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·m
2
s,j(ξ̄)dξ1dξ2

)1
2

. max{|α|,M} 1
12M

1
2 , (4.29)

uniformly in j ∈ {1, 2, 3} for s > 1
4 .

While we do not explicitly state so, it is understood that all the estimates
and statements in the following hold uniformly in j ∈ {1, 2, 3}. Also, we will
see that the estimate (4.23) in fact holds at the endpoint regularity s = 1

4
for many of the following cases. For those cases, by monotonicity of 〈ξ〉s in
s, it suffices to prove (4.23) for s = 1

4 .

Case 1: |ξ| . 1, |ξj | . 1. — In this case, we prove (4.29) with s = 1
4 .

Without loss of generality, we assume j = 1.

Subcase 1.a: |ξ23| and |ξ2−3| & 1. — By viewing Ψ as a function of ξ2 for
fixed ξ and ξ1, we have |∂ξ2Ψ(ξ̄)| ∼ |ξ23||ξ2−3| & 1. Then, with |m1(ξ̄)| . 1,
we have

LHS of (4.29) . sup
ξ

(∫
|ξ1|.1

1|Ψ(ξ̄)−α|6Mdξ2dξ1
)1

2

.M
1
2 .

Subcase 1.b: |ξ23| or |ξ2−3| � 1. — In this case, we have 〈ξ2〉 ∼ 〈ξ3〉.
When |ξ2|, |ξ3| . 1, it is easy to see that the left-hand side of (4.29) is
O(1) with |m1(ξ̄)| . 1 and integration in ξ2 and ξ3. Now, suppose that
|ξ2| ∼ |ξ3| � 1. By viewing Ψ as a function of ξ2 for fixed ξ and ξ3, we
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have |∂ξ2Ψ(ξ̄)| ∼ |ξ12||ξ1−2| ∼ |ξ2|2 � 1 since |ξ1| . 1 � |ξ2|. Then, with
|m1(ξ̄)| . 〈ξ2〉−

1
2 , we have

LHS of (4.29) . sup
ξ

( ∑
N�1
dyadic

1
N

∫
|ξ2|∼|ξ3|∼N

1|Ψ(ξ̄)−α|6Mdξ2dξ3

)1
2

.

( ∑
N�1
dyadic

M

N3N

)1
2

.M
1
2 .

Case 2: |ξ| � 1, |ξj | . 1. — In this case, we prove (4.29) with s = 1
4 .

We denote Aj = {1, 2, 3} \ {j} = {k1, k2}.

Subcase 2.a: |ξk1 | ∼ |ξk2 | & |ξ| � 1 & |ξj |, where k1, k2 ∈ Aj. — By
viewing Ψ as a function of ξk1 for fixed ξ and ξk2 , we have |∂ξk1

Ψ(ξ̄)| ∼
|ξjk1 ||ξj−k1 | ∼ |ξk2 |2. Then, with |mj(ξ̄)| . |ξk2 |−

1
4 , we have

LHS of (4.29) . sup
ξ

(∫
|ξk1 |∼|ξk2 |�1

1|Ψ(ξ̄)−α|6M ·
1
|ξk2 |

1
2

dξk1dξk2

)1
2

.M
1
2 .

Subcase 2.b: |ξk1 | ∼ |ξ| � max(|ξk2 |, |ξj |, 1), where k1, k2 ∈ Aj. — In
this case, |ξk1k2 | ∼ |ξk1 | and |ξk1−k2 | ∼ |ξk1 |. By viewing Ψ as a function of
ξk1 for fixed ξ and ξj , we have |∂ξk1

Ψ(ξ̄)| ∼ |ξk1k2 ||ξk1−k2 | ∼ |ξ|2. Then, with
|mj(ξ̄)| . 1, we have

LHS of (4.29) . sup
ξ

(∫
|ξj |.1

1|Ψ(ξ̄)−α|6Mdξk1dξj
)1

2

.M
1
2 .

Case 3: |ξ| . 1, |ξj | � 1. — We prove (4.29) with s = 1
4 in Subcases 3.a

and 3.b, while Subcase 3.c requires s > 1
4 . In Subcases 3.a and 3.b, we only

need the condition |ξ| � |ξj | and their relative sizes with respect to 1 is not
important.

Subcase 3.a: |ξk1 | ∼ |ξk2 | � |ξj | � |ξ|, where k1, k2 ∈ Aj. — Let s = 1
4 .

We have |ξjk2 | ∼ |ξj−k2 | ∼ |ξk1 |. By viewing Ψ as a function of ξk2 for fixed
ξ and ξk1 , we have |∂ξk2

Ψ(ξ̄)| ∼ |ξjk2 ||ξj−k2 | ∼ |ξk1 |2. Then, we have

LHS of (4.29) . sup
ξ

(∫
|ξj |.1

1|Ψ(ξ̄)−α|6M ·
|ξ| 12 |ξj |

3
2

|ξk1 |
dξk2dξk1

)1
2

.M
1
2 sup

ξ

(∫
|ξk1 |�|ξ|

|ξ| 12
|ξk1 |

3
2

dξk1

)1
2

.M
1
2 .

Subcase 3.b: |ξ1| ∼ |ξ2| ∼ |ξ3| � |ξ|. — Let s = 1
4 . We have mj(ξ̄) .

|ξ| 14 |ξ1|
1
4 and |ξ12| ∼ |ξ23| ∼ |ξ31| ∼ |ξ1|. We claim that max{|ξ1−2|, |ξ2−3|,

– 709 –



Soonsik Kwon, Tadahiro Oh and Haewon Yoon

|ξ3−1|} & |ξ1|. Otherwise, i.e. if max{|ξ1−2|, |ξ2−3|, |ξ3−1|} � |ξ1|, then ξ1, ξ2,
and ξ3 must have the same sign and thus |ξ| = |ξ1+ξ2+ξ3| ∼ |ξ1|, leading to a
contradiction. Without loss of generality, we assume |ξ2−3| ∼ |ξ1|. By viewing
Ψ as a function of ξ3 for fixed ξ and ξ1, we have |∂ξ3Ψ(ξ̄)| ∼ |ξ23||ξ2−3| ∼
|ξ1|2. Hence, we have

LHS of (4.29) . sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · |ξ|
1
2 |ξ1|

1
2 dξ3dξ1

)1
2

.M
1
2 sup

ξ

(∫
|ξ1|�|ξ|

|ξ| 12
|ξ1|

3
2

dξ1
)1

2

.M
1
2 .

Subcase 3.c: |ξk1 | ∼ |ξj | � |ξk2 |, |ξ|, where k1, k2 ∈ Aj. — In this
case, we have |ξk1k2 | ∼ |ξk1−k2 | ∼ |ξj |. By viewing Ψ as a function of ξk1

for fixed ξ and ξj , we have |∂ξk1
Ψ(ξ̄)| ∼ |ξk1k2 ||ξk1−k2 | ∼ |ξj |2. Hence, with

|mj,s(ξ̄)| . |ξ|
1
4 |ξj |

3
4−s, we have

LHS of (4.29) . sup
|ξ|.1

(∫
|ξj |�1

1|Ψ(ξ̄)−α|6M |ξ|
1
2 |ξj |

3
2−2sdξk1dξj

)1
2

.M
1
2 sup
|ξ|.1

(∫
|ξj |�1

1
|ξj |

1
2 +2s dξj

)1
2

.M
1
2 ,

provided that s > 1
4 .

In the remaining part of the proof, we split the case |ξ|, |ξj | � 1 into
three subcases, depending on the sizes of |ξ12|, |ξ23|, and |ξ31|. Without loss of
generality, we assume |ξ12| > |ξ23| > |ξ31|. Then, by the triangle inequality,
we have

|ξ12| & |ξ|. (4.30)

Case 4: |ξ|, |ξj | � 1 and |ξ31| 6 |ξ23| 6 1. — Arguing as in Case 2 of
the proof of Lemma 2.6, we have

|ξ1| ∼ |ξ2| ∼ |ξ3| ∼ |ξ| � 1 (4.31)

in this case. In particular, we have

mj(ξ̄) ∼ |ξ|
1
2 ∼ m(ξ̄) (4.32)

for any j ∈ {1, 2, 3}, where m(ξ̄) is as in (2.20). Let ζ1 = ξ23, ζ2 = ξ31, and
ζ3 = ξ12 as before.

We prove (4.26) with s = 1
4 in Subcases 4.a and 4.b, while Subcase 4.c

requires s > 1
4 .
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Subcase 4.a: |ξ| . M . — Let s = 1
4 . By Hölder’s inequality with |ζ2| 6

|ζ1| 6 1, we have

LHS of (4.26) . ‖v4‖L1
ξ

∑
1�N.M

dyadic

N
1
2 sup
|ξ|∼N

∫
|ζ2|6|ζ1|61

∏
k∈Aj

〈ξk〉
1
4

× v1(ξ − ζ1)v2(ξ − ζ2)v3(ζ1 + ζ2 − ξ)dζ1dζ2

.M
1
2 ‖vj‖FL∞

( ∏
k∈Aj

‖vk‖H1/4

)
‖v4‖FL1 .

In the following, we assume that |ξ| �M .

Subcase 4.b: |ζ2| 6 |ζ1| . M1/2

|ξ|1/2 . — Let s = 1
4 . By Hölder’s inequality

with (4.31) and (4.32), we have

LHS of (4.26) . ‖v4‖L1
ξ

∑
N�M
dyadic

N
1
2 sup
|ξ|∼N

∫
|ζ2|6|ζ1|.M1/2

N1/2

∏
k∈Aj

〈ξk〉
1
4

× v1(ξ − ζ1)v2(ξ − ζ2)v3(ζ1 + ζ2 − ξ)dζ1dζ2
.M

1
2 ‖vj‖L∞

ξ
‖v4‖L1

ξ

∑
N�M
dyadic

∏
k∈Aj

‖PNvk‖H1/4

.M
1
2 ‖vj‖FL∞

( ∏
k∈Aj

‖vk‖H1/4

)
‖v4‖FL1 ,

where we used Cauchy–Schwarz inequality (in N) in the last step.

Subcase 4.c: M1/2

|ξ|1/2 � |ζ1|. — In this case, we use ms,j(ξ̄) ∼ |ξ|1−2s.
By viewing Ψ as a function of ξ3 for fixed ξ and ζ1, we have |∂ξ3Ψ(ξ̄)| ∼
|ξ23||ξ2−3| ∼ |ζ1||ξ|, since |ξ2−3| = |2ξ3 − ζ1| ∼ |ξ|. Hence, we have

LHS of (4.29) . sup
ξ

(∫
M1/2

|ξ|1/2�|ζ1|61
1|Ψ(ξ̄)−α|6M · |ξ|

2−4sdξ3dζ1
)1

2

.M
1
2 sup

ξ
|ξ| 12−2s

(∫
M1/2

|ξ|1/2�|ζ1|61

1
|ζ1|

dζ1
)1

2

.M
1
2 ,

provided that s > 1
4 .
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Remark 4.11. — When |ζ1| > |ζ2| � M1/2

|ξ|1/2 , it follows from (2.15) and
(4.30) that

|ζ1| .
|α|+M

|ξ||ζ2|
� |α|+M

M
· M

1
2

|ξ| 12
(4.33)

under the condition |Ψ(ξ̄)− α| 6M . In particular, (4.33) with |ζ1| � M1/2

|ξ|1/2

implies that |α| � M . Then, in view of (4.32), the desired estimate (4.29)
with s = 1

4 follows from Subcase 2.b in the proof of Lemma 2.6.
Case 5: |ξ|, |ξj | � 1 and |ξ31| 6 1 < |ξ23| 6 |ξ12|. — In this case, we

have
〈ξ1〉 ∼ 〈ξ3〉 and 〈ξ2〉 ∼ 〈ξ〉. (4.34)

First, we consider the case j = 1. We have

ms,1(ξ̄) ∼ |ξ|
1
4 |ξ1|

3
4

〈ξ2〉s〈ξ3〉s
. |ξ| 14−s|ξ1|

3
4−s. (4.35)

In the following, we take s > 1
4 .

Subcase 5.a: |ξ| & |ξ1| � 1. — Arguing as in Subcase 3.a in the proof of
Lemma 2.6, we see that ζ2 belongs to an interval I = I(ζ1, ξ) of length

|I(ζ1, ξ)| .
M

|ζ1||ξ|
(4.36)

for each fixed ξ and ζ1 and hence for each fixed ξ and ξ1 = ξ − ζ1. Then,
using a variant of (4.28) with (4.35), (4.36), and |ζ1| = |ξ−ξ1| . |ξ|, we have
LHS of (4.26)

6

∥∥∥∥∫
16|ζ1|.|ξ|

∫
|ζ2|61

1|Ψ(ξ̄)−α|6M ·ms,1(ξ̄)
∏
k∈A1

〈ξk〉s

× v1(ξ − ζ1)v2(ξ − ζ2)v3(−ξ + ζ1 + ζ2)dζ2dζ1
∥∥∥∥
L∞
ξ

‖v4‖L1
ξ

. sup
ξ

(∫
16|ζ1|.|ξ|

∫
ζ2∈I(ζ1,ξ)

1|Ψ(ξ̄)−α|6M · |ξ|
1
2−2s|ξ1|

3
2−2sdζ2dζ1

)1
2

× ‖v1‖L∞
ξ

( ∏
k∈A1

‖vk‖Hs
)
‖v4‖L1

ξ

.M
1
2 sup

ξ

(∫
16|ζ1|.|ξ|

|ξ|1−4s

|ζ1|
dζ1
)1

2

‖v1‖L∞
ξ

( ∏
k∈A1

‖vk‖Hs
)
‖v4‖L1

ξ

.M
1
2 ‖v1‖FL∞

( ∏
k∈A1

‖vk‖Hs
)
‖v4‖FL1 , (4.37)
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provided that 1
4 < s 6 3

4 . For s >
3
4 , we simply use |ξ1|

3
2−2s . 1 and repeat

the computation in (4.37).

Subcase 5.b: |ξ1| � |ξ|. — By viewing Ψ as a function of ξ2 for fixed
ξ and ξ1, we have |∂ξ2Ψ(ξ̄)| ∼ |ξ23||ξ2−3| ∼ |ξ1|2 thanks to (4.34). Hence,
with (4.35), we have

LHS of (4.29) . sup
ξ

(∫
|ξ1|�|ξ|

1|Ψ(ξ̄)−α|6M · |ξ1|
3
2−2sdξ2dξ1

)1
2

.M
1
2 sup

ξ

(∫
|ξ1|�1

|ξ1|−
1
2−2sdξ1

)1
2

.M
1
2 ,

provided that s > 1
4 .

Next, we consider the case j = 2. It follows from (4.27) and (4.34) that

ms,2(ξ̄) ∼ |ξ|
1
4 |ξ2|

3
4

〈ξ1〉s〈ξ3〉s
∼ |ξ|
〈ξ1〉2s

Subcase 5.c: |ξ2| . |ξ1|. — Proceeding as in Subcase 5.a with |ζ1| =
|ξ − ξ1| . |ξ1|, we obtain

LHS of (4.26)

6

∥∥∥∥∫
16|ζ1|.|ξ1|

∫
|ζ2|61

1|Ψ(ξ̄)−α|6M ·ms,2(ξ̄)
∏
k∈A2

〈ξk〉s

× v1(ξ − ζ1)v2(ξ − ζ2)v3(−ξ + ζ1 + ζ2)dζ2dζ1
∥∥∥∥
L∞
ξ

‖v4‖L1
ξ

. sup
ξ

(∫
16|ζ1|.|ξ1|

∫
ζ2∈I(ζ1,ξ)

1|Ψ(ξ̄)−α|6M · |ξ|
2|ξ1|−4sdζ2dζ1

)1
2

× ‖v2‖L∞
ξ

( ∏
k∈A2

‖vk‖Hs
)
‖v4‖L1

ξ

.M
1
2 sup

ξ

(∫ 1
〈ζ1〉〈ξ − ζ1〉4s−1 dζ1

)1
2

‖v2‖L∞
ξ

( ∏
k∈A2

‖vk‖Hs
)
‖v4‖L1

ξ

.M
1
2 ‖v2‖FL∞

( ∏
k∈A2

‖vk‖Hs
)
‖v4‖FL1 ,

provided that s > 1
4 .
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Subcase 5.d: |ξ2| � |ξ1|. — By viewing Ψ as a function of ξ1 for fixed ξ
and ξ3, we have |∂ξ1Ψ(ξ̄)| ∼ |ξ12||ξ1−2| ∼ |ξ|2. Hence, we have

LHS of (4.29) . sup
ξ

(∫
|ξ3|�|ξ|

1|Ψ(ξ̄)−α|6M
|ξ|2

〈ξ3〉4s
dξ1dξ3

)1
2

.M
1
2 sup

ξ

(∫ 1
〈ξ3〉4s

dξ3
)1

2

.M
1
2 ,

provided that s > 1
4 .

Lastly, we consider the case j = 3.

Subcase 5.e: |ξ3| . |ξ|. — If |ξ23| & |ξ|, then this case follows from
Subcase 5.a by switching 1 ↔ 3. Now, suppose that |ξ23| � |ξ|. Then, it
follows from (4.34) that 〈ξ1〉 ∼ 〈ξ2〉 ∼ 〈ξ3〉 ∼ 〈ξ〉. In particular, we have
ms,3(ξ̄) ∼ |ξ|1−2s. Hence, we can apply Subcase 5.a by replacing m1(ξ̄) with
m3(ξ̄) (without switching 1↔ 3).

Subcase 5.f: |ξ3| � |ξ|. — This case follows from Subcase 5.b by switch-
ing 1↔ 3.

Case 6: |ξ|, |ξj | � 1 and |ξ12|, |ξ23|, |ξ31| > 1. — From (2.33) with ξ =
ξ1 + ξ2 + ξ3, we have

|α|+M & max(|ξ|, |ξ1|, |ξ2|, |ξ3|), (4.38)

which allows us to prove (4.29) with s = 1
4 in this case. In the following, the

size relation of |ξ12|, |ξ23|, |ξ31| does not play any role. Hence, without loss of
generality, assume that |ξ1| > |ξ2| > |ξ3|. Recall that Aj = {1, 2, 3} \ {j} =
{k1, k2}.

Subcase 6.a: |ξ1| ∼ |ξ| � |ξ2| > |ξ3|. — Let s = 1
4 . By viewing Ψ as

a function of ξ2 for fixed ξ and ξ3, we have |∂ξ2Ψ(ξ̄)| ∼ |ξ12||ξ1−2| ∼ |ξ|2.
Hence, with (4.38), we have

LHS of (4.29) . sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·
|ξ| 12 |ξj |

3
2

〈ξk1〉
1
2 〈ξk2〉

1
2

dξ2dξ3
)1

2

. sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M ·
|ξ|2

〈ξ3〉
dξ2dξ3

)1
2

.M
1
2

(∫
|ξ3|�|ξ|

1
〈ξ3〉

dξ3
)1

2

.M
1
2 (log |ξ|)1

2 . 〈α〉0+M
1
2 +.

Subcase 6.b: |ξ1| ∼ |ξ2| � |ξ| � |ξ3|. — Let s = 1
4 . We have |ξ12| =

|ξ − ξ3| ∼ |ξ| and |ξ1−2| ∼ |ξ1|, since ξ1 and ξ2 have opposite signs in
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this case. By viewing Ψ as a function of ξ1 for fixed ξ and ξ3, we have
|∂ξ1Ψ(ξ̄)| ∼ |ξ12||ξ1−2| ∼ |ξ||ξ1|. Then, noting that

|ms,j(ξ̄)| .
|ξ| 14 |ξ1|

1
2

〈ξ3〉s
,

it follows from (4.38) that

LHS of (4.29) . sup
ξ

( ∑
|ξ|�N.|α|+M

dyadic

∫
|ξ1|∼N
|ξ3|�|ξ|

1|Ψ(ξ̄)−α|6M ·
|ξ| 12N
〈ξ3〉

1
2

dξ1dξ3

)1
2

.M
1
2 sup

ξ

( ∑
|ξ|�N.|α|+M

dyadic

∫
|ξ3|�|ξ|

1
|ξ| 12 〈ξ3〉

1
2

dξ3

)1
2

.〈α〉0+M
1
2 +.

Subcase 6.c: |ξ1| ∼ |ξ2| ∼ |ξ| � |ξ3|. — In this case, the desired estimate
holds for s = 1

4 but it requires an extra factor of max{|α|,M} 1
12 . We have

|ξ12| = |ξ − ξ3| ∼ |ξ|, |ξ23| ∼ |ξ|, and |ξ13| ∼ |ξ|. Hence, the condition
|Ψ(ξ̄)| 6 |α| + M with (2.15) implies |ξ| 14 . max{|α|,M} 1

12 . In particular,
we have

|mj(ξ̄)| .
|ξ| 34
〈ξ3〉

1
4
. max{|α|,M} 1

12 |ξ| 12

for any j ∈ {1, 2, 3}. By viewing Ψ as a function of ξ1 for fixed ξ and ξ2, we
have |∂ξ1Ψ(ξ̄)| ∼ |ξ13||ξ1−3| ∼ |ξ|2. Hence, we have

LHS of (4.29)

. max{|α|,M} 1
12 sup

ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · |ξ|dξ1dξ2
)1

2

. max{|α|,M} 1
12M

1
2 sup

ξ

(∫
|ξ2|∼|ξ|

1
|ξ|

dξ2
)1

2

. max{|α|,M} 1
12M

1
2 .

In the following three subcases, we deal with the case |ξ1|, |ξ2|, |ξ3| & |ξ|.

Subcase 6.d: |ξ1| ∼ |ξ2| � |ξ3| & |ξ|. — Let s = 1
4 . By viewing Ψ as

a function of ξ2 for fixed ξ and ξ1, we have |∂ξ2Ψ(ξ̄)| ∼ |ξ23||ξ2−3| ∼ |ξ2|2.
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Hence, with ms,j(ξ̄) . |ξ1|
1
2 and (4.38), we have

LHS of (4.29) . sup
ξ

( ∑
|ξ|�N.|α|+M

dyadic

∫
|ξ1|∼|ξ2|∼N

1|Ψ(ξ̄)−α|6M ·Ndξ2dξ1

)1
2

.M
1
2 sup

ξ

( ∑
|ξ|�N |α|+M

dyadic

∫
|ξ1|∼N

1
N

dξ1

)1
2

. 〈α〉0+M
1
2 +.

Subcase 6.e: |ξ1| ∼ |ξ2| ∼ |ξ3| � |ξ|. — This case (with s = 1
4 ) follows

from Subcase 3.b.

Subcase 6.f: |ξ1| ∼ |ξ2| ∼ |ξ3| ∼ |ξ|. — In this case, we have ms,j(ξ̄) ∼
|ξ|1−2s. In the following, we do not use the size relation between |ξ1|, |ξ2|,
and |ξ3|.

Subsubcase 6.f.i: min{|ζ1|, |ζ2|, |ζ3|} � |ξ|. — Let s = 1
4 . Without loss of

generality, assume |ζ3| = |ξ12| � |ξ|. Then, we have |ξ1−2| = |2ξ1−ξ12| ∼ |ξ|.
By viewing Ψ as a function of ξ2 for fixed ξ and ξ3 (or ζ3 = ξ− ξ3), we have
|∂ξ2Ψ(ξ̄)| ∼ |ζ3||ξ1−2| ∼ |ζ3||ξ|. Hence, with (2.33), we have

LHS of (4.29) . sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · |ξ|dξ2dζ3
)1

2

.M
1
2 sup

ξ

(∫
16|ζ3|.|α|+M

1
|ζ3|

dζ3
)1

2

. 〈α〉0+M
1
2 +.

In the following, we consider the case: min{|ζ1|, |ζ2|, |ζ3|} ∼ |ξ|. By the
triangle inequality, we have

max(|ξ − ξ1|, |ξ − ξ2|, |ξ − ξ3|) > |3ξ − ξ123| = 2|ξ|.

Hence, we have |ζ1| ∼ |ζ2| ∼ |ζ3| ∼ |ξ|.

Subsubcase 6.f.ii: |ζ1| ∼ |ζ2| ∼ |ζ3| ∼ |ξ| and max{|ξ1−2|, |ξ2−3|, |ξ3−1|} ∼
|ξ|. — Let s = 1

4 . Without loss of generality, assume that |ξ1−2| ∼ |ξ|.
By viewing Ψ as a function of ξ2 for fixed ξ and ξ3, we have |∂ξ2Ψ(ξ̄)| ∼
|ζ3||ξ1−2| ∼ |ξ|2. Hence we have

LHS of (4.29) . sup
ξ

(∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · |ξ|dξ2dξ3
)1

2

.M
1
2 sup

ξ

(∫
|ξ3|∼|ξ|

1
|ξ|

dξ3
)1

2

.M
1
2 .
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In the three subsubcases, we assume that |ξ1−2| > |ξ2−3| > |ξ3−1| without
loss of generality.

Subsubcase 6.f.iii: |ζ1| ∼ |ζ2| ∼ |ζ3| ∼ |ξ| and 1 . |ξ1−2| � |ξ|. —
Let s = 1

4 . For fixed ξ and a dyadic number 1 . N � |ξ|, suppose that
|ξ1−2| ∼ N . Then, by writing ξ = 3ξ3 + ξ1−2 + 2ξ2−3, we see that ξ3 is
contained in an interval I3(ξ,N) of length . N . Moreover, for fixed ξ and
ξ3, we have |∂ξ2Ψ(ξ̄)| ∼ |ζ3||ξ1−2| ∼ |ξ|N . Hence, we obtain

LHS of (4.29) . sup
ξ

( ∑
1.N�|ξ|

∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · 1|ξ1−2|∼N |ξ|dξ2dξ3

)1
2

.M
1
2 sup

ξ

( ∑
1.N�|ξ|

∫
ξ3∈I3(ξ,N)

1
N

dξ3

)1
2

. 〈α〉0+M
1
2 + sup

ξ

( ∑
1.N�|ξ|

1
|ξ|0+

)1
2

. 〈α〉0+M
1
2 ,

where we used (2.33) in the penultimate step.

Subsubcase 6.f.iv: |ζ1| ∼ |ζ2| ∼ |ζ3| ∼ |ξ|, |ξ1−2| � 1, and |ξ3−1| . M
|ξ| .

Let s = 1
4 . Arguing as in Subsubcase 6.f.iii, we see that for fixed ξ, ξ3 is

contained in an interval I(ξ) of length O(1). Hence we have

LHS of (4.29) . sup
ξ

(∫
ξ3∈I(ξ)
|ξ1−ξ3|.M

|ξ|

1|Ψ(ξ̄)−α|6M · |ξ|dξ1dξ3

)1
2

.M
1
2 sup

ξ

(∫
ξ3∈I(ξ)

1dξ3
)1

2

.M
1
2 .

Subsubcase 6.f.v: |ζ1| ∼ |ζ2| ∼ |ζ3| ∼ |ξ|, and M
|ξ|�|ξ3−1|6 |ξ1−2|� 1. —

Let s = 1
4 . For fixed ξ and a dyadic number 1 � N � |ξ|

M , suppose that
|ξ1−2| ∼ N−1. Then, arguing as in Subsubcase 6.f.iii, we see that ξ3 is con-
tained in an interval Ĩ3(ξ,N) of length . N−1. Moreover, for fixed ξ and ξ3,
we have |∂ξ2Ψ(ξ̄)| ∼ |ζ3||ξ1−2| ∼ |ξ|N−1. Hence, with (2.33), we obtain

LHS of (4.29)

. sup
ξ

( ∑
1�N� |ξ|M

∫
ξ=ξ1+ξ2+ξ3

1|Ψ(ξ̄)−α|6M · 1|ξ1−2|∼N−1 |ξ|dξ2dξ3

)1
2
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. 〈α〉0+M
1
2 + sup

ξ

( ∑
1�N� |ξ|M

∫
ξ3∈Ĩ3(ξ,N)

N

|ξ|0+ dξ3

)1
2

. 〈α〉0+M
1
2 + sup

ξ

(∑
N�1

1
M0+N0+

)1
2

. 〈α〉0+M
1
2 +.

This completes the proof of Lemma 4.9. �

Concluding remark

In Section 3, we presented the full details of the normal form reductions
since this is the first paper, where we handle multilinear estimates by succes-
sive applications of the trilinear localized modulation estimate. The essential
part for establishing an a priori estimate in L2(R) for the cubic NLS and in
H

1
4 (R) for the mKdV appears in Subsection 3.3, where we applied the lo-

calized modulation estimates from Section 2. In Section 4, we also needed to
prove another localized modulation estimate (in the weak norm: Lemmas 4.1
and 4.9) for justifying the formal computations in Section 3, where an extra
complication was introduced for the mKdV problem due to the derivative
nonlinearity. In essence, our method allows one to reduce the entire problem
of proving unconditional well-posedness to simply proving two basic trilinear
estimates (i.e. localized modulation estimates in the strong norm and in the
weak norm: Lemmas 2.3 and 4.1 for the cubic NLS and Lemma 2.6 and 4.9
for the mKdV). This reduction is the main novelty of the paper and such
a reduction provides a significant simplification in studying unconditional
well-posedness for various dispersive PDEs on Rd and Td.

Acknowledgements

S.K. would like to express his gratitude to the School of Mathematics
at the University of Edinburgh for its hospitality during his visit in the
academic year 2015–2016. The authors would like to thank Nobu Kishimoto
for a helpful discussion and Didier Pilod for a helpful comment. They are
also grateful to Razvan Mosincat for careful proofreading.

Bibliography

[1] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations,
second ed., Grundlehren der Mathematischen Wissenschaften, vol. 250, Springer,
1988, xiv+351 pages.

[2] A. V. Babin, A. A. Ilyin & E. S. Titi, “On the regularization mechanism for the
periodic Korteweg-de Vries equation”, Commun. Pure Appl. Math. 64 (2011), no. 5,
p. 591-648.

– 718 –



Normal form approach to unconditional Well-posedness on R

[3] L. Chaichenets, D. Hundertmark, P. Kunstmann & N. Pattakos, “Nonlinear
Schrödinger equation, differentiation by parts and modulation spaces”, J. Evol. Equ.
19 (2019), no. 3, p. 803-843.

[4] M. Christ, “Power series solution of a nonlinear Schrödinger equation”, in Math-
ematical aspects of nonlinear dispersive equations, Annals of Mathematics Studies,
vol. 163, Princeton University Press, 2007, p. 131-155.

[5] ———, “Nonuniqueness of weak solutions of the nonlinear Schrödinger equation”,
https://arxiv.org/abs/math/0503366, 2018.

[6] M. Christ, J. Colliander & T. Tao, “Asymptotics, frequency modulation, and
low regularity ill-posedness for canonical defocusing equations”, Am. J. Math. 125
(2003), no. 6, p. 1235-1293.

[7] ———, “A priori bounds and weak solutions for the nonlinear Schrödinger equation
in Sobolev spaces of negative order”, J. Funct. Anal. 254 (2008), no. 2, p. 368-395.

[8] M. Christ, J. Holmer & D. Tataru, “Low regularity a priori bounds for the mod-
ified Korteweg–de Vries equation”, Lib. Math. (N.S.) 32 (2012), no. 1, p. 51-75.

[9] J. Chung, Z. Guo, S. Kwon & T. Oh, “Normal form approach to global well-
posedness of the quadratic derivative nonlinear Schrödinger equation on the circle”,
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34 (2017), no. 5, p. 1273-1297.

[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao, “Sharp global
well-posedness for KdV and modified KdV on R and T”, J. Am. Math. Soc. 16
(2003), no. 3, p. 705-749.

[11] M. B. Erdoğan & N. Tzirakis, “Global smoothing for the periodic KdV evolution”,
Int. Math. Res. Not. 20 (2013), p. 4589-4614.

[12] J. Forlano & T. Oh, “Normal form approach to the one-dimensional cubic nonlinear
Schrödinger equation in Fourier-amalgam spaces”, preprint.

[13] M. Gubinelli, “Rough solutions for the periodic Korteweg de Vries equation”, Com-
mun. Pure Appl. Anal. 11 (2012), no. 2, p. 709-733.

[14] Z. Guo, “Global well posedness of Korteweg de Vries equation in H−3/4(R)”, J.
Math. Pures Appl. 91 (2009), no. 6, p. 583-597.

[15] Z. Guo, S. Kwon & T. Oh, “Poincaré Dulac normal form reduction for unconditional
well-posedness of the periodic cubic NLS”, Commun. Math. Phys. 322 (2013), no. 1,
p. 19-48.

[16] S. Hong & S. Kwon, “Nonsqueezing property of the coupled KdV type system
without Miura transform”, https://arxiv.org/abs/1509.08114, 2015.

[17] T. Kappeler & P. Topalov, “Global wellposedness of KdV in H−1(T,R)”, Duke
Math. J. 135 (2006), no. 2, p. 327-360.

[18] T. Kato, “On the Korteweg-de Vries equation”, Manuscr. Math. 28 (1979), no. 1-3,
p. 89-99.

[19] ———, “On nonlinear Schrödinger equations. II. Hs-solutions and unconditional
well-posedness”, J. Anal. Math. 67 (1995), p. 281-306.

[20] C. E. Kenig, G. Ponce & L. Vega, “Well posedness and scattering results for the
generalized Korteweg de Vries equation via the contraction principle”, Commun. Pure
Appl. Math. 46 (1993), no. 4, p. 527-620.

[21] ———, “On the ill-posedness of some canonical dispersive equations”, Duke Math.
J. 106 (2001), no. 3, p. 617-633.

[22] R. Killip & M. Vişan, “KdV is wellposed in H−1”, Ann. Math. 190 (2019), no. 1,
p. 249-305.

[23] R. Killip, M. Vişan & X. Zhang, “Low regularity conservation laws for integrable
PDE”, Geom. Funct. Anal. 28 (2018), no. 4, p. 1062-1090.

– 719 –

https://arxiv.org/abs/math/0503366
https://arxiv.org/abs/1509.08114


Soonsik Kwon, Tadahiro Oh and Haewon Yoon

[24] N. Kishimoto, “Well posedness of the Cauchy problem for the Korteweg de Vries
equation at the critical regularity”, Differ. Integral Equ. 22 (2009), no. 5-6, p. 447-
464.

[25] ———, “Unconditional uniqueness of solutions for nonlinear dispersive equations”,
2015, Proceedings of the 40th Sapporo Symposium on Partial Differential Equations,
available at http://eprints3.math.sci.hokudai.ac.jp/2375/, 78-82 pages.

[26] ———, “private communication”, 2016.
[27] H. Koch & D. Tataru, “A priori bounds for the 1D cubic NLS in negative Sobolev

spaces”, Int. Math. Res. Not. 16 (2007), article ID rnm053 (36 pages).
[28] ———, “Energy and local energy bounds for the 1-d cubic NLS equation in H−

1
4 ”,

Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012), no. 6, p. 955-988.
[29] ———, “Conserved energies for the cubic nonlinear Schrödinger equation in one

dimension”, Duke Math. J. 167 (2018), no. 17, p. 3207-3313.
[30] S. Kwon & T. Oh, “On unconditional well posedness of modified KdV”, Int. Math.

Res. Not. 15 (2012), p. 3509-3534.
[31] R. M. Miura, “Korteweg de Vries equation and generalizations. I. A remarkable

explicit nonlinear transformation”, J. Math. Phys. 9 (1968), p. 1202-1204.
[32] R. M. Miura, C. S. Gardner & M. D. Kruskal, “Korteweg de Vries equation and

generalizations. II. Existence of conservation laws and constants of motion”, J. Math.
Phys. 9 (1968), p. 1204-1209.

[33] L. Molinet, D. Pilod & S. Vento, “Unconditional uniqueness for the modified
Korteweg-de Vries equation on the line”, Rev. Mat. Iberoam. 34 (2018), no. 4, p. 1563-
1608.

[34] T. Oh, “A remark on norm inflation with general initial data for the cubic nonlinear
Schrödinger equations in negative Sobolev spaces”, Funkc. Ekvacioj 60 (2017), no. 2,
p. 259-277.

[35] T. Oh, P. Sosoe & N. Tzvetkov, “An optimal regularity result on the quasi-
invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equa-
tion”, J. Éc. Polytech., Math. 5 (2018), p. 793-841.

[36] T. Oh & N. Tzvetkov, “Quasi-invariant Gaussian measures for the cubic fourth
order nonlinear Schrödinger equation”, Probab. Theory Relat. Fields 169 (2017),
no. 3-4, p. 1121-1168.

[37] T. Oh & Y. Wang, “Normal form approach to the one dimensional periodic cubic
nonlinear Schrödinger equation in almost critical Fourier–Lebesgue spaces”, https:
//arxiv.org/abs/1811.04868, to appear in J. Anal. Math.

[38] ———, “Global well posedness of the periodic cubic fourth order NLS in negative
Sobolev spaces”, Forum Math. Sigma 6 (2018), article ID e5 (80 pages).

[39] ———, “Global well-posedness of the one-dimensional cubic nonlinear Schrödinger
equation in almost critical spaces”, J. Differ. Equations 269 (2020), no. 1, p. 612-640.

[40] N. Pattakos, “NLS in the modulation space M2,q(R)”, J. Fourier Anal. Appl. 25
(2019), no. 4, p. 1447-1486.

[41] T. Tao, “Multilinear weighted convolution of L2-functions, and applications to non-
linear dispersive equations”, Am. J. Math. 123 (2001), no. 5, p. 839-908.

[42] Y. Tsutsumi, “L2-solutions for nonlinear Schrödinger equations and nonlinear
groups”, Funkc. Ekvacioj 30 (1987), no. 1, p. 115-125.

[43] M. Wadati, “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan 34
(1973), p. 1289-1296.

[44] V. E. Zakharov & A. B. Shabat, “Exact theory of two-dimensional self-focusing
and one-dimensional self-modulation of waves in nonlinear media”, Sov. Phys., JETP
34 (1972), no. 1, p. 62-69, translated from Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1,
p. 118-134.

– 720 –

http://eprints3.math.sci.hokudai.ac.jp/2375/
https://arxiv.org/abs/1811.04868
https://arxiv.org/abs/1811.04868

	1. Introduction
	1.1. Main results
	1.2. Normal form approach
	1.3. Remarks and comments
	Notations

	2. Localized modulation estimates
	2.1. Localized modulation estimates for the cubic NLS
	2.2. Localized modulation estimates for the mKdV

	3. Normal form reductions
	3.1. Notation: index by trees
	3.2. Normal form reductions: second and third generations
	3.3. General Jth step
	3.4. Normal form equation

	4. Unconditional well-posedness
	4.1. Unconditional well-posedness for the cubic NLS
	4.2. Unconditional well-posedness for the mKdV
	4.3. Proof of Lemma 4.8
	Concluding remark
	Acknowledgements

	Bibliography

