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Functional SPDE with Multiplicative Noise and Dini
Drift

Xing Huang (1) and Feng-Yu Wang (1) (2)

ABSTRACT. — Existence, uniqueness and non-explosion of the mild
solution are proved for a class of semi-linear functional SPDEs with mul-
tiplicative noise and Dini continuous drifts. In the finite-dimensional and
bounded time delay setting, the log-Harnack inequality and L2-gradient
estimate are derived. As the Markov semigroup is associated to the func-
tional solution of the equation, one needs to make analysis on the path
space of the solution in the time interval of delay.

RÉSUMÉ. — Dans cet article, nous établissons l’existence, l’unicité et
la non-explosion de la solution douce pour une classe d’équations aux dé-
rivées partielles stochastiques semi-linéaires dont le bruit est multiplicatif
et le drift satisfait la condition de Dini. Dans le cas de dimension finie
et du temps de retard borné, nous montrons l’inégalité de Harnack lo-
garithmique et une estimée de gradient dans L2 pour la solution douce.
Comme le semi-groupe Markovien est associé à la solution fonctionnelle
de l’équation, nous devons étudier l’analyse sur l’espace des chemins des
solutions définies sur l’intervalle du temps de retard.

1. Introduction

It is well known by Dominique Bakry and his collaborators that the
curvature lower bound condition of a diffusion process is equivalent to a
number of gradient inequalities for the associated Markov semigroup, see e.g.
the recent monographs [4, 15]. Among many other equivalent inequalities,
the L2-gradient estimate of type

|∇Ptf |2 6 C(t)Ptf2, t > 0
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has been extended to more general situations without curvature conditions,
see e.g. [9, 10, 11, 12, 17] and references within for the study of SDEs/SPDEs
with non-Lipschitz coefficients. The L2-gradient estimate links to the log-
Harnack inequality which has further applications in analysis of Markov
operators, see [14] and references within. Recently, by constructing a Zvonkin
type transformation in Hilbert spaces, the L2-gradient estimate and log-
Harnack inequality have been derived in [16] for semi-linear SPDEs with
Dini drifts. In the present paper we aim to extend these results to SPDEs
with delay.

We will consider semi-linear SPDEs with delay in a separable Hilbert
space (H, 〈 · , · 〉, | · |). To describe the time delay, let ν be a non-trivial measure
on (−∞, 0) such that

ν is locally finite and ν( · − t) 6 κ(t)ν( · ), t > 0 (1.1)
for some increasing function κ : (0,∞)→ (0,∞). This condition is crucial to
prove the pathwise (see the proof of Proposition 2.2 below), and to determine
the state space of the segment solutions (see Remark 1.1 below). Obviously,
(1.1) holds for ν(dθ) := 1(−∞,0)(θ)ρ(θ) dθ with density ρ > 0 satisfying
ρ(θ − t) 6 κ(t)ρ(θ), t > 0 for θ < 0, which is the case if, for instance,
ρ(θ) = eλθ1[−r0,0)(θ) for some constants λ ∈ R and r0 ∈ (0,∞). Then the
state space of the segment process under study is given by

Cν :=
{
ξ : (−∞, 0]→ H is measurable with ν(|ξ|2) <∞

}
,

where ν(f) :=
∫ 0
−∞ f(θ)ν(dθ) for f ∈ L1(ν). Let

‖ξ‖Cν =
√
ν(|ξ|2) + |ξ(0)|2, ξ ∈ Cν .

Throughout the paper, we identify ξ and η in Cν if ξ = η ν-a.e. and ξ(0) =
η(0), so that Cν is a separable Hilbert space with inner product

〈ξ, η〉Cν := ν(〈ξ, η〉) + ξ(0)η(0), ξ, η ∈ Cν .

For a map X : R→ H and t > 0, let Xt : (−∞, 0]→ H be defined by
Xt(θ) = X(t+ θ), θ ∈ (−∞, 0],

which describes the path of X from −∞ to time t. We call Xt the segment
of X at time t.

Consider the following semi-linear SPDE on H:
dX(t) =

{
AX(t) + b(t,X(t)) +B(t,Xt)

}
dt+Q(t,X(t)) dW (t), (1.2)

where

• (A,D(A)) is a negative definite self-adjoint operator on H;
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• B : [0,∞) × Cν → H and b : [0,∞) × H → H are measurable and
locally bounded (i.e. bounded on bounded sets);
• W = (W (t))t>0 is a cylindrical Brownian motion on a separable
Hilbert space H̄, with respect to a complete filtration probability
space (Ω,F , {Ft}t>0,P). More precisely, W (t) :=

∑∞
n=1B

n(t)ēn
for a sequence of independent one-dimensional Brownian motions
{Bn(t)}n>1 with respect to (Ω,F , {Ft}t>0,P), and an orthonormal
basis {ēn}n>1 on H̄;
• Q : [0,∞) × H → L (H̄;H) is measurable, where L (H̄;H) is the
space of bounded linear operators from H̄ to H.

Definition 1.1. — For any ξ ∈ Cν , an adapted continuous process
(X(t))t∈[0,ζ) on H is called a mild solution to (1.2) with initial value X0 = ξ
and life time ζ, if ζ is a stopping time such that lim supt↑ζ |X(t)| = ∞
holds on {ζ <∞}, the Lebesgue integral

∫ t
0 e(t−s)A{b(s,X(s))+B(s,Xs)} ds

and the Itô integral
∫ t

0 e(t−s)AQ(s,X(s)) dW (s) are well defined on H for
t ∈ [0, ζ), and

X(t) = eAtξ(0) +
∫ t

0
e(t−s)A{b(s,X(s)) +B(s,Xs)} ds

+
∫ t

0
e(t−s)AQ(s,X(s)) dW (s), t ∈ [0, ζ) (1.3)

holds. Here, due to X0 = ξ, X is extended to (−∞, 0) with X(θ) = ξ(θ)
for θ 6 0. If the solution exists uniquely, we denote it by (Xξ(t))t∈[0,ζ). The
solution is called non-explosive if ζ =∞ a.s.

Remark 1.2. — We note that condition (1.1) ensures that the segment
solution (Xξ

t )t∈[0,ζ) is an adapted process on Cν . If, for any initial value the
equation (1.2) has a unique non-explosive mild solution, then let

Ptf(ξ) = Ef(Xξ
t ), t > 0, f ∈ Bb(Cν),

where Bb(Cν) is the set of all bounded measurable functions on Cν . In the
time-homogenous case (i.e. b(s, · ), B(s, · ) and Q(s, · ) do not depend on s),
Pt is a Markov semigroup on Bb(Cν). In general, for any s > 0, let Xξ

s (t)
be the mild solution of the equation (1.2) for t > s with Xs = ξ, then the
associated Markov semigroup {Ps,t}t>s>0 is defined by

Ps,tf(ξ) = Ef(Xξ
s,t), t > s, f ∈ Bb(Cν),

where Xξ
s,t is the segment of Xξ

s ( · ) at time t.

The remainder of the paper is organized as follows. In Section 2 we study
the existence, uniqueness and non-explosion of the mild solution. In Section 3
we investigate the log-Harnack inequality and L2-gradient estimate for Ps,t
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when H is finite-dimensional and supp ν ⊂ [−r0, 0] for some constant r0 ∈
(0,∞). Explanations on making these restrictions are given in the beginning
of Section 3.

2. Existence, uniqueness and non-explosion

Let ‖ · ‖ and ‖ · ‖HS denote, respectively, the operator norm and the
Hilbert–Schmidt norm for linear operators, and let LHS(H̄;H) be the space
of Hilbert–Schmidt linear operators from H̄ to H. Moreover, let

D =
{
φ : [0,∞)→ [0,∞) is increasing, φ2 is concave,

∫ 1

0

φ(s)
s

ds <∞
}
.

As in [16], we will use this class of functions to characterize the Dini conti-
nuity of the drift b. Note that the condition

∫ 1
0
φ(s)
s ds <∞ is known as Dini

condition, due to the notion of Dini continuity. Moreover, for simplicity, for
a map f defined on [0,∞)×H, ∇f(t, x) := ∇f(t, · )(x), (t, x) ∈ [0,∞)×H.

To ensure the existence and uniqueness of solutions, we make the follow-
ing assumptions:

(A1) There exists ε ∈ (0, 1) such that (−A)ε−1 is of trace class; i.e.∑∞
n=1 λ

ε−1
n < ∞ for 0 < λ1 6 λ2 6 · · · · · · being all eigenvalues of

−A counting multiplicities. Let {en}n>1 be the eigenbasis of (−A)
associated with {λn}n>1.

(A2) Q(t, · ) ∈ C2(H; L (H̄;H)) for t ∈ [0,∞), (QQ∗)(t, x) is invertible
for (t, x) ∈ [0,∞)×H, and

‖∇Q(t, x)‖+ ‖∇2Q(t, x)‖+ ‖Q(t, x)‖+ ‖(QQ∗)−1(t, x)‖

is locally bounded in (t, x) ∈ [0,∞) × H. Moreover, for any x ∈ H
and t > 0,

lim
n→∞

‖Q(t, x)−Q(t, πnx)‖2HS

:= lim
n→∞

∑
k>1
|(Q(t, x)−Q(t, πnx))ēk|2 = 0, (2.1)

where πn : H → Hn := span{ei : 1 6 i 6 n} are orthogonal
projections for n > 1.

(A3) For any n > 1, there exits φn ∈ D such that

|b(t, x)− b(t, y)| 6 φn(|x− y|),
t ∈ [0, n], x, y ∈ H with |x| ∨ |y| 6 n. (2.2)
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(A4) For any n > 1 there exists a constant Cn ∈ (0,∞) such that

|B(t, ξ)−B(t, η)|2 6 Cn‖ξ − η‖2Cν ,
t ∈ [0, n], ξ, η ∈ Cν with ‖ξ‖Cν ∨ ‖η‖Cν 6 n.

When the delay term B vanishes, the existence and uniqueness of mild
solutions have been proved in [16] under assumptions (A1)–(A3). The addi-
tional assumption (A4) means that the delay term is locally Lipschitzian in
Cν . Note that this condition allows unbounded time delay, i.e. supp ν might
be unbounded.

Fo T > 0, let ‖ · ‖T,∞ denote the uniform norm on [0, T ]×H. The main
result of this section is the following.

Theorem 2.1. — Assume that (1.1) and (A1)–(A4) hold. Then:

(1) For any initial value X0 ∈ Cν , the equation (1.2) has unique mild
solution (X(t))t∈[0,ζ) with life time ζ.

(2) Let ‖Q‖T,∞ <∞ for T ∈ (0,∞). If there exist two positive increas-
ing functions Φ, h : [0,∞)×[0,∞)→ (0,∞) such that

∫∞
1

ds
Φt(s) =∞

for t > 0 and

〈B(t, ξ + η) + b(t, (ξ + η)(0)), ξ(0)〉 6 Φt(‖ξ‖2Cν ) + ht(‖η‖Cν ),
ξ, η ∈ Cν , t > 0, (2.3)

then the mild solution is non-explosive.

In Subsection 2.1 we investigate the pathwsie uniqueness, which, together
with the weak existence, implies the existence and uniqueness of mild so-
lutions according to the Yamada–Watanabe principle. Complete proof of
Theorem 2.1 is addressed in Subsection 2.2.

2.1. Pathwise uniqueness

In this section, we prove the pathwise uniqueness of the mild solution
to (1.2) under (A1) and the following stronger versions of (A2)–(A4):

(A2′) In addition to (A2) there holds

‖∇Q‖T,∞ + ‖∇2Q‖T,∞ + ‖Q‖T,∞ + ‖(QQ∗)−1‖T,∞ <∞, T > 0.

(A3′) For any T > 0, ‖b‖T,∞ <∞ and there exits φ ∈ D such that

|b(t, x)− b(t, y)| 6 φ(|x− y|), t ∈ [0, T ], x, y ∈ H.
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(A4′) For any T > 0 there exists a constant C ∈ (0,∞) such that

|B(t, ξ)−B(t, η)|2 6 C‖ξ − η‖2Cν , t ∈ [0, T ], ξ, η ∈ Cν .

Proposition 2.2. — Assume (1.1), (A1) and (A2′)–(A4′). Let X(t)t>0
and Y (t)t>0 be two adapted continuous processes on H with X0 = Y0 = ξ ∈
Cν . For any n > 1, let

τXn = n ∧ inf{t > 0 : |X(t)| > n}, τYn = n ∧ inf{t > 0 : |Y (t)| > n}.

If for all t ∈ [0, τXn ∧ τYn ]

X(t) = eAtξ(0) +
∫ t

0
eA(t−s)(b(s,X(s)) +B(s,Xs)) ds

+
∫ t

0
eA(t−s)Q(s,X(s)) dW (s),

Y (t) = eAtξ(0) +
∫ t

0
eA(t−s)(b(s, Y (s)) +B(s, Ys)) ds

+
∫ t

0
eA(t−s)Q(s, Y (s)) dW (s),

(2.4)

then X(t) = Y (t) for all t ∈ [0, τXn ∧ τYn ]. In particular, τXn = τYn .

We will prove this result by using the Zvonkin type transform constructed
in [16]. Let {P 0

s,t}t>s>0 be the Markov semigroup associated to the O-U type
SPDE on H:

dZs(t) = AZs(t) dt+Q(t, Zs(t)) dW (t), t > s.

Given λ, T > 0, consider the following equation on H:

u(s, · ) =
∫ T

s

e−λ(t−s)P 0
s,t

{
∇b(t,· )u(t, · ) + b(t, · )

}
dt, s ∈ [0, T ]. (2.5)

The next result is essentially due to [16], where the first assertion follows
from [16, Lemma 2.3] and the second can be proved as in the proof of [16,
Proposition 2.5] by taking into account the additional drift B. So, to save
space we skip the proof.

Lemma 2.3 ([16]). — Assume (A1) and (A2′)–(A4′). For any T > 0,
there exists a constant λ(T ) > 0 such that the following assertions hold for
λ > λ(T ):

(1) (2.5) has a unique solution u ∈ C([0, T ];C1
b (H;H)) and

lim
λ→∞

{
‖u‖T,∞ + ‖∇u‖T,∞ + ‖∇2u‖T,∞

}
= 0.
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(2) Let τ be a stopping time. If an adapted continuous process on H
(X(t))t∈[0,T∧τ ] satisfies

X(t) = eAtX(0) +
∫ t

0
eA(t−s)(b(s,X(s)) +B(s,Xs)) ds

+
∫ t

0
eA(t−s)Q(s,X(s)) dW (s)

for all t ∈ [0, τ ∧ T ], then
X(t) = eAt

{
X(0) + u(0, X(0))

}
− u(t,X(t))

+
∫ t

0
eA(t−s){I +∇u(s,X(s))

}
Q(s,X(s)) dW (s)

+
∫ t

0

{
(λ−A)eA(t−s)u(s,X(s))

+ eA(t−s){I +∇u(s,X(s))
}
B(s,Xs)

}
ds

holds for all t ∈ [0, τ ∧ T ], where I is the identity operator.

Proof of Proposition 2.2. — For any m > 1, let τm = τXm ∧τYm . It suffices
to prove that for any T > 0 and m > 1,∫ T

0
E
{

1{s<τm}|X(s)− Y (s)|2
}

ds = 0. (2.6)

Let λ > 0 be such that assertions in Lemma 2.3 hold. Due to (2.4), Lem-
ma 2.3(2) with τ = τm implies

X(t)− Y (t) = Λ(t) + Ξ(t), t ∈ [0, τm ∧ T ], (2.7)
where

Λ(t) :=
∫ t

0
eA(t−s)

{(
I +∇u(s,X(s))

)(
B(s,Xs)−B(s, Ys)

)
+
(
∇u(s,X(s))−∇u(s, Y (s))

)
B(s, Ys)

}
ds,

Ξ(t) := u(t, Y (t))− u(t,X(t))

+
∫ t

0
(λ−A)eA(t−s){u(s,X(s))− u(s, Y (s))

}
ds

+
∫ t

0
eA(t−s){∇u(s,X(s))−∇u(s, Y (s))

}
Q(s,X(s)) dW (s)

+
∫ t

0
eA(t−s)(∇u(s, Y (s)) + I

)(
Q(s,X(s))−Q(s, Y (s))

)
dW (s),

t ∈ [0, τm ∧ T ].
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According to the proof of [16, Proposition 3.1] (see the inequality before (3.8)
therein), when λ > λ(T ) is large enough there exists a constant C0 ∈ (0,∞)
such that∫ r

0
e−2λtE

[
1{t<τm}|Ξ(t)|2

]
dt 6 3

4Γ(r) + C0

∫ r

0
Γ(t) dt, r ∈ [0, T ] (2.8)

holds for

Γ(t) :=
∫ t

0
e−2λsE

[
1{s<τm}|X(s)− Y (s)|2

]
ds, t ∈ [0, T ], (2.9)

which is denoted by ηt in [16]. So, to prove (2.6), it remains to estimate the
corresponding term for Λ(t) in place of Ξ(t). Noting that X0 = Y0 in Cν
implies X = Y ν-a.e. on (−∞, 0), by (1.1) we have∫ −s
−∞
|X(s+q)−Y (s+q)|2ν(dq) =

∫ 0

−∞
|X(θ)−Y (θ)|2ν(dθ−s) = 0, s > 0.

So, by ‖eA(t−s)‖ 6 1 for t > s, Lemma 2.3(1) and (A4′), we may find
constants C1, C2 ∈ (0,∞) such that

|Λ(t)|2

6 C1

∫ t

0

{
|B(s,Xs)−B(s, Ys)|2 + |X(s)− Y (s)|2

}
ds

6 C2

∫ t

0
|X(s)− Y (s)|2 ds+ C2

∫ t

0
ds
∫ 0

−∞
|X(s+ q)− Y (s+ q)|2ν(dq)

= C2

∫ t

0
|X(s)− Y (s)|2 ds+ C2

∫ t

0
ds
∫ 0

−s
|X(s+ q)− Y (s+ q)|2ν(dq)

= C2

∫ t

0
|X(s)− Y (s)|2 ds+ C2

∫ 0

−t
ν(dq)

∫ t

−q
|X(s+ q)− Y (s+ q)|2 ds

6 K(T )
∫ t

0
|X(s)− Y (s)|2 ds, t ∈ [0, T ],

where K(T ) := C2 + C2ν([−T, 0)) < ∞ since ν is locally finite by (1.1).
Thus,∫ r

0
e−2λtE

[
1{t<τm}|Λ(t)|2

]
dt

6 K(T )E
∫ r

0
e−2λt1{t<τm} dt

∫ t

0
|X(s)− Y (s)|2 ds

6 K(T )
∫ r

0
Γ(t) dt, r ∈ [0, T ].
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Combining this with (2.7)–(2.9), we arrive at

Γ(r) 6
∫ r

0
e−2λtE

{
1{t<τm}

(
8|Λ(t)|2 + 8

7 |Ξ(t)|2
)}

dt

6
6
7Γ(r) + 8

7C0

∫ r

0
Γ(t) dt+ 8K(T )

∫ r

0
Γ(t) dt

6
6
7Γ(r) + 8(C0 +K(T ))

∫ r

0
Γ(t) dt, r ∈ [0, T ].

Since by the definitions of Γ and τm we have Γ(t) < ∞ for t ∈ [0, T ], it
follows from Gronwall’s inequality that Γ(T ) = 0. Therefore, (2.6) holds and
the proof is finished. �

Remark 2.4. — Due to the unbounded term λ − A in the definition
of Ξ(t), even when the time delay is bounded we are not able to prove
Proposition 2.2 with the following weaker condition in place of (A4′):

|B(t, ξ)−B(t, η)| 6 C‖ξ − η‖∞, t ∈ [0, T ], ξ, η ∈ C([−r0, 0];H). (2.10)

However, when H is finite-dimesional, A becomes bounded so that the proof
of Proposition 2.2 can be modified by using (2.10) in place of (A4′). This
will be discussed in a forthcoming paper.

2.2. Proof of Theorem 2.1

Let X0 = ξ ∈ Cν be fixed.

(a). — We first assume that (1.1), (A1) and (A2′)–(A4′) hold. Consider
the following O-U type SPDE on H:

dZξ(t) = AZξ(t) dt+Q(t, Zξ(t)) dW (t), Zξ(0) = ξ(0).

It is classical by [5] that our assumptions imply the existence, uniqueness
and non-explosion of the mild solution:

Zξ(t) = eAtξ(0) +
∫ t

0
eA(t−s)Q(s, Zξ(s)) dW (s), t > 0.

Letting Zξ0 = ξ (i.e. Zξ(θ) = ξ(θ) for θ 6 0), and taking

W ξ(t) = W (t)−
∫ t

0
ψ(s) ds,

ψ(s) =
{
Q∗(QQ∗)−1}(s, Zξ(s))

{
b(s, Zξ(s)) +B(s, Zξs )

}
, s, t ∈ [0, T ],
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we have

Zξ(t) = eAtξ(0) +
∫ t

0
eA(t−s)B(s, Zξs ) ds+

∫ t

0
eA(t−s)b(s, Zξ(s)) ds

+
∫ t

0
eA(t−s)Q(s, Zξ(s)) dW ξ(s), t ∈ [0, T ].

By the Girsanov theorem, W ξ(t)t∈[0,T ] is a cylindrical Brownian motion on
H̄ under probability dQξ = Rξ dP, where

Rξ = exp
[ ∫ T

0

〈
ψ(s), dW (s)

〉
H̄ −

1
2

∫ T

0

∣∣ψ(s)
∣∣2
H̄ ds

]
.

Then, under the probability Qξ, (Zξ(t),W ξ(t))t∈[0,T ] is a weak mild solution
to (1.2). On the other hand, by Proposition 2.2, the pathwise uniqueness
holds for the mild solution to (1.2). So, by the Yamada–Watanabe princi-
ple [18] (see [7, Theorem 2] or [8] for the result in infinite dimensions), the
equation (1.2) has a unique mild solution. Moreover, in this case the solution
is non-explosive.

(b). — In general, take ψ ∈ C∞b ([0,∞)) such that 0 6 ψ 6 1, ψ(r) = 1
for r ∈ [0, 1] and ψ(r) = 0 for r ∈ [2,∞). For anym > 1, t > 0, z ∈ H, ξ ∈ Cν ,
let

b[m](t, z) = b(t, z)ψ
(
m−1|z|

)
,

Q[m](t, z) = Q
(
t, ψ(m−1|z|)z

)
,

B[m](t, ξ) = B(t, ξ)ψ
(
m−1‖ξ‖Cν

)
.

Then (A2)–(A4) imply that B[m], Q[m], b[m] satisfy (A2′)–(A4′). Here, we
only verify (A4′) for B[m] since the other two conditions are obvious for
Q[m] and b[m] in place of Q and b. For any ξ, η ∈ Cν , let for instance ‖ξ‖Cν >
‖η‖Cν . By the choice of ψ, (A4) implies

|B[m](t, ξ)−B[m](t, η)|
6 ψ

(
m−1‖ξ‖Cν

)
|B(t, η)−B(t, ξ)|

+ |B(t, η)| ·
∣∣∣ψ(m−1‖ξ‖Cν

)
− ψ

(
m−1‖η‖Cν

)∣∣∣
= 1{‖ξ‖Cν62m}ψ

(
m−1‖ξ‖Cν

)
|B(t, η)−B(t, ξ)|

+ 1{‖η‖Cν62m}|B(t, η)| ·
∣∣∣ψ(m−1‖ξ‖Cν

)
− ψ

(
m−1‖η‖Cν

)∣∣∣
6 C(m)‖ξ − η‖Cν

for some constant C(m) > 0. Thus, (A4′) holds for B[m] in place of B.
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Now, by (a), equation (1.2) for B[m], Q[m], b[m] in place of B,Q, b has a
unique non-explosive mild solution X [m](t) starting at X0 = ξ. Let

τ0 := 0, τm = m ∧ inf{t > 0 : ‖X [m]
t ‖Cν > m}, m > 1.

Since B[m](s, ξ) = B(s, ξ), Q[m](s, ξ(0)) = Q(s, ξ(0)) and b[m](s, ξ(0)) =
b(s, ξ(0)) hold for s 6 m and ‖ξ‖Cν 6 m, Proposition 3.3 implies X [m](t) =
X [n](t) for any n,m > 1 and t ∈ [0, τm ∧ τn]. In particular, τm is increasing
in m. Let ζ = limm→∞ τm and

X(t) =
∞∑
m=1

1[τm−1,τm)X
[m](t), t ∈ [0, ζ).

It is easy to see that X(t)t∈[0,ζ) is a mild solution to (1.2) with lifetime
ζ, since condition (1.1) and the definition of ζ imply limt↑ζ |X(t)| = ∞ on
{ζ <∞}. Finally, by Proposition 2.2, the mild solution is unique. Then the
proof of Theorem 2.1(1) is finished.

(c). — Under the conditions of Theorem 2.1(2), for a mild solution
X(t)t∈[0,ζ) to (1.2) with lifetime ζ, we intend to prove ζ = ∞ a.s. Obvi-
ously,

X̄(t) :=
∫ t

0
eA(t−s)Q(s,X(s)) dW (s), t ∈ [0, ζ), t > 0

is an adapted continuous process on H up to the lifetime ζ. Let X̄(t) = 0
for t ∈ (−∞, 0]. We see that Y (t) := X(t) − X̄(t) is a mild solution to the
equation

dY (t) = (AY (t) + b(t, Y (t) + X̄(t)) +B(t, Yt+ X̄t)) dt, Y0 = X0, t ∈ [0, ζ).

Due to (2.3), the increasing property of h and Φ, and noting that A 6 0,
this implies that for any T > 0,

d|Y (t)|2 6 2
〈
Y (t), b(t, Y (t) + X̄(t)) +B(t, Yt + X̄t)

〉
dt

6 2
{

Φζ∧T (‖Yt‖2Cν ) + hT (‖X̄t‖Cν )
}

dt, Y0 = X0, t ∈ [0, ζ ∧ T ).

Then

|Y (t)|2 6 |X(0)|2 + 2
∫ t

0
hT (‖X̄s‖Cν ) ds+ 2

∫ t

0
ΦT (‖Ys‖2Cν ) ds,

t ∈ [0, T ∧ ζ). (2.11)
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Since Y0 = X0, (1.1) implies

‖Ys‖2Cν = |Y (s)|2 +
∫ −s
−∞
|Y (s+ θ)|2ν(dθ) +

∫ 0

−s
|Y (s+ θ)|2ν(dθ)

6
{

1 + ν([−s, 0))
}

sup
r∈[0,s]

|Y (r)|2 + κ(s)
∫ 0

−∞
|X0(θ)|2ν(dθ)

6 κ(T )‖X0‖2Cν +
{

1 + ν([−T, 0))
}

sup
r∈[0,s]

|Y (r)|2

=: K1(T ) +K2(T ) sup
r∈[0,s]

|Y (r)|2, s ∈ [0, T ].

So, by letting

H(t) = sup
r∈[0,t]

|Y (r)|2, α(T ) = |X(0)|2 + 2
∫ T

0
hT (‖X̄s‖Cν ) ds,

we obtain from (2.11) that

H(t) 6 α(T ) + 2
∫ t

0
ΦT
(
K1(T ) +K2(T )H(s)

)
ds, t ∈ [0, T ∧ ζ).

Taking

ΨT (s) =
∫ s

1

dr
2ΦT (K1(T ) +K2(T )r) , s > 0,

we have lims→∞ΨT (s) =∞ due to the assumption on Φ, so that by Biharis’
inequality,

H(t) 6 Ψ−1
T (α(T ) + T ) <∞, t ∈ [0, ζ ∧ T ).

Since supt∈[0,T∧ζ) |X̄(t)|2 <∞ a.s., on the set {ζ 6 T} we have

∞ = lim
t↑ζ

H(t) 6 Ψ−1
T (α(T ) + T ) <∞, a.s.

This means P(ζ 6 T ) = 0 for all T > 0 and hence, ζ =∞ a.s. �

3. Log-Harnack inequality and gradient estimate

Throughout of this section, we assume that H is finite-dimensional and
the length of time delay is finite. Since the log-Harnack inequality implies
the strong Feller property (see [14, Theorem 1.4.1]), and it is easy to see
that PT is strong Feller only if supp ν ⊂ [−T, 0], we see that the restric-
tion on bounded time delay is essential for the study. On the other hand,
although the restriction on finite-dimensions might be technical rather than
necessary, we are not able to drop it in the moment. The reason is that we
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adopt the argument of [13] using coupling by change of measures, for which
the Hilbert–Schmidt norm of the diffusion coefficient is used. This reduces
the framework to finite-dimensions as the diffusion coefficient in (3.6) below
is merely Lipschitz in the operator norm. We remark that for SPDEs with
Dini drifts but without delay, the log-Harnack inequality is presented in [16]
by using finite-dimensional approximation and Itô’s formula as in [10, 17].
However, in the case with delay the Markov semigroup is associated to the
segment solution, for which the corresponding Itô formula is not yet avail-
able.

Let r0 ∈ (0,∞) such that supp ν ⊂ [−r0, 0]. In this case Cν is reformulated
as

Cν =
{
ξ : [−r0, 0]→ H is measurable with ν(|ξ|2) :=

∫ 0

−r0

|ξ(θ)|2ν(dθ) <∞
}
.

For f ∈ Bb(Cν), the length of the gradient of f at point ξ ∈ Cν is defined by

|∇f |Cν (ξ) = lim sup
η→ξ

|f(η)− f(ξ)|
‖ξ − η‖Cν

.

Theorem 3.1. — Let H be finite-dimensional and supp ν ⊂ [−r0, 0] for
some r0 ∈ (0,∞). Assume (1.1), (A1) and (A2′)–(A4′). Then for any s > 0
there exists a constant C > 0 such that the log-Harnack inequality

Ps,T+s+r0 log f(η) 6 logPs,T+s+r0f(ξ) + C

T ∧ 1‖ξ−η‖
2
Cν , ξ, η ∈Cν , T > 0

(3.1)
holds for strictly positive functions f ∈ Bb(Cν). Consequently,

|∇Ps,s+r0+T f |2Cν 6
C

T ∧ 1
{
Ps,s+r0+T f

2 − (Ps,s+r0+T f)2},
T > 0, s > 0, f ∈ Bb(Cν). (3.2)

Proof. — According to [3, Proposition 2.3], the L2-gradient estimate (3.2)
follows from the log-Harnack inequality (3.1). Moreover, according to the
semigroup property and the Jensen inequality, it suffices to prove the log-
Harnack inequality for T ∈ (0, 1]. Finally, without loss of generality, we may
and do assume that s = 0.

Now, we use Lemma 2.3 to transform (1.2) into a SDE with regular
coefficients. Let {u(t, · )}t∈[0,T ] be in Lemma 2.3 for fixed T > 0 and let
u(θ, · ) = u(0, · ) for θ ∈ [−r0, 0]. Define

Θ(t, x) = x+ u(t, x), t ∈ [−r0, T ], x ∈ H,
(Θt(ξ))(θ) = Θ(t+ θ, ξ(θ)), θ ∈ [−r0.0], t ∈ [0, T ], ξ ∈ Cν .
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Then there exists λ(T ) > 0 such that for any λ > λ(T ), Θ(t, · ) is a diffeo-
morphism on H for t ∈ (−∞, T ] such that

‖∇u‖T,∞ 6
1
2 , ‖∇Θ‖T,∞ + ‖∇Θ−1‖T,∞ 6 2, (3.3)

where and in what follows, denote Θ−1(t, x) = {Θ(t, · )}−1(x). Obviously,
Θt : Cν → Cν is invertible with

{Θ−1
t (ξ)}(θ) = Θ−1(t+ θ, ξ(θ)), θ ∈ [−r0, 0], t ∈ [0, T ].

Moreover, for a mild solution Xξ(t) to (1.2) with X0 = ξ, Lemma 2.3(2)
implies that Y ξ(t) := Θ(t,Xξ(t)) solves the equation

Y ξ(t) = eAtY ξ(0)

+
∫ t

0
eA(t−s)

{
∇Θ(s,Θ−1(s, Y ξ(s)))

}
Q(s,Θ−1(s, Y ξ(s))) dW (s)

+
∫ t

0
(λ−A)eA(t−s)u

(
s,Θ−1(s, Y ξ(s))

)
ds

+
∫ t

0
eA(t−s){∇Θ

(
s,Θ−1(s, Y ξ(s))

)}
B(s,Θ−1

s (Y ξs )) ds, t ∈ [0, T ].

(3.4)

So, letting

Q(t, x) =
(
∇Θ(t,Θ−1(t, x))

)
Q(t,Θ−1(t, x)), t ∈ [0, T ], x ∈ H;

B(t, ξ) = Aξ(0) + (λ−A)u
(
t,Θ−1(t, ξ(0))

)
+
{
∇Θ

(
t,Θ−1(t, ξ(0))

)}
B
(
t,Θ−1

t (ξ)
)
, t ∈ [0, T ], ξ ∈ Cν ,

(3.5)

we have

dY ξ(t) = B(t, Y ξt ) dt+ Q(t, Y ξ(t)) dW (t), t ∈ [0, T ], Y ξ0 = Θ0(ξ).

Thus, Xξ(t) := Y Θ−1
0 (ξ)(t) solves the following SDE with delay:

dXξ(t) = B(t, Xξt ) dt+ Q(t, Xξ(t)) dW (t), t ∈ [0, T ], Xξ0 = ξ. (3.6)

Since (A2′), (A4′) and (3.3) imply

‖Q‖T,∞ + ‖(QQ∗)−1‖T,∞ 6 K,
‖Q(t, x)− Q(t, y)‖ 6 K|x− y|, x, y ∈ H, t ∈ [0, T ],
|B(t, ξ)− B(t, η)| 6 K‖ξ − η‖Cν , ξ, η ∈ Cν , t ∈ [0, T ]

(3.7)

for some constant K > 0, this equation has a unique non-explosive mild
solution for any initial value ξ ∈ Cν . Let Ptf(ξ) = Ef(Xξt ). Since Xξ(t) =
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Θ−1(t, Y ξ(t)) = Θ−1(t, XΘ0(ξ)(t)), we have

Ptf(ξ) := Ef(Xξ
t ) = E(f ◦Θ−1

t )(Y ξt ) = E(f ◦Θ−1
t )(XΘ0(ξ)

t )
= Pt(f ◦Θ−1

t )(Θ0(ξ)), ξ ∈ Cν , t ∈ (0, T ], f ∈ Bb(Cν).
Therefore, by (3.3), the desired log-Harnack inequality for Pr0+T follows from
the corresponding inequality for Pr0+T , which is ensured by the following
Lemma 3.2. �

The following result is parallel to [14, Theorem 4.3.1] where the uniform
norm on the segment space is used instead of ‖ · ‖Cν .

Lemma 3.2. — Let Pt be associated to (3.6) with coefficients satisfying
(3.7). Then there exists a constant C > 0 such that the log-Harnack inequality

PT+r0 log f(η) 6 log PT+r0f(ξ) + C

(
1
T
|ξ(0)− η(0)|2 + ‖ξ − η‖2Cν

)
holds for all ξ, η ∈ Cν , T ∈ (0, 1], and strictly positive functions f ∈ Bb(Cν).

Proof. — The result can be proved in a similar way as in the proof of [14,
Theorem 4.3.1] using coupling by change of measures, the only difference is
to use ‖ · ‖Cν in place of ‖ · ‖∞. We remark that the couplings by change
of measures are developed in [1] and [12] to prove the dimension-free Har-
nack inequality and the log-Harnack inequality respectively, see [14] for more
results and discussions. For completeness, we include below a brief proof.

(a). — For any ξ, η ∈ Cν , let X(t) = Xξ(t) solve (3.6), and let Y (t) solve
the following SDE with delay:

dY (t) = B(t,Xt) dt+ Q(t, Y (t)) dW (t)

+
1[0,T )(t)
γ(t) Q(t, Y (t))

{
Q∗(QQ∗)−1}(t,X(t))

{
X(t)− Y (t)

}
dt,

t > 0, Y0 = η, (3.8)
where

γ(t) := 1
K2

(
1− e(t−T )K2)

, t ∈ [0, T ].

Here, following the line of [6], we take the delay term B(t,Xt) instead of
B(t, Yt) such that the SDE for X(t)− Y (t) does not have time delay. Hence,
for any solution {Y (t)}t>0 to (3.8) with coupling time:

τ := inf{t ∈ [0, T ] : X(t) = Y (t)}, inf ∅ :=∞,
the modified process

Y(t) := Y (t)1{t<τ} +X(t)1{t>τ}
solves (3.8) as well. Using Y to replace Y we may and do assume Y (t) = X(t)
for t > τ , so that XT+r0 = YT+r0 provided τ 6 T . This is crucial to derive
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the log-Harnack inequality. Moreover, we take the additional unbounded
drift term in (3.8) to ensure τ 6 T , and the idea comes from [13].

(b). — Since the coefficients in (3.8) are Lipschtiz continuous in the
space variable locally uniformly in t ∈ [0, T ), it has a unique solution up to
time T . To construct a solution for all t > 0, we reformulate the equation
as (3.6) using Girsanov transform. Let

φ(t) =
{

Q∗(QQ∗)−1}(t, Y (t))
{

B(t, Yt)− B(t,Xt)
}

− 1
γ(t)

{
Q∗(QQ∗)−1}(t,X(t))

{
X(t)− Y (t)

}
, t ∈ [0, T ). (3.9)

By (3.7) we have

|φ(t)|H̄ 6 K0‖Xt − Yt‖Cν + K0|X(t)− Y (t)|
γ(t) , t ∈ [0, T ) (3.10)

for some constant K0 > 0. Since (3.7) implies assumption (A4.4) in [14] for
K4 = K2, it follows from [14, (i) on p. 92] that

R(t) := exp
[ ∫ t

0
〈φ(s), dW (s)〉H̄ −

1
2

∫ t

0
|φ(s)|2H̄ ds

]
, t ∈ [0, T ) (3.11)

is a uniformly integrable martingale such that

R := lim
t↑T

R(t) (3.12)

exists, and dQ := R dP is a probability measure on Ω. Moreover, by the
Girsanov theorem,

W(t) := W (t)−
∫ t∧T

0
φ(s) ds, t > 0 (3.13)

is a cylindrical Brownian motion on H̄ under probability Q, and according
to [14, (ii) on p. 92] we have τ 6 T,Q-a.s. So, as explained in the end of (a),
we have

XT+r0 = YT+r0 , Q-a.s. (3.14)

Now, by (3.9) and (3.13) we reformulate (3.8) as

dY (t) = B(t, Yt) dt+ Q(t, Y (t)) dW(t), Y0 = η. (3.15)

By the weak uniqueness of (3.6), we have PT+r0(log f)(η) =EQ[log f(YT+r0)].
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According to Young inequality (see [2, Lemma 2.4]), this together
with (3.14) implies

PT+r0(log f)(η) = E[R log f(YT+r0)] = E[R log f(XT+r0)]
6 logEf(XT+r0) + E[R logR] = log PT+r0f(ξ) + EQ logR.

(3.16)

(c). — To estimate EQ logR, by (3.9) and (3.13) we reformulate the
equation (3.6) for X(t) as

dX(t) = B(t,Xt) dt+ Q(t,X(t)) dW(t)
− Q(t,X(t))

{
Q∗(QQ∗)−1}(t, Y (t))

{
B(t,Xt)− B(t, Yt)

}
dt

− X(t)− Y (t)
γ(t) dt, t ∈ [0, T ).

Combining this with (3.15) we obtain

d(X(t)− Y (t))
=
{

Q(t,X(t))− Q(t, Y (t))
}

dW(t)

+
[
I − Q(t,X(t))

{
Q∗(QQ∗)−1}(t, Y (t))

]{
B(t,Xt)− B(t, Yt)

}
dt

− X(t)− Y (t)
γ(t) dt, t ∈ [0, T ).

By Itô’s formula and (3.7), there exists a constant C0 > 0 such that

d|X(t)− Y (t)|2

6
{
C0‖Xt − Yt‖Cν |X(t)− Y (t)|+K2|X(t)− Y (t)|2

− 2|X(t)− Y (t)|2

γ(t)

}
dt+ dM(t),

t ∈ [0, T ), (3.17)

where dM(t) := 2〈(Q(t,X(t)) − Q(t, Y (t))) dW(t), X(t) − Y (t)〉 is a Q-mar-
tingale. Since for some constant C1 > 0 we have

C0‖Xt − Yt‖Cν |X(t)− Y (t)|+K2|X(t)− Y (t)|2 − 2|X(t)− Y (t)|2

γ(t)
6 C0‖Xt − Yt‖Cν |X(t)− Y (t)| −K2|X(t)− Y (t)|2

6 C1‖Xt − Yt‖2Cν , t ∈ [0, T ),
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(3.17) and (1.1) imply

EQ‖Xt − Yt‖2Cν

= EQ|X(t)− Y (t)|2 +
∫ 0

−r0

EQ|X(t+ θ)− Y (t+ θ)|2ν(dθ)

6 |ξ(0)− η(0)|2 + C1

∫ t

0
EQ‖Xs − Ys‖2Cν ds

+ κ(T )
∫ 0

−r0

|ξ(θ)− η(θ)|2ν(dθ) + ν([−r0, 0))
∫ t

0
EQ|X(s)− Y (s)|2 ds

6 C2‖ξ − η‖2Cν + C2

∫ t

0
EQ‖Xs − Ys‖2Cν ds, t ∈ [0, T )

for some constant C2 > 0. Therefore, by Gronwall’s lemma,

EQ‖Xt − Yt‖2Cν 6 C2eC2T ‖ξ − η‖2Cν , t ∈ [0, T ). (3.18)

On the other hand, by (3.17) and noting that 2 + γ′ −K2γ = 1, we have

d
{
|X(t)−Y (t)|2

γ(t)

}
6

{
C0‖Xt−Yt‖Cν |X(t)−Y (t)|

γ(t) − |X(t)−Y (t)|2

γ(t)2

(
2 + γ′(t)−K2γ(t)

)}
dt

+ 1
γ(t) dM(t)

6

{
C2

0
2 ‖Xt−Yt‖2Cν −

|X(t)−Y (t)|2

2γ(t)2

}
dt+ 1

γ(t) dM(t), t ∈ [0, T ).

So, it follows from (3.18) that

EQ

∫ T

0

|X(t)− Y (t)|2

γ(t)2 dt 6 2|ξ(0)− η(0)|2

γ(0) + C2
0

∫ T

0
EQ‖Xt − Yt‖2Cν dt.

Combining this with (3.10), (3.11), (3.12) and (3.18), we arrive at

EQ logR = lim
t↑T

EQ

{∫ t

0
〈φ(s), dW(s)〉H̄ + 1

2

∫ t

0
|φ(s)|2H̄ ds

}
= 1

2

∫ T

0
EQ|φ(s)|2H̄ ds 6 C

(
1
T
|ξ(0)− η(0)|2 + |ξ − η|2Cν

)
for some constant C > 0. Then the proof is finished by (3.16). �
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