
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
MADANI MOUSSAI

Some Hardy-type estimates in realized homogeneous Besov and
Triebel–Lizorkin spaces

Tome XXIX, no 1 (2020), p. 39-55.

<http://afst.centre-mersenne.org/item?id=AFST_2020_6_29_1_39_0>

© Université Paul Sabatier, Toulouse, 2020, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sciences
de Toulouse Mathématiques » (http://afst.centre-mersenne.org/), im-
plique l’accord avec les conditions générales d’utilisation (http://afst.
centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet
article sous quelque forme que ce soit pour tout usage autre que l’utilisation
à fin strictement personnelle du copiste est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la présente men-
tion de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://afst.centre-mersenne.org/item?id=AFST_2020_6_29_1_39_0
http://afst.centre-mersenne.org/
http://afst.centre-mersenne.org/legal/
http://afst.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Annales de la faculté des sciences de Toulouse Volume XXIX, no 1, 2020
pp. 39-55

Some Hardy-type estimates in realized homogeneous
Besov and Triebel–Lizorkin spaces (∗)

Madani Moussai (1)

ABSTRACT. — We prove that the realized homogeneous Besov ˙̃
Bs0

p0,p(Rn) and
Triebel–Lizorkin ˙̃

F s0
p0,p(Rn) spaces are continuously embedded in the quasi-Banach

weighted Lebesgue spaces Lp(Rn; |x|−p(s0−n/p0+n/p)dx) for p0 < p and (n/p0 −
n)+ < s0 < n/p0.

RÉSUMÉ. — Nous monterons que les espaces homogènes réalisés de Besov
˙̃

Bs0
p0,p(Rn) et de Triebel–Lizorkin ˙̃

F s0
p0,p(Rn) s’injectent continûment dans les

espaces quasi-Banach de Lebesgue à poids Lp(Rn; |x|−p(s0−n/p0+n/p)dx) pour p0 <

p et (n/p0 − n)+ < s0 < n/p0.

1. Introduction and main results

The homogeneous Besov spaces Ḃsp,q(Rn) and the homogeneous Triebel–
Lizorkin spaces Ḟ sp,q(Rn) are quasi-Banach, defined as spaces of distributions
modulo polynomials (abbreviated in the sequel by B and F , respectively) in
the sense that ‖f‖Ḃsp,q = ‖f‖Ḟ sp,q = 0 if and only if f is a polynomial on Rn.
For this reason, we cannot, e.g., identify Ḟ 0

p,2(Rn) with Lp(Rn) (1 < p <∞)
since for any nonzero polynomial f it holds ‖f‖p = +∞ while ‖[f ]P‖Ḟ 0

p,2
= 0,

see [14, Prop. 5.2] (here and throughout this paper, [f ]P denotes the equiva-
lence class of the tempered distribution f modulo polynomials). However us-
ing the notion of realization, cf. [2], we obtain the realized spaces of Ḃsp,q(Rn)
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and Ḟ sp,q(Rn), denoted by ˙̃Bsp,q(Rn) and ˙̃F sp,q(Rn), and endowed by the same
quasi-norms of Ḃsp,q(Rn) and Ḟ sp,q(Rn), respectively. We will use the notation
Ȧsp,q(Rn) for either Ḃsp,q(Rn) or Ḟ sp,q(Rn) and ˙̃Asp,q(Rn) for either ˙̃Bsp,q(Rn)
or ˙̃F sp,q(Rn), if there is no need to distinguish them. The spaces ˙̃Asp,q(Rn) are
subsets of the tempered distributions space S ′(Rn), where their definitions
depend on the polynomials of degree less than a parameter ν which is given
by G. Bourdaud in, e.g., [4] (the value of ν depends only on the 4-tuple
(n, s, p, q)). Also, for their definitions we need the notion of distributions
vanishing at infinity that we will recall.

Definition 1.1. — We say that a distribution f ∈ S ′(Rn) vanishes at
the infinity in the weak sense if limλ→0 f

(
λ−1( ·)

)
= 0 in S ′(Rn). The set

of all such distributions is denoted by C̃0.

In Subsection 2.2 below, we give some properties of ˙̃Asp,q(Rn) and some
examples of distributions in C̃0. Note that some interesting properties of
these spaces can be found in, e.g., [2, 4, 14, 25]. For instance we have:

• ˙̃F 0
p,2(Rn) = Lp(Rn) (1 < p < ∞); here ˙̃F 0

p,2(Rn) is defined by all
f ∈ S ′(Rn) such that [f ]P ∈ Ḟ sp,q(Rn) and f ∈ C̃0, see [14],

• ˙̃Asp,q(Rn) is continuously embedded in the weighted space
L∞(Rn; |x|n/p−s), if either s − n/p ∈ R+ \ N0 or s − n/p ∈ N and
0 < q 6 1 (0 < p 6 1 in case of the F -space); here ˙̃Asp,q(Rn) is de-
fined by all f ∈ S ′(Rn) such that [f ]P ∈ Ȧsp,q(Rn), f ∈ Cν−1(Rn),
f (α)(0) = 0 for |α| < ν and f (α) ∈ C̃0 for |α| = ν, where ν :=
[s− n/p] + 1 if s− n/p ∈ R+ \ N0 and ν := s− n/p if s− n/p ∈ N
and 0 < q 6 1 (0 < p 6 1 in case of the F -space), where [s − n/p]
is the integer part of s− n/p, see [14].

In the sense of the last point, we want to show some inequalities of Hardy-
type in the particular case s < n/p, where under this restriction the realized
spaces are defined as:

˙̃Asp,q(Rn) :=
{
f ∈ S ′(Rn) : [f ]P ∈ Ȧsp,q(Rn) and f ∈ C̃0

}
, (1.1)

with ‖f‖ ˙̃
Asp,q

:= ‖[f ]P‖Ȧsp,q . Then we essentially prove the following state-
ment:

Theorem 1.2. — Let 0 < p <∞. Let s ∈ R be such that(
n

p
− n

)
+
< s <

n

p
.
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Then there exists a constant c > 0 such that the inequality(∫
Rn
|x|−sp|f(x)|p dx

)1/p
6 c‖[f ]P‖Ḃsp,p (1.2)

holds for all f ∈ ˙̃Bsp,p(Rn).

Our proof will be limited to the case p 6 1, in which we will use some
properties in homogeneous Besov spaces Ḃsp,q(Rn) as a composition of func-
tions and a pointwise multiplication. We will also use an approximation with
the help of smooth functions. We will divided the proof into two parts with
respect to s > 1 and s < 1. Recall that the Hardy inequality on Slobodeckij
spaces Bsp,p(Rn) with 0 < s < 1 has a certain history, e.g., Grisvard [10,
Lem. 4.1], Lions and Magenes [12, §10], Triebel [19, 3.2.6], Schmeisser and
Triebel [16, §4.3].

However, the part of the proof when p > 1 will be omitted since it is
proved in [25, Prop. 7], also, we can easily obtain this case by applying the
inequality for weighted Lebesgue spaces of E. M. Stein and G. Weiss [18,
Thm. B*] and an approximation with smooth functions. On the other hand,
using the embedding properties of Ȧsp,q(Rn), we have an immediate conse-
quence of Theorem 1.2:

Corollary 1.3. — Let 0 < p0 < p <∞. Let s0 ∈ R be such that(
n

p0
− n

)
+
< s0 <

n

p0
and β := s0 −

n

p0
+ n

p
> 0 .

(1) Then there exists a constant c > 0 such that it holds(∫
Rn
|x|−βp|f(x)|p dx

)1/p
6 c‖[f ]P‖Ḃs0

p0,p
, ∀ f ∈ ˙̃Bs0

p0,p(R
n) . (1.3)

(2) Then there exists a constant c > 0 such that it holds(∫
Rn
|x|−βp|f(x)|p dx

)1/p
6 c‖[f ]P‖Ḟ s0

p0,∞
, ∀ f ∈ ˙̃F s0

p0,∞(Rn) . (1.4)

Remark 1.4. — Owing to the embedding proprieties again (see Subsec-
tion 2.1 below) the previous corollary holds also if we replace in (1.3) the
space ˙̃Bs0

p0,p(R
n) by ˙̃Bs0

p0,q(R
n) with 0 < q < p. Similarly in (1.4), that

˙̃F s0
p0,∞(Rn) can be replaced by ˙̃F s0

p0,q(R
n) with 0 < q 6∞.

Remark 1.5. — Observe that Theorem 1.2 cannot be true with only
functions in the homogeneous spaces Ḃsp,p(Rn). In other words, the inequal-
ity (1.2) fails if the condition f ∈ ˙̃Bsp,p(Rn) is replaced by [f ]P ∈ Ḃsp,p(Rn).
Indeed, in that case we take the function f(x) := 1 (∀ x ∈ Rn) (or any
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nonzero polynomial), then the left-hand side of (1.2) is +∞, while
‖[f ]P‖Ḃsp,p = 0, then we have a contradiction. Similarly for the inequali-
ties (1.3) and (1.4). In this context, we note that the same observation holds
for the spaces:

(1) Ḃs,mp,q (Rn) and Ḟ s,mp,q (Rn), which are defined by differences ∆m
h , see

Definition 3.3 and Remark 3.5 below.
(2) Ḃs,m,Wp,q (Rn) and Ḟ s,m,Wp,q (Rn), which are defined by the Gauss–

Weierstrass semi-group of the heat equation, see Definition 3.4 below
or, e.g., [23, p. 59], see also Remark 3.5 below.

In the other direction, using Theorem 1.2 and Corollary 1.3 we easily
obtain their counterparts of the inhomogeneous Besov spaces Bsp,q(Rn) and
Triebel–Lizorkin spaces F sp,q(Rn). Namely:

Theorem 1.6. — Let p0, p, s0 and β be real numbers given as in Corol-
lary 1.3.

(1) Then there exists a constant c > 0 such that it holds(∫
Rn
|x|−βp|f(x)|p dx

)1/p
6 c‖[f ]P‖Ḃs0

p0,p
, ∀ f ∈ Bs0

p0,p(R
n) . (1.5)

(2) Then there exists a constant c > 0 such that it holds(∫
Rn
|x|−βp|f(x)|p dx

)1/p
6 c‖[f ]P‖Ḟ s0

p0,∞
, ∀ f ∈ F s0

p0,∞(Rn) . (1.6)

Remark 1.7. — By Theorem 1.2 and Corollary 1.3 we have the previous
results given in [25, Prop. 7] and [26, Prop. 14] for p > 1. They also cover
the assertion in [22, §16.3, p. 238].

Notation and plan of the paper

All function spaces occurring in this work are defined on Euclidean space
Rn (n = 1, 2, . . .). We omit Rn in notations. As usual, N denotes the set of
natural numbers, N0 := N ∪ {0}, Z the set of integers and R the set of real
numbers. For a ∈ R we put a+ := max(0, a). The symbol ↪→ indicates a con-
tinuous embedding. If p ∈ ]0,∞], ‖f‖p denotes the quasi-norm of functions
f in Lp. If | · |rf ∈ Lp we write ‖| · |rf‖p := ‖|x|rf‖p. The symbol S denotes
the Schwartz space, and S ′ its topological dual. For a function f ∈ L1, the
Fourier transform is defined by

Ff(ξ) = f̂(ξ) :=
∫
Rn

e−ix·ξf(x)dx (∀ ξ ∈ Rn) .
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The operator F can be extended to the whole space S ′ in the usual way.

We denote by P∞ the set of all polynomials on Rn. The symbol S∞ will
be used for the set of all ϕ ∈ S such that 〈u, ϕ〉 = 0 for all u ∈ P∞, and
S ′∞ denotes its topological dual, which can identified to the quotient space
S ′/P∞. The mapping which takes any [f ]P to the restriction of f to S∞
turns out to be an isomorphism from S ′/P∞ onto S ′∞.

Throughout this work, we fix a cut-off function denoted by ρ, a radial
C∞ function, such that 0 6 ρ 6 1, ρ(ξ) = 1 if |ξ| 6 1 and ρ(ξ) = 0 if
|ξ| > 3/2. We put γ(ξ) := ρ(ξ) − ρ(2ξ) for all ξ ∈ Rn. Then γ is supported
by the compact annulus 1/2 6 |ξ| 6 3/2, and it holds∑

j∈Z
γ(2jξ) = 1 (∀ ξ ∈ Rn \ {0}) , (1.7)

ρ(2−kξ) +
∑
j>k

γ(2−jξ) = 1 (∀ ξ ∈ Rn, ∀ k ∈ Z) . (1.8)

For any j ∈ Z, we introduce the pseudodifferential operators Sj := ρ(2−jD)
and Qj := γ(2−jD) by means of the formulas Ŝjf(ξ) = ρ(2−jξ)f̂(ξ) and
Q̂jf(ξ) = γ(2−jξ)f̂(ξ). It is clear that Sj is defined on S ′ and that Qj is
defined on S ′∞ since Qjf = 0 (∀ j ∈ Z) if and only if f is a polynomial. We
make use of the following convention:

If f ∈ S ′∞ we set Qjf := Qjf1 for all f1 satisfying [f1]P = f .
Finally, the symbols c, c1, . . . denote positive constants which depend only
on the fixed parameters n, s, p, q, . . .

This work is organized as follows. In Section 2 we collect definitions and
basic properties of the homogeneous spaces and their realized versions. Sec-
tion 3 is devoted to the proofs and some remarks.

2. Preparations

2.1. The Besov and Triebel–Lizorkin spaces

The Littlewood–Paley decomposition approach is the basic theory to de-
fine the Besov and Triebel–Lizorkin spaces, for this reason we recall the
convergence property of a such decomposition of a tempered distribution.
That is, using the partitions of unity (1.7) and (1.8), if f ∈ S∞ (S ′∞, respec-
tively), then f =

∑
j∈ZQjf in S∞ (S ′∞, respectively). Similarly, if f ∈ S (S ′,

respectively) and k ∈ Z, then f = Skf +
∑
j>kQjf in S (S ′, respectively).
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Definition 2.1. — Let s ∈ R and 0 < q 6∞.

(i) Let 0 < p 6 ∞. The homogeneous Besov space Ḃsp,q is the set of
f ∈ S ′∞ satisfying

‖f‖Ḃsp,q :=
(∑
j∈Z

(2sj‖Qjf‖p)q
)1/q

<∞ .

(ii) Let 0 < p <∞. The homogeneous Triebel–Lizorkin space Ḟ sp,q is the
set of f ∈ S ′∞ satisfying

‖f‖Ḟ sp,q :=

∥∥∥∥∥
(∑
j∈Z

(2sj |Qjf |)q
)1/q∥∥∥∥∥

p

<∞ .

The spaces Ȧsp,q are quasi-Banach for the above defined quasi-seminorms,
they do not depend on the chosen function ρ, cf. [9, Rem. 2.6] and [20,
Rem. 5.1.3/2]. Both spaces contain continuously S∞ and are embedded con-
tinuously in S ′∞, and

(i) Ḃsp,min(p,q) ↪→ Ḟ sp,q ↪→ Ḃsp,max(p,q), Ȧsp,q1
↪→ Ȧsp,q2

if q1 < q2,
(ii) for 0 < q, r 6 ∞, s1 > s2 and 0 < p1 < p2 < ∞ such that

s1− n/p1 = s2− n/p2 it holds Ḃs1
p1,q ↪→ Ḃs2

p2,q ↪→ Ḃ
s2−n/p2
∞,q , Ḟ s1

p1,q ↪→
Ḃs2
p2,p1

and Ḟ s1
p1,q ↪→ Ḟ s2

p2,r,
(iii) ‖f(λ( ·))‖Ȧsp,q ≡ λ

s−n/p‖f‖Ȧsp,q for all f ∈ Ȧsp,q and all λ > 0.

We also have the estimates of Nikol’skij-type, see, e.g., [6, Prop. 4], [13,
Prop. 3.4] and [14, Props. 2.15, 2.17].

Proposition 2.2. — Let s ∈ R and p, q ∈ ]0,∞] (with p <∞ in case of
the F -space). Let a, b be real numbers such that 0 < a < b. Let (uj)j∈Z be a
sequence in S ′ such that ûj is supported by the compact annulus a2j 6 |ξ| 6
b2j and A := (

∑
j∈Z(2js‖uj‖p)q)1/q <∞ (A := ‖(

∑
j∈Z(2js|uj |)q)1/q‖p <∞

in case of the F -space).

(i) Then the series
∑
j∈Z uj converges in S ′∞ to a limit u which belongs

to Ȧsp,q and satisfies ‖u‖Ȧsp,q 6 cA; the constant c depends only on
n, s, p, q, a and b.

(ii) If in addition s > (n/p − n)+
(
with s > ( n

min(p,q) − n)+ in case of
the F -space

)
, the same conclusion holds for a = 0.

The Fatou property given below is useful. The proof in [8, Thm. 2.6/1]
for the case of inhomogeneous spaces Asp,q can be extended easily to homo-
geneous ones. See also [5, Prop. 14], [6, Prop. 7] and [13, Prop. 3.13].
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Proposition 2.3. — Let s ∈ R and p, q ∈ ]0,∞] (with p < ∞ in case
of the F -space). Let f ∈ S ′∞. If there exists a bounded sequence (uk)k∈N0 in
Ȧsp,q such that limk→∞ uk = f in S ′∞, then

f ∈ Ȧsp,q and ‖f‖Ȧsp,q 6 c lim inf
k→∞

‖uk‖Ȧsp,q .

We refer to, e.g., [4, 7, 9, 11] for other properties of Ȧsp,q, as characteri-
zations, equivalent quasi-norms, embeddings..etc.

We now give the definition of the inhomogeneous Besov and Triebel–
Lizorkin spaces.

Definition 2.4. — Let s ∈ R and 0 < q 6∞.

(i) Let 0 < p 6∞. The Besov space Bsp,q is the set of f ∈ S ′ satisfying

‖f‖Bsp,q := ‖S0f‖p +
(∑
j>1

(2sj‖Qjf‖p)q
)1/q

<∞ .

(ii) Let 0 < p <∞. The Triebel–Lizorkin space F sp,q is the set of f ∈ S ′
satisfying

‖f‖F sp,q := ‖S0f‖p +

∥∥∥∥∥
(∑
j>1

(2sj |Qjf |)q
)1/q∥∥∥∥∥

p

<∞ .

In connection with the homogeneous spaces Ȧsp,q, we have the following
assertion which is proved in, e.g., [21, Thm. 2.3.3, p. 98].

Proposition 2.5. — Let 0 < p, q 6 ∞ (with p < ∞ in case of the F -
space). Let s be a real such that s > (n/p− n)+. Then Asp,q is the set of all
f ∈ Lp such that [f ]P ∈ Ȧsp,q. Moreover the expression ‖f‖p + ‖[f ]P‖Ȧsp,q
defines an equivalent quasi-norm in Asp,q.

2.2. The realized spaces

In this section we assume that s < n/p and begin by the definition of a
realization.

Definition 2.6. — Let E be a vector subspace of S ′∞ endowed with a
quasi-norm which renders continuous the embedding E ↪→ S ′∞. A realization
of E in S ′ is a continuous linear mapping σ : E → S ′ such that [σ(f)]P = f
for all f ∈ E. The image set σ(E) is called the realized space of E with
respect to σ.
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In [4, §4] there exists an explication about realizations and their prop-
erties as the commutation with translations and dilations. Thus, we recall
an example of a realization given by the Littlewood–Paley decomposition.
For all f ∈ Ȧsp,q, the series

∑
j∈ZQjf converges in S ′ to a limit denoted by

σ(f) which belongs to C̃0, see, e.g., [14, Prop. 2.15], (C̃0 is defined in Defini-
tion 1.1). The mapping σ : Ȧsp,q → S ′ defined in such a way is a translation
and dilation commuting realization of Ȧsp,q into S ′. Such a realization of Ȧsp,q
is unique, see, e.g., [4, Thms. 4.1, 4.2]. Also by [14, Thm. 1.2], we have

σ(Ȧsp,q) = ˙̃Asp,q , (2.1)

where the space ˙̃Asp,q is defined in (1.1). To prove (2.1), we take g ∈ ˙̃Asp,q,
i.e., [g]P ∈ Ȧsp,q, then g and σ([g]P) differ by a polynomial, and both the
functions g and σ([g]P) belong to C̃0, we conclude that they coincide since
it is easy to check that

C̃0 ∩ P∞ = {0},
see, e.g., [2, p. 46]. Now, it is clear that without reference to the Littlewood–
Paley decomposition, ˙̃Asp,q is well-defined and with ‖·‖Ȧsp,q is a quasi-Banach
space in S ′.

We finish this subsection by some examples of functions in C̃0 and ˙̃Asp,q.

Examples 2.7. — (i) If f ∈ Lp with 1 6 p <∞ then f ∈ C̃0.
(ii) Distributional derivatives of bounded functions belong to C̃0.
(iii) If f ∈ C̃0 then f (α) ∈ C̃0.
(iv) Let f(x) := |x|d with −n < d /∈ 2N0. The function f is not a

polynomial, locally integrable and [f ]P ∈ Ḃd+n/p
p,∞ . Indeed, f̂(λξ) =

λ−n−df̂(ξ) in S ′ for all λ > 0, and f̂ is a radiale function, that is to
say we can find a function g defined on R+ such that f̂(ξ) = g(|ξ|);
as d /∈ 2N0 then there exists a constant c0 6= 0 (c0 = g(1)) such that
f̂(ξ) = c0|ξ|−n−d. This implies F(Qkf)(ξ) = c0|ξ|−n−dγ(2−kξ) on
Rn \ {0}; we define ψ ∈ S∞ by ψ̂(ξ) := c0|ξ|−n−dγ(ξ) and obtain
‖Qkf‖p = 2−k(d+n/p)‖ψ‖p. Now, if −n < d < 0 we deduce that
f ∈ ˙̃Bd+n/p

p,∞ .

2.3. Some properties of the realized spaces

We recall some properties of ˙̃Bsp,q which will be useful when we deal with
the proof of Theorem 1.2. We limit ourselves to the case of the B-spaces
since all assertions given below are valid also for the F -spaces.
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Proposition 2.8. — Let 0 < p <∞, 0 < q 6∞ and (n/p− n)+ < s <

n/p. Then the continuously embedding ˙̃Bsp,q ↪→ Lloc
1 holds.

Proof. — See, e.g., [17]. �

Proposition 2.9. — If 0 < p, q < ∞ and 0 < s < n/p, then S∞ is a
dense subspace of ˙̃Bsp,q.

Proof. — The proof given in [1, Prop. 12] in case ˙̃F sp,2 can be easily
extended to obtain the case ˙̃Bsp,q for any q. See also [4, Prop. 3.11] for the
same idea. �

Proposition 2.10. — Let either 1 6 p <∞ and 1 6 q 6∞ or 0 < p <

1 and 0 < q <∞. Let 0 < s < n/p. Then the space ˙̃Bsp,q satisfies the Fatou
property: there exists a constant c > 0 such that every a bounded sequence
(fk)k∈N0 in ˙̃Bsp,q admits a subsequence (fkj )j∈N0 such that f := limj→∞ fkj
exists in S ′ and

‖[f ]P‖Ḃsp,q 6 c lim inf
j→∞

‖[fkj ]P‖Ḃsp,q .

Proof. — The case 1 6 p < ∞ and 1 6 q 6 ∞ is given in [3, Thm. 3.1],
and the same proof can be extended to the case 0 < p < 1 and 0 < q < ∞,
since for 0 < p < 1 it holds that ˙̃Bsp,q = (ḃ−s−n+n/p

∞,∞ )′ if 0 < q 6 1 and
˙̃Bsp,q = (ḃ−s−n+n/p

∞,q′ )′ if q > 1, where ḃsp,q denotes the closure of S∞ into ˙̃Bsp,q
and q′ := q/(q − 1). �

Remark 2.11. — Some of the results, known for homogeneous Besov
spaces, do not extend to realized spaces in a trivial way. For instance, the
Riesz operator Ir, which is defined by Îrf(ξ) := |ξ|−rf̂(ξ) where r ∈ R,
takes Ḃsp,q isomorphically into Ḃs+rp,q , however Ir : ˙̃Bsp,q →

˙̃Bs+rp,q is an open
question.

3. Proofs and some remarks

Proof of Theorem 1.2. —

Step 1: the case 1 < p <∞ and 0 < s < n/p. — See [25].

Step 2: the case 0 < p 6 1. — We first prove (1.2) with functions f in
S∞, where for simplicity we will split our investigation into two substeps
given with respect to cases s < 1 and s > 1. In a third substep, we will show
the assertion with functions f in ˙̃Bsp,p.
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Substep 2.1: the case n/p− n < s < 1. — Let f ∈ S∞. Let us choose a
number η such that η < p. We write ‖|x|−sf‖p = ‖|x|−sη|f |η‖1/ηp/η. Then the
desired estimate (i.e., (1.2) with f ∈ S∞) follows easily by Step 1 and the fol-
lowing assertion concerning composition of functions in the inhomogeneous
Besov spaces:

Lemma 3.1. — Let 0 < u, v 6 ∞ and (n/u − n)+ < r < 1. Then there
exists a constant c > 0 such that the inequality

‖[|g|η]P‖Ḃrη
u/η,v/η

6 c‖[g]P‖ηḂru,v
holds, for all g ∈ Bru,v and all 0 < η < 1.

Proof of Lemma 3.1. — In [15, Thm. 5.4.4, p. 365], with the assumptions
of this lemma on u, v, r, η and g, it has been proved that ‖|g|η‖Brη

u/η,v/η
6

c‖g‖ηBru,v . Now, by Proposition 2.5 it holds

‖[|g|η]P‖Ḃrη
u/η,v/η

6 c
(
‖g‖u + ‖[g]P‖Ḃru,v

)η
, ∀ g ∈ Bru,v . (3.1)

In (3.1), we replace g by g(λ( ·)) for any λ > 0. Using homogeneity properties
of Lu, Ḃru,v and Ḃ

rη
u/η,v/η, dividing by λ

rη−nη/u and letting λ→∞, we obtain
the result. �

Substep 2.2: the case 1 6 s < n/p. — Assume that f ∈ S∞. Let p1 and
δ be such that

1 < p1 <∞ and 0 < δ := p

p1
< 1 .

Let also s1 be a parameter defined by
0 < s1 < δ , (3.2)

and will be fixed at the end of the computation. Then we write
‖|x|−sf‖p = ‖|x|−s1 |x|−sδ+s1 |f |δ‖1/δp1

,

and apply both Step 1 with s1, p1 and Lemma 3.1 with g(x) := |x|−s+s1/δf(x),
r := s1/δ, u = v := p and η := δ, we obtain

‖|x|−sf‖p 6 c1‖[|x|−sδ+s1 |f |δ]P‖1/δḂ
s1
p1,p1

6 c2‖[|x|−s+s1/δf ]P‖Ḃs1/δ
p,p

. (3.3)

We continue by using the following lemma concerning pointwise multipliers
in the homogeneous Besov spaces.

Lemma 3.2. — Let 0 < u < ∞ and 0 < v 6 ∞. Let r, t ∈ R be such
that r < n/u and t > 0. Then there exists a constant c > 0 such that the
inequality

‖[ϕg]P‖Ḃr−tu,v
6 c‖[g]P‖Ḃn/u−tu,∞

‖[ϕ]P‖Ḃru,v
holds, for all ϕ ∈ S∞ and all g ∈ S ′ satisfying [g]P ∈ Ḃn/u−tu,∞ .
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We need to introduce a family of locally integrable functions gd(x) :=
|x|−d, (∀ x ∈ Rn, 0 < d < n); d will be chosen later on. We have gd ∈ ˙̃Bn/p−dp,∞ ,
which has been observed before. We also need to introduce a parameter N
such that

N ∈ N and s1

δ
+Nd <

n

p
. (3.4)

By applying N -times Lemma 3.2 to the last term in (3.3), with g := gd,
ϕ(x) := |x|−s+s1/δ+df(x), u = v := p, t := d and r := rj = s1/δ + jd
(j = 1, 2, . . . , N), we deduce

‖|x|−sf‖p 6 c1‖[gd]P‖Ḃn/p−dp,∞
‖[|x|−s+s1/δ+df ]P‖Ḃs1/δ+d

p,p

6 c2‖[gd]P‖2Ḃn/p−dp,∞
‖[|x|−s+s1/δ+2df ]P‖Ḃs1/δ+2d

p,p

...

6 cN‖[gd]P‖NḂn/p−dp,∞
‖[|x|−s+s1/δ+Ndf ]P‖Ḃs1/δ+Nd

p,p
.

We again apply Lemma 3.2 with g(x) := |x|−s+s1/δ+Nd and ϕ := f , then we
need to satisfy the following condition:

0 < s− s1

δ
−Nd < n , (3.5)

and obtain

‖|x|−sf‖p 6 c‖[gd]P‖NḂn/p−dp,∞
‖[g]P‖Ḃn/p−s+s1/δ+Nd

p,∞
‖[f ]P‖Ḃsp,p .

Finally the inequality (1.2) follows with functions f ∈ S∞. Now for p ∈ ]0, 1]
and s ∈ [1, n/p[, we need to select p1 ∈ ]1,∞[, s1 ∈ ]0, p/p1[, d ∈ ]0, n[ and
N ∈ N such that (3.4) and (3.5) are satisfied (recall that δ := p/p1). The
inequality (3.4) is guaranteed by s < n/p and (3.5). Then taking (3.2) into
account, it suffices to see (3.5) which is equivalent to

s− n < s1

δ
+Nd < s .

To discuss this inequality we distinguish two cases: s > n and s 6 n. If
s 6 n, then the left-hand side is trivially satisfied and the right-hand side
follows from s1/δ < 1 6 s and Nd small. If s > n, then we choose Nd such
that

s− n− s1

δ
< Nd < s− s1

δ
.

Observe, that the right-hand side is strictly positive. So we may choose
Nd > 0 in any case.
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Proof of Lemma 3.2. — Let us take ϕ ∈ S∞ and g ∈ S ′ such that
[g]P ∈ Ḃn/u−tu,∞ . By an Abel transform we have

j∑
k=−j

(Skϕ)(Qkg) +
j−1∑
k=−j

(Skg)(Qk+1ϕ)

= (Sjϕ)(Sjg)− (S−jϕ)(S−j−1g), ∀ j > 0. (3.6)

On the one hand, by [15, Lem. 4.2.1/1, p. 144], since ϕ is infinitely differen-
tiable, bounded with all its derivatives and g ∈ S ′, we obtain

lim
j→∞

(Sjϕ)(Sjg) = ϕg in S ′ . (3.7)

On the other hand, we prove that

lim
j→∞

(S−jϕ)(S−j−1g) = 0 in L∞ . (3.8)

Indeed, we can write S−jg =
∑
k6−j Qkg, cf. the beginning of Subsection 2.1,

and by the embedding Ḃn/u−tu,∞ ↪→ Ḃ−t∞,∞ we get

‖S−j−1g‖∞ 6 ‖[g]P‖Ḃ−t∞,∞
∑
k6−j

2kt 6 c2−jt‖[g]P‖Ḃ−t∞,∞ (∀ j ∈ Z) ,

which yields

‖(S−jϕ)(S−j−1g)‖∞ 6 c2−jt‖ϕ‖∞‖[g]P‖Ḃ−t∞,∞ ,

where the positive constant c is independent of ϕ, g and j. The assertion (3.8)
is proved. Now (3.7) and (3.8), and by taking j →∞ in (3.6) we obtain the
convergence in S ′. Consequently, we have

lim
j→∞

(
j∑

k=−j
(Skϕ)(Qkg) +

j−1∑
k=−j

(Skg)(Qk+1ϕ)
)

= [ϕg]P in S ′∞ .

For brevity, we put Aj :=
∑j
k=−j(Skϕ)(Qkg) and Bj :=

∑j−1
k=−j(Skg)(Qk+1ϕ),

and let us define a sequence (uj)j∈N0 by uj := Aj +Bj . From above we have
limj→∞ uj = [ϕg]P in S ′∞. Also, the sequence (uj)j∈N0 is bounded in Ḃr−tu,v .
Indeed, the functions F [(Skϕ)(Qkg)] and F [(Skg)(Qk+1ϕ)] are supported by
the ball |ξ| 6 3 · 2k, then we can apply Proposition 2.2 and obtain

‖[Aj ]P‖Ḃr−tu,v
6 c1

(∑
k∈Z

(
2(r−t)k‖Skϕ‖∞‖Qkg‖u

)v)1/v

6 c2‖[g]P‖Ḃn/u−tu,∞

(∑
k∈Z

(∑
j6k

2(r−n/u)(k−j) 2rj‖Qjϕ‖u
)v)1/v

;
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the constants c1, c2 are independent of ϕ, g and j, see again Proposition 2.2.
Now, using the convolution inequality, see, e.g., [24, Lem. 3.8], we have

‖[Aj ]P‖Ḃr−tu,v
6 c‖[g]P‖Ḃn/u−tu,∞

‖[ϕ]P‖Ḃru,v .

Also, since ‖Skg‖∞ 6 c2kt‖[g]P‖Ḃn/u−tu,∞
for all k ∈ Z (recall the assumption

t > 0), then

‖[Bj ]P‖Ḃr−tu,v
6 c1

(∑
k∈Z

(
2(r−t)k‖Skg‖∞‖Qk+1ϕ‖u

)v)1/v

6 c2‖[g]P‖Ḃn/u−tu,∞
‖[ϕ]P‖Ḃru,v (∀ j ∈ N0) .

Hence ‖[uj ]P‖Ḃr−tu,v
is bounded by c‖[g]P‖Ḃn/u−tu,∞

‖[ϕ]P‖Ḃru,v uniformly with
respect to all j ∈ N0. Then we finish by applying Proposition 2.3. �

Substep 2.3. — Summarizing, we have shown

‖|x|−sf‖p 6 c‖[f ]P‖Ḃsp,p (∀ f ∈ S∞) . (3.9)

Assume now f ∈ ˙̃Bsp,p. We take a sequence (fl)l∈N0 in S∞ such that fl → f

in ˙̃Bsp,p. Then, in the one hand using (3.9) with fl, it holds

‖|x|−sfl‖p 6 c‖[fl]P‖Ḃsp,p (∀ l ∈ N0) . (3.10)

On the other hand, by Proposition 2.8 we get fl → f in Lloc
1 . Then, classically

there exits a subsequence (flk)k∈N0 of (fl)l∈N0 such that

‖[flk+1 ]P − [flk ]P‖Ḃsp,p 6 2−k and flk → f almost everywhere.

Let Ω be a compact set in Rn. There exists a constant c = c(Ω) > 0 such
that, if we fix an integer k and apply the Fatou’s lemma to the sequence
(|flk+j − flk |)j∈N0 on Ω, we obtain∫

Ω
|f(x)− flk(x)|dx 6 c lim inf

j→∞

∫
Ω
|flk+j (x)− flk(x)|dx .

Again by Proposition 2.8, we get∫
Ω
|flk+j (x)−flk(x)|dx 6 c1‖[flk+j ]P− [flk ]P‖Ḃsp,p 6 c2

j−1∑
m=0

2−k−m 6 c32−k,

with constants c1, c2, c3 are independent of j and k. Since Ω is arbitrary,
then limk→∞ flk = f in the sense of distributions. The sequence (flk)k∈N0

is a Cauchy in ˙̃Bsp,p, then by the embedding ˙̃Bsp,p ↪→ S ′ we obtain f̃ :=
limk→∞ flk in S ′, a fortiori in the distribution functions space D′. It follows
that f̃ = f .
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Applying Proposition 2.10 to the sequence (flk+j − flk)j∈N0 (k is fixed in
N0), and arguing as above, we obtain

‖[f ]P − [flk ]P‖Ḃsp,p 6 c4 lim inf
j→∞

‖[flk+j ]P − [flk ]P‖Ḃsp,p 6 c52−k ,

the constants c4 and c5 are independent of k. Now, using (3.10) with the
subsequence (flk)k∈N0 , then, for an arbitrary ε > 0, there exists an integer
kε ∈ N0 such that it holds

‖|x|−sflk‖p 6 c6‖[f ]P‖Ḃsp,p+c52−k 6 c6‖[f ]P‖Ḃsp,p+ε (∀ k > kε) . (3.11)

On the other hand, since 0 < p 6 1, then the elementary inequality∣∣|flk(x)|p − |f(x)|p
∣∣ 6 ∣∣flk(x)− f(x)

∣∣p (∀ x ∈ Rn)

gives pointwise convergence of |flk |p to |f |p almost everywhere.

Thus, by applying the Fatou’s lemma in (3.11) to the sequence (|flk |p)k>kε
with the measure |x|−spdx, it follows ‖|x|−sf‖p 6 c6‖[f ]P‖Ḃsp,p + ε for all

f ∈ ˙̃Bsp,p. By arbitrariness of ε, we deduce the estimate (1.2). The proof of
Theorem 1.2 is complete. �

Proof of Corollary 1.3. — First observe that (n/p0 − n)+ < s0 < n/p0
implies (n/p − n)+ < β < n/p. This guarantees the application of Theo-
rem 1.2 in the two cases. Now, inequalities (1.3) and (1.4) follow immediately
by using the embeddings Ḃs0

p0,p ↪→ Ḃβp,p and Ḟ s0
p0,∞ ↪→ Ḃβp,p, respectively. �

Proof of Theorem 1.6. — With assumptions, we first note that Asp,q ↪→
C̃0. Indeed, if 1 6 p < ∞, the assertion follows by Lp ↪→ C̃0, however, if
0 < p < 1, then Asp,q ↪→ L1 since s > n/p−n, and again we conclude by L1 ↪→
C̃0. Now, inequalities (1.5) and (1.6) are consequences of Proposition 2.5 and
Corollary 1.3. �

We turn to Remark 1.5 and first introduce two notations. For any ar-
bitrary function f and h ∈ Rn we set ∆1

hf := f(· + h) − f and ∆m
h f :=

∆1
h(∆m−1

h f) where m = 2, 3, . . . We denote by Wt the semi-group of the
heat equation defined on S ′ by Ŵtf(ξ) = e−t|ξ|2 f̂(ξ), see, e.g., [20, p. 183].

Definition 3.3. — Let 0 < q 6 ∞. Let s ∈ R and m ∈ N be such that
0 < s < m.

(i) Let 0 < p 6∞. We denote by Ḃs,mp,q the space of f ∈ S ′∞ such that

‖f‖Ḃs,mp,q :=
(∫

Rn

(
|h|−s‖∆m

h f‖p
)q dh
|h|n

)1/q

<∞ .
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(ii) Let 0 < p <∞. We denote by Ḟ s,mp,q the space of f ∈ S ′∞ such that

‖f‖Ḟ s,mp,q :=

∥∥∥∥∥
(∫

Rn

(
|h|−s|∆m

h f |
)q dh
|h|n

)1/q∥∥∥∥∥
p

<∞ .

Definition 3.4. — Let 0 < q 6∞. Let s ∈ R and m ∈ N0 be such that
s < 2m.

(i) Let 0 < p 6 ∞. We denote by Ḃs,m,Wp,q the space of f ∈ S ′∞ such
that

‖f‖Ḃs,m,Wp,q
:=
(∫ ∞

0

(
tm−s/2‖∂mt Wtf‖p

)q dt
t

)1/q

<∞ .

(ii) Let 0 < p < ∞. We denote by Ḟ s,m,Wp,q the space of f ∈ S ′∞ such
that

‖f‖Ḟ s,m,Wp,q
:=

∥∥∥∥∥
(∫ ∞

0

(
tm−s/2|∂mt Wtf |

)q dt
t

)1/q∥∥∥∥∥
p

<∞ .

Remarks 3.5. — (1) Clearly that ∆m
h f = 0 if and only if f is a

polynomial of degree less thanm, and ∂mt Wtf = Wt∆mf = 0 (where
∆ is the Laplacian in Rn) if, e.g., f is a polynomial of degree less
than 2m; in that case, we have ‖f‖Ḃs,mp,q = ‖f‖Ḃs,m,Wp,q

= 0. Similar
to the spaces Ḟ s,mp,q and Ḟ s,m,Wp,q .

(2) We can prove that ‖ · ‖Ḃs,mp,q and ‖ · ‖Ḟ s,mp,q are equivalent quasi-norms
of ˙̃Bsp,q and

˙̃F sp,q if (n/p−n)+ < s < m and n
min(p,q) < s < m, respec-

tively. Thus in the right-hand side of (1.2)–(1.4), it is possible to use
the quasi-seminorms ‖[f ]P‖Ḃs,mp,q or ‖[f ]P‖Ḟ s,mp,q instead of ‖[f ]P‖Ȧsp,q
with the needed assumptions on the parameters n, s, p and q.

(3) It seems interesting to extend the point 2. to Ḃs,m,Wp,q and Ḟ s,m,Wp,q .
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