Tome XXIX, no 3 (2020), p. 619-647.
http://afst.centre-mersenne.org/item?id=AFST_2020_6_29_3_619_0Université Paul Sabatier, Toulouse, 2020, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://afst. centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Generating sequences and semigroups of valuations on 2-dimensional normal local rings ${ }^{(*)}$

Arpan Dutta ${ }^{(1)}$

Abstract

In this paper we develop a method for computing valuation semigroups for valuations dominating the ring of a two dimensional quotient singularity. Suppose that K is an algebraically closed field of characteristic zero, $K[X, Y]$ is a polynomial ring over K and ν is a rational rank 1 non discrete valuation of the field $K(X, Y)$ which dominates $K[X, Y]_{(X, Y)}$. Given a finite abelian group H acting diagonally on $K[X, Y]$, and a generating sequence of ν in $K[X, Y]$ whose members are eigenfunctions for the action of H, we compute the semigroup $S^{K[X, Y]^{H}}(\nu)$ of values of elements of $K[X, Y]^{H}$. We further determine when $S^{K[X, Y]}(\nu)$ is a finitely generated $S^{K[X, Y]^{H}}(\nu)$-module.

Résumé. - Dans cet article, nous développons une méthode de calcul de semigroupes d'évaluation pour les évaluations dominant l'anneau d'une singularité de quotient à deux dimensions. Supposons que K est un corps algébriquement clos de caractéristique zéro, $K[X, Y]$ est un anneau polynomial sur K et ν est une évaluation rationnelle non discrète de rang 1 du corps $K(X, Y)$ qui domine $K[X, Y]_{(X, Y)}$. Étant donné un groupe H abelien fini agissant en diagonale sur $K[X, Y]$ et une suite génératrice de ν dans $K[X, Y]$ dont les membres sont des fonctions propres pour l'action de H, nous calculons le semigroupe $S^{K[X, Y]^{H}}(\nu)$ de valeurs d'éléments de l'anneau invariant $K[X, Y]^{H}$. Nous déterminons en outre quand $S^{K[X, Y]}(\nu)$ est un $S^{K[X, Y]^{H}}(\nu)$-module de type fini.

Notations

Let \mathbb{N} denotes the natural numbers $\{0,1,2, \ldots\}$. We denote the positive integers by $\mathbb{Z}_{>0}$ and the positive rational numbers by $\mathbb{Q}_{>0}$. If the greatest common divisor of two positive integers a and b is d, this is denoted by $(a, b)=d$. If $\left\{\gamma_{k}\right\}_{k \geqslant 0}$ is a set of rational numbers, we define

[^0]$G\left(\gamma_{0}, \ldots, \gamma_{n}\right)=\sum_{k=0}^{n} \gamma_{k} \mathbb{Z}$ and $G\left(\gamma_{0}, \gamma_{1}, \ldots\right)=\sum_{k \geqslant 0} \gamma_{k} \mathbb{Z}$. Similarly we define $S\left(\gamma_{0}, \ldots, \gamma_{n}\right)=\sum_{k=0}^{n} \gamma_{k} \mathbb{N}$ and $S\left(\gamma_{0}, \gamma_{1}, \ldots\right)=\sum_{k \geqslant 0} \gamma_{k} \mathbb{N}$. If a group G is generated by g_{1}, \ldots, g_{n}, we denote this by $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$.

Introduction

Let R be a local domain with maximal ideal m_{R} and quotient field L, and ν be a valuation of K which dominates R. Let V_{ν} be the valuation ring of ν, with maximal ideal m_{ν} and Φ_{ν} be the valuation group of ν. The associated graded ring of R along the valuation ν, defined by Teissier in [14, 15], is

$$
\begin{equation*}
\operatorname{gr}_{\nu}(R)=\bigoplus_{\gamma \in \Phi_{\nu}} \mathcal{P}_{\gamma}(R) / \mathcal{P}_{\gamma}^{+}(R) \tag{0.1}
\end{equation*}
$$

where

$$
\mathcal{P}_{\gamma}(R)=\{f \in R \mid \nu(f) \geqslant \gamma\} \text { and } \mathcal{P}_{\gamma}^{+}(R)=\{f \in R \mid \nu(f)>\gamma\} .
$$

In general, $\operatorname{gr}_{\nu}(R)$ is not Noetherian. The valuation semigroup of ν on R is

$$
\begin{equation*}
S^{R}(\nu)=\{\nu(f) \mid f \in R \backslash(0)\} . \tag{0.2}
\end{equation*}
$$

If $R / m_{R}=V_{\nu} / m_{\nu}$ then $\operatorname{gr}_{\nu}(R)$ is the group algebra of $S^{R}(\nu)$ over R / m_{R}, so that $\operatorname{gr}_{\nu}(R)$ is completely determined by $S^{R}(\nu)$.

A generating sequence of ν in R is a set of elements of R whose classes in $\operatorname{gr}_{\nu}(R)$ generate $\operatorname{gr}_{\nu}(R)$ as an $R / m_{R^{-}}$-algebra. An important problem is to construct a generating sequence of ν in R which gives explicit formulas for the value of an arbitrary element of R, and gives explicit computations of the algebra (0.1) and the semigroup (0.2). For regular local rings R of dimension 2, the construction of generating sequences is realized in a very satisfactory way by Spivakovsky [13] (with the assumption that R / m_{R} is algebraically closed) and by Cutkosky and Vinh [6] for arbitrary regular local rings of dimension 2 . A consequence of this theory is a simple classification of the semigroups which occur as a valuation semigroup on a regular local ring of dimension 2 . There has been some success in constructing generating sequences in Noetherian local rings of dimension $\geqslant 3$, for instance in $[7$, $10,11,15]$, but the general situation is very complicated and is not well understood.

Another direction is to construct generating sequences in normal 2 dimensional Noetherian local rings. This is also extremely difficult. In [6, Section 9], a generating sequence is constructed for a rational rank 1 non discrete valuation in the ring $R=k[u, v, w] /\left(u v-w^{2}\right)$, from which the semigroup is constructed. The example shows that the valuation semigroups of valuations dominating a normal two dimensional Noetherian local ring are much
more complicated than those of valuations dominating a two dimensional regular local ring. In this thesis, we develop the method of this example into a general theory.

If R is a 2 dimensional Noetherian local domain, and ν is a valuation of the quotient field L of R which dominates R, it follows from Abhyankar's inequality [1] that the valuation group Φ_{ν} of ν is a finitely generated group, except in the case when the rational rank of ν is $1\left(\Phi_{\nu} \otimes \mathbb{Q} \cong \mathbb{Q}\right)$ and Φ_{ν} is non discrete. As this is the essentially difficult case in dimension 2 , we will restrict to such valuations.

Let K be an algebraically closed field of characteristic 0 and $K[X, Y]$ be a polynomial ring in two variables, which has the maximal ideal $\mathfrak{m}=(X, Y)$. Let $\alpha \in K$ be a primitive m-th root of unity and $\beta \in K$ be a primitive n-th root of unity. Now the group $\mathbb{U}_{m} \times \mathbb{U}_{n}$ acts on $K[X, Y]$ by K-algebra isomorphisms, where

$$
\left(\alpha^{i}, \beta^{j}\right) X=\alpha^{i} X \text { and }\left(\alpha^{i}, \beta^{j}\right) Y=\beta^{j} Y .
$$

In Theorem 1.2, we give a classification of the subgroups $H_{i, j, t, x}$ of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. In Remark 1.3 we observe that without any loss of generality, we can assume $i=j=1$ and $H=H_{1,1, t, x}$ is a subdirect product of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. Let

$$
A=K[X, Y]^{H} \text { and } \mathfrak{n}=\mathfrak{m} \cap A .
$$

We say that $f \in K[X, Y]$ is an eigenfunction for the action of H on $K[X, Y]$ if for all $g \in H, g f=\lambda_{g} f$ for some $\lambda_{g} \in K$. Throughout the paper, we use the expression $\forall b \equiv a x(\bmod t)$ as an abbreviation for the following expression,

$$
\forall a, b \in \mathbb{Z} \text { such that } b \equiv a x(\bmod t) .
$$

Let ν be a rational rank 1 non discrete valuation dominating the regular local ring $K[X, Y]_{\mathfrak{m}}$. Using the algorithm of [6] or [13], we construct a generating sequence

$$
\begin{equation*}
Q_{0}=X, Q_{1}=Y, Q_{2}, \ldots \tag{0.3}
\end{equation*}
$$

of ν in $K[X, Y]$. Let ν^{*} be the restriction of ν to the quotient field of A. In Theorem 3.1, we give an explicit computation of the valuation semigroups $S^{A_{\mathrm{n}}}(\nu)$, when the members of the generating sequence (0.3) are eigenfunctions for the action of H on $K[X, Y]$.

Suppose that a Noetherian local domain B dominates a Noetherian local domain A. Let L be the quotient field of A, M be the quotient field of B and suppose that M is finite over L. Suppose that ω is a valuation of L which dominates A and ω^{*} is an extension of ω to M which dominates B. We can ask if $\operatorname{gr}_{\omega^{*}}(B)$ is a finitely generated $\operatorname{gr}_{\omega}(A)$-module or if $S^{B}\left(\omega^{*}\right)$ is a finitely generated $S^{A}(\omega)$-module. In general, $\operatorname{gr}_{\omega^{*}}(B)$ is not a finitely
generated $\operatorname{gr}_{\omega}(A)$-algebra, so is certainly not a finitely generated $\operatorname{gr}_{\omega}(A)$ module. However, it is shown in Theorem 1.5 of [5] that if A and B are essentially of finite type over a field characteristic zero, then there exists a birational extension A_{1} of A and a birational extension B_{1} of B such that ω^{*} dominates B_{1}, ω dominates A_{1}, B_{1} dominates A_{1} and $\operatorname{gr}_{\omega^{*}}\left(B_{1}\right)$ is a finitely generated $\operatorname{gr}_{\omega}\left(A_{1}\right)$-module (so $S^{B_{1}}\left(\omega^{*}\right)$ is a finitely generated $S^{A_{1}}(\omega)$-module).

The situation is much more subtle in positive characteristic and mixed characteristic. In Theorem 1 of [4], it is shown that If A and B are excellent of dimension two and $L \rightarrow M$ is separable, then there exist birational extension A_{1} of A and B_{1} of B such that A_{1} and B_{1} are regular, B_{1} dominates A_{1}, ω^{*} dominates B_{1} and $\operatorname{gr}_{\omega^{*}}\left(B_{1}\right)$ is a finitely generated $\operatorname{gr}_{\omega}\left(A_{1}\right)$-algebra if and only if the valued field extension $L \rightarrow M$ is without defect. For a discussion of defect in a finite extension of valued fields, see [8].

In this paper, we completely answer the question of finite generation of $S^{K[X, Y]_{\mathfrak{m}}}(\nu)$ as a $S^{A_{\mathfrak{n}}}(\nu)$-module (and hence of $\mathrm{gr}_{\nu}\left(K[X, Y]_{\mathfrak{m}}\right)$ as a $\operatorname{gr}_{\nu}\left(A_{\mathfrak{n}}\right)$ module) for valuations with a generating sequence of eigenfunctions. We obtain the following results in Section 4.

Proposition 0.1. - Let $R_{\mathfrak{m}}=K[X, Y]_{(X, Y)}$ and H be a subdirect product of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. Let ν be a rational rank 1 non discrete valuation ν dominating $R_{\mathfrak{m}}$ with a generating sequence (0.3) of eigenfunctions for H. Then $S^{R_{\mathrm{m}}}(\nu)$ is finitely generated over the subsemigroup $S^{A_{\mathrm{n}}}(\nu)$ if and only if $\exists N \in \mathbb{Z}_{>0}$ such that $Q_{r} \in A, \forall r \geqslant N$. Further, if $Q_{N} \in A$, then $Q_{M} \in A$, $\forall M \geqslant N \geqslant 1$.

Theorem 0.2. - Let $R_{\mathfrak{m}}=K[X, Y]_{(X, Y)}$ and H be a subdirect product of $\mathbb{U}_{m} \times \mathbb{U}_{n}$.
(1) There exists a rational rank 1 non discrete valuation ν dominating $R_{\mathfrak{m}}$ with a generating sequence (0.3) of eigenfunctions for $H \Leftrightarrow$ $(m, n)=t$.
(2) If $(m, n)=t=1$, then $S^{R_{\mathrm{m}}}(\nu)$ is a finitely generated $S^{A_{\mathrm{n}}}(\nu)$-module for all rational rank 1 non discrete valuations ν which dominate $R_{\mathfrak{m}}$ and have a generating sequence (0.3) of eigenfunctions for H.
(3) If $(m, n)=t>1$, then $S^{R_{\mathrm{m}}}(\nu)$ is not a finitely generated $S^{A_{\mathrm{n}}}(\nu)$ module for all rational rank 1 non discrete valuations ν which dominate $R_{\mathfrak{m}}$ and have a generating sequence (0.3) of eigenfunctions for H.

In Section 5, we show that for the valuations we consider, the restriction of ν to the quotient field of A does not split in $K[X, Y]_{\mathfrak{m}}$. The failure of non
splitting can be an obstruction to finite generation of $S^{B}\left(\omega^{*}\right)$ as an $S^{A}(\omega)$ module ([4, Theorem 5]), but our result shows that it is not a sufficient condition.

1. Subgroups of $U_{m} \times U_{n}$

Let K be an algebraically closed field of characteristic zero. Let α be a primitive m-th root of unity, and β be a primitive n-th root of unity, in K. We denote $\mathbb{U}_{m}=\langle\alpha\rangle$, and $\mathbb{U}_{n}=\langle\beta\rangle$, which are multiplicative cyclic groups of orders m and n respectively.

Lemma 1.1 (Goursat). - Let A and B be two groups. There is a bijective correspondence between subgroups $G \leqslant A \times B$, and 5-tuples $\left\{\overline{G_{1}}, G_{1}\right.$, $\left.\overline{G_{2}}, G_{2}, \theta\right\}$, where

$$
G_{1} \unlhd \overline{G_{1}} \leqslant A, G_{2} \unlhd \overline{G_{2}} \leqslant B, \theta: \frac{\overline{G_{1}}}{G_{1}} \rightarrow \frac{\overline{G_{2}}}{G_{2}} \text { is an isomorphism. }
$$

Theorem 1.2.- Given positive integers i, j, t, x satisfying the given conditions

$$
i|m, j| n, t\left|\frac{m}{i}, t\right| \frac{n}{j},(x, t)=1,1 \leqslant x \leqslant t
$$

let

$$
\begin{equation*}
H_{i, j, t, x}=\left\{\left(\alpha^{a i}, \beta^{b j}\right) \mid b \equiv a x(\bmod t)\right\} . \tag{1.1}
\end{equation*}
$$

Then the $H_{i, j, t, x}$ are subgroups of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. And given any subgroup G of $\mathbb{U}_{m} \times \mathbb{U}_{n}$, there exist unique i, j, t, x satisfying the above conditions such that $G=H_{i, j, t, x}$.

Proof. - We first show that the condition $b \equiv a x(\bmod t)$ is well defined under the given conditions on i, j, t, x. Suppose $\left(\alpha^{a_{1} i}, \beta^{b_{1} j}\right)=\left(\alpha^{a_{2} i}, \beta^{b_{2} j}\right)$, that is, $a_{1} i \equiv a_{2} i(\bmod m)$, and $b_{1} j \equiv b_{2} j(\bmod n)$. Then, $\left.\frac{m}{i} \right\rvert\,\left(a_{1}-a_{2}\right)$ and $\left.\frac{n}{j} \right\rvert\,\left(b_{1}-b_{2}\right)$. Thus, $t \mid\left(a_{1}-a_{2}\right)$ and $t \mid\left(b_{1}-b_{2}\right)$, hence $t \mid\left(b_{1}-b_{2}\right)-\left(a_{1}-a_{2}\right) x$. So, $\left[b_{1}-a_{1} x\right] \equiv\left[b_{2}-a_{2} x\right](\bmod t)$.

We now show $H_{i, j, t, x}$ is a subgroup of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. Taking $a=b=0$, we have $(1,1) \in H_{i, j, t, x}$. Let $\left(\alpha^{a i}, \beta^{b j}\right),\left(\alpha^{c i}, \beta^{d j}\right) \in H_{i, j, t, x}$ be distinct elements. Then $b \equiv a x(\bmod t)$, and $d \equiv c x(\bmod t)$. Hence $(b-d) \equiv(a-c) x(\bmod t)$. So, $\left(\alpha^{(a-c) i}, \beta^{(b-d) j}\right)=\left(\alpha^{a i}, \beta^{b j}\right)\left(\alpha^{c i}, \beta^{d j}\right)^{-1} \in H_{i, j, t, x}$. Hence $H_{i, j, t, x}$ is a subgroup.

By Goursat's Lemma, the subgroups of $\mathbb{U}_{m} \times \mathbb{U}_{n}$ are in bijective correspondence with the 5-tuples $\left\{\overline{G_{1}}, G_{1}, \overline{G_{2}}, G_{2}, \theta\right\}$, where $G_{1} \unlhd \overline{G_{1}} \leqslant \mathbb{U}_{m}, G_{2} \unlhd$ $\overline{G_{2}} \leqslant \mathbb{U}_{n}, \theta: \frac{\overline{G_{1}}}{G_{1}} \simeq \frac{\overline{G_{2}}}{G_{2}}$. Now any subgroup of $\mathbb{U}_{m}=\langle\alpha\rangle$ is of the form $H_{i}=\left\langle\alpha^{i}\right\rangle=\mathbb{U}_{\frac{m}{i}}$, where $i \mid m$. Since H_{i} is an abelian group, any subgroup is
normal. Any subgroup of H_{i} is of the form $H_{i t_{i}}=\left\langle\alpha^{i t_{i}}\right\rangle=\mathbb{U}_{\frac{m}{i t_{i}}}$, where $t_{i} \left\lvert\, \frac{m}{i}\right.$. Similarly, any subgroup of \mathbb{U}_{n} is of the form $H_{j}=\left\langle\beta^{j}\right\rangle=\mathbb{U}_{\frac{n}{j}}$, where $j \mid n$. And any subgroup of H_{j} is of the form $H_{j t_{j}}=\left\langle\beta^{j t_{j}}\right\rangle=\mathbb{U}_{\frac{n}{j t_{j}}}$, where $t_{j} \left\lvert\, \frac{n}{j}\right.$. Now, $\frac{\mathbb{U}_{\frac{m}{i}}}{\mathbb{U} \frac{m}{i t_{i}}} \simeq \mathbb{U}_{t_{i}}$ and $\frac{\mathbb{U}_{\frac{n}{j}}}{\mathbb{U} \frac{n}{j t_{j}}} \simeq \mathbb{U}_{t_{j}}$. So, $\theta_{i j}: \frac{\mathbb{U}_{\frac{m}{i}}}{\mathbb{U} \frac{m}{i t_{i}}} \simeq \frac{\mathbb{U} \frac{n}{j}}{\mathbb{U} \frac{n}{j t_{j}}} \Leftrightarrow t_{i}=t_{j}$. Define $t=t_{i}=t_{j}$. Thus the subgroups of $\mathbb{U}_{m} \times \mathbb{U}_{n}$ are in bijective correspondence with the set of 5 -tuples,

$$
\begin{align*}
& \left(\left\langle\alpha^{i t}\right\rangle,\left\langle\alpha^{i}\right\rangle,\left\langle\beta^{j t}\right\rangle,\left\langle\beta^{j}\right\rangle, \theta_{i j}\right) \\
& \quad \text { where } i|m, j| n, t\left|\frac{m}{i}, t\right| \frac{n}{j} \text { and } \theta_{i j}: \frac{\left\langle\alpha^{i}\right\rangle}{\left\langle\alpha^{i t}\right\rangle} \simeq \frac{\left\langle\beta^{j}\right\rangle}{\left\langle\beta^{j t\rangle}\right\rangle} . \tag{1.2}
\end{align*}
$$

Any such isomorphism is given by $\theta_{i j}\left(\overline{\alpha^{i}}\right)=\overline{\beta^{x j}}$, where $(x, t)=1,1 \leqslant x \leqslant t$, and \bar{v} denotes the residue of an element $v \in\left\langle\alpha^{i}\right\rangle$ in $\frac{\left\langle\alpha^{i}\right\rangle}{\left\langle\alpha^{i t\rangle}\right\rangle}$, or the residue of an element $v \in\left\langle\beta^{j}\right\rangle$ in $\frac{\left\langle\beta^{j}\right\rangle}{\left\langle\beta^{j t}\right\rangle}$.

If $G_{\theta_{i j}}$ denotes the graph of $\theta_{i j}$, then $G_{\theta_{i j}}=\left\{\left(\overline{\alpha^{r i}}, \overline{\beta^{r x j}}\right) \mid r \in \mathbb{N}\right\}$. Denoting the natural surjection $p:\left\langle\alpha^{i}\right\rangle \times\left\langle\beta^{j}\right\rangle \longrightarrow \frac{\left\langle\alpha^{i}\right\rangle}{\left\langle\alpha^{i t\rangle}\right\rangle} \times \frac{\left\langle\beta^{j}\right\rangle}{\left\langle\beta^{j t}\right\rangle}$, we have

$$
\begin{aligned}
p^{-1}\left(G_{\theta_{i j}}\right) & =\left\{\left(\alpha^{a i}, \beta^{b j}\right) \mid \alpha^{\overline{a i}}=\alpha^{\overline{r i}}, \beta^{\overline{b j}}=\beta^{\overline{r x j}}, \text { for some } r \in \mathbb{N}\right\} \\
& =\left\{\left(\alpha^{a i}, \beta^{b j}\right) \mid \alpha^{(a-r) i} \in\left\langle\alpha^{i t}\right\rangle, \beta^{(b-r x) j} \in\left\langle\beta^{j t}\right\rangle, \text { for some } r \in \mathbb{N}\right\} \\
& =\left\{\left(\alpha^{a i}, \beta^{b j}\right) \mid a \equiv r(\bmod t), b \equiv r x(\bmod t), \text { for some } r \in \mathbb{N}\right\} .
\end{aligned}
$$

We now show that,

$$
a \equiv r(\bmod t), b \equiv r x(\bmod t), \text { for some } r \in \mathbb{N} \Longleftrightarrow b \equiv a x(\bmod t)
$$

If $a \equiv r(\bmod t), b \equiv r x(\bmod t)$, then $a-r=t d$ for some integer d. Then $b-$ $a x=b-(t d+r) x \equiv b-r x(\bmod t) \equiv 0(\bmod t) \Rightarrow b \equiv a x(\bmod t)$. Conversely if $b \equiv a x(\bmod t)$, and $a \equiv r(\bmod t)$ for some r, then $b \equiv r x(\bmod t)$. Thus we have established (1.3). So, $p^{-1}\left(G_{\theta_{i j}}\right)=\left\{\left(\alpha^{a i}, \beta^{b j}\right) \mid b \equiv a x(\bmod t)\right\}$. Thus we have that any subgroup of $\mathbb{U}_{m} \times \mathbb{U}_{n}$ is of the form

$$
H_{i, j, t, x}=\left\{\begin{array}{l|l}
\left(\alpha^{a i}, \beta^{b j}\right) & \begin{array}{l}
b \equiv a x(\bmod t) ; i|m, j| n, t\left|\frac{m}{i}, t\right| \frac{n}{j} \\
(x, t)=1,1 \leqslant x \leqslant t
\end{array}
\end{array}\right\} .
$$

We now establish uniqueness. Let $\left(i_{1}, j_{1}, t_{1}, x_{1}\right)$ and $\left(i_{2}, j_{2}, t_{2}, x_{2}\right)$ be two distinct quadruples satisfying the conditions of the theorem, such that $H_{i_{1}, j_{1}, t_{1}, x_{1}}=H_{i_{2}, j_{2}, t_{2}, x_{2}}$. From (1.2), we observe $H_{i_{1}, j_{1}, t_{1}, x_{1}}=H_{i_{2}, j_{2}, t_{2}, x_{2}}$ implies

$$
\left(\left\langle\alpha^{i_{1} t_{1}}\right\rangle,\left\langle\alpha^{i_{1}}\right\rangle,\left\langle\beta^{j_{1} t_{1}}\right\rangle,\left\langle\beta^{j_{1}}\right\rangle, \theta_{i_{1} j_{1}}^{(1)}\right)=\left(\left\langle\alpha^{i_{2} t_{2}}\right\rangle,\left\langle\alpha^{i_{2}}\right\rangle,\left\langle\beta^{j_{2} t_{2}}\right\rangle,\left\langle\beta^{j_{2}}\right\rangle, \theta_{i_{2} j_{2}}^{(2)}\right) .
$$

Now, $\left\langle\alpha^{i_{1}}\right\rangle=\left\langle\alpha^{i_{2}}\right\rangle \Rightarrow\left|\left\langle\alpha^{i_{1}}\right\rangle\right|=\left|\left\langle\alpha^{i_{2}}\right\rangle\right| \Rightarrow m / i_{1}=m / i_{2} \Rightarrow i_{1}=i_{2}=i$. And, $\left\langle\alpha^{i t_{1}}\right\rangle=\left\langle\alpha^{i t_{2}}\right\rangle=m / i t_{1}=m / i t_{2}=t_{1}=t_{2}=t$. Similarly $j=j_{1}=j_{2}$. Now, $\theta_{i j}^{(1)}=\theta_{i j}^{(2)} \Rightarrow \theta_{i j}^{(1)}\left(\overline{\alpha^{i}}\right)=\theta_{i j}^{(2)}\left(\overline{\alpha^{i}}\right) \Rightarrow \overline{\beta^{x_{1} j}}=\overline{\beta^{x_{2} j}}$ in $\frac{\left\langle\beta^{j}\right\rangle}{\left\langle\beta^{t j}\right\rangle}$. Thus, $t\left|\left|x_{1}-x_{2}\right|\right.$. Since $0<x_{1}, x_{2} \leqslant t$, we have $\left|x_{1}-x_{2}\right|=0$, i.e. $x_{1}=x_{2}$. Let $x=x_{1}=x_{2}$. Then $(i, j, t, x)=\left(i_{1}, j_{1}, t_{1}, x_{1}\right)=\left(i_{2}, j_{2}, t_{2}, x_{2}\right)$ is unique.

We observe $H_{i, j, t, x}=\left\{\left(\left(\alpha^{i}\right)^{a},\left(\beta^{j}\right)^{b}\right) \mid b \equiv a x(\bmod t)\right\} \leqslant \mathbb{U}_{\frac{m}{i}} \times \mathbb{U}_{\frac{n}{j}}$. Since $(x, t)=1, H_{i, j, t, x}$ is a subdirect product of $\mathbb{U}_{\frac{m}{i}} \times \mathbb{U}_{\frac{n}{j}}$. So without loss of generality we can assume $i=j=1$, that is, $H_{1,1, t, x}$ is a subdirect product of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. For the rest of the paper, we adopt the following notation,

Remark 1.3. $-H=H_{1,1, t, x}$ is a subdirect product of $\mathbb{U}_{m} \times \mathbb{U}_{n}$. Thus $H=\left\{\left(\alpha^{a}, \beta^{b}\right) \mid b \equiv a x(\bmod t)\right\}$, where $t|m, t| n,(x, t)=1$ and $1 \leqslant x \leqslant t$.

Proposition 1.4. - Let H be as in Remark 1.3. Write $m=M$ and $n=N t$ where $M, N \in \mathbb{Z}_{>0}$. Then $|H|=M N t$.

Proof. - Recall, $H=\left\{\left(\alpha^{a}, \beta^{b}\right) \mid b \equiv a x(\bmod t)\right\}$. We observe, as elements of $H,\left(\alpha^{a_{1}}, \beta^{b_{1}}\right)=\left(\alpha^{a_{2}}, \beta^{b_{2}}\right)$ if and only if $a_{1} \equiv a_{2}(\bmod M t)$ and $b_{1} \equiv b_{2}(\bmod N t)$. Thus every element of H has an unique representation,

$$
\begin{equation*}
H=\left\{\left(\alpha^{a}, \beta^{b}\right) \mid b \equiv a x(\bmod t), 0 \leqslant a<M t, 0 \leqslant b<N t\right\} \tag{1.4}
\end{equation*}
$$

Hence there is a bijective correspondence,

$$
\begin{aligned}
H & \longleftrightarrow\{(a, b) \mid b \equiv a x(\bmod t), 0 \leqslant a<M t, 0 \leqslant b<N t, a, b \in \mathbb{Z}\} \\
& \longleftrightarrow\{(a, a x+\lambda t) \mid 0 \leqslant a<M t, 0 \leqslant a x+\lambda t<N t, a, \lambda \in \mathbb{Z}\} \\
& \longleftrightarrow\left\{(a, \lambda) \mid 0 \leqslant a<M t, 0 \leqslant \lambda+\frac{a x}{t}<N, a, \lambda \in \mathbb{Z}\right\} .
\end{aligned}
$$

Hence there are $M t$ possible choices for a. And for each choice of a, there are N possible choices for λ. Thus $|H|=M N t$.

2. Generating Sequences

In this section we establish notation which will be used throughout the paper. Let $R=K[X, Y]$ be a polynomial ring in two variables over an algebraically closed field K of characteristic zero. Let $\mathfrak{m}=(X, Y)$ be the maximal ideal of R. Then $\mathbb{U}_{m} \times \mathbb{U}_{n}$ acts on R by K-algebra isomorphisms satisfying

$$
\begin{equation*}
\left(\alpha^{x}, \beta^{y}\right) \cdot\left(X^{r} Y^{s}\right)=\alpha^{r x} \beta^{s y} X^{r} Y^{s} . \tag{2.1}
\end{equation*}
$$

Thus, $R^{H}=\left\{\sum_{r, s} c_{r, s} X^{r} Y^{s} \in R \mid \alpha^{r a} \beta^{s b}=1, \forall r, s, \forall b \equiv a x(\bmod t)\right\}$. $f \in R$ is defined to be an eigenfunction of H if $\left(\alpha^{a}, \beta^{b}\right) \cdot f=\lambda_{a b} f$ for some $\lambda_{a b} \in K$, for all $\left(\alpha^{a}, \beta^{b}\right) \in H$. Eigenfunctions of H are of the form
$f=\sum_{r, s} c_{r, s} X^{r} Y^{s} \in R$ such that $\alpha^{r a} \beta^{s b}$ is a common constant $\forall r, s$ such that $c_{r, s} \neq 0, \forall b \equiv a x(\bmod t)$.

Let ν be a rational rank 1 non discrete valuation of $K(X, Y)$ which dominates $R_{\mathfrak{m}}$. The algorithm of Theorem 4.2 of [6] (as refined in [6, Section (8)]) produces a generating sequence

$$
\begin{equation*}
Q_{0}=X, Q_{1}=Y, Q_{2}, \ldots \tag{2.2}
\end{equation*}
$$

of elements in R which have the following properties.
(1) Let $\gamma_{l}=\nu\left(Q_{l}\right), \forall l \geqslant 0$ and $\overline{m_{l}}=\left[G\left(\gamma_{0}, \ldots, \gamma_{l}\right): G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right)\right]=$ $\min \left\{q \in \mathbb{Z}_{>0} \mid q \gamma_{l} \in G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right)\right\}, \forall l \geqslant 1$. Then $\gamma_{l+1}>\bar{m}_{l} \gamma_{l}$, $\forall l \geqslant 1$.
(2) Set $d(l)=\operatorname{deg}_{Y}\left(Q_{l}\right), \forall l \in \mathbb{Z}_{>0}$. Then, $Q_{l}=Y^{d(l)}+Q_{l}^{*}(X, Y)$, where $\operatorname{deg}_{Y}\left(Q_{l}^{*}(X, Y)\right)<d(l)$. We have that, $d(1)=1, d(l)=\prod_{k=1}^{l-1} \overline{m_{k}}$, $\forall l \geqslant 2$. In particular, $1 \leqslant l_{1} \leqslant l_{2} \Rightarrow d\left(l_{1}\right) \mid d\left(l_{2}\right)$.
(3) Every $f \in R$ with $\operatorname{deg}_{Y}(f)=d$ has a unique expression

$$
f=\sum_{m=0}^{d}\left[\left(\sum_{l} b_{l, m} X^{l}\right) Q_{1}^{j_{1}(m)} \ldots Q_{r}^{j_{r}(m)}\right]
$$

where $b_{l, m} \in K, 0 \leqslant j_{l}(m)<\overline{m_{l}}, \forall l \geqslant 1$, and $\operatorname{deg}_{Y}\left[Q_{1}^{j_{1}(m)} \ldots\right.$ $\left.Q_{r}^{j_{r}(m)}\right]=m, \forall m$. Writing $f_{m}=\left(\sum_{l} b_{l, m} X^{l}\right) Q_{1}^{j_{1}(m)} \ldots Q_{r}^{j_{r}(m)}$, we have that $\nu\left(f_{m}\right)=\nu\left(f_{n}\right) \Leftrightarrow m=n$. So, $\nu(f)=\min _{m}\left\{\nu\left(f_{m}\right)\right\}$.
(4) From (4) we have that the semigroup $S^{R_{\mathrm{m}}}(\nu)=\{\nu(f) \mid 0 \neq f \in R\}=$ $S\left(\gamma_{l} \mid l \geqslant 0\right)$.

Suppose that ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$. We will say that ν has a generating sequence of eigenfunctions for H if all Q_{l} in the generating sequence (2.2) of Section 2 are eigenfunctions for H.

3. Valuation Semigroups of Invariant Subrings

Theorem 3.1. - Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3. Suppose that ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$, where $R=$ $K[X, Y]$, and $\mathfrak{m}=(X, Y)$. Suppose that ν has a generating sequence (2.2)

$$
Q_{0}=X, Q_{1}=Y, Q_{2}, \ldots
$$

such that each $Q_{l} \in R$ is an eigenfunction for H. Let notation be as in Section 2. Then denoting $A=R^{H}$, and defining $\mathfrak{n}=\mathfrak{m} \cap A$ we have

$$
S^{A_{\mathrm{n}}}(\nu)=\left\{\begin{array}{l|l}
l \gamma_{0}+j_{1} \gamma_{1}+\cdots+j_{r} \gamma_{r} & \begin{array}{l}
l \in \mathbb{N}, r \in \mathbb{N}, \\
0 \leqslant j_{k}<\overline{m_{k}}, \forall k=1, \ldots, r \\
\alpha^{l a} \beta^{b \sum_{k=1}^{r}\left[j_{k} d(k)\right]}=1 \\
\forall b \equiv a x(\bmod t)
\end{array} \tag{3.1}
\end{array}\right\} .
$$

Proof. - Let $0 \neq f(X, Y) \in R$, with $\operatorname{deg}_{Y}(f)=d$. By (2.1), $\left(\alpha^{a}, \beta^{b}\right)$. $Y^{d(m)}=\beta^{d(m) b} Y^{d(m)}$. Since Q_{m} is an eigenfunction of H, we conclude that for $m>0$,

$$
\begin{equation*}
\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{m}=\beta^{d(m) b} Q_{m}=\beta^{\operatorname{deg}_{Y}\left(Q_{m}\right) b} Q_{m}, \quad \forall\left(\alpha^{a}, \beta^{b}\right) \in H \tag{3.2}
\end{equation*}
$$

We also have, $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{0}=\left(\alpha^{a}, \beta^{b}\right) \cdot X=\alpha^{a} X, \forall\left(\alpha^{a}, \beta^{b}\right) \in H$. Now f has an expansion of the form (3) of Section 2. So,

$$
\begin{aligned}
\left(\alpha^{a}, \beta^{b}\right) \cdot f & =\left(\alpha^{a}, \beta^{b}\right) \cdot \sum_{m=0}^{d}\left[\left(\sum_{l} b_{l, m} X^{l}\right) Q_{1}^{j_{1}(m)} \ldots Q_{r}^{j_{r}(m)}\right] \\
& =\sum_{m=0}^{d}\left[\left(\sum_{l} \alpha^{l a} b_{l, m} X^{l}\right) \beta^{b \sum_{k=1}^{r}\left[j_{k}(m) d(k)\right]} Q_{1}^{j_{1}(m)} \ldots Q_{r}^{j_{r}(m)}\right]
\end{aligned}
$$

Now, $f \in A \Leftrightarrow \alpha^{l a} \beta^{b \sum_{k=1}^{r}\left[j_{k}(m) d(k)\right]}=1, \forall b \equiv a x(\bmod t), \forall l$, such that $b_{l, m} \neq 0$.

So,

$$
\begin{aligned}
& \left\{\nu(f) \mid 0 \neq f \in A_{\mathfrak{n}}\right\}=\{\nu(f) \mid 0 \neq f \in A\} \\
& \subset\left\{\begin{array}{ll}
l \gamma_{0}+j_{1} \gamma_{1}+\cdots+j_{r} \gamma_{r} & \begin{array}{l}
l \in \mathbb{N}, r \in \mathbb{N}, \\
0 \leqslant j_{k}<\overline{m_{k}}, \forall k=1, \ldots, r \\
\alpha^{l a} \beta^{b \sum_{k=1}^{r}\left[j_{k} d(k)\right]}=1 \\
\forall b \equiv a x(\bmod t)
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Conversely, suppose we have $l \in \mathbb{N}, r \in \mathbb{N}, 0 \leqslant j_{k}<\overline{m_{k}}, \forall k=1, \ldots, r$ such that $\forall b \equiv a x(\bmod t)$ we have $\alpha^{l a} \beta^{b \sum_{k=1}^{r}\left[j_{k} d(k)\right]}=1$. Define $f(X, Y)=$ $X^{l} Q_{1}^{j_{1}} \ldots Q_{r}^{j_{r}} \in R$. For any $\left(\alpha^{a}, \beta^{b}\right) \in H$ we have, $\left(\alpha^{a}, \beta^{b}\right) \cdot f=\left(\alpha^{a}, \beta^{b}\right)$. $\left(X^{l} Q_{1}^{j_{1}} \ldots Q_{r}^{j_{r}}\right)=\alpha^{l a} \beta^{b \sum_{k=1}^{r}\left[j_{k} d(k)\right]} X^{l} Q_{1}^{j_{1}} \ldots Q_{r}^{j_{r}}=f$, that is, $f \in A$. So $\nu(f)=l \gamma_{0}+j_{1} \gamma_{1}+\cdots+j_{r} \gamma_{r} \in S^{A_{\mathrm{n}}}(\nu)$. Hence we conclude,

$$
S^{A_{\mathrm{n}}}(\nu)=\left\{\begin{array}{l|l}
l \gamma_{0}+j_{1} \gamma_{1}+\cdots+j_{r} \gamma_{r} & \begin{array}{l}
l \in \mathbb{N}, r \in \mathbb{N}, \\
0 \leqslant j_{k}<\overline{m_{k}}, \forall k=1, \ldots, r \\
\alpha^{l a} \beta^{b \sum_{k=1}^{r}\left[j_{k} d(k)\right]}=1 \\
\forall b \equiv a x(\bmod t)
\end{array}
\end{array}\right\}
$$

4. Finite and Non-Finite Generation

In this section we study the finite and non-finite generation of the valuation semigroup $S^{R_{\mathrm{m}}}(\nu)$ over the subsemigroup $S^{A_{\mathrm{n}}}(\nu)$. A semigroup S is said to be finitely generated over a subsemigroup T if there are finitely many elements s_{1}, \ldots, s_{n} in S such that $S=\left\{s_{1}, \ldots, s_{n}\right\}+T$.

At the end of this section we will prove the following theorem.
ThEOREM 4.1. - Let $R_{\mathfrak{m}}=K[X, Y]_{(X, Y)}$ and $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3.
(1) There exists a rational rank 1 non discrete valuation ν dominating $R_{\mathfrak{m}}$ with a generating sequence (2.2) of eigenfunctions for $H \Leftrightarrow$ $(m, n)=t$.
(2) If $(m, n)=t=1$, then $S^{R_{\mathfrak{m}}}(\nu)$ is a finitely generated $S^{A_{\mathfrak{n}}}(\nu)$-module for all rational rank 1 non discrete valuations ν which dominate $R_{\mathfrak{m}}$ and have a generating sequence (2.2) of eigenfunctions for H.
(3) If $(m, n)=t>1$, then $S^{R_{\mathrm{m}}}(\nu)$ is not a finitely generated $S^{A_{\mathfrak{n}}}(\nu)$ module for all rational rank 1 non discrete valuations ν which dominate $R_{\mathfrak{m}}$ and have a generating sequence (2.2) of eigenfunctions for H.

We introduce some notation. Let $\sigma(0)=0, \sigma(l)=\min \{j \mid j>\sigma(l-1)$ and $\left.\overline{m_{j}}>1\right\}$. Let $P_{l}=Q_{\sigma(l)}$ and $\beta_{l}=\nu\left(P_{l}\right)=\gamma_{\sigma(l)}, \forall l \geqslant 0$. Let $\overline{n_{l}}=$ $\left[G\left(\beta_{0}, \ldots, \beta_{l}\right): G\left(\beta_{0}, \ldots, \beta_{l-1}\right)\right]=\min \left\{q \in \mathbb{Z}_{>0} \mid q \beta_{l} \in G\left(\beta_{0}, \ldots, \beta_{l-1}\right)\right\}$, $\forall l \geqslant 1$. Then $\overline{n_{l}}=\overline{m_{\sigma(l)}} . S^{R_{\mathrm{m}}}(\nu)=S\left(\gamma_{0}, \gamma_{1}, \ldots\right)=S\left(\beta_{0}, \beta_{1}, \ldots\right)$ and $\left\{\beta_{l}\right\}_{l \geqslant 0}$ form a minimal generating set of $S^{R_{\mathfrak{m}}}(\nu)$, that is, $\overline{n_{l}}>1, \forall l \geqslant 1$.

We first make a general observation. Suppose for some $d \geqslant 1, j_{r} \neq 0$ and $l, j_{1}, \ldots, j_{r} \in \mathbb{N}$, we have an expression of the form, $\beta_{d}=l \beta_{0}+j_{1} \beta_{1}+\cdots+$ $j_{r} \beta_{r}$. If $r>d$ then $j_{r} \beta_{r} \geqslant \beta_{r}>\beta_{d}$ which is a contradiction. If $r<d$ then $\beta_{d} \in G\left(\beta_{0}, \ldots, \beta_{d-1}\right) \Rightarrow \overline{n_{d}}=1$. This is a contradiction as $\overline{n_{l}}>1, \forall l \geqslant 1$. Thus, $\beta_{r}=l \beta_{0}+j_{1} \beta_{1}+\cdots+j_{r} \beta_{r}$. If $j_{r}>1$, then $j_{r} \beta_{r}>\beta_{r}$. If $j_{r}=0$, then $\beta_{r} \in G\left(\beta_{0}, \ldots, \beta_{r-1}\right) \Rightarrow \overline{n_{r}}=1$. So, $j_{r}=1$. Since $\beta_{i}>0, \forall i$, we then have $l=0, j_{i}=0, \forall i \neq r$. Thus, for $l, j_{1}, \ldots, j_{r} \in \mathbb{N}$ and $d \geqslant 1$,

$$
\begin{equation*}
\beta_{d}=l \beta_{0}+j_{1} \beta_{1}+\cdots+j_{r} \beta_{r} \quad \Longrightarrow \quad j_{d}=1, l=0, j_{i}=0, \forall i \neq d \tag{4.1}
\end{equation*}
$$

Proposition 4.2. - Let $R_{\mathfrak{m}}=K[X, Y]_{(X, Y)}$ and $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3. Let assumptions be as in Theorem 3.1. Then $S^{R_{\mathfrak{m}}}(\nu)$ is finitely generated over the subsemigroup $S^{A_{\mathrm{n}}}(\nu)$ if and only if $\exists N \in \mathbb{Z}_{>0}$ such that $Q_{r} \in A, \forall r \geqslant N$. Further, if $Q_{N} \in A$, then $Q_{M} \in A, \forall M \geqslant N \geqslant 1$.

Proof. - We first show that, for any $r \geqslant 1, \gamma_{r} \in S^{A_{\mathrm{n}}}(\nu) \Leftrightarrow Q_{r} \in A$. It is enough to show the implication $\gamma_{r} \in S^{A_{\mathrm{n}}}(\nu) \Rightarrow Q_{r} \in A$. From (3.1) we have, $\gamma_{r} \in S^{A_{\mathfrak{n}}}(\nu) \Rightarrow \gamma_{r}=l \gamma_{0}+j_{1} \gamma_{1}+\cdots+j_{s} \gamma_{s}$, where $l \in \mathbb{N}, s \in \mathbb{N}, 0 \leqslant j_{k}<\overline{m_{k}}$ and $\alpha^{l a} \beta^{b} \sum_{k=1}^{s} j_{k} d(k)=1, \forall b \equiv a x(\bmod t)$.

Since $l, j_{1}, \ldots, j_{s} \in \mathbb{N}, \gamma_{i}<\gamma_{i+1}, \forall i \geqslant 1$ and $\gamma_{i}>0, \forall i$, we have $r \geqslant s$. If $r=s$, then $\gamma_{r}=l \gamma_{0}+\sum_{k=1}^{r} j_{k} \gamma_{k} \geqslant j_{r} \gamma_{r} \geqslant \gamma_{r}$. Since $j_{r} \neq 0$ and $j_{r} \in \mathbb{N}$ we have $j_{r}=1$. And $\gamma_{i}>0, \forall i$ implies $l=j_{1}=\cdots=j_{r-1}=0$. Then $\beta^{b d(r)}=1, \forall b \equiv a x(\bmod t)$. So from (3.2), $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{r}=Q_{r}$, $\forall b \equiv a x(\bmod t)$, that is, $Q_{r} \in A$.

If $r>s$, then $\gamma_{r}=l \gamma_{0}+\sum_{k=1}^{s} j_{k} \gamma_{k} \Rightarrow \overline{m_{r}}=1$. Since $0 \leqslant j_{k}<\overline{m_{k}}$, by Equation (8) in [6] we have $Q_{r+1}=Q_{r}-\lambda X^{l} Y^{j_{1}} Q_{2}^{j_{2}} \ldots Q_{s}^{j_{s}}$ where $\lambda \in$ $K \backslash\{0\}$. Since each Q_{m} is an eigenfunction for H, from (3.2) we have, $\forall b \equiv a x(\bmod t)$,

$$
\beta^{b d(r+1)} Q_{r+1}=\beta^{b d(r)} Q_{r}-\lambda \alpha^{l a} \beta^{b \sum_{k=1}^{s} j_{k} d(k)} X^{l} Y^{j_{1}} Q_{2}^{j_{2}} \ldots Q_{s}^{j_{s}} .
$$

Again by (2) in Section 2 we have $d(r+1)=\overline{m_{1}} \ldots \overline{m_{r}}=\overline{m_{1}} \ldots \overline{m_{r-1}}=$ $d(r)$, as $\overline{m_{r}}=1$. So the above expression yields $\beta^{b d(r)} Q_{r+1}=\beta^{b d(r)} Q_{r}-$ $\lambda \alpha^{l a} \beta^{b} \sum_{k=1}^{s}{ }^{j_{k} d(k)} X^{l} Y^{j_{1}} Q_{2}^{j_{2}} \ldots Q_{s}^{j_{s}}, \forall b \equiv a x(\bmod t)$. Since Q_{r+1} is an eigenfunction, this implies $\beta^{b d(r)}=\alpha^{l a} \beta^{b \sum_{k=1}^{s} j_{k} d(k)}=1, \forall b \equiv a x(\bmod t)$. From (3.2), we then have $Q_{r} \in A$.

To prove the proposition, we now show $S^{R_{\mathrm{m}}}(\nu)$ is finitely generated over the subsemigroup $S^{A_{\mathfrak{n}}}(\nu)$ if and only if $\exists N \in \mathbb{Z}_{>0}$ such that $\forall r \geqslant N, \gamma_{r} \in$ $S^{A_{\mathrm{n}}}(\nu)$.

Suppose $S^{R_{\mathfrak{m}}}(\nu)$ is finitely generated over $S^{A_{\mathrm{n}}}(\nu)$. So, $\exists x_{0}, \ldots, x_{l} \in$ $S^{R_{\mathrm{m}}}(\nu)$ such that $S^{R_{\mathrm{m}}}(\nu)=\left\{x_{0}, \ldots, x_{l}\right\}+S^{A_{\mathfrak{n}}}(\nu)$. Let $L \in \mathbb{N}$ be the least natural number such that $S^{R_{\mathrm{m}}}(\nu)=S\left(\beta_{0}, \ldots, \beta_{L}\right)+S^{A_{\mathrm{n}}}(\nu)$, where $\beta_{i}=$ $\gamma_{\sigma(i)}, \forall i \geqslant 0$. Let $M>L$. Now β_{M} has an expression $\beta_{M}=\sum_{i=0}^{L} a_{i} \beta_{i}+y$ where $y \in S^{A_{\mathrm{n}}}(\nu), a_{i} \in \mathbb{N}$. From (3.1) we have $\beta_{M}=\sum_{i=0}^{L} a_{i} \beta_{i}+\left(l \gamma_{0}+j_{1} \gamma_{1}+\right.$ $\cdots+j_{s} \gamma_{s}$, where $0 \leqslant j_{k}<\overline{m_{k}}$ and $\alpha^{l a} \beta^{b \sum_{k=1}^{s} j_{k} d(k)}=1, \forall b \equiv a x(\bmod t)$. We observe $\overline{m_{k}}=1 \Rightarrow j_{k}=0$. Thus the above expression can be rewritten as,

$$
\beta_{M}=\sum_{i=0}^{L} a_{i} \beta_{i}+\left(l \beta_{0}+j_{1} \beta_{1}+\cdots+j_{p} \beta_{p}\right)
$$

where $0 \leqslant j_{k}<\overline{n_{k}}$ and $\alpha^{l a} \beta^{b} \sum_{k=1}^{p} j_{k} \operatorname{deg}_{Y}\left(P_{k}\right)=1, \forall b \equiv a x(\bmod t)$. Since $L<M$, from (4.1) we obtain $j_{M}=1, a_{i}=0, \forall i=0, \ldots, L$ and $j_{k}=0$, $\forall k \neq M$. Thus $\beta^{b \operatorname{deg}_{Y}\left(P_{M}\right)}=1, \forall b \equiv a x(\bmod t) \Rightarrow n \mid \operatorname{deg}_{Y}\left(P_{M}\right)$. Thus $n \mid d(\sigma(M)), \forall M>L$. From (2) in Section 2 we have $n \mid d(r)$,
$\forall r \geqslant \sigma(L+1)$. So, $\beta^{b d(r)}=1, \forall b \equiv a x(\bmod t)$. From (3.2) we conclude, $Q_{r} \in A, \forall r \geqslant \sigma(L+1)$, that is, $\gamma_{r} \in S^{A_{\mathrm{n}}}(\nu), \forall r \geqslant \sigma(L+1)$.

Conversely, we assume $S\left(\gamma_{N}, \gamma_{N+1}, \ldots\right) \subset S^{A_{\mathfrak{n}}}(\nu)$ for some $N \in \mathbb{Z}_{>0}$. Now $\gamma_{i} \in \mathbb{Q}_{>0}, \forall i$ implies $\forall i \neq j, \exists d_{i}, d_{j} \in \mathbb{Z}_{>0}$ such that $d_{i} \gamma_{i}=d_{j} \gamma_{j}$. We thus have $d_{i} \gamma_{i}=d_{i, N} \gamma_{N}, \forall i=0, \ldots, N-1$. We will now show that, $S^{R_{\mathrm{m}}}(\nu)=T+S^{A_{\mathrm{n}}}(\nu)$, where $T=\left\{\sum_{i=0}^{N-1} \overline{a_{i}} \gamma_{i} \mid 0 \leqslant \overline{a_{i}}<d_{i}\right\}$. Now, $\gamma_{i} \in$ $S^{R_{\mathrm{m}}}(\nu), \forall i=0, \ldots, N-1 \Rightarrow T+S^{A_{\mathrm{n}}}(\nu) \subset S^{R_{\mathrm{m}}}(\nu)$. So it is enough to show $S^{R_{\mathrm{m}}}(\nu) \subset T+S^{A_{\mathrm{n}}}(\nu)$.

$$
\begin{aligned}
& x \in S^{R_{\mathfrak{m}}}(\nu) \Longrightarrow x=\sum_{i=0}^{N-1} a_{i} \gamma_{i}+\sum_{i=N}^{l} a_{i} \gamma_{i} \\
& \Longrightarrow x=\sum_{i=0}^{N-1} \overline{a_{i}} \gamma_{i}+\sum_{i=0}^{N-1} b_{i} d_{i} \gamma_{i}+\sum_{i=N}^{l} a_{i} \gamma_{i} \\
& \text { where } a_{i}=\overline{a_{i}}+b_{i} d_{i}, 0 \leqslant \overline{a_{i}}<d_{i}, b_{i} \in \mathbb{N} \\
& \Longrightarrow x=\sum_{i=0}^{N-1} \overline{a_{i}} \gamma_{i}+\sum_{i=0}^{N-1} b_{i} d_{i, N} \gamma_{N}+\sum_{i=N}^{l} a_{i} \gamma_{i} \\
& \Longrightarrow x=\sum_{i=0}^{N-1} \overline{a_{i}} \gamma_{i}+y, \text { where } y \in S^{A_{\mathfrak{n}}}(\nu) .
\end{aligned}
$$

Thus we have shown $S^{R_{\mathrm{m}}}(\nu) \subset T+S^{A_{\mathrm{n}}}(\nu)$. Since T is a finite set, we have $S^{R_{\mathrm{m}}}(\nu)$ is finitely generated over $S^{A_{\mathrm{n}}}(\nu)$.

From (3.2), $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{N}=\beta^{d(N) b} Q_{N}, \forall b \equiv a x(\bmod t)$. So, $Q_{N} \in$ $A \Leftrightarrow \beta^{d(N) b}=1, \forall b \equiv a x(\bmod t)$. Again from (2) of Section 2 we have $d(N) \mid d(M), \forall M \geqslant N \geqslant 1$. Hence we obtain, $Q_{N} \in A \Rightarrow Q_{M} \in A$, $\forall M \geqslant N \geqslant 1$. So, $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$ if and only if $Q_{r} \notin A, \forall r \geqslant 1$.

Lemma 4.3. - Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3. Let assumptions be as in Theorem 3.1. Then $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$ if and only if $n \nmid d(l), \forall l \geqslant 2$.

Proof. - Suppose that $S^{R_{\mathfrak{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$. Then $Q_{l} \notin A, \forall l \geqslant 1$. From (3.2), if $n \mid d(l)$, then, $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{l}=\beta^{d(l) b} Q_{l}=$ Q_{l}, that is $Q_{l} \in A$, which is a contradiction. So, $n \nmid d(l), \forall l \geqslant 2$.

Conversely, suppose $n \nmid d(l), \forall l \geqslant 2$, that is, $n \nmid d(l), \forall l \geqslant 1$. Now, $(x, t)=1 \Rightarrow a x \equiv 1(\bmod t)$ for some $a \in \mathbb{Z}$, so, $\left(\alpha^{a}, \beta\right) \in H$. From (3.2), $\left(\alpha^{a}, \beta\right) \cdot Q_{l}=\beta^{d(l)} Q_{l} \neq Q_{l}$ for all $l \geqslant 1$, as $n \nmid d(l)$. So we have $Q_{l} \notin A$, $\forall l \geqslant 1$. Hence $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$.

Proposition 4.4.- Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3, such that $(m, n)>t \geqslant 1$. Suppose that ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$, with a generating sequence (2.2) $\left\{Q_{l}\right\}_{l \geqslant 0}$, where $Q_{0}=X, Q_{1}=Y$ as in Section 2. Then $\left\{Q_{l}\right\}_{l \geqslant 0}$ is not a sequence of eigenfunctions for H.

Proof. - Let $d=(m, n)$. Then $1 \leqslant t<d \leqslant \min \{m, n\}$. So, $t<$ m and $t<n$. We recall, $H=\left\{\left(\alpha^{a}, \beta^{b}\right) \mid b \equiv a x(\bmod t)\right\}$. Thus $\left(\alpha^{t}, 1\right),\left(1, \beta^{t}\right)$ $\in H$. Let $\left\{Q_{l}\right\}_{l \geqslant 0}$ be the generating sequence (2.2) with $Q_{0}=X, Q_{1}=Y$. Let $\nu\left(Q_{l}\right)=\gamma_{l}, \forall l \geqslant 0$. By Equation (8) in [6], $Q_{2}=Y^{s}-\lambda X^{r}$, where $\lambda \in K \backslash\{0\}, s \gamma_{1}=r \gamma_{0}$, and $s=\min \left\{q \in \mathbb{Z}_{>0} \mid q \gamma_{1} \in \gamma_{0} \mathbb{Z}\right\}$. From (2.1), we have,

$$
\begin{aligned}
&\left(\alpha^{t}, 1\right) \cdot Q_{2}=\left(\alpha^{t}, 1\right) \cdot\left[Y^{s}-\lambda X^{r}\right] \\
&\left(1, \beta^{t}\right) \cdot Y^{s}-\lambda \alpha^{r t} X^{r} \\
&=\left(1, \beta^{t}\right) \cdot\left[Y^{s}-\lambda X^{r}\right]
\end{aligned}=\beta^{s t} Y^{s}-\lambda X^{r} .
$$

If Q_{2} was an eigenfunction of H, then $m \left\lvert\, r t \Rightarrow r=r_{1} \frac{m}{t}\right.$, where $r_{1} \in \mathbb{Z}_{>0}$. Similarly, $n \left\lvert\, s t \Rightarrow s=s_{1} \frac{n}{t}\right.$, where $s_{1} \in \mathbb{Z}_{>0}$. And, $s \gamma_{1}=r \gamma_{0} \Rightarrow s_{1} \frac{n}{t} \gamma_{1}=$ $r_{1} \frac{m}{t} \gamma_{0}$. So, $s_{1} \frac{n}{d} \gamma_{1}=r_{1} \frac{m}{d} \gamma_{0}$. Now, $d \mid n$ implies $s_{1} \frac{n}{d} \in \mathbb{Z}_{>0}$. Similarly, $r_{1} \frac{m}{d} \in$ $\mathbb{Z}_{>0}$. Thus, $s_{1} \frac{n}{d} \gamma_{1} \in \gamma_{0} \mathbb{Z}$. But $t<d$ implies $s_{1} \frac{n}{d}<s_{1} \frac{n}{t}=s$, and this contradicts the minimality of s. Thus Q_{2} is not an eigenfunction of H. So, $\left\{Q_{l}\right\}_{l \geqslant 0}$ is not a generating sequence of eigenfunctions for H.

We know, if ω is a primitive l-th root of unity in K, then $\left\{\omega^{k} \mid 1 \leqslant\right.$ $k \leqslant l\}$ is a complete list of all l-th roots of unity in K, and $\left\{\omega^{k} \mid 1 \leqslant k \leqslant\right.$ l and $(k, l)=1\}$ is a complete list of all primitive l-th roots of unity in K.

We have, α is a primitive m-th root of unity and β is a primitive n-th root of unity in K. Let δ be a primitive $m n$-th root of unity in K. Then δ^{n} is a primitive m-th root of unity. Now, $S_{\alpha}=\left\{\alpha^{k} \mid 1 \leqslant k \leqslant m\right.$ and $\left.(k, m)=1\right\}$ is a complete list of all primitive m-th roots of unity in K. And, $S_{\delta^{n}}=\left\{\delta^{k n} \mid\right.$ $1 \leqslant k \leqslant m$ and $(k, m)=1\}$ is also a complete list of all primitive m-th roots of unity. Thus, $\alpha=\delta^{w_{1} n}$ where $\left(w_{1}, m\right)=1$ and $1 \leqslant w_{1} \leqslant m$. Similarly, $\beta=\delta^{w_{2} m}$ where $\left(w_{2}, n\right)=1$ and $1 \leqslant w_{2} \leqslant n$.

Remark 4.5. - Let $p, q \in \mathbb{Z}$. With the notation introduced above, $\beta^{p}=$ $\alpha^{q} \Leftrightarrow \frac{p w_{2}}{n}-\frac{q w_{1}}{m} \in \mathbb{Z}$.

Proof. - We have, $\beta=\delta^{w_{2} m}$ and $\alpha=\delta^{w_{1} n}$, where δ is a primitive $m n$-th root of unity.

Thus,

$$
\begin{aligned}
& \beta^{p}=\alpha^{q} \Longleftrightarrow \delta^{w_{2} m p}=\delta^{w_{1} n q} \Longleftrightarrow m n \mid\left(w_{2} m p-w_{1} n q\right) \\
& \Longleftrightarrow \frac{p w_{2}}{n}-\frac{q w_{1}}{m} \in \mathbb{Z} .
\end{aligned}
$$

Proposition 4.6. - Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3, such that $(m, n)=t, t>1$. Set $m=M t$, and $n=N t$, where $M, N \in \mathbb{Z}_{>0}$ and $(M, N)=1$. Suppose that there exists a prime number p such that $p \mid t$ but $p \nmid N$. Suppose that ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$ with a generating sequence (2.2) of eigenfunctions for H. Then $S^{R_{\mathfrak{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$.

Proof. - Let $\left\{Q_{l}\right\}_{l \geqslant 0}$ be the generating sequence (2.2) of the valuation ν, where $Q_{0}=X, Q_{1}=Y$, and each Q_{l} is an eigenfunction for H. Let $\gamma_{l}=\nu\left(Q_{l}\right), \forall l \geqslant 0$. Without any loss of generality, we can assume $\gamma_{0}=1$. Since ν is a rational valuation, we can write $\gamma_{k}=\frac{a_{k}}{b_{k}}, \forall k \geqslant 1$, where $\left(a_{k}, b_{k}\right)=1$. We have, $p \mid t$, and $p \nmid N$ for a prime p. So $(p, N)=1$. So $\exists N_{1} \in \mathbb{Z}$ such that $N N_{1} \equiv 1(\bmod p)$. Let w_{1} and w_{2} be as in Remark 4.5. Now $\left(m, w_{1}\right)=1$ and $t \mid m$. So $\left(t, w_{1}\right)=1$. So $\left(p, w_{1}\right)=1$. So $\exists \overline{w_{1}} \in \mathbb{Z}$ such that $w_{1} \overline{w_{1}} \equiv 1(\bmod p)$.

We now use induction to show the following $\forall k \geqslant 1$,

$$
\begin{align*}
\left(p, \overline{m_{k}}\right) & =1,\left(p, b_{k}\right)=1 \\
a_{k} & \equiv b_{k} M N_{1} x w_{2} \overline{w_{1}} d(k) \quad(\bmod p) \tag{4.2}
\end{align*}
$$

We have $\gamma_{1}=\frac{a_{1}}{b_{1}}$, where $\left(a_{1}, b_{1}\right)=1$. So $\overline{m_{1}}=b_{1}$. By Equation (8) in [6], we have $Q_{2}=Y^{b_{1}}-\lambda_{1} X^{a_{1}}$, for some $\lambda_{1} \in K \backslash\{0\}$. Again $\left(\alpha, \beta^{x}\right) \in H$. Now, $\left(\alpha, \beta^{x}\right) \cdot Q_{2}=\beta^{b_{1} x} Y^{b_{1}}-\lambda_{1} \alpha^{a_{1}} X^{a_{1}}$. Since Q_{2} is an eigenfunction for H, we have

$$
\begin{aligned}
\beta^{b_{1} x}=\alpha^{a_{1}} & \Longrightarrow \frac{b_{1} x w_{2}}{n}-\frac{a_{1} w_{1}}{m} \in \mathbb{Z} \quad \text { by Remark } 4.5 \\
& \Longrightarrow \frac{b_{1} x w_{2}}{N t}-\frac{a_{1} w_{1}}{M t} \in \mathbb{Z} \\
& \Longrightarrow M N t \mid\left[b_{1} x M w_{2}-a_{1} N w_{1}\right] \\
& \Longrightarrow b_{1} M N_{1} x w_{2} \overline{w_{1}} \equiv a_{1}(\bmod p) \quad \text { as } p \mid t .
\end{aligned}
$$

If $\left(p, b_{1}\right) \neq 1$, then $p\left|b_{1} \Rightarrow p\right| a_{1}$. But this contradicts $\left(a_{1}, b_{1}\right)=1$. So, $\left(p, b_{1}\right)=1$. Since $\overline{m_{1}}=b_{1}$, we thus have $\left(p, \overline{m_{1}}\right)=1$. Thus we have the induction step for $k=1$.

Suppose (4.2) is true for $k=1, \ldots, l-1$. From (3.2) we have (α^{a}, β^{b}). $Q_{k}=\beta^{d(k) b} Q_{k}, \forall k \geqslant 1, \forall\left(\alpha^{a}, \beta^{b}\right) \in H$. By Equation (8) in [6] we have, $Q_{l+1}=Q_{l}^{\overline{m_{l}}}-\lambda_{l} X^{c_{0}} Y^{c_{1}} Q_{2}^{c_{2}} \ldots Q_{l-1}^{c_{l-1}}$ where $\lambda_{l} \in K \backslash\{0\}, 0 \leqslant c_{k}<\overline{m_{k}}$, $\forall k=1, \ldots, l-1$ and $\overline{m_{l}} \gamma_{l}=\sum_{k=0}^{l-1} c_{k} \gamma_{k}$.

Generating sequences and semigroups of valuations on 2-dimensional normal local rings

$$
\left(\alpha, \beta^{x}\right) \cdot Q_{l+1}=\beta^{x \overline{m_{l}} d(l)} Q_{l}^{\overline{m_{l}}}-\lambda_{l} \alpha^{c_{0}} \beta^{x\left[\sum_{k=1}^{l-1} c_{k} d(k)\right]} X^{c_{0}} Y^{c_{1}} Q_{2}^{c_{2}} \ldots Q_{l-1}^{c_{l-1}} .
$$

Since Q_{l+1} is an eigenfunction for H, we have

$$
\begin{aligned}
\beta^{x \overline{m_{l}} d(l)} & =\alpha^{c_{0}} \beta^{x\left[\sum_{k=1}^{l-1} c_{k} d(k)\right]} \\
& \Longrightarrow \beta^{x\left[\overline{m_{l}} d(l)-\sum_{k=1}^{l-1} c_{k} d(k)\right]}=\alpha^{c_{0}} \\
& \Longrightarrow \frac{x\left[\overline{m_{l}} d(l)-\sum_{k=1}^{l-1} c_{k} d(k)\right] w_{2}}{N t}-\frac{c_{0} w_{1}}{M t} \in \mathbb{Z} \quad \text { by Remark 4.5 } \\
& \Longrightarrow M N t \mid\left[M x w_{2} \overline{m_{l}} d(l)-M x w_{2} \sum_{k=1}^{l-1} c_{k} d(k)-N c_{0} w_{1}\right] \\
& \Longrightarrow p \mid\left[M x w_{2} \overline{m_{l}} d(l)-M x w_{2} \sum_{k=1}^{l-1} c_{k} d(k)-N c_{0} w_{1}\right] \\
& \Longrightarrow M N_{1} x w_{2} \overline{w_{1}} \overline{m_{l}} d(l) \equiv\left[M N_{1} x w_{2} \overline{w_{1}} \sum_{k=1}^{l-1} c_{k} d(k)+c_{0}\right](\bmod p)
\end{aligned}
$$

Now, $p \mid \overline{m_{l}} \Rightarrow c_{0}=\lambda p-M N_{1} x w_{2} \overline{w_{1}} \sum_{k=1}^{l-1} c_{k} d(k)$, where $\lambda \in \mathbb{Z}$. Let $\overline{m_{l}}=p M_{l}$, where $M_{l} \in \mathbb{Z}_{>0}$. So, $\overline{m_{l}} \gamma_{l}=p M_{l} \gamma_{1}=c_{0}+\sum_{k=1}^{l-1} c_{k} \gamma_{k}=\lambda p+$ $\sum_{k=1}^{l-1} c_{k}\left[\gamma_{k}-M N_{1} x w_{2} \overline{w_{1}} d(k)\right]$.

By our induction statement, $\forall k=1, \ldots, l-1$, we have $a_{k}=t_{k} p+$ $b_{k} M N_{1} x w_{2} \overline{w_{1}} d(k)$, where $t_{k} \in \mathbb{Z}$. Thus,

$$
\begin{aligned}
p M_{l} \gamma_{l} & =\lambda p+\sum_{k=1}^{l-1} c_{k}\left[\frac{t_{k} p+b_{k} M N_{1} x w_{2} \overline{w_{1}} d(k)}{b_{k}}-M N_{1} x w_{2} \overline{w_{1}} d(k)\right] \\
& =\lambda p+p \sum_{k=1}^{l-1} c_{k} t_{k} \frac{1}{b_{k}} .
\end{aligned}
$$

Now $\left(a_{k}, b_{k}\right)=1 \Rightarrow \exists h_{k} \in \mathbb{Z}$ such that $h_{k} a_{k} \equiv 1\left(\bmod b_{k}\right)$. Let $h_{k} a_{k}-1=$ $\zeta_{k} b_{k}$, where $\zeta_{k} \in \mathbb{Z}$. So, $\frac{1}{b_{k}}=\frac{h_{k} a_{k}-\left(h_{k} a_{k}-1\right)}{b_{k}}=h_{k} \gamma_{k}-\zeta_{k}$. Then, $p M_{l} \gamma_{l}=$ $\lambda p+p \sum_{k=1}^{l-1} c_{k} t_{k}\left[h_{k} \gamma_{k}-\zeta_{k}\right]$ implies

$$
M_{l} \gamma_{l}=\lambda+\sum_{k=1}^{l-1} c_{k} t_{k}\left[h_{k} \gamma_{k}-\zeta_{k}\right] \in G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right) .
$$

But this contradicts the minimality of $\overline{m_{l}}$. So $p \nmid \overline{m_{l}}$. So $\left(p, \overline{m_{l}}\right)=1$.

Now,

$$
\begin{aligned}
\overline{m_{l}} \gamma_{l}=c_{0}+\sum_{k=1}^{l-1} c_{k} \gamma_{k} \Longrightarrow \overline{m_{l}} \frac{a_{l}}{b_{l}}= & c_{0}+\sum_{k=1}^{l-1} c_{k} \frac{a_{k}}{b_{k}} \\
& \Longrightarrow \overline{m_{l}} a_{l} \prod_{k=1}^{l-1} b_{k}=c_{0} B+B \sum_{k=1}^{l-1} c_{k} \frac{a_{k}}{b_{k}}
\end{aligned}
$$

where $B=\prod_{k=1}^{l} b_{k}$.
From the induction hypothesis, $\frac{a_{k}}{b_{k}} B=\left[t_{k} p+b_{k} M N_{1} x w_{2} \overline{w_{1}} d(k)\right] \frac{B}{b_{k}}$. So,

$$
\begin{aligned}
\overline{m_{l}} a_{l} \prod_{k=1}^{l-1} b_{k} & =c_{0} B+\sum_{k=1}^{l-1} c_{k}\left[t_{k} p+b_{k} M N_{1} x w_{2} \overline{w_{1}} d(k)\right] \frac{B}{b_{k}} \\
& \Longrightarrow \overline{m_{l}} a_{l} \prod_{k=1}^{l-1} b_{k} \equiv\left[c_{0}+M N_{1} x w_{2} \overline{w_{1}} \sum_{k=1}^{l-1} c_{k} d(k)\right] B(\bmod p) .
\end{aligned}
$$

Since, $M N_{1} x w_{2} \overline{w_{1}} \overline{m_{l}} d(l) \equiv\left[M N_{1} x w_{2} \overline{w_{1}} \sum_{k=1}^{l-1} c_{k} d(k)+c_{0}\right](\bmod p)$, we have

$$
\overline{m_{l}} a_{l} \prod_{k=1}^{l-1} b_{k} \equiv M N_{1} x w_{2} \overline{w_{1}} \overline{m_{l}} d(l) \prod_{k=1}^{l} b_{k}(\bmod p)
$$

Since $\left(p, \overline{m_{l}}\right)=1,\left(p, b_{k}\right)=1, \forall k=1, \ldots, l-1$, we have

$$
a_{l} \equiv M N_{1} x w_{2} \overline{w_{1}} d(l) b_{l} \quad(\bmod p) .
$$

If $p \mid b_{l}$, then $p \mid a_{l}$ which contradicts $\left(a_{l}, b_{l}\right)=1$. So $\left(p, b_{l}\right)=1$. Thus we have the induction step for $k=l$.

In particular, by induction we have $\left(p, \overline{m_{k}}\right)=1, \forall k \geqslant 1$. Since $d(k)=$ $\overline{m_{1}} \ldots \overline{m_{k-1}}$ (by (2), Section 2), we have $(p, d(k))=1, \forall k \geqslant 2$. So $p \nmid d(k)$, $\forall k \geqslant 2 \Rightarrow t \nmid d(k), \forall k \geqslant 2 \Rightarrow n=N t \nmid d(k), \forall k \geqslant 2$. Thus by Lemma 4.3, we have $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$.

Proposition 4.7. - Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3, such that $(m, n)=t$ and $t>1$. Set $m=M t$ and $n=N t$ where $M, N \in \mathbb{Z}_{>0}$ and $(M, N)=1$. Suppose that for any prime number p which divides t, the number p also divides N. Suppose that ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$ with a generating sequence (2.2) of eigenfunctions for H. Then $S^{R_{\mathfrak{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathfrak{n}}}(\nu)$.

Proof. - Since $(x, t)=1, \exists r \in \mathbb{Z}_{>0}$ such that $r x \equiv 1(\bmod t)$. So $(r, t)=1$. Recall, $\alpha=\delta^{w_{1} n}, \beta=\delta^{w_{2} m}$, where δ is a primitive $m n$-th root of unity, and $\left(w_{1}, m\right)=1,\left(w_{2}, n\right)=1,1 \leqslant w_{1} \leqslant m$ and $1 \leqslant w_{2} \leqslant n$. Now, $M \mid m \Rightarrow\left(w_{1}, M\right)=1$. Similarly, $\left(w_{2}, N\right)=1,\left(w_{1}, t\right)=1,\left(w_{2}, t\right)=1$. So $\exists \overline{w_{1}}, \overline{w_{2}} \in \mathbb{Z}_{>0}$ such that $w_{1} \overline{w_{1}} \equiv 1(\bmod t)$ and $w_{2} \overline{w_{2}} \equiv 1(\bmod t)$.

Write $N=\bar{N} N^{\prime}$, where \bar{N} is the largest factor of N such that $(\bar{N}, x)=1$. If $\bar{N}=1$, then for any prime p dividing N, we have $p \mid x$. So in particular $p|t \Rightarrow p| x$. But this is a contradiction as $(t, x)=1$. So $\bar{N}>1$ if $N>1$. We will now show $\left(\bar{N}, N^{\prime}\right)=1$. Suppose the contrary. Then there exists a prime p such that $p \mid \bar{N}$ and $p\left|N^{\prime} . p\right| \bar{N} \Rightarrow(p, x)=1 \Rightarrow(\bar{N} p, x)=1$. And, $\bar{N} N^{\prime}=N \Rightarrow p \bar{N} \mid N$. This contradicts the maximality of \bar{N}. So $\left(\bar{N}, N^{\prime}\right)=1$. Hence $(N, x)=\left(N^{\prime}, x\right)$. We will now show that $\left(t, N^{\prime}\right)=1$. Suppose there exists a prime p such that $p \mid t$ and $p \mid N^{\prime}$. Then $p|t, p| N$ and $p \nmid \bar{N}$. Thus $p \mid t$ and $p \mid x$, which is a contradiction as t and x are coprime. Thus $\left(t, N^{\prime}\right)=1$. Also $\left(N, w_{2}\right)=1 \operatorname{implies}\left(\bar{N}, w_{2}\right)=1$.

Let $\left\{Q_{l}\right\}_{l \geqslant 0}$ be the generating sequence (2.2) of the valuation ν, where $Q_{0}=X, Q_{1}=Y$, and each Q_{l} is an eigenfunction for H. Let $\gamma_{l}=\nu\left(Q_{l}\right), \forall l \geqslant$ 0 . Without any loss of generality, we can assume $\gamma_{0}=1$. Let $\gamma_{1}=\frac{a_{1}}{b_{1}}$, where $\left(a_{1}, b_{1}\right)=1$. So $\overline{m_{1}}=b_{1}$. By Equation (8) in [6], we have $Q_{2}=Y^{b_{1}}-\zeta_{1} X^{a_{1}}$ for some $\zeta_{1} \in K \backslash\{0\}$. Now, $\left(\alpha, \beta^{x}\right) \in H$. By (3.2), $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{k}=\beta^{d(k) b} Q_{k}$, $\forall k \geqslant 1, \forall\left(\alpha^{a}, \beta^{b}\right) \in H$. So, $\left(\alpha, \beta^{x}\right) \cdot Q_{2}=\left(\alpha, \beta^{x}\right) \cdot\left[Y^{b_{1}}-\zeta_{1} X^{a_{1}}\right]=$ $\beta^{b_{1} x} Y^{b_{1}}-\zeta_{1} \alpha^{a_{1}} X^{a_{1}}$. Since Q_{2} is an eigenfunction for H, we have

$$
\begin{aligned}
\beta^{b_{1} x}=\alpha^{a_{1}} & \Longrightarrow \frac{b_{1} x w_{2}}{N t}-\frac{a_{1} w_{1}}{M t} \in \mathbb{Z} \text { by Remark } 4.5 \\
& \Longrightarrow M \bar{N} t \mid\left[M b_{1} x w_{2}-N a_{1} w_{1}\right] \\
& \Longrightarrow M \mid a_{1} \text { and } \bar{N} \mid b_{1} \text { as }\left(\bar{N}, w_{2}\right)=1,\left(M, w_{1}\right)=1 \\
& (M, N)=1,(\bar{N}, x)=1 .
\end{aligned}
$$

Let $a_{1}=M a_{1}^{\prime}$ and $b_{1}=\bar{N} b_{1}^{\prime}$. Then, $M \bar{N} t \mid\left[M \bar{N} b_{1}^{\prime} x w_{2}-N M a_{1}^{\prime} w_{1}\right]$ implies $b_{1}^{\prime} \equiv r a_{1}^{\prime} w_{1} \overline{w_{2}} N^{\prime}(\bmod t)$ as $r x \equiv 1(\bmod t)$ and $N=\bar{N} N^{\prime}$. Now, $\gamma_{1}=$ $\frac{a_{1}}{b_{1}}=\frac{M a_{1}^{\prime}}{\bar{N} b_{1}^{\prime}} .\left(a_{1}, b_{1}\right)=1 \Rightarrow\left(\bar{N}, a_{1}^{\prime}\right)=1,\left(a_{1}^{\prime}, b_{1}^{\prime}\right)=1$ and $\left(M, b_{1}^{\prime}\right)=1$. Rename $a_{1}^{\prime}=u$ and $b_{1}^{\prime}=r^{\prime}$. Then $(u, \bar{N})=1$. If $(u, t) \neq 1$, then there exists a prime p such that $p \mid t$ and $p \mid u$. Thus $p|t, p| N$ and $p \nmid \bar{N}$, since for any prime p dividing t, p also divides N. So $p \mid t$ and $p \mid N^{\prime}$. But we have established earlier that $\left(t, N^{\prime}\right)=1$. So $(u, t)=1$. And, $r^{\prime} \equiv r u w_{1} \overline{w_{2}} N^{\prime}(\bmod t) \Rightarrow r^{\prime} x \equiv$ $u w_{1} \overline{w_{2}} N^{\prime}(\bmod t)$. Thus,

$$
\begin{array}{r}
\gamma_{1}=\frac{M u}{\bar{N} r^{\prime}} \quad \text { where }(u, \bar{N})=1,(u, t)=1,\left(u, r^{\prime}\right)=1,\left(M, r^{\prime}\right)=1 \\
r^{\prime} \equiv r u w_{1} \overline{w_{2}} N^{\prime}(\bmod t) \tag{4.3}
\end{array}
$$

We will now use induction to show that $\forall k \geqslant 2$,

$$
\begin{align*}
& \gamma_{k}=M u \overline{m_{2}} \ldots \overline{m_{k-1}}+\frac{M \bar{N} t \lambda_{k}}{\overline{m_{1}} \ldots \overline{m_{k}}} \text { for some } \lambda_{k} \in \mathbb{Z} \tag{4.4}\\
& \left(t, \overline{m_{k}}\right)=1
\end{align*}
$$

By Equation (8) in [6] we have, $Q_{3}=Q_{2}^{\overline{m_{2}}}-\zeta_{2} X^{c_{0}} Y^{c_{1}}$ where $\zeta_{2} \in K \backslash\{0\}$, $c_{0} \in \mathbb{Z}_{>0}, 0 \leqslant c_{1}<\overline{m_{1}} .\left(\alpha, \beta^{x}\right) \cdot Q_{3}=\beta^{x \overline{m_{2}}} \overline{m_{1}} Q_{2}^{\overline{m_{2}}}-\zeta_{2} \alpha^{c_{0}} \beta^{x c_{1}} X^{c_{0}} Y^{c_{1}}$. Since Q_{3} is an eigenfunction for H, we have

$$
\begin{aligned}
\beta^{x \overline{m_{2}} \overline{m_{1}}}= & \alpha^{c_{0}} \beta^{x c_{1}} \\
& \Longrightarrow \beta^{x\left[\overline{m_{2}} \overline{m_{1}}-c_{1}\right]}=\alpha^{c_{0}} \\
& \Longrightarrow \frac{x\left[\overline{m_{2}} \overline{m_{1}}-c_{1}\right] w_{2}}{N t}-\frac{c_{0} w_{1}}{M t} \in \mathbb{Z} \text { by Remark } 4.5 \\
& \Longrightarrow M \bar{N} t \mid\left[M \bar{N} r^{\prime} x w_{2} \overline{m_{2}}-M x w_{2} c_{1}-N c_{0} w_{1}\right] \text { as } \overline{m_{1}}=\bar{N} r^{\prime} \\
& \Longrightarrow M \mid c_{0} \text { and } \bar{N} \mid c_{1} \text { as }(M, N)=1,\left(M, w_{1}\right)=1, \\
& \left(\bar{N}, w_{2}\right)=1,(\bar{N}, x)=1
\end{aligned}
$$

Let $c_{0}=M c_{0}^{\prime}$ and $c_{1}=\bar{N} c_{1}^{\prime}$. Plugging them in the above expression and using (4.3), we obtain,

$$
\begin{aligned}
M \bar{N} t \mid\left[M \bar{N} r^{\prime} x w_{2} \overline{m_{2}}-M\right. & \left.x w_{2} \bar{N} c_{1}^{\prime}-N M c_{0}^{\prime} w_{1}\right] \\
& \Longrightarrow r^{\prime} x w_{2} \overline{m_{2}} \equiv\left[w_{1} c_{0}^{\prime} N^{\prime}+x w_{2} c_{1}^{\prime}\right](\bmod t) \\
& \Longrightarrow u w_{1} \overline{m_{2}} N^{\prime} \equiv\left[w_{1} c_{0}^{\prime} N^{\prime}+x w_{2} c_{1}^{\prime}\right](\bmod t) \\
& \Longrightarrow r^{\prime} u \overline{m_{2}} \equiv\left[r^{\prime} c_{0}^{\prime}+u c_{1}^{\prime}\right](\bmod t)
\end{aligned}
$$

So, $\overline{m_{2}} \gamma_{2}=c_{0}+c_{1} \gamma_{1}=M c_{0}^{\prime}+\bar{N} c_{1}^{\prime} \frac{M u}{\overline{N r^{\prime}}}=M\left[\frac{c_{0}^{\prime} r^{\prime}+c_{1}^{\prime} u}{r^{\prime}}\right]=M\left[\frac{r^{\prime} u \overline{m_{2}}+\lambda_{2} t}{r^{\prime}}\right]=$ $M u \overline{m_{2}}+\frac{M \bar{N} t \lambda_{2}}{\overline{m_{1}}}$ for some $\lambda_{2} \in \mathbb{Z}$. Thus, $\gamma_{2}=M u+\frac{M \bar{N} t \lambda_{2}}{\overline{m_{1}} \overline{m_{2}}}$.

We will now show $\left(t, \overline{m_{2}}\right)=1$. Suppose if possible there exists a prime p such that $p \mid t$ and $p \mid \overline{m_{2}}$. Let $\overline{m_{2}}=p M_{2}$. So, $\gamma_{2}=M u+\frac{M \bar{N} t \lambda_{2}}{\overline{m_{1}} \overline{m_{2}}} \Rightarrow \overline{m_{2}} \gamma_{2}=$ $M u \overline{m_{2}}+\frac{M \bar{N} t \lambda_{2}}{\overline{m_{1}}} \Rightarrow p M_{2} \gamma_{2}=p M u M_{2}+\frac{M t \lambda_{2}}{r^{\prime}} \Rightarrow r^{\prime} M_{2} \gamma_{2}=r^{\prime} M u M_{2}+M \lambda_{2} \frac{t}{p}$. $\left(w_{1}, t\right)=1 .\left(N^{\prime}, t\right)=1 . r x \equiv 1(\bmod t)$ implies $(r, t)=1 . w_{2} \overline{w_{2}} \equiv 1(\bmod t)$ implies $\left(\overline{w_{2}}, t\right)=1$. And, $(u, t)=1$ by (4.3). So, $r^{\prime} \equiv r u w_{1} \overline{w_{2}} N^{\prime}(\bmod t) \Rightarrow$ $\left(r^{\prime}, t\right)=1$. So $\exists r_{1} \in \mathbb{Z}$ such that $r_{1} r^{\prime} \equiv 1(\bmod t)$. So in particular, $r_{1} r^{\prime} \equiv 1(\bmod p), \forall$ prime p dividing t. We then have,

$$
\begin{aligned}
r_{1} r^{\prime} M_{2} \gamma_{2} & =r_{1} r^{\prime} M u M_{2}+r_{1} M \lambda_{2} \frac{t}{p} \\
& \Longrightarrow\left(1+\mu_{2} p\right) M_{2} \gamma_{2}=r_{1} r^{\prime} M u M_{2}+r_{1} M \lambda_{2} \frac{t}{p} \quad \text { for some } \mu_{2} \in \mathbb{Z} \\
& \Longrightarrow M_{2} \gamma_{2}+\mu_{2} \overline{m_{2}} \gamma_{2} \in \mathbb{Z} \subset G\left(\gamma_{0}, \gamma_{1}\right) \Longrightarrow M_{2} \gamma_{2} \in G\left(\gamma_{0}, \gamma_{1}\right)
\end{aligned}
$$

But this contradicts the minimality of $\overline{m_{2}}$. So for any prime p dividing t, we have $p \nmid \overline{m_{2}}$. Thus $\left(t, \overline{m_{2}}\right)=1$. We now have the induction step for $k=2$.

Suppose (4.4) is true for $k=3, \ldots, l-1$. By Equation (8) in [6] we have, $Q_{l+1}=Q_{l}^{\overline{m_{l}}}-\zeta_{l} X^{c_{0}} Y^{c_{1}} Q_{2}^{c_{2}} \ldots Q_{l-1}^{c_{l-1}}$ where $\zeta_{l} \in K \backslash\{0\}, c_{0} \in \mathbb{Z}_{>0}, 0 \leqslant$
$c_{k}<\overline{m_{k}}, \forall k=1, \ldots, l-1$ and $\overline{m_{l}} \gamma_{l}=\sum_{k=0}^{l-1} c_{k} \gamma_{k}$. By (2) of Section 2 we have $d(l)=\prod_{k=1}^{l-1} \overline{m_{k}}, \forall l \geqslant 2$. Again, $\overline{m_{1}}=\bar{N} r^{\prime}$ by (4.3). So $\forall l \geqslant 2$, $d(l)=\bar{N} r^{\prime} \overline{d(l)}$, where $\overline{d(l)}=\frac{d(l)}{\overline{m_{1}}}$. Thus, $\forall l \geqslant 3, \overline{d(l)}=\prod_{k=2}^{l-1} \overline{m_{k}}$.

Now,

$$
\left(\alpha, \beta^{x}\right) \cdot Q_{l+1}=\beta^{x \overline{m_{l}} d(l)} Q_{l}^{\overline{m_{l}}}-\zeta_{l} \alpha^{c_{0}} \beta^{x\left[\sum_{k=1}^{l-1} c_{k} d(k)\right]} X^{c_{0}} Y^{c_{1}} Q_{2}^{c_{2}} \ldots Q_{l-1}^{c_{l-1}}
$$

Since Q_{l+1} is an eigenfunction for H we have

$$
\begin{aligned}
& \Longrightarrow \beta^{x\left[d(l+1)-\sum_{k=1}^{l-1} c_{k} d(k)\right]}=\alpha^{c_{0}} \\
& \Longrightarrow \frac{x w_{2}\left[d(l+1)-\sum_{k=1}^{l-1} c_{k} d(k)\right]}{N t}-\frac{c_{0} w_{1}}{M t} \in \mathbb{Z} \quad \text { by Remark } 4.5 \\
& \Longrightarrow M \bar{N} t \mid\left[M x w_{2} \bar{N} r^{\prime} \overline{d(l+1)}-M x w_{2} c_{1}-M x w_{2} \bar{N} r^{\prime} \sum_{k=2}^{l-1} c_{k} \overline{d(k)}-N c_{0} w_{1}\right] \\
& \Longrightarrow M \mid c_{0} \text { and } \bar{N} \mid c_{1} \text { as }(M, N)=1,\left(M, w_{1}\right)=1,(\bar{N}, x)=1,\left(\bar{N}, w_{2}\right)=1 .
\end{aligned}
$$

Let $c_{0}=M c_{0}^{\prime}$ and $c_{1}=\bar{N} c_{1}^{\prime}$. Plugging them in the above expression, and using (4.3), we obtain

$$
\begin{aligned}
& M \bar{N} t \mid\left[M x w_{2} \bar{N} r^{\prime} \overline{d(l+1)}-M x w_{2} \bar{N} c_{1}^{\prime}-M x w_{2} \bar{N} r^{\prime} \sum_{k=2}^{l-1} c_{k} \overline{d(k)}-N M w_{1} c_{0}^{\prime}\right] \\
& \Longrightarrow t \mid\left[x w_{2} r^{\prime} \overline{d(l+1)}-x w_{2} c_{1}^{\prime}-x w_{2} r^{\prime} \sum_{k=2}^{l-1} c_{k} \overline{d(k)}-w_{1} c_{0}^{\prime} N^{\prime}\right] \\
& \Longrightarrow r^{\prime} x w_{2} \overline{d(l+1)} \equiv\left[c_{0}^{\prime} w_{1} N^{\prime}+c_{1}^{\prime} x w_{2}+r^{\prime} x w_{2} \sum_{k=2}^{l-1} c_{k} \overline{d(k)}\right](\bmod t) \\
& \Longrightarrow r^{\prime} u \overline{d(l+1)} \equiv\left[r^{\prime} c_{0}^{\prime}+c_{1}^{\prime} u+r^{\prime} u \sum_{k=2}^{l-1} c_{k} \overline{d(k)}\right](\bmod t)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\overline{m_{l}} \gamma_{l} & =c_{0}+c_{1} \gamma_{1}+\sum_{k=2}^{l-1} c_{k} \gamma_{k} \\
& =M c_{0}^{\prime}+\bar{N} c_{1}^{\prime} \frac{M u}{\bar{N} r^{\prime}}+\sum_{k=2}^{l-1} c_{k}\left[M u \overline{d(k)}+\frac{M \bar{N} t \lambda_{k}}{d(k+1)}\right]
\end{aligned}
$$

where $\lambda_{k} \in \mathbb{Z}$, by induction hypothesis

$$
=M\left[\frac{c_{0}^{\prime} r^{\prime}+c_{1}^{\prime} u+r^{\prime} u \sum_{k=2}^{l-1} c_{k} \overline{d(k)}}{r^{\prime}}+\frac{\bar{N} t \theta_{l}}{d(l)}\right]
$$

for some $\theta_{l} \in \mathbb{Z}$, as $i_{1} \leqslant i_{2} \Rightarrow d\left(i_{1}\right) \mid d\left(i_{2}\right)$
$=M\left[\frac{r^{\prime} u \overline{d(l+1)}+\mu_{l} t}{r^{\prime}}+\frac{\bar{N} t \theta_{l}}{d(l)}\right]$ for some $\mu_{l} \in \mathbb{Z}$
$=M u \overline{d(l+1)}+\frac{M \bar{N} t \mu_{l}}{\overline{m_{1}}}+\frac{M \bar{N} t \theta_{l}}{d(l)}=M u \overline{d(l+1)}+\frac{M \bar{N} t \lambda_{l}}{d(l)}$
for some $\lambda_{l} \in \mathbb{Z}$
$\Longrightarrow \gamma_{l}=M u \overline{m_{2}} \ldots \overline{m_{l-1}}+\frac{M \bar{N} t \lambda_{l}}{\overline{m_{1}} \ldots \overline{m_{l}}}$.
By our induction hypothesis, $\left(t, \overline{m_{k}}\right)=1, \forall k=2, \ldots, l-1$. So $\left(p, \overline{m_{k}}\right)=1$ for any prime p dividing $t, \forall k=2, \ldots, l-1$, hence, $(p, \overline{d(l)})=1$. Suppose if possible there exists a prime $p \mid t$ such that $p \mid \overline{m_{l}}$. Let $\overline{m_{l}}=p M_{l}$. Now, $\left(r^{\prime}, t\right)=1 \Rightarrow\left(r^{\prime}, p\right)=1$. So $\left(p, r^{\prime} \overline{d(l)}\right)=1$. So $\exists r_{l} \in \mathbb{Z}$ such that $r_{l} r^{\prime} \overline{d(l)} \equiv 1(\bmod p)$. Let $r_{l} r^{\prime} \overline{d(l)}=1+\mu_{l} p$ for some $\mu_{l} \in \mathbb{Z}$. Now,

$$
\begin{aligned}
& \gamma_{l}=M u \overline{m_{2}} \ldots \overline{m_{l-1}}+\frac{M \bar{N} t \lambda_{l}}{\overline{m_{1}} \ldots \overline{m_{l}}} \\
& \Longrightarrow p M_{l} \gamma_{l}=M u \overline{m_{2}} \ldots \overline{m_{l}}+\frac{M t \lambda_{l}}{r^{\prime} \overline{d(l)}} \text { as } \overline{m_{l}}=p M_{l}, \overline{m_{1}}=\bar{N} r^{\prime}, \overline{d(l)}=\prod_{k=2}^{l-1} \overline{m_{k}} \\
& \Longrightarrow r^{\prime} \overline{d(l)} M_{l} \gamma_{l}=r^{\prime} \overline{d(l)} M u \overline{m_{2}} \ldots \overline{m_{l-1}} M_{l}+M \lambda_{l} \frac{t}{p} \text { as } \overline{m_{l}}=p M_{l} \\
& \Longrightarrow r_{l} r^{\prime} \overline{d(l)} M_{l} \gamma_{l}=r_{l} r^{\prime} \overline{d(l)} M u \overline{m_{2}} \ldots \overline{m_{l-1}} M_{l}+r_{l} M \lambda_{l} \frac{t}{p} \in \mathbb{Z} \\
& \Longrightarrow\left(1+\mu_{l} p\right) M_{l} \gamma_{l} \in \mathbb{Z} \Longrightarrow M_{l} \gamma_{l}+\mu_{l} \overline{m_{l}} \gamma_{l} \in \mathbb{Z} \subset G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right) \\
& \Longrightarrow M_{l} \gamma_{l} \in G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right) .
\end{aligned}
$$

But this contradicts the minimality of $\overline{m_{l}}$. So for any prime p dividing t, we have $p \nmid \overline{m_{l}}$. Thus $\left(t, \overline{m_{l}}\right)=1$. We now have the induction step for $k=l$.

$$
\left(t, r^{\prime}\right)=1 \Rightarrow \bar{N} t \nmid \bar{N} r^{\prime} \Rightarrow N t \nmid \bar{N} r^{\prime} \Rightarrow n \nmid \overline{m_{1}} \Rightarrow n \nmid d(2) \text {. From the }
$$ induction we have $\left(t, \overline{m_{k}}\right)=1, \forall k \geqslant 2$. Thus $\left(t, \prod_{k=2}^{l-1} \overline{m_{k}}\right)=1 \Rightarrow(t, \overline{d(l)})=$ $1, \forall l \geqslant 3 \Rightarrow\left(t, r^{\prime} \overline{d(l)}\right)=1, \forall l \geqslant 3 . t \nmid r^{\prime} \overline{d(l)}, \forall l \geqslant 3 \Rightarrow \bar{N} t \nmid \bar{N} r^{\prime} \overline{d(l)}$, $\forall l \geqslant 3 \Rightarrow N t \nmid \overline{m_{1}} \overline{d(l)}, \forall l \geqslant 3 \Rightarrow n \nmid d(l), \forall l \geqslant 3$. So together we have, $n \nmid d(l), \forall l \geqslant 2$. Thus by Lemma 4.3, we have $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathfrak{n}}}(\nu)$.

We are now ready to prove Theorem 4.1.

Proof. - Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3 and suppose that ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$ with a generating sequence (2.2) of eigenfunctions for H. By Proposition 4.4, we have $t \geqslant$ (m, n). Since $t \mid m$ and $t \mid n$, we have $(m, n)=t$.

Conversely, let H be as in Remark 1.3 and suppose that $(m, n)=t$. We will show that there exists a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$ with a generating sequence (2.2) of eigenfunctions for H. We consider the cases $t=1$ and $t>1$ separately.

Suppose that $(m, n)=t=1$. We will construct a rational rank 1 non discrete valuation ν dominating $R_{\mathfrak{m}}$, with a generating sequence (2.2) of eigenfunctions for H. Let $\left\{q_{l}\right\}_{l \geqslant 2}$ be an infinite family of distinct prime numbers, such that $\left(q_{l}, m\right)=1,\left(q_{l}, n\right)=1$ for all $l \geqslant 2$. Let $q_{1}=n$. Let $\left\{c_{l}\right\}_{l \geqslant 1} \in \mathbb{Z}_{>0}$ be positive integers such that

$$
\begin{aligned}
c_{1} & =m, c_{l} \equiv 0(\bmod m), \forall l \geqslant 1 \\
c_{l+1} & >q_{l+1} c_{l}, \forall l \geqslant 1,\left(c_{l}, q_{l}\right)=1, \forall l \geqslant 1 .
\end{aligned}
$$

We define a sequence of positive rational numbers $\left\{\gamma_{l}\right\}_{l \geqslant 0}$ as $\gamma_{0}=1, \gamma_{l}=\frac{c_{l}}{q_{l}}$, $\forall l \geqslant 1$. We will show $\overline{m_{l}}=q_{l}, \forall l \geqslant 1$, where $\overline{m_{l}}=\min \left\{q \in \mathbb{Z}_{>0} \mid q \gamma_{l} \in\right.$ $\left.G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right)\right\}$. Now, $\gamma_{1}=\frac{c_{1}}{q_{1}}=\frac{m}{n}$. Since $(m, n)=1$, we have $\overline{m_{1}}=$ $n=q_{1}$. For $l \geqslant 2, q_{l} \gamma_{l}=c_{l} \in \mathbb{Z} \Rightarrow 1 \leqslant \overline{m_{l}} \leqslant q_{l}$. Suppose $q \in \mathbb{Z}_{>0}$ such that $q \gamma_{l}=q \frac{c_{l}}{q_{l}}=\sum_{k=0}^{l-1} a_{k} \gamma_{k}=\sum_{k=0}^{l-1} a_{k} \frac{c_{k}}{q_{k}}$. Then $q_{l} \mid q c_{l} \prod_{k=1}^{l-1} q_{k}$, that is, $q_{l} \mid q c_{l} n \prod_{k=2}^{l-1} q_{k}$. Now, $\left(q_{l}, c_{l}\right)=1$ and $\left(q_{l}, n\right)=1$. Again, $\left(q_{l}, q_{k}\right)=1$, $\forall k \neq l$, as they are distinct primes. So, $q_{l} \mid q$. Thus we have $\overline{m_{l}}=q_{l}, \forall l \geqslant 1$. And, $\overline{m_{l}} \gamma_{l}=q_{l} \gamma_{l}=c_{l}<\frac{c_{l+1}}{q_{l+1}}=\gamma_{l+1}$. Thus we have a sequence of positive rational numbers $\left\{\gamma_{l}\right\}_{l \geqslant 0}$, such that $\gamma_{l+1}>\overline{m_{l}} \gamma_{l}, \forall l \geqslant 1$. By Theorem 1.2 of [6], since $R_{\mathfrak{m}}$ is a regular local ring of dimension 2 , there is a valuation ν dominating $R_{\mathfrak{m}}$, such that $S^{R_{\mathfrak{m}}}(\nu)=S\left(\gamma_{0}, \gamma_{1}, \ldots\right) . \nu$ is a rational rank 1 non discrete valuation by the construction. By Theorem 4.2 of [6], there exists a generating sequence $(2.2)\left\{Q_{l}\right\}_{l \geqslant 0}, Q_{0}=X, Q_{1}=Y, \ldots$ such that $\nu\left(Q_{l}\right)=\gamma_{l}, \forall l \geqslant 0$.

From the recursive construction of the $\left\{\gamma_{l}\right\}_{l \geqslant 0}$, we have the generating sequence as $Q_{0}=X, Q_{1}=Y, Q_{2}=Y^{n}-\lambda_{1} X^{m}$, where $\lambda_{1} \in K \backslash\{0\}$. For all $l \geqslant 2, Q_{l+1}=Q_{l}^{q_{l}}-\lambda_{l} X^{f_{0}} Y^{f_{1}} \ldots Q_{l-1}^{f_{l-1}}$, where $q_{l} \gamma_{l}=c_{l}=f_{0}+\sum_{k=1}^{l-1} f_{k} \gamma_{k}$, $0 \leqslant f_{k}<\overline{m_{k}}, \forall k \geqslant 1$. Now, $\left(c_{k}, q_{k}\right)=1, \forall k \geqslant 1$, and $\left(q_{k}, q_{h}\right)=1, \forall k \neq h$. So, $c_{l}=f_{0}+\sum_{k=1}^{l-1} \frac{f_{k} c_{k}}{q_{k}} \Rightarrow c_{l} \prod_{k=1}^{l-1} q_{k}=f_{0} \prod_{k=1}^{l-1} q_{k}+\frac{f_{1} c_{1} \prod_{k=1}^{l-1} q_{k}}{q_{1}}+\cdots+$ $\frac{f_{l-1} c_{l-1} \prod_{k=1}^{l-1} q_{k}}{q_{l-1}}$, which implies $q_{k} \mid f_{k}, \forall k \geqslant 1$. Since $0 \leqslant f_{k}<\overline{m_{k}}=q_{k}$,
this implies $f_{k}=0, \forall k \geqslant 1$. So we have the generating sequence as,

$$
\begin{aligned}
Q_{0}=X, Q_{1}=Y, Q_{2}=Y^{n}-\lambda_{1} X^{m}, Q_{l+1} & =Q_{l}^{q_{l}}-\lambda_{l} X^{c_{l}}, \forall l \geqslant 2 \\
& \text { where } \lambda_{l} \in K \backslash\{0\}, \forall l \geqslant 1 .
\end{aligned}
$$

We now show that each Q_{l} is an eigenfunction for $H=\left\{\left(\alpha^{a}, \beta^{b}\right) \mid a, b \in \mathbb{Z}\right\}$. For all $l \geqslant 2, d(l)=\prod_{k=1}^{l-1} \overline{m_{k}}=q_{1} \ldots q_{l-1}=n q_{2} \ldots q_{l-1}$. We have, $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{2}=$ $\beta^{b n} Y^{n}-\lambda_{1} \alpha^{a m} X^{m}=Q_{2}$. So, Q_{2} is an eigenfunction. Suppose Q_{3}, \ldots, Q_{l} are eigenfunctions for H. We check for Q_{l+1}. From (3.2), $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{k}=$ $\beta^{b d(k)} Q_{k}, \forall 2 \leqslant k \leqslant l$. Since $m \mid c_{l}$ and $n \mid d(l)$, we have $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{l+1}=$ $\beta^{b q_{l} d(l)} Q_{l}^{q_{l}}-\lambda_{l} \alpha^{a c_{l}} X^{c_{l}}=Q_{l+1}$. Thus Q_{l+1} is an eigenfunction. Thus by induction, $\left\{Q_{l}\right\}_{l \geqslant 0}$ is a generating sequence of eigenfunctions for H.

Now we consider the case $(m, n)=t>1$. We will construct a rational rank 1 non discrete valuation ν dominating $R_{\mathfrak{m}}$, with a generating sequence (2.2) of eigenfunctions for H.

Since $(t, x)=1$, there are positive integers r, s such that $r x-s t=1$. So $(r, t)=1$. From Lemma 3 in $[12, \S 2$, Ch. III $]$, we have that if r, t are positive integers such that $(r, t)=1$, then there are infinitely many prime numbers of the form $r+\theta t$, where $\theta \in \mathbb{N}$. Define the family $\mathfrak{R}=\left\{r^{(k)}\right\}_{k \geqslant 0}$ as $r^{(0)}=r$, $r^{(k)}=k$-th prime in the above prime series. Any two elements in the family \mathfrak{R} are coprime by construction. Also, $r^{(k)}=r+\theta_{k} t \Rightarrow r^{(k)} \equiv r(\bmod t), \forall k$. Since \mathfrak{R} is an infinite family such that any two elements in \mathfrak{R} are mutually prime, it follows that there is an infinite ordered family of distinct prime numbers $\mathfrak{F}=\left\{r_{l}\right\}_{l \geqslant 1}$ such that, $r_{l} \equiv r(\bmod t),\left(r_{l}, \frac{m}{t}\right)=1,\left(r_{l}, \frac{n}{t}\right)=1$, $\left(r_{l}, w_{1}\right)=1,\left(r_{l}, w_{2}\right)=1, \forall l \geqslant 1$, where w_{1} and w_{2} are as in Remark 4.5. Let $d=\left(w_{1}, w_{2}\right)$. Thus $\left(\frac{w_{1}}{d}, \frac{w_{2}}{d}\right)=1$. Define two sequences $\left(a_{l}\right)_{l \geqslant 1}$ and $\left(b_{l}\right)_{l \geqslant 1}$ of non negative integers as follows,

$$
\begin{aligned}
b_{1} & =0, r_{l}\left|b_{l}, \forall l \geqslant 2, t\right| b_{l}, \forall l \geqslant 2 \\
b_{l+1} & >r_{l+1}\left[r^{l-1}+b_{l}\right]-r^{l}, \forall l \geqslant 1 \\
a_{l} & =\frac{m}{t}\left[r^{l-1}+b_{l}\right] \frac{w_{2}}{d}, \forall l \geqslant 1 .
\end{aligned}
$$

Here $r_{l} \in \mathfrak{F}, \forall l \geqslant 1$. Define a sequence of positive rational numbers $\left\{\gamma_{l}\right\}_{l \geqslant 0}$ as follows

$$
\gamma_{0}=1, \quad \gamma_{1}=\frac{\frac{m}{t} \frac{w_{2}}{d}}{r_{1} \frac{n}{t} \frac{w_{1}}{d}}, \quad \gamma_{l}=\frac{a_{l}}{r_{l}}=\frac{m}{t}\left[\frac{r^{l-1}+b_{l}}{r_{l}}\right] \frac{w_{2}}{d} \quad \forall l \geqslant 2 .
$$

We will show $\overline{m_{1}}=r_{1} \frac{n}{t} \frac{w_{1}}{d}$ and $\overline{m_{l}}=r_{l}, \forall l \geqslant 2$, where $\overline{m_{l}}=\min \{q \in$ $\left.\mathbb{Z}_{>0} \mid q \gamma_{l} \in G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right)\right\} .\left(\frac{w_{1}}{d}, \frac{w_{2}}{d}\right)=1,\left(r_{1}, \frac{w_{2}}{d}\right)=1$ and $\left(\frac{n}{t}, \frac{w_{2}}{d}\right)=1$ implies $\left(\frac{w_{2}}{d}, r_{1} \frac{n}{t} \frac{w_{1}}{d}\right)=1$. Also, $\left(\frac{m}{t}, \frac{n}{t}\right)=1,\left(\frac{m}{t}, r_{1}\right)=1$ and $\left(\frac{m}{t}, \frac{w_{1}}{d}\right)=1$ implies $\left(\frac{m}{t}, r_{1} \frac{n}{t} \frac{w_{1}}{d}\right)=1$. Thus, $\left(\frac{w_{2}}{d} \frac{m}{t}, r_{1} \frac{n}{t} \frac{w_{1}}{d}\right)=1$, hence $\overline{m_{1}}=r_{1} \frac{n}{t} \frac{w_{1}}{d}$.

Now $\forall l \geqslant 2, r_{l} \gamma_{l}=a_{l} \in \mathbb{Z} \Rightarrow 1 \leqslant \overline{m_{l}} \leqslant r_{l}$. Suppose there exists a positive integer q such that $q \gamma_{l} \in G\left(\gamma_{0}, \ldots, \gamma_{l-1}\right)$. Then $q \gamma_{l}=q \frac{a_{l}}{r_{l}}=c_{0}+c_{1} \frac{a_{1}}{r_{1} \frac{w_{1}}{t} \frac{w_{1}}{d}}+$ $\sum_{k=2}^{l-1} c_{k} \frac{a_{k}}{r_{k}}$, where $c_{k} \in \mathbb{Z}, \forall k=0, \ldots, l-1$. Thus $r_{l} \left\lvert\, q a_{l} \frac{n}{t} \frac{w_{1}}{d} \prod_{k=1}^{l-1} r_{k}\right.$. Now, $\left(r_{l}, \frac{n}{t}\right)=1$, and $\left(r_{l}, r_{k}\right)=1, \forall k \neq l$, as they are distinct primes. Also, $\left(r_{l}, \frac{w_{1}}{d}\right)=1$. So, $r_{l} \mid q a_{l}$. And, $r_{l}>r \Rightarrow r_{l} \nmid r \Rightarrow r_{l} \nmid \frac{m}{t}\left[r^{l-1}+b_{l}\right] \frac{w_{2}}{d}=a_{l}$ as $\left(r_{l}, \frac{w_{2}}{d}\right)=1,\left(r_{l}, \frac{m}{t}\right)=1$ and $r_{l} \mid b_{l}$. Thus, $r_{l} \mid q$. Hence we have $\overline{m_{1}}=r_{1} \frac{n}{t} \frac{w_{1}}{d}$ and $\overline{m_{l}}=r_{l}, \forall l \geqslant 2$.

Now, $b_{l+1}>r_{l+1}\left[r^{l-1}+b_{l}\right]-r^{l}, \forall l \geqslant 1$ and $b_{1}=0$ implies $b_{2}>r_{2}-r$. Thus, $a_{2}=\frac{m}{t}\left[r+b_{2}\right] \frac{w_{2}}{d}>r_{2} \frac{m}{t} \frac{w_{2}}{d} \Rightarrow \gamma_{2}=\frac{a_{2}}{r_{2}}>\frac{m}{t} \frac{w_{2}}{d}=\overline{m_{1}} \gamma_{1}$. For $l \geqslant 2$, we have $r^{l}+b_{l+1}>r_{l+1}\left[r^{l-1}+b_{l}\right] \Rightarrow \frac{m}{t}\left[r^{l}+b_{l+1}\right] \frac{w_{2}}{d}>r_{l+1} \frac{m}{t}\left[r^{l-1}+b_{l}\right] \frac{w_{2}}{d} \Rightarrow$ $\gamma_{l+1}=\frac{a_{l+1}}{r_{l+1}}>a_{l}=\overline{m_{l}} \gamma_{l}$.

Thus we have a sequence of positive rational numbers $\left\{\gamma_{l}\right\}_{l \geqslant 0}$ such that $\gamma_{l+1}>\overline{m_{l}} \gamma_{l}, \forall l \geqslant 1$. By Theorem 1.2 of [6], since $R_{\mathfrak{m}}$ is a regular local ring of dimension 2, there is a valuation ν dominating $R_{\mathfrak{m}}$, such that $S^{R_{\mathrm{m}}}(\nu)=S\left(\gamma_{0}, \gamma_{1}, \ldots\right) . \nu$ is a rational rank 1 non discrete valuation by the construction. By Theorem 4.2 of [6], there exists a generating sequence (2.2) $\left\{Q_{l}\right\}_{l \geqslant 0}, Q_{0}=X, Q_{1}=Y, \ldots$ such that $\nu\left(Q_{l}\right)=\gamma_{l}, \forall l \geqslant 0$.

From the recursive construction of the $\left\{\gamma_{l}\right\}_{l \geqslant 0}$, we have the generating sequence as $Q_{0}=X, Q_{1}=Y, Q_{2}=Y^{r_{1} \frac{n}{t} \frac{w_{1}}{d}}-\lambda_{1} X^{\frac{m}{t} \frac{w_{2}}{d}}$. For all $l \geqslant 2$, $Q_{l+1}=Q_{l}^{r_{l}}-\lambda_{l} X^{f_{0}} Y^{f_{1}} \ldots Q_{l-1}^{f_{l-1}}$, where $0 \leqslant f_{k}<\overline{m_{k}}, \forall k \geqslant 1$ and $r_{l} \gamma_{l}=a_{l}=f_{0}+\sum_{k=1}^{l-1} f_{k} \gamma_{k}$. So, $a_{l}=f_{0}+\sum_{k=1}^{l-1} \frac{f_{k} a_{k}}{m_{k}}$. We observe, from our construction, $\left(\overline{m_{k}}, \overline{m_{h}}\right)=1, \forall k \neq h$. Also, $\left(\overline{m_{k}}, a_{k}\right)=1, \forall k \geqslant 1$.

Thus, $a_{l} \prod_{k=1}^{l-1} \overline{m_{k}}=f_{0} \prod_{k=1}^{l-1} \overline{m_{k}}+\frac{f_{1} a_{1} \prod_{k=1}^{l-1} \overline{m_{k}}}{\overline{m_{1}}}+\cdots+\frac{f_{l-1} a_{l-1} \prod_{k=1}^{l-1} \overline{m_{k}}}{\overline{m_{l-1}}} \Rightarrow$ $\overline{m_{k}} \mid f_{k}, \forall k \geqslant 1$. Since $0 \leqslant f_{k}<\overline{m_{k}}$, we have $f_{k}=0, \forall k \geqslant 1$. Thus the generating sequence is given as,

$$
\begin{aligned}
Q_{0}=X, & Q_{1}=Y, \\
& Q_{2}=Y^{r_{1} \frac{n}{t} \frac{w_{1}}{d}}-\lambda_{1} X^{\frac{m}{t} \frac{w_{2}}{d}} \\
& Q_{l+1}=Q_{l}^{r_{l}}-\lambda_{l} X^{a_{l}}, \forall l \geqslant 2 \quad \text { where } \lambda_{l} \in K \backslash\{0\}, \forall l \geqslant 1 .
\end{aligned}
$$

This is a minimal generating sequence as $\overline{m_{l}}>1, \forall l \geqslant 1$. We now show that each Q_{l} is an eigenfunction for H. From (2.1), $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{2}=$ $\beta^{\frac{r_{1} b n}{t} \frac{w_{1}}{d}} Y^{r_{1} \frac{n}{t} \frac{w_{1}}{d}}-\lambda_{1} \alpha^{\frac{a m}{t} \frac{w_{2}}{d}} X^{\frac{m}{t} \frac{w_{2}}{d}}$. Now, $\forall b \equiv a x(\bmod t), r_{1} b \equiv a(\bmod t)$, hence, $\left(\frac{r_{1} b-a}{t}\right)\left(\frac{w_{1} w_{2}}{d}\right) \in \mathbb{Z}$. Thus by Remark $4.5, \beta^{\frac{r_{1} b n}{t} \frac{w_{1}}{d}}=\alpha^{\frac{a m}{t} \frac{w_{2}}{d}}, \forall b \equiv$ $a x(\bmod t)$, that is, Q_{2} is an eigenfunction for H.

Suppose Q_{3}, \ldots, Q_{l} are eigenfunctions for $H_{i, j, t, x}$. We check for Q_{l+1}. We note $d(k)=\overline{m_{1}} \ldots \overline{m_{k-1}}=\frac{n}{t} \frac{w_{1}}{d} r_{1} r_{2} \ldots r_{k-1}$. From (3.2) we have, $\left(\alpha^{a}, \beta^{b}\right)$. $Q_{k}=\beta^{b d(k)} Q_{k}, \forall 1 \leqslant k \leqslant l$. Now, $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{l+1}=\beta^{\frac{b n r_{1} \ldots r_{l}}{t} \frac{w_{1}}{d}} Q_{l}^{r_{l}}-$ $\lambda_{l} \alpha^{a a_{l}} X^{a_{l}}$. Since $r_{k} \equiv r(\bmod t), \forall k \geqslant 1, r x \equiv 1(\bmod t)$ and $t \mid b_{l}$, we have

$$
\begin{aligned}
& \frac{b r_{1} \ldots r_{l}}{t}-\frac{a r^{l-1}}{t} \in \mathbb{Z}, \forall b \equiv a x(\bmod t) \\
& \Longrightarrow \frac{b r_{1} \ldots r_{l}}{t}-\frac{a\left[r^{l-1}+b_{l}\right]}{t} \in \mathbb{Z}, \quad \forall b \equiv a x(\bmod t) \\
& \Longrightarrow \frac{b r_{1} \ldots r_{l}}{t}\left(\frac{w_{1} w_{2}}{d}\right)-\frac{a\left[r^{l-1}+b_{l}\right]}{t}\left(\frac{w_{1} w_{2}}{d}\right) \in \mathbb{Z}, \quad \forall b \equiv a x(\bmod t) \\
& \Longrightarrow \frac{b n r_{1} \ldots r_{l}}{t}\left(\frac{w_{1} w_{2}}{d n}\right)-\frac{a m\left[r^{l-1}+b_{l}\right]}{t}\left(\frac{w_{1} w_{2}}{d m}\right) \in \mathbb{Z}, \quad \forall b \equiv a x(\bmod t) \\
& \Longrightarrow\left(\frac{b n r_{1} \ldots r_{l}}{t} \frac{w_{1}}{d}\right) \frac{w_{2}}{n}-\left(a a_{l}\right) \frac{w_{1}}{m} \in \mathbb{Z}, \quad \forall b \equiv a x(\bmod t)
\end{aligned}
$$

Thus, by Remark 4.5, $\beta^{\frac{b n r_{1} \ldots r_{l}}{t} \frac{w_{1}}{d}}=\alpha^{a a_{l}}$ for all $b \equiv a x(\bmod t)$, and hence Q_{l+1} is an eigenfunction for H. Thus by induction, $\left\{Q_{l}\right\}_{l \geqslant 0}$ is a minimal generating sequence of eigenfunctions for H. This completes the proof of part (1) of Theorem 4.1.

Now we suppose $(m, n)=t=1$ and ν is a rational rank 1 non discrete valuation dominating $R_{\mathfrak{m}}$ with a generating sequence (2.2) of eigenfunctions for H. Let $\nu\left(Q_{l}\right)=\gamma_{l}, \forall l \in \mathbb{N}$. We have $Q_{0}=X, Q_{1}=Y$. By Equation (8) in [6], $Q_{2}=Y^{s}-\lambda X^{r}$ where $\lambda \in K \backslash\{0\}, s \gamma_{1}=r \gamma_{0}$. Since $(m, n)=1$, by Chinese Remainder Theorem (Theorem 2.1 in [9, §2]) we have H is a cyclic group, generated by (α, β). By (2.1) we have $(\alpha, \beta) \cdot Q_{2}=\beta^{s} Y^{s}-\lambda \alpha^{r} X^{r}$. Since Q_{2} is an eigenfunction, we have

$$
\begin{aligned}
\beta^{s}=\alpha^{r} & \Longrightarrow \frac{s w_{2}}{n}-\frac{r w_{1}}{m} \in \mathbb{Z} \quad \text { by Remark } 4.5 \\
& \Longrightarrow m \mid r \text { and } n \mid s \text { as }\left(m, w_{1}\right)=1,\left(n, w_{2}\right)=1,(m, n)=1
\end{aligned}
$$

So, $Q_{2}=Y^{s}-\lambda X^{r} \in K\left[X^{m}, Y^{n}\right] \subset A$. Thus by Proposition 4.2, we have part (2) of Theorem 4.1.

We observe that the part (3) of Theorem 4.1 follows from Propositions 4.6 and 4.7. This completes the proof of Theorem 4.1.

Example 4.8. - Let $m>1$. Let $\left(c_{1}, m\right)=1$ and $\left(c_{2}, m\right)=1$. Let \mathbb{U}_{m} acts on $R=K[X, Y]$ by the diagonal action given by K-algebra isomorphisms satisfying $\alpha \cdot X^{r} Y^{s}=\alpha^{c_{1} r+c_{2} s} X^{r} Y^{s}$. Suppose ν is a rational rank 1 nondiscrete valuation dominating $R_{\mathfrak{m}}$. Let $\left\{Q_{l}\right\}_{l \geqslant 0}$ be the generating sequence (2.2) of the valuation ν, where $Q_{0}=X, Q_{1}=Y$, and suppose that each Q_{l} is an eigenfunction for \mathbb{U}_{m} under the diagonal action. Let $B=R^{\mathbb{U}_{m}}$ and $\mathfrak{b}=B \cap \mathfrak{m}$. Then $S^{R_{\mathfrak{m}}}(\nu)$ is not finitely generated over $S^{B_{\mathfrak{b}}}(\nu)$.

Proof. - α is a primitive m-th root of unity, and $\left(c_{1}, m\right)=\left(c_{2}, m\right)=1$. So $\mathbb{U}_{m}=\langle\alpha\rangle=\left\langle\alpha^{c_{1}}\right\rangle=\left\langle\alpha^{c_{2}}\right\rangle$. Now, the subdirect product $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{m}$ is given by

$$
H=\left\{\left(\left(\alpha^{c_{1}}\right)^{a},\left(\alpha^{c_{2}}\right)^{b}\right) \mid b \equiv a(\bmod m)\right\}=\left\langle\left(\alpha^{c_{1}}, \alpha^{c_{2}}\right)\right\rangle .
$$

From (2.1), we have H acts on R by K-algebra isomorphisms satisfying $\left(\alpha^{c_{1}}, \alpha^{c_{2}}\right) \cdot X^{r} Y^{s}=\alpha^{c_{1} r+c_{2} s} X^{r} Y^{s}$. Thus we have, $\alpha \cdot X^{r} Y^{s}=\left(\alpha^{c_{1}}, \alpha^{c_{2}}\right)$. $X^{r} Y^{s}$.

Now let $\left\{Q_{l}\right\}_{l \geqslant 0}$ be the generating sequence (2.2) of the valuation ν, where $Q_{0}=X, Q_{1}=Y$, and each Q_{l} is an eigenfunction for \mathbb{U}_{m} under the diagonal action. Hence each Q_{l} is thus an eigenfunction for H. And, $B=R^{\mathbb{U}_{m}}=R^{H}=A$. Also $\mathfrak{b}=B \cap \mathfrak{m}=A \cap \mathfrak{m}=\mathfrak{n}$.

Using the same notation as in Theorem 4.1, we have $t=m$. Since $m>1$, by Theorem 4.1 we have $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{A_{\mathrm{n}}}(\nu)$. Hence, $S^{R_{\mathrm{m}}}(\nu)$ is not finitely generated over $S^{B_{\mathfrak{b}}}(\nu)$.

When $m=2, c_{1}=c_{2}=1$, this is Example 9.3 of [6].

5. Non-splitting

Suppose that a local domain B dominates a local domain A. Let L be the quotient field of A and M be the quotient field of B. Suppose ω is a valuation of L which dominates A. We say that ω does not split in B if there is a unique extension ω^{*} of ω to M which dominates B.

We use the same notation as in the previous sections.
Theorem 5.1. - Let $H \leqslant \mathbb{U}_{m} \times \mathbb{U}_{n}$ be as in Remark 1.3 such that $(m, n)=t$. Let assumptions be as in Theorem 3.1. Let $\bar{\nu}=\left.\nu\right|_{Q(A)}$ where $Q(A)$ denotes the quotient field of A. Then $\bar{\nu}$ does not split in $R_{\mathfrak{m}}$.

Proof. - Let $\left\{Q_{k}\right\}_{k \geqslant 0},\left\{\gamma_{k}\right\}_{k \geqslant 0}$ and $\left\{\overline{m_{k}}\right\}_{k \geqslant 1}$ be as in Section 2. Thus $Q_{0}=X$ and $Q_{1}=Y$. Without any loss of generality, we can assume $\gamma_{0}=1$. Set $m=M t$ and $n=N t$ where $M, N \in \mathbb{Z}_{>0}$ and $(M, N)=1$. From (3.1) we have

$$
S^{A_{\mathrm{n}}}(\nu)=\left\{\begin{array}{l|l}
l \gamma_{0}+j_{1} \gamma_{1}+\cdots+j_{r} \gamma_{r} & \begin{array}{l}
l \in \mathbb{N}, r \in \mathbb{N}, \\
0 \leqslant j_{k}<\overline{m_{k}}, \forall k=1, \ldots, r \\
\alpha^{l a} \beta^{\left.b \sum_{k=1}^{r} j_{k} d(k)\right]}=1 \\
\forall b \equiv a x(\bmod t)
\end{array}
\end{array}\right\} .
$$

Now, $\bar{\nu}=\left.\nu\right|_{Q(A)}$. Thus $S^{A_{\mathfrak{n}}}(\nu)=\left\{\nu(f) \mid 0 \neq f \in A_{\mathfrak{n}}\right\}=S^{A_{\mathfrak{n}}}(\bar{\nu})$. The group generated by $S^{A_{\mathrm{n}}}(\bar{\nu})$ is $\Gamma_{\bar{\nu}}$, the value group of $\bar{\nu}([3,1.2])$. Thus $\Gamma_{\bar{\nu}}=$ $\left\{s_{1}-s_{2} \mid s_{1}, s_{2} \in S^{A_{\mathrm{n}}}(\nu)\right\}$.

Suppose $\gamma_{0} \in \Gamma_{\bar{\nu}}$. Then we have a representation,

$$
\begin{aligned}
\gamma_{0} & =\left(l_{1} \gamma_{0}+\sum_{k=1}^{r} h_{1, k} \gamma_{k}\right)-\left(l_{2} \gamma_{0}+\sum_{k=1}^{r} h_{2, k} \gamma_{k}\right) \\
& =\left(l_{1}-l_{2}\right) \gamma_{0}+\sum_{k=1}^{r}\left(h_{1, k}-h_{2, k}\right) \gamma_{k}
\end{aligned}
$$

where $l_{1} \gamma_{0}+\sum_{k=1}^{r} h_{1, k} \gamma_{k} \in S^{A_{\mathfrak{n}}}(\nu)$, and $l_{2} \gamma_{0}+\sum_{k=1}^{r} h_{2, k} \gamma_{k} \in S^{A_{\mathfrak{n}}}(\nu)$. Thus $l_{1}, l_{2} \in \mathbb{N}, r \in \mathbb{N}$ and $0 \leqslant h_{1, k}, h_{2, k}<\overline{m_{k}}, \forall k=1, \ldots, r$. So, $\left|h_{1, k}-h_{2, k}\right|<$ $\overline{m_{k}}, \forall k=1, \ldots, r$. Now $\left(h_{1, r}-h_{2, r}\right) \gamma_{r} \in G\left(\gamma_{0}, \ldots, \gamma_{r-1}\right)$ and $\left|h_{1, r}-h_{2, r}\right|<$ $\overline{m_{r}} \Rightarrow h_{1, r}=h_{2, r}$. With the same argument, we have $h_{1, k}=h_{2, k}, \forall k=$ $1, \ldots, r$. So in the representation of γ_{0}, we have $\gamma_{0}=\left(l_{1}-l_{2}\right) \gamma_{0} \Rightarrow l_{1}-l_{2}=1$. Also,

$$
\begin{aligned}
& \alpha^{l_{1} a} \beta^{b \sum_{k=1}^{r}\left[h_{1, k} d(k)\right]}=1=\alpha^{l_{2} a} \beta^{b \sum_{k=1}^{r}\left[h_{2, k} d(k)\right]} \\
& \Longrightarrow \alpha^{\left(l_{1}-l_{2}\right) a} \beta^{b \sum_{k=1}^{r}\left[\left(h_{1, k}-h_{2, k}\right) d(k)\right]}=1, \quad \forall b \equiv a x(\bmod t)
\end{aligned}
$$

Since $l_{1}-l_{2}=1$ and $h_{1, k}=h_{2, k}, \forall k=1, \ldots, r$, we have $\alpha^{a}=1, \forall b \equiv$ $a x(\bmod t)$. Thus $\alpha=1$, that is, $m=1$. So we have obtained,

$$
\begin{equation*}
\gamma_{0} \in \Gamma_{\bar{\nu}} \Longrightarrow M=1, t=1 \tag{5.1}
\end{equation*}
$$

Suppose $\gamma_{1} \in \Gamma_{\bar{\nu}}$. Then we have a representation,

$$
\begin{aligned}
\gamma_{1} & =\left(l_{1} \gamma_{0}+\sum_{k=1}^{r} j_{1, k} \gamma_{k}\right)-\left(l_{2} \gamma_{0}+\sum_{k=1}^{r} j_{2, k} \gamma_{k}\right) \\
& =\left(l_{1}-l_{2}\right) \gamma_{0}+\sum_{k=1}^{r}\left(j_{1, k}-j_{2, k}\right) \gamma_{k}
\end{aligned}
$$

where $l_{1} \gamma_{0}+\sum_{k=1}^{r} j_{1, k} \gamma_{k} \in S^{A_{\mathfrak{n}}}(\nu)$, and $l_{2} \gamma_{0}+\sum_{k=1}^{r} j_{2, k} \gamma_{k} \in S^{A_{\mathrm{n}}}(\nu)$. So, $l_{1}, l_{2} \in \mathbb{N}, r \in \mathbb{N}$ and $0 \leqslant j_{1, k}, j_{2, k}<\overline{m_{k}}, \forall k=1, \ldots, r$. So, $\left|j_{1, k}-j_{2, k}\right|<\overline{m_{k}}$, $\forall k=1, \ldots, r$. Now, $\left(j_{1, r}-j_{2, r}\right) \gamma_{r} \in G\left(\gamma_{0}, \ldots, \gamma_{r-1}\right)$ and $\left|j_{1, r}-j_{2, r}\right|<\overline{m_{r}} \Rightarrow$ $j_{1, r}=j_{2, r}$. With the same argument, we have $j_{1, k}=j_{2, k}, \forall k=2, \ldots r$. Thus we have, $\gamma_{1}=\left(l_{1}-l_{2}\right) \gamma_{0}+\left(j_{1,1}-j_{2,1}\right) \gamma_{1}$ where $0 \leqslant\left|j_{1,1}-j_{2,1}\right|<\overline{m_{1}}$. Again, $\forall b \equiv a x(\bmod t)$ we have

$$
\alpha^{l_{1} a} \beta^{b} \sum_{k=1}^{r}\left[j_{1, k} d(k)\right]=1=\alpha^{l_{2} a} \beta^{b \sum_{k=1}^{r}\left[j_{2, k} d(k)\right]} .
$$

Since $d(1)=\operatorname{deg}_{Y}(Y)=1$ and $j_{1, k}=j_{2, k}, \forall k=2, \ldots, r$, we have $\alpha^{\left(l_{1}-l_{2}\right) a} \beta^{b\left(j_{1,1}-j_{2,1}\right)}=1$ for all $b \equiv a x(\bmod t)$. So if $\gamma_{1} \in \Gamma_{\bar{\nu}}$, we have a representation
$\gamma_{1}=l \gamma_{0}+j_{1} \gamma_{1}$ where $l \in \mathbb{Z}, 0 \leqslant\left|j_{1}\right|<\overline{m_{1}}, \alpha^{l a} \beta^{b j_{1}}=1, \forall b \equiv a x(\bmod t)$.
In the above expression, $\left(1-j_{1}\right) \gamma_{1}=l \gamma_{0} \in \gamma_{0} \mathbb{Z} \Rightarrow \overline{m_{1}} \mid\left(1-j_{1}\right)$.

And $\left|1-j_{1}\right| \leqslant 1+\left|j_{1}\right| \leqslant \overline{m_{1}} \Rightarrow\left|1-j_{1}\right|=0$ or $\overline{m_{1}} \cdot 1-j_{1}=0 \Rightarrow$ $l=0, j_{1}=1$. From the above expression we then have, $\beta^{b}=1, \forall b \equiv$ $a x(\bmod t) \Rightarrow n=1$. Now consider $\left|1-j_{1}\right|=\overline{m_{1}}$. If $1-j_{1}=-\overline{m_{1}}$ then $j_{1}=1+\overline{m_{1}}$ which contradicts $\left|j_{1}\right|<\overline{m_{1}}$. So $1-j_{1}=\overline{m_{1}}$, that is, $j_{1}=1-\overline{m_{1}}$. And $\left(1-j_{1}\right) \gamma_{1}=\overline{m_{1}} \gamma_{1}=l \gamma_{0}$. So $Q_{2}=Q_{1}^{\overline{m_{1}}}-\lambda X^{l}$ where $\lambda \in K \backslash\{0\}$. $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{2}=\beta^{b \overline{m_{1}}} Q_{1}^{\overline{m_{1}}}-\lambda \alpha^{a l} X^{l}$. Since Q_{2} is an eigenfunction, we have $\beta^{b \overline{m_{1}}}=\alpha^{a l}, \forall b \equiv a x(\bmod t)$. Again from the above expression we have, $\alpha^{a l} \beta^{b}=\beta^{b \overline{m_{1}}}, \forall b \equiv a x(\bmod t)$, as $j_{1}=1-\overline{m_{1}}$. Thus, $\beta^{b}=1, \forall b \equiv$ $a x(\bmod t)$, and hence $n=1$. So we have obtained,

$$
\begin{equation*}
\gamma_{1} \in \Gamma_{\bar{\nu}} \Longrightarrow N=1, t=1 \tag{5.2}
\end{equation*}
$$

For an element $g \in \Gamma_{\nu}$, let $[g]$ denote the class of g in $\frac{\Gamma_{\nu}}{\Gamma_{\bar{\nu}}}$. Since $\frac{\Gamma_{\nu}}{\Gamma_{\bar{\nu}}}$ is a finite group, $[g]$ has finite order for each $g \in \Gamma_{\nu}$. Let $e=\left[\Gamma_{\nu}: \Gamma_{\bar{\nu}}\right]$.

First we suppose $\gamma_{0} \in \Gamma_{\bar{\nu}}$ and $\gamma_{1} \in \Gamma_{\bar{\nu}}$. From (5.1) and (5.2) we have $M=N=t=1$. From Proposition 1.4 we have $|H|=M N t=1$. Thus, $M N t \mid e$.

Now we suppose $\gamma_{0} \notin \Gamma_{\bar{\nu}}$ and $\gamma_{1} \in \Gamma_{\bar{\nu}}$. From (5.2) we have $N=t=1$. From Proposition 1.4 we have $|H|=M N t=M$. Let f_{0} denote the order of $\left[\gamma_{0}\right]$. Thus $f_{0} \gamma_{0} \in \Gamma_{\bar{\nu}}$. We thus have a representation

$$
\begin{aligned}
f_{0} \gamma_{0} & =\left(l_{1} \gamma_{0}+\sum_{k=1}^{r} h_{1, k} \gamma_{k}\right)-\left(l_{2} \gamma_{0}+\sum_{k=1}^{r} h_{2, k} \gamma_{k}\right) \\
& =\left(l_{1}-l_{2}\right) \gamma_{0}+\sum_{k=1}^{r}\left(h_{1, k}-h_{2, k}\right) \gamma_{k}
\end{aligned}
$$

where $l_{1} \gamma_{0}+\sum_{k=1}^{r} h_{1, k} \gamma_{k} \in S^{A_{\mathrm{n}}}(\nu)$, and $l_{2} \gamma_{0}+\sum_{k=1}^{r} h_{2, k} \gamma_{k} \in S^{A_{\mathrm{n}}}(\nu)$. Thus $l_{1}, l_{2} \in \mathbb{N}, r \in \mathbb{N}$ and $0 \leqslant h_{1, k}, h_{2, k}<\overline{m_{k}}, \forall k=1, \ldots, r$. So, $\mid h_{1, k}-$ $h_{2, k} \mid<\overline{m_{k}}, \forall k=1, \ldots, r$. With the same arguments as above, we have $h_{1, k}=h_{2, k}, \forall k=1, \ldots, r$. Thus $f_{0} \gamma_{0}=\left(l_{1}-l_{2}\right) \gamma_{0} \Rightarrow f_{0}=l_{1}-l_{2}$. And, for all $b \equiv a x(\bmod t)$,

$$
\alpha^{l_{1} a} \beta^{b \sum_{k=1}^{r}\left[h_{1, k} d(k)\right]}=1=\alpha^{l_{2} a} \beta^{b \sum_{k=1}^{r}\left[h_{2, k} d(k)\right]} .
$$

So, $\alpha^{\left(l_{1}-l_{2}\right)}=\alpha^{f_{0}}=1$, hence $m=M t\left|f_{0} \Rightarrow M t\right| e$. Thus $M N t \mid e$ as $M N t=M$.

Now we suppose $\gamma_{0} \in \Gamma_{\bar{\nu}}$ and $\gamma_{1} \notin \Gamma_{\bar{\nu}}$. From (5.1) we have $M=t=1$. $|H|=M N t=N$. Let f_{1} denote the order of $\left[\gamma_{1}\right]$, that is $f_{1} \gamma_{1} \in \Gamma_{\bar{\nu}}$. We have
a representation,

$$
\begin{aligned}
f_{1} \gamma_{1} & =\left(l_{1} \gamma_{0}+\sum_{k=1}^{r} j_{1, k} \gamma_{k}\right)-\left(l_{2} \gamma_{0}+\sum_{k=1}^{r} j_{2, k} \gamma_{k}\right) \\
& =\left(l_{1}-l_{2}\right) \gamma_{0}+\sum_{k=1}^{r}\left(j_{1, k}-j_{2, k}\right) \gamma_{k}
\end{aligned}
$$

where $l_{1} \gamma_{0}+\sum_{k=1}^{r} j_{1, k} \gamma_{k} \in S^{A_{\mathfrak{n}}}(\nu)$, and $l_{2} \gamma_{0}+\sum_{k=1}^{r} j_{2, k} \gamma_{k} \in S^{A_{\mathfrak{n}}}(\nu)$. So, $l_{1}, l_{2} \in \mathbb{N}, r \in \mathbb{N}$ and $0 \leqslant j_{1, k}, j_{2, k}<\overline{m_{k}}, \forall k=1, \ldots, r$. So, $\left|j_{1, k}-j_{2, k}\right|<\overline{m_{k}}$, $\forall k=1, \ldots, r$. With the same arguments as above, we have $j_{1, k}=j_{2, k}$, $\forall k=2, \ldots, r$. So in the above representation, we have $f_{1} \gamma_{1}=\left(l_{1}-l_{2}\right) \gamma_{0}+$ $\left(j_{1,1}-j_{2,1}\right) \gamma_{1}$ where $0 \leqslant\left|j_{1,1}-j_{2,1}\right|<\overline{m_{1}}$. Again, $\forall b \equiv a x(\bmod t)$ we have

$$
\alpha^{l_{1} a} \beta^{b \sum_{k=1}^{r}\left[j_{1, k} d(k)\right]}=1=\alpha^{l_{2} a} \beta^{b \sum_{k=1}^{r}\left[j_{2, k} d(k)\right]} .
$$

Since $d(1)=1$ and $j_{1, k}=j_{2, k}, \forall k=2, \ldots, r$, we have $\alpha^{\left(l_{1}-l_{2}\right) a} \beta^{b\left(j_{1,1}-j_{2,1}\right)}=$ 1 for all $b \equiv a x(\bmod t)$. So we have a representation,

$$
f_{1} \gamma_{1}=l \gamma_{0}+j_{1} \gamma_{1}
$$

where $l \in \mathbb{Z}, 0 \leqslant\left|j_{1}\right|<\overline{m_{1}}, \alpha^{l a} \beta^{b j_{1}}=1, \forall b \equiv a x(\bmod t)$.
$\left(f_{1}-j_{1}\right) \gamma_{1}=l \gamma_{0} \Rightarrow \overline{m_{1}} \mid\left(f_{1}-j_{1}\right)$. Let $f_{1}-j_{1}=c \overline{m_{1}}$ where $c \in \mathbb{Z}$. Let $\overline{m_{1}} \gamma_{1}=s \gamma_{0}$ where $s \in \mathbb{Z}_{>0}$. Thus $f_{1} \gamma_{1}=c s \gamma_{0}+j_{1} \gamma_{1} \Rightarrow l \gamma_{0}=c s \gamma_{0}$. Thus $l=c s$. Since $\overline{m_{1}} \gamma_{1}=s \gamma_{0}$, we have $Q_{2}=Q_{1}^{\overline{m_{1}}}-\lambda X^{s}$ where $\lambda \in K \backslash\{0\}$. $\left(\alpha^{a}, \beta^{b}\right) \cdot Q_{2}=\beta^{b \overline{m_{1}}} Q_{1}^{\overline{m_{1}}}-\lambda \alpha^{a s} X^{s}$. Since Q_{2} is an eigenfunction we have, $\beta^{b \overline{m_{1}}}=\alpha^{a s}, \forall b \equiv a x(\bmod t)$. Again, from the above expression of $f_{1} \gamma_{1}$, we have

$$
\begin{aligned}
\alpha^{l a} \beta^{b\left(f_{1}-c \overline{m_{1}}\right)} & =1, \forall b \equiv a x(\bmod t) \\
& \Longrightarrow \alpha^{c s a} \beta^{b f_{1}}=\beta^{b c \overline{m_{1}}}, \forall b \equiv a x(\bmod t) \text { as } l=c s \\
& \Longrightarrow \beta^{b f_{1}}=1, \forall b \equiv a x(\bmod t) \Longrightarrow n=N t\left|f_{1} \Longrightarrow N t\right| e
\end{aligned}
$$

Thus we have obtained, $M N t \mid e$ as $M N t=N$.
Now we consider the final case, $\gamma_{0} \notin \Gamma_{\bar{\nu}}$ and $\gamma_{1} \notin \Gamma_{\bar{\nu}}$. Let f_{0} denote the order of $\left[\gamma_{0}\right]$ and f_{1} denote the order of $\left[\gamma_{1}\right]$ in $\frac{\Gamma_{\nu}}{\Gamma_{\bar{\nu}}}$. With the same arguments as before, we obtain $M t \mid f_{0}$ and $N t \mid f_{1}$. Thus we have $M t \mid e$ and $N t \mid e$. Now $(M t, N t)=t$. So the lowest common multiple of $M t$ and $N t$ is $\frac{M t N t}{t}=M N t$. Thus, $M N t \mid e$.

Now, $K(X, Y)$ is a Galois extension of $Q(A)$ with Galois group H ([2, Proposition 1.1.1]). Thus $[K(X, Y): Q(A)]=|H|=M N t$ from Proposition 1.4. Let $\nu=\nu_{1}, \nu_{2}, \ldots, \nu_{r}$ be all the distinct extensions of $\bar{\nu}$ to $K(X, Y)$.

Generating sequences and semigroups of valuations on 2-dimensional normal local rings

Then ([16, §12, Thm. 24, Cor.]),

$$
e f r=[K(X, Y): Q(A)]=M N t .
$$

Since $M N t \mid e$, we have $e=M N t, r=1$. So ν is the unique extension of $\bar{\nu}$ to $K(X, Y)$. Thus $\bar{\nu}$ does not split in $R_{\mathfrak{m}}$.

Bibliography

[1] S. Abhyankar, "On the valuations centered in a local domain", Am. J. Math. 78 (1956), p. 321-348.
[2] D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, 1993, x+118 pages.
[3] S. D. Cutkosky, "Ramification of valuations and local rings in positive characteristic", Commun. Algebra 44 (2016), no. 7, p. 2828-2866.
[4] _, "The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation", Algebra Number Theory 11 (2017), no. 6, p. 1461-1488.
[5] -, "Finite generation of extensions of associated graded rings along a valuation", J. Lond. Math. Soc. 98 (2018), no. 1, p. 177-203.
[6] S. D. Cutkosky \& P. A. Vinh, "Valuation semigroups of two-dimensional local rings", Proc. Lond. Math. Soc. 108 (2014), no. 2, p. 350-384.
[7] O. Kashcheyeva, "Constructing examples of semigroups of valuations", J. Pure Appl. Algebra 220 (2016), no. 12, p. 3826-3860.
[8] F.-V. Kuhlmann, "Valuation theoretic and model theoretic aspects of local uniformization", in Resolution of singularities (Obergurgl, 1997), Progress in Mathematics, vol. 181, Birkhäuser, 2000, p. 381-456.
[9] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer, 2002, xvi +914 pages.
[10] M. Moghaddam, "A construction for a class of valuations of the field $k\left(X_{1}, \ldots, X_{d}, Y\right)$ with large value group", J. Algebra 319 (2008), no. 7, p. 2803-2829.
[11] J. Novacoski \& M. Spivakovsky, "Key polynomials and pseudo-convergent sequences", J. Algebra 495 (2018), p. 199-219.
[12] J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, vol. 7, Springer, 1973, viii+115 pages.
[13] M. Spivakovsky, "Valuations in function fields of surfaces", Am. J. Math. 112 (1990), no. 1, p. 107-156.
[14] B. Teissier, "Valuations, deformations, and toric geometry", in Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Institute Communications, vol. 33, American Mathematical Society, 2003, p. 361-459.
[15] —— "Overweight deformations of affine toric varieties and local uniformization", in Valuation theory in interaction, EMS Series of Congress Reports, European Mathematical Society, 2014, p. 474-565.
[16] O. Zariski \& P. Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, Princeton University Press, 1960, x+414 pages.

[^0]: ${ }^{(*)}$ Reçu le 10 mai 2018, accepté le 4 novembre 2018.
 (1) Department of Mathematics, IISER Mohali, Knowledge City, Sector 81, Manauli PO, SAS Nagar, Punjab, 140306 (India) - arpandutta@iisermohali.ac.in

 Article proposé par Bertrand Toën.

