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Small eigenvalues of the Neumann realization
of the semiclassical Witten Laplacian

D. Le Peutrec
(1)

ABSTRACT. — This article follows the previous works [HeKlNi, HeNi] by
Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible
diffusion processes via a Witten complex approach. Again, exponentially

small eigenvalues of some self-adjoint realization of ∆
(0)
f,h

= −h2∆ +

|∇f(x)|2 − h∆f(x) are considered as the small parameter h > 0 tends
to 0. The function f is assumed to be a Morse function on some bounded
domain Ω with boundary ∂Ω. Neumann type boundary conditions are con-
sidered. With these boundary conditions, some possible simplifications in
the Dirichlet problem studied in [HeNi] are no more possible. A finer treat-
ment of the three geometries involved in the boundary problem (boundary,
metric, Morse function) is here carried out.

RÉSUMÉ. — Cet article est dans la continuation des travaux [HeKlNi,
HeNi] de Helffer-Klein-Nier et Helffer-Nier sur l’étude de la métastabilité
dans des processus de diffusions réversibles via une approche de Witten.
Nous considérons encore ici les valeurs propres exponentionnellement pe-

tites d’une réalisation auto-adjointe de ∆
(0)
f,h

= −h2∆+|∇f(x)|2−h∆f(x)
lorsque le paramètre h > 0 tend vers 0. La fonction f est une fonction
de Morse sur un domaine borné Ω de bord ∂Ω. Des conditions au bord
de type Neumann sont considérées ici. Avec ces conditions, certaines sim-
plifications utilisées pour l’étude du problème de Dirichlet dans [HeNi]
ne sont plus possibles. Un traitement plus fin des trois géométries inter-
venant dans le problème à bord (bord, métrique, fonction de Morse) est
donc nécessaire.

(∗) Reçu le ??/??/20??, accepté le 30/03/2010
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1. Introduction and result

In this work, we focus on the exponentially small eigenvalues of the
Neumann realization of the semiclassical Witten Laplacian ∆(0)

f,h (acting
on 0-forms) on a connected compact Riemannian manifold with regular
boundary.

Our purpose is to derive with the same accuracy as in [HeKlNi] and
in [HeNi] asymptotic formulas for the smallest non zero eigenvalues of the
Neumann realization of ∆(0)

f,h

A similar problem was considered by many authors via a probabilistic
approach in [FrWe], [HoKuSt], [Mic], and [Kol]. More recently, in the case of
R
n , accurate asymptotic forms of the exponentially small eigenvalues were

obtained in [BoEcGaKl] and [BoGaKl].

These results were improved and extended to the cases of boundaryless
compact manifolds in [HeKlNi] and of compact manifolds with boundaries
for the Dirichlet realization of the Witten Laplacian in [HeNi].

We want here to extend these last results to the case of compact mani-
folds with boundaries for the Neumann realization of the Witten Laplacian,
that is with coherently deformed Neumann boundary conditions.

Let us also make mention of an other recent work, [KoPrSh], about
semiclassical asymptotics for the eigenvalues of the Witten Laplacian on
compact manifolds with boundary, and where some techniques developped
in [HeNi] are used. In [KoPrSh], the purpose is nevertheless quite different
and does not consist in giving full semiclassical asymptotic expansions like
it is done in [HeNi] and in the present paper.

The function f is assumed to be a Morse function on Ω = Ω ∪ ∂Ω
with no critical points at the boundary. Furthermore, its restriction to the
boundary f |∂Ω is also assumed to be a Morse function.

From [ChLi], which completed results yet obtained in the boundaryless
case (see [Sim][Wit][CyFrKiSi][Hen][HeSj4][Hel3]), the number mp of eigen-
values of the Neumann realization of the Witten Laplacian ∆(p)

f,h (acting on
p-forms) in some interval [0, Ch

3
2 ] (for h > 0 small enough) relies closely on

the number of critical points of f with index p.

In the boundaryless case, these numbers are exactly the numbers of
critical points of f with index p in Ω. Like in [HeNi], this definition has to
be generalized in the case with boundary, taking into account the structure
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of the function f at the boundary, f |∂Ω. Note furthermore that m0 is here
the number of local minima of f in Ω.

Moreover, the first eigenvalue in our case is 0 and the other small eigen-
values are actually exponentially small as h → 0, i.e. of order e−

C
h , where

C is a positive number independent of the small parameter h > 0.

The point of view of [HeKlNi] and [HeNi] intensively uses, together with
the techniques of [HeSj4], the two facts that the Witten Laplacian is asso-
ciated with a cohomology complex and that the function x �→ exp− f(x)

h is
a distributional solution in the kernel of the Witten Laplacian on 0-forms,
consequently allowing to construct very efficiently quasimodes.

Recall that the Witten Laplacian is defined as

∆f,h = df,hd∗f,h + d∗f,hdf,h , (1.0.1)

where df,h is the distorted exterior differential

df,h := e−f(x)/h (hd) ef(x)/h = hd+ df(x)∧ , (1.0.2)

and where d∗f,h is its adjoint for the L2-scalar product canonically associated
with the Riemannian structure (see for example [GaHuLa][Gol][Sch]). The
restriction of df,h to p-forms is denoted by d(p)f,h. With these notations, the
Witten Laplacian on functions is

∆(0)
f,h = d(0)∗f,h d

(0)
f,h . (1.0.3)

In the Witten complex spirit and due to the relation

d
(0)
f,h∆

(0)
f,h = ∆(1)

f,hd
(0)
f,h , (1.0.4)

it is more convenient to consider the singular values of the restricted differ-
ential d(0)f,h : F (0) → F (1) . The space F (�) is the m�-dimensional spectral

subspace of ∆(�)
f,h, � ∈ {0, 1},

F (�) = Ran 1I(h)(∆
(�)
f,h) , (1.0.5)

with I(h) = [0, Ch
3
2 ] and the property1

1I(h)(∆
(1)
f,h)d

(0)
f,h = d(0)f,h1I(h)(∆

(0)
f,h) . (1.0.6)

(1) The right end a(h) = Ch
3
2 of the interval I(h) = [0, a(h)] is suitable for technical

reasons. What is important is that a(h) = o(h). The value of C > 0 does not play any
role provided h is small enough.
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The restriction df,h
∣∣
F (�) will be more shortly denoted by β(�)

f,h,

β
(�)
f,h := (d(�)f,h)/F (�) . (1.0.7)

We will mainly focus on the case � = 0.

It appears that working with singular values of β(0)
f,h is efficient in order to

compute the eigenvalues of ∆(0)
f,h (which are their squares). Those quantities

agree better with the underlying Witten complex structure.

Note that in our case, 0 is the smallest eigenvalue of the (deformed)
Neumann realization of the Witten Laplacian on 0-forms due to the fact that
x �→ exp− f(x)

h belongs to the domain of this operator (see Proposition 2.7
for the exact definition).

Let us now state the main result. Let U (0) and U (1) denote respectively
the set of local minima and the set of generalized critical points with index
1, or generalized saddle points, of the Morse function f on Ω (see Defini-
tion 5.1 for the exact meaning of “generalized”). The analysis is easier under
a generic assumption which ensures that the exponentially small eigenval-
ues are simple with different logarithmic equivalent as h → 0. Although it
is possible to consider more general cases like in [HeKlNi] and in [HeNi],
we will follow the point of view presented in [Nie] and work directly in a
generic case which avoids some technical and unnecessary considerations.

Assumption 1.1. — The critical values of f and f
∣∣
∂Ω

are all distinct and
the quantities f(U (1))−f(U (0)), with U (1)∈U (1) and U (0)∈U (0) are distinct.

Following this assumption, a one to one mapping j can be defined from
U (0) \

{
U

(0)
1

}
where U (0)

1 is the global minimum, into the set U (1). The local

minima are denoted by U (0)
k , k ∈ {1, . . . ,m0}, and the generalized saddle

points by U (1)
j , j ∈ {1, . . . ,m1}. The ordering of the local minima as well

as the one to one mapping j will be specified in Subsection 5.3.

The following fundamental quantities will enter in the expression of the
final result.

Definition 1.2. — For k ∈ {2, . . . ,m0}, we define:

γk(h) =



∣∣∣det Hess f(U (0)
k )

∣∣∣ 1
4

(πh)
n
4

if U
(0)
k ∈ Ω(

−2∂nf(U
(0)
k )

h

) 1
2

∣∣∣det Hess f |∂Ω(U (0)
k )

∣∣∣ 1
4

(πh)
n−1

4

if U
(0)
k ∈ ∂Ω ,
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δj(k)(h) =



∣∣∣det Hess f(U (1)
j(k))

∣∣∣ 1
4

(πh)
n
4

if U (1)
j(k) ∈ Ω−2∂nf(U

(1)
j(k))

h


1
2

∣∣∣det Hess f |∂Ω(U (1)
j(k))

∣∣∣ 1
4

(πh)
n−1

4

if U (1)
j(k) ∈ ∂Ω ,

and,

θj(k)(h) =



h
1
2

π
1
2

(πh)
n
2 |λ̂Ω

1 |
1
2∣∣∣det Hess f(U (1)

j(k))
∣∣∣ 1
2

if U (1)
j(k) ∈ Ω

h2

−2∂nf(U
(1)
j(k))

(πh)
n−2

2 |λ̂∂Ω
1 | 12∣∣∣det Hess f |∂Ω(U (1)
j(k))

∣∣∣ 1
2

if U (1)
j(k) ∈ ∂Ω ,

where λ̂W1 is the negative eigenvalue of Hess f |W (U (1)
j(k)) for W = Ω or

W = ∂Ω.

Theorem 1.3. — Under Assumption 1.1 and after the ordering speci-
fied in Subsection 5.3, there exists h0 such that, for h ∈ (0, h0] , the spectrum
in [0, h

3
2 ) of the Neumann realization of ∆(0)

f,h in Ω consists of m0 eigenvalues
0 = λ1(h) < . . . < λm0(h) of multiplicity 1.

Moreover, the above m0−1 non zero eigenvalues are exponentially small
and admit the following asymptotic expansions:

λk(h) = γ2
k(h) δ

2
j(k)(h) θ

2
j(k)(h) e

−2
f(U(1)

j(k)
)−f(U(0)

k
)

h

(
1 + hc1k(h)

)
where γk(h), δj(k)(h), and θj(k)(h) are defined in the above definition and
c1k(h) admits a complete expansion: c1k(h) ∼

∑∞
m=0 h

mck,m.

This theorem is an extension to the case with Neumann boundary condi-
tions of the previous results of [BoGaKl] and its improvements in [HeKlNi]
and [HeNi] (see also non-rigorous formal computations of [KoMa], who look
also at cases with symmetry and the books [FrWe] and [Kol] and references
therein).

To prove this theorem, we will follow the same strategy as in [HeKlNi]
and in [HeNi] and some intermediary results will be reused without demon-
stration (what will be indicated in the article). Moreover, some proofs will be
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improved (see for example the final proof reduced now to a simple Gaussian
elimination, explained in [Lep1]).

Finally, let us underline that the geometry of the Neumann case is dif-
ferent from the geometry of the above references. This leads to different
results (compare Theorem 1.3 and the main theorem of [HeNi]) and some
proofs have to be entirely reconsidered. In fact, the study of the Dirichlet
realization of the Witten Laplacian done in [HeNi] agreed better with the
local geometry near the boundary, which led to simpler computations (see
the local WKB construction in Section 4 for example).

The article is organized as follows.

In the second section, we analyze in detail the boundary complex adapted
to our analysis in order to keep the commutation relation (1.0.4). A part of
the answer already exists in the literature (see [Sch], [Duf], [DuSp], [Gue],
and [ChLi]) in connection with the analysis of the relative or absolute co-
homology as defined in [Gil].

The third section is devoted to the proof of rough estimates (to get a
first localization of the spectrum of the Laplacian) replacing the harmonic
oscillator approximation in the case without boundary.

These two sections bring no additional difficulties in comparison with
what was done in [HeNi].

In the fourth section, we give the WKB construction for an eigenform
of the Witten Laplacian on 1-forms localized near a critical point of the
boundary, according to the analysis done in [Lep2]. In the Dirichlet case,
it was possible to use only one single coordinate system for the WKB con-
struction but in the present case different coordinate systems arise naturally.
Lemma 3.18 will play a crucial role to juggle with these different coordinate
systems.

In the first part of the fifth section we label the local minima and we
construct the above injective map j under Assumption 1.1.

In the second part of this fifth section we build quasimodes adapted
to our analysis and we make some scalar estimates thanks to the Laplace
method. This leads directly to the proof of the final result in Section 6 using
a result of [Lep1]. Again, we cannot use a single one coordinate system like in
[HeNi] and we must again call on Lemma 3.18 to be able to use the Laplace
method. This is due to the local geometry near a generalized critical point
with index 1 which is rather more complicated than in [HeNi].
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2. Witten Laplacian with Neumann boundary condition

2.1. Introduction and notations

This section is analogous to the second section of [HeNi] and we will use
the same notations that we recall here.

Let Ω be a C∞ connected compact oriented Riemannian n-dimensional
manifold. We will denote by g0 the given Riemannian metric on Ω ; Ω and
∂Ω will denote respectively its interior and its boundary.

The cotangent (resp. tangent) bundle on Ω is denoted by T ∗Ω (resp.
TΩ) and the exterior fiber bundle by ΛT ∗Ω = ⊕n

p=0Λ
pT ∗Ω (resp. ΛTΩ =

⊕n
p=0Λ

pTΩ).

The fiber bundles ΛT∂Ω = ⊕n−1
p=0ΛpT∂Ω and ΛT ∗∂Ω = ⊕n−1

p=0ΛpT ∗∂Ω
are defined similarly.

The space of C∞, C∞0 , L2, Hs , etc. sections in any of these fiber bun-
dles, E, on O = Ω or O = ∂Ω, will be denoted respectively by C∞(O;E),
C∞0 (O;E), L2(O;E), Hs(O;E), etc..

When no confusion is possible we will simply use the short notations
ΛpC∞, ΛpC∞0 , ΛpL2 and ΛpHs for E = ΛpT ∗Ω or E = ΛpT ∗∂Ω.

Note that the L2 spaces are those associated with the unit volume form
for the Riemannian structure on Ω or ∂Ω (Ω and ∂Ω are oriented).

The notation C∞(Ω;E) is used for the set of C∞ sections up to the
boundary.

Finally since ∂Ω is C∞, C∞(Ω;E) is dense in Hs(Ω;E) for s � 0 and the
trace operator ω → ω|∂Ω extends to a surjective operator from Hs(Ω;E)
onto Hs−1/2(∂Ω;E) as soon as s > 1/2.

Let d be the exterior differential on C∞0 (Ω; ΛT ∗Ω)(
d(p) : C∞0 (Ω; ΛpT ∗Ω) → C∞0 (Ω; Λp+1T ∗Ω)

)
and d∗ its formal adjoint with respect to the L2-scalar product inherited
from the Riemannian structure(

d(p),∗ : C∞0 (Ω; Λp+1T ∗Ω) → C∞0 (Ω; ΛpT ∗Ω)
)
.

Remark 2.1. — Note that d and d∗ are both well defined on C∞(Ω; ΛT ∗Ω) .
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For a function f ∈ C∞(Ω;R) and h > 0, the distorted operators are
defined on C∞(Ω; ΛT ∗Ω) by:

df,h = e−f(x)/h (hd) ef(x)/h and d∗f,h = ef(x)/h (hd∗) e−f(x)/h.

The Witten Laplacian is the differential operator defined on C∞(Ω; ΛT ∗Ω)
by:

∆f,h = d∗f,hdf,h + df,hd∗f,h = (df,h + d∗f,h)
2 . (2.1.1)

Remark 2.2. — The last equality follows from the property dd = d∗d∗ =
0 which implies:

df,hdf,h = d∗f,hd
∗
f,h = 0. (2.1.2)

It means, by restriction to the p-forms in C∞(Ω; ΛpT ∗Ω):

∆(p)
f,h = d(p),∗f,h d

(p)
f,h + d(p−1)

f,h d
(p−1),∗
f,h .

Note that (2.2) implies for all u in C∞(Ω; ΛpT ∗Ω) that:

∆(p+1)
f,h d

(p)
f,hu = d(p)f,h∆

(p)
f,hu (2.1.3)

and
∆(p−1)
f,h d

(p−1),∗
f,h u = d(p−1),∗

f,h ∆(p)
f,hu . (2.1.4)

We end up this section by a few relations with exterior and interior
products (respectively denoted by ∧ and i), gradients (denoted by ∇) and
Lie derivatives (denoted by L) which will be very useful:

(df∧)∗ = i∇f (in L2(Ω; ΛpT ∗Ω )) , (2.1.5)
df,h = hd+ df∧ , (2.1.6)
d∗f,h = hd∗ + i∇f , (2.1.7)

d ◦ iX + iX ◦ d = LX , (2.1.8)

∆f,h = h2(d+ d∗)2 + |∇f |2 + h
(
L∇f + L∗∇f

)
, (2.1.9)

where X denotes a vector field on Ω or Ω.

Remark 2.3. — We work here on a Riemannian manifold and the opera-
tors introduced depend on the Riemannian metric g0. Nevertheless, we have
omitted here this dependence for conciseness.
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2.2. Stokes and Green formulas

In order to define suitably the self-adjoint Neumann realization of the
Witten Laplacian ∆f,h, we need variants from the Stokes and the Green
formulas.

For that, we use some notations and properties which are very convenient
for boundary problems and which are introduced for example in [Sch] and
recalled in [HeNi].

Definition 2.4. — We denote by (nσ the outgoing normal at σ ∈ ∂Ω
and by (n∗σ the 1-form dual to (nσ for the Riemannian scalar product.

For any ω ∈ C∞(Ω; ΛpT ∗Ω), the form tω is the element of C∞(∂Ω; ΛpT ∗Ω)
defined by:

(tω)σ(X1, . . . , Xp) = ωσ(XT
1 , . . . , X

T
p ) , ∀σ ∈ ∂Ω ,

with the decomposition into the tangential and normal components to ∂Ω
at σ: Xi = XT

i ⊕ x⊥i (nσ.

Moreover,
(tω)σ = i�nσ ((n

∗
σ ∧ ωσ) .

The projected form tω, which depends on the choice of (nσ (i.e. on g0),
can be compared with the canonical pull-back j∗ω associated with the
imbedding j : ∂Ω → Ω. Actually the exact relationship is j∗ω = j∗(tω).
With an abuse of notation, the form j∗(tω) will be simply written tω for
example in Stokes formula without any possible confusion.

The normal part of ω on ∂Ω is defined by:

nω = ω|∂Ω − tω ∈ C∞(∂Ω; ΛpT ∗Ω).

If necessary tω and nω can be considered as elements of C∞(Ω; ΛpT ∗Ω) by
a variant of the collar theorem (see [HeNi] or [Sch] for details).

The Hodge operator * is locally defined in a pointwise orthonormal frame
(E1, . . . , En) by:

(*ωx)(Eσ(p+1), . . . , Eσ(n)) = ε(σ) ωx(Eσ(1), . . . , Eσ(p)) ,

for ωx ∈ ΛpT ∗xΩ and with any permutation σ ∈ Σ(n) of {1, . . . , n} preserving
{1, . . . , p} (ε(σ) denotes the signature of σ).

– 744 –



Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

We recall the formulas:

*(*ωx) = (−1)p(n−p)ωx , ∀ωx ∈ ΛpT ∗xΩ , (2.2.1)
〈ω1 |ω2〉ΛpL2 =

∫
Ω
ω1 ∧ *ω2 , ∀ω1, ω2 ∈ ΛpL2 , (2.2.2)

and:

*d∗,(p−1) = (−1)pd(n−p)* , *d(p) = (−1)p+1d∗,(n−p−1)* , (2.2.3)
* n = t * , * t = n * , (2.2.4)
t d = d t , n d∗ = d∗ n . (2.2.5)

With the previous convention j∗(tω) = tω, the Stokes formula writes:

∀ω ∈ C∞(Ω; ΛpT ∗Ω),
∫

Ω

dω =
∫
∂Ω

j∗ω =
∫
∂Ω

tω , (2.2.6)

and a first deformed Green formula given in [HeNi] states that

〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2 (2.2.7)

= 〈∆f,hω | η〉ΛpL2 + h
∫
∂Ω

(tη) ∧ (*ndf,hω) − h
∫
∂Ω

(td∗f,hω) ∧ (*nη)

holds for all ω ∈ ΛpH2 and η ∈ ΛpH1 . This formulation of (2.2.7) does not
depend on the choice of an orientation. If µ and µ∂Ω denote the volume forms
in Ω and ∂Ω, the orientation is chosen such that (µ∂Ω)σ(X1, . . . , Xn−1) =
µσ((nσ, X1, . . . , Xn−1). A simple computation in normal frames (see [Sch],
prop. 1.2.6) leads to:

tω1 ∧ *nω2 = 〈ω1 | i�nσω2〉ΛpT∗σΩ dµ∂Ω , (2.2.8)

for ω1 ∈ C∞(Ω; ΛpT ∗Ω) and ω2 ∈ C∞(Ω; Λp+1T ∗Ω).

Definition 2.5. — We denote by ∂f
∂n (σ) or ∂nf(σ) the normal deriva-

tive of f at σ:
∂f

∂n
(σ) = ∂nf(σ) := 〈∇f(σ) |(nσ〉 .

As a consequence of (2.2.8) we get the following useful decomposition
formula.
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Lemma 2.6 (Normal Green Formula). — The identity

‖df,hω‖2
Λp+1L2 +

∥∥∥d∗f,hω∥∥∥2

Λp−1L2
= h2 ‖dω‖2

Λp+1L2 + h2 ‖d∗ω‖2
Λp−1L2

+ ‖ |∇f |ω‖2
ΛpL2 + h〈(L∇f + L∗∇f )ω |ω〉ΛpL2

+h
∫
∂Ω

〈ω |ω〉ΛpT∗σΩ

(
∂f

∂n

)
(σ) dµ∂Ω

holds for any ω ∈ ΛpH1 such that nω = 0.

Proof. — Since C∞(Ω; ΛpT ∗Ω) is dense in ΛpH1, while both terms of
the identity are continuous on ΛpH1, the form ω can be assumed to be in
C∞(Ω; ΛpT ∗Ω).

We use the relation (2.2.7) with both f = 0 (d0,h = hd and d∗0,h = hd∗)
and a general f ∈ C∞(Ω;R). We obtain:

‖df,hω‖2
Λp+1L2 +

∥∥∥d∗f,hω∥∥∥2

Λp−1L2
− h2‖dω‖2

Λp+1L2 − h2‖d∗ω‖2
Λp−1L2 =

〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 + h
∫
∂Ω

(tω) ∧ *n(df ∧ ω) − h
∫
∂Ω

(ti∇fω) ∧ (*nω)

= 〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 + h
∫
∂Ω

〈ω | i�nσ (df ∧ ω)〉ΛT∗σΩ dµ∂Ω .

By (2.1.9):

〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 = ‖|∇f |ω‖2
ΛpL2 + h〈(L∇f + L∗∇f )ω |ω〉ΛpL2 .

For the integral term, we write:

i�nσ (df ∧ ω)(X1, . . . , Xp) = (df ∧ ω) ((nσ, X1, . . . , Xp)
= df((nσ).ω(X1, . . . , Xp) because nω = 0
= 〈∇f(σ) |(nσ〉.ω(X1, . . . , Xp)

=
(
∂f

∂n
(σ)

)
ω(X1, . . . , Xp) ,

which proves the lemma. �

2.3. Normal Neumann realization

In this subsection, we specify the self-adjoint realization of ∆(0)
f,h in which

we are interested. Like in [HeNi], we want this self-adjoint realization (de-
noted by ∆N

f,h) to coincide with the Neumann realization on 0-forms and to
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preserve the complex structure:

(1 + ∆N,(p+1)
f,h )−1d

(p)
f,h = d

(p)
f,h(1 + ∆N,(p)

f,h )−1

and
(1 + ∆N,(p−1)

f,h )−1d
(p−1),∗
f,h = d

(p−1),∗
f,h (1 + ∆N,(p)

f,h )−1

on the form domain of ∆N,(p)
f,h .

Having in mind the works [Sch] and [ChLi] about cohomology complexes
and boundary problems, we introduce the space:

ΛpH1
0,n = H1

0,n (Ω; ΛpT ∗Ω) =
{
ω ∈ H1 (Ω; ΛpT ∗Ω) ; nω = 0

}
. (2.3.1)

In the case p = 0, it coincides with the space H1(Ω), while for p � 1
the condition says only that the form vanishes on ∂Ω when applied to non
tangential p-vectors. Since the boundary ∂Ω is assumed to be regular, the
space

ΛpC∞0,n = C∞0,n(Ω; ΛpT ∗Ω) =
{
ω ∈ C∞

(
Ω,ΛpT ∗Ω

)
; nω = 0

}
is dense in ΛpH1

0,n. The following construction is a variant of known results
in the case f = 0 (see [Sch]). We will use the notations:

Df,h(ω, η) = 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

and
Df,h(ω) = Df,h(ω, ω) = ‖df,hω‖2

Λp+1L2 +
∥∥d∗f,hω∥∥2

Λp−1L2 .

Proposition 2.7. — The non negative quadratic form ω → Df,h(ω)
is closed on ΛpH1

0,n. The associated (self-adjoint) Friedrichs extension is

denoted by ∆N,(p)
f,h . Its domain is:

D(∆N,(p)
f,h ) =

{
u ∈ ΛpH2; nω = 0 and ndf,hω = 0

}
,

and we have:

∀ω ∈ D(∆N,(p)
f,h ), ∆N,(p)

f,h ω = ∆(p)
f,hω in Ω .

Proof. — By the same argument as in the proof of Proposition 2.4 of
[HeNi], the space ΛpH1

0,n is isomorphic to the direct sum:

ΛpH1
0 ⊕ tΛpH1/2(∂Ω; ΛpT ∗Ω)
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with continuous embedding. Hence, since ∂Ω is a regular boundaryless man-
ifold, its dual is the direct sum of ΛpH−1 and tΛpH−1/2(∂Ω; ΛpT ∗Ω):(

ΛpH1
0,n

)′
= ΛpH−1 ⊕ tΛpH−1/2(∂Ω; ΛpT ∗Ω) .

We have to check that ω �→ D(p)
f,h(ω) + C ‖ω‖2

ΛpL2 is equivalent to the
square of the ΛpH1 norm on ΛpH1

0,n. By (2.1.6)-(2.1.9) this is equivalent to
the same result for f = 0 and h = 1. This last case is known as Gaffney’s
inequality which is a consequence of the Weitzenböck formula (see [Sch],
Theorem 2.1.7).

Hence the quadratic form ω → Df,h(ω) is closed on ΛpH1
0,n and the

identity
∀η ∈ ΛpH1

0,n, D(p)
f,h(ω, η) = 〈A(p)ω, η〉

defines an isomorphism A(p) : ΛpH1
0,n → (ΛpH1

0,n)′.

The self-adjoint Friedrichs extension ∆N,(p)
f,h is then defined as the oper-

ator:

D(∆N,(p)
f,h ) =

{
ω ∈ ΛpH1

0,n, A
(p)ω ∈ ΛpL2

}
, ∆N,(p)

f,h ω = A(p)ω .

It remains to identify this domain and the explicit action of A(p).

If ω belongs to D(∆N,(p)
f,h ), by the first Green formula (2.2.7) we get:

∀η ∈ ΛpC∞0 , 〈ω |A(p)η〉 = D(p)
f,h(ω, η) = 〈ω |∆(p)

f,hη〉 .

The inequality:

|D(p)
f,h(ω, η)| � C ‖ω‖ΛpH1 ‖η‖ΛpH1 ,

together with the density of ΛpC∞0 in ΛpH1
0 implies that the current ∆(p)

f,hω ∈
D′(Ω; ΛpT ∗Ω) is indeed the ΛpH−1 component of A(p)ω.

Assume that ω belongs to ΛpH1
0,n∩ΛpH2; then the Green formula (2.2.7)

gives:

h

∫
∂Ω

(tη) ∧ (*ndf,hω) = D(p)
f,h(ω, η) − 〈∆(p)

f,hω | η〉ΛpL2 , ∀η ∈ ΛpH1
0,n .

By density, one can define, for any ω in ΛpH1
0,n such that ∆(p)

f,hω ∈ ΛpL2, a
trace of ndf,hω by the previous identity, observing that the r.h.s. defines an
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antilinear continuous form with respect to η. With this generalized definition
of nd(p)f,hω we claim that:

D(∆N,(p)
f,h ) =

{
ω ∈ ΛpH1

0,n, ∆(p)
f,hω ∈ ΛpL2 and nd(p)f,hω = 0

}
.

The last point consists in observing that the boundary value problem

∆(p)
f,hu = g, nu = g1, nd(p)f,hu = g2 (2.3.2)

satisfies the Lopatinski-Shapiro conditions. At the principal symbol level
(h > 0 fixed), these conditions are indeed the same as for

(dd∗ + d∗d)(p)u = g, nu = g1, nd(p)u = g2.

This is checked in [Sch]. Hence any solution to (2.3.2) with g ∈ ΛpL2,
g1 = g2 = 0 belongs to ΛpH2. �

Proposition 2.8. — For any p ∈ {0, . . . , n}, the self-adjoint unbounded
operator ∆N,(p)

f,h introduced in Proposition 2.7 has a compact resolvent.

Moreover, if z ∈ C \ R+, the commutation relations

(z − ∆N,(p+1)
f,h )−1d

(p)
f,hv = d(p)f,h(z − ∆N,(p)

f,h )−1v ,

and
(z − ∆N,(p−1)

f,h )−1d
(p−1),∗
f,h v = d(p−1),∗

f,h (z − ∆N,(p)
f,h )−1v ,

hold for any v ∈ ΛpH1
0,n .

Proof. — The domain of the operator is contained in ΛpH2, which is
compactly embedded in ΛpL2, by Sobolev injections. This yields the first
statement.

Since ΛpC∞0,n is dense in ΛpH1
0,n, it is sufficient to consider the case when

v ∈ ΛpC∞0,n. For such a v and for z ∈ C \ R+, we set:

u = (z − ∆N,(p)
f,h )−1v.

Due to the ellipticity of the associated boundary problem (the Lopatinski-
Shapiro conditions are verified) u belongs to C∞(Ω; ΛpT ∗Ω). The commu-
tation relations (2.1.3) and (2.1.4) can be applied since here f ∈ C∞(Ω;R):

(z − ∆(p+1)
f,h )d(p)f,hu = d(p)f,h(z − ∆(p)

f,h)u = d(p)f,hv (2.3.3)
and

(z − ∆(p−1)
f,h )d(p−1),∗

f,h u = d(p−1),∗
f,h (z − ∆(p)

f,h)u = d(p−1),∗
f,h v . (2.3.4)
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Since u ∈ D(∆N,(p)
f,h ) , we have nu = 0 and nd(p)f,hu = 0.

Then, ndf,hu = 0 and ndf,hdf,hu = 0 imply df,hu ∈ D(∆N,(p+1)
f,h ). So by

(2.3.3) we have:

d
(p)
f,h(z − ∆N,(p)

f,h )−1v = df,hu = (z − ∆N,(p+1)
f,h )−1d

(p)
f,hv .

In order to show the second commutation relation, we first use the rela-
tion (2.2.5) which implies:

nd∗f,hu = hd∗nu+ n(i∇fu) = 0.

For the normal trace of the differential, we write (∆f,hu = zu− v):

ndf,h(d∗f,hu) = znu− nv − nd∗f,hdf,hu = −d∗f,hndf,hu = 0 .

Hence d(p−1),∗
f,h u belongs to D(∆N,(p−1)

f,h ) and the identity (2.3.4) yields the
last commutation relation to show. �

Definition 2.9. — For any Borel subset E ⊂ R and p ∈ {0, . . . , n}, we
will denote by 1E(∆N,(p)

f,h ) the spectral projection of ∆N,(p)
f,h on E.

From Proposition 2.8 and Stone’s Formula we deduce:

Corollary 2.10. — For any Borel subset E ⊂ R, the identities

1E(∆N,(p+1)
f,h )d(p)f,hv = d(p)f,h1E(∆N,(p)

f,h )v
and

1E(∆N,(p−1)
f,h )d(p−1),∗

f,h v = d(p−1),∗
f,h 1E(∆N,(p)

f,h )v

hold for all v ∈ ΛpH1
0,n.

In the particular case when v is an eigenvector of ∆N,(p)
f,h corresponding to

the eigenvalue λ, then d(p)f,hv (resp. d(p−1),∗
f,h v) belongs to the spectral subspace

Ran 1{λ}(∆
N,(p+1)
f,h ) (resp. Ran 1{λ}(∆

N,(p−1)
f,h )).

Proposition 2.8 and Corollary 2.10 were stated for p-forms v ∈ ΛpH1
0,n(Ω),

belonging to the form domain of ∆N,(p)
f,h . It is convenient to work in this

framework because the multiplication by any cut-off function preserves the
form domain ΛH1

0,n(Ω):(
ω ∈ ΛH1

0,n(Ω), χ ∈ C∞(Ω)
)
⇒ (χω ∈ ΛH1

0,n(Ω)) ,
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while this property is no more true for D(∆N
f,h). In this spirit, we will often

refer to the following easy consequence of the spectral theorem.

Lemma 2.11. — Let A be a non negative self-adjoint operator on a Hilbert
space H with associated quadratic form qA(x) = (x |Ax) and with form do-
main Q(A). Then for any a, b ∈ (0,+∞), the implication

(qA(u) � a) ⇒
(∥∥1[b,+∞)(A)u

∥∥2 � a
b

)
holds for any u ∈ Q(A).

3. First localization of the spectrum

3.1. Introduction and result

Let us first recall that we are working with the fixed Riemannian met-
ric g0 on Ω. Like in the third section of [HeNi] for their tangential Dirichlet
realization of the Witten Laplacian, we check here that the number of eigen-
values of ∆N,(p)

f,h smaller than h3/2 equals a Morse index which involves in its
definition the boundary conditions. To this end, we will adapt [HeNi] which
uses techniques yet presented in [Sim], [CyFrKiSi], [ChLi], [Bis], [Bur], and
in [Hel1]. These techniques are also used in the same spirit in [KoPrSh].

In order to make the connection between the normal Neumann real-
ization of the Witten Laplacian ∆N

f,h and the Morse theory, we assume
additional properties for the function f up to the boundary ∂Ω.

Assumption 3.1. — The real-valued function f ∈ C∞(Ω) is a Morse
function on Ω with no critical points in ∂Ω . In addition its restriction f |∂Ω

is a Morse function on ∂Ω.

Remark 3.2. — With this assumption, the function f has a finite number
of critical points with index p in Ω. Note furthermore that the assumption
ensures that there is no critical point on ∂Ω, which implies that the outgoing
normal derivative ∂f

∂n (U) is not 0 when U is a critical point of f |∂Ω.

Definition 3.3 . — For � ∈ {0, . . . , n}, the integer m∂Ω
�,− is the number

of critical points U of f |∂Ω with index � such that ∂f
∂n (U) < 0 (with the

additional convention m∂Ω
n,− = 0).

For p ∈ {0, . . . , n}, let

mΩ
p = mΩ

p +m∂Ω
p,− .
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Remark 3.4. — In [HeNi], the authors worked with the tangential Dirich-
let conditions (tω = 0 and td∗f,hω = 0) and the corresponding definition
was similar with m∂Ω

�,− and ∂f
∂n (U) < 0 replaced respectively by m∂Ω

�−1,− and
∂f
∂n (U) > 0.

The aim of this section is to prove the following theorem:

Theorem 3.5. — Under Assumption 3.1, there exists h0 > 0, such that
the normal Neumann realization of the Witten Laplacian ∆N

f,h introduced in
Subsection 2.3 has, for h ∈ (0, h0] , the following property:

For any p ∈ {0, . . . , n}, the spectral subspace F (p) = Ran1[0,h3/2)(∆
N,(p)
f,h )

has rank: dim F (p) = mΩ
p .

To prove this theorem, we will adapt for the normal Neumann realiza-
tion of the Witten Laplacian the proof given in [HeNi] for the tangential
Dirichlet realization. Many points of this demonstration do not require any
modification, so we will only recall these results without any demonstration.

The theorem will be proved in the Subsection 3.3.

3.2. A few preliminary lemmas

In this subsection, we recall some results of [HeNi] needed to prove The-
orem 3.5.

3.2.1 Variationnal results for the Witten Laplacian on Rk

Let g be a C∞ metric on Rk which equals the Euclidean metric outside
a compact set K.

Assumption 3.6 (g). — The function f is a Morse C∞ real-valued func-
tion and there exist C1 > 0 and a compact K such that, for the metric g:

∀x ∈ Rk \K, |∇f(x)| � C−1
1 and |Hess f(x)| � C1 |∇f(x)|2 . (3.2.1)

Note that the above assumption ensures that f has a finite number of
critical points andmp will denote the number of critical points with index p .

Let us recall the Propositions 3.6 and 3.7 of [HeNi]. They gather conse-
quences of Simader’s Theorem in [Sima] about the essential self-adjointness
of non negative Schrödinger operators, of Persson’s Lemma in [Per] about
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the localization of the essential spectrum and of the semiclassical analysis
à la Witten in [Wit] leading to Morse inequalities. We also refer the reader
to [CyFrKiSi][Hen] [Hel3] or [Zha] for the Witten approach to Morse in-
equalities in the boundaryless case and to [Mil1] and [Lau] for a topological
presentation of Morse theory.

Proposition 3.7. — Under Assumption 3.6, there exist h0 > 0, c0 > 0
and c1 > 0 such that the following properties are satisfied for any h ∈ (0, h0]:

i) The Witten Laplacian ∆f,h considered as an unbounded operator on
L2(Rk; ΛT ∗Rk) is essentially self-adjoint on C∞0 (Rk; ΛT ∗Rk) .

ii) For any Borel subset E in R, the identities

1E(∆(p+1)
f,h )d(p)f,hu = d(p)f,h1E(∆(p)

f,h)u
and

1E(∆(p−1)
f,h )d(p−1),∗

f,h u = d(p−1),∗
f,h 1E(∆(p)

f,h)u
(3.2.2)

hold for any u belonging to the form domain of ∆(p)
f,h .

In particular, if v is an eigenvector of ∆(p)
f,h associated with the eigenvalue

λ, then d(p)f,hv (resp. d(p−1),∗
f,h v) belongs to the spectral subspace Ran 1{λ}(∆

(p+1)
f,h )

(resp. Ran 1{λ}(∆
(p−1)
f,h )).

iii) The essential spectrum σess(∆
(p)
f,h) is contained in [c1,+∞).

iv) The range of 1[0,c0h)(∆
(p)
f,h) has dimension mp , for all h ∈ (0, h0] .

Proposition 3.8. — If the Morse function f satisfies Assumption 3.6
and admits a unique critical point at x = 0 with index p0 , so mp = δp,p0 ,
then there exist h0 > 0 and c0 > 0 , such that the following properties hold
for h ∈ (0, h0]:

i) For p �= p0, ∆(p)
f,h � c0hId .

ii) If ψhp0 is a normalized eigenvector of the one dimensional spectral

subspace Ran 1[0,c0h)(∆
(p0)
f,h ) , it satisfies

df,hψ
h
p0 = 0 , d

(p0−1),∗
f,h ψhp0 = 0 and ∆(p0)

f,h ψ
h
p0 = 0 ,

so that Ran 1[0,c0h)(∆
(p0)
f,h ) = Ker ∆(p0)

f,h . Moreover

σ(∆(p0)
f,h ) \ {0} ⊂ [c0h,∞) .
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iii) If χ ∈ C∞0 (Rk) satisfies χ = 1 in a neighborhood of 0, then there
exists Cχ � 1 , such that, for all h ∈ (0, h0/Cχ) , the inequality,

(1 − χ)∆(p)
f,h(1 − χ) � C−1

χ [1 − χ]2 ,

holds in the sense of quadratic form on ΛpH1(Rk).

3.2.2 The model half-space problem

We work here on Rn− = R
n−1 × (−∞, 0) with a Riemannian metric

g̃0. Assume furthermore that there are coordinates x = (x′, xn) such that
g̃0 =

∑n
i,j=1 g̃

0
ij(x)dxidxj satisfies

g̃0i,n = g̃0n,i = 0 for i < n (3.2.3)
and

∀x ∈ Rn− \K1, ∂xg̃
0
ij(x) = 0 , (3.2.4)

for some compact set K1 ⊂ Rn−.

In this paragraph, the coordinates (x′, xn) are fixed while different met-
rics on Rn− are considered. The notation G(·) will be used for the matrix
valued map x �→ G(x) = tG(x) = (gij(x))i,j ∈ GLn(R), which is assumed
to be a C∞ function. According to the standard notation, the coefficients of
G(x)−1 are written gij(x).

Consider also a function f which has a specific form in the same coor-
dinates (x′, xn).

Assumption 3.9. — The function f ∈ C∞(Rn−) satisfies:

i) The estimates |∇f(x)| � C−1 and |∂αx f(x)| � Cα hold, for all x ∈
Rn− and all α ∈ Nn, α �= 0.

ii) The function f is the sum f(x′, xn) = − 1
2f+(xn) + 1

2f−(x′) . Moreover,
there exists C1 > 0 such that

∀xn ∈ (−∞, 0) , C−1
1 � |∂xnf+(xn)| � C1 ,

and f− is a Morse function on Rn−1 which satisfies Assumption 3.6
for the metric

∑n−1
i,j=1 g̃

0
ij(x

′, 0)dxidxj and admits a unique critical
point at x′ = 0 with index p0 .

The boundedness of |∂αx f |, 1 � |α| � 2, avoids any subtle questions
about the domains.
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Proposition 3.10. — Under Assumption 3.9-i), the unbounded opera-
tor ∆N

f,h on L2(Rn−; ΛT ∗Rn−) , with domain

D(∆N
f,h) =

{
ω ∈ ΛH2(Rn−) , nω = 0 , ndf,hω = 0

}
,

is self-adjoint.

If E is any Borel subset of R, the relations

1E(∆N,(p+1)
f,h ) d(p)f,hu = d(p)f,h 1E(∆N,(p)

f,h )u ,
and

1E(∆N,(p−1)
f,h ) d(p−1),∗

f,h u = d(p−1),∗
f,h 1E(∆N,(p)

f,h )u ,
(3.2.5)

hold for any u ∈ ΛpH1
0,n(Rn−) .

Proof. — The uniform estimate on ∇f allows the same proof as for
Proposition 2.8 and Corollary 2.10 (here C∞0,n denotes the space of C∞ com-
pactly supported functions in Rn− with a vanishing normal component on
{xn = 0}). �

We are looking for a result similar to Proposition 3.7 and Proposition 3.8
for the case with normal boundary condition on Rn− (this result will be
stated in Subsection 3.2). One difficulty here comes from the metric which,
although diagonal in the coordinates (x′, xn), is not constant. The general
case can be reduced to a simpler situation where gij(x) = gij(x′) with
gnn = 1 after several steps.

We need some notations.

Definition 3.11. — For a metric g which satisfies (3.2.4), the corre-
sponding Hs-norm on the space ΛpHs(Rn−) is denoted by ‖ ‖ΛpHs,g and the
notation ‖ ‖ΛpHs is kept for the Euclidean metric ge =

∑n
i=1 dx

2
i .

Similarly, the quadratic form associated with ∆N,(p)
f,h is written

Dg,f,h(ω) =
∥∥d∗g,f,hω∥∥2

Λp−1L2,g
+ ‖df,hω‖2

Λp+1L2,g , ∀ω ∈ ΛpH1
0,n(Rn−) ,

where the codifferential d∗g,f,h also depends on g .

Remark 3.12. — For the considered metrics satisfying (3.2.3) and (3.2.4),
the different (L2, g)-norms are equivalent.

The required accuracy while comparing the quadratic forms Dg,f,h needs
some care.
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We will work further with partitions of unity and the following proposi-
tion, similar to the standard IMS localization formula (see [CyFrKiSi]), but
in the case with boundary, will be useful.

Proposition 3.13 (IMS Localization Formula). — ForW = Ω orW =
R
n
−, consider {χk}1,...,N a partition of unity ofW (i.e. satisfying

∑N
k=1 χ

2
k =

1 on W ).

Let g and f be respectively a Riemannian metric and a C∞ function
(satisfying Assumption 3.9-i) in the case Rn−) on W .

The following IMS localization formula is then valid:

∀ω ∈ ΛH1
0,n , Dg,f,h(ω) =

N∑
k=1

Dg,f,h(χkω) − h2 ‖|∇χk|ω‖2
ΛL2,g . (3.2.6)

Proof. — For clarity, we omit the dependence on g in the proof.

Recall, from
∑N

k=1 χ
2
k = 1, than for any η ∈ ΛH1:

N∑
k=1

χkdχk ∧ η = 0 , and by duality (2.1.5),
N∑
k=1

χki∇χkη = 0 .(3.2.7)

Now, for any ω ∈ ΛH1
0,n and k ∈ {1, . . . , N},

Df,h(χkω) = ‖df,h(χkω)‖2 +
∥∥d∗f,h(χkω)

∥∥2
.

From (2.1.6) and (2.1.7),

df,h(χkω) = hdχk ∧ ω + χkdf,hω and d∗f,h(χkω) = hi∇χkω + χkd∗f,hω .

Hence, from
∑N

k=1 χ
2
k = 1, (2.1.6), and (2.1.7), for any ω ∈ ΛH1

0,n,

N∑
k=1

Df,h(χkω) = Df,h(ω) +
N∑
k=1

h2 (〈dχk ∧ ω | dχk ∧ ω〉 + 〈i∇χkω | i∇χkω〉)

+
N∑
k=1

2 Re (〈hdχk ∧ ω |hχkdω + χkdf ∧ ω〉 + 〈hi∇χkω |hχkd∗ω + χki∇fω〉) .

Using (3.2.7),

N∑
k=1

Df,h(χkω) = Df,h(ω) + h2
N∑
k=1

(〈dχk ∧ ω | dχk ∧ ω〉 + 〈i∇χkω | i∇χkω〉) .
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At least, the identity

iX(α ∧ β) = (iXα) ∧ β + (−1)degαα ∧ (iXβ)

implies

〈dχk ∧ ω | dχk ∧ ω〉 + 〈i∇χkω | i∇χkω〉 = 〈i∇χk(dχk ∧ ω) + dχk ∧ (i∇χkω) |ω〉
= 〈(i∇χkdχk)ω |ω〉 =

〈
|∇χk|2 ω |ω

〉
,

which proves the proposition. �

Let us give now two lemmas whose proofs are the same than the proofs
of Lemmas 3.11 and 3.12 of [HeNi].

The first lemma provides a reduction to the case ∂xnG = 0 and the
second allows us to consider again a simpler metric with gnn = 1.

Lemma 3.14. — Let g1 and g2 be two metrics which satisfy (3.2.4) and
coincide on {xn = 0}. Let f be a function satisfying Assumption 3.9. There
exist constants C12 � 1 and h0 > 0 such that the inequality,

Dg2,f,h(ω) � (1 − C12h
2/5)Dg1,f,h(ω) − C12h

7/5 ‖ω‖2
ΛpL2,g1

, (3.2.8)

holds for ω ∈ ΛpH1
0,n(Rn−) , with p ∈ {0, . . . , n} and h ∈ (0, h0), as soon as

suppω ⊂
{
xn � −C0h

2/5
}

.

Lemma 3.15. — Let g1 and g2 be two conformal metrics (which satisfy
(3.2.4)) in the sense:

g2 = eϕ(x)g1 .

Let f be a function satisfying Assumption 3.9. Then there exist constants
C12 � 1 and h0 > 0 , such that the inequality,

∀ω ∈ ΛpH1
0,n(Rn−), Dg2,f,h(ω) � C−1

12 Dg1,f,h(ω)−C12h
2 ‖ω‖2

ΛpL2,g1
, (3.2.9)

holds, for all p ∈ {0, . . . , n} and all h ∈ (0, h0) .

3.2.3 Small eigenvalues for the model half-space problem

Before giving the proof of Theorem 3.5, we state the main result for the
model half-space problem which is similar to Proposition 3.7 and Proposi-
tion 3.8.

Proposition 3.16. — Assume that the metric g̃0 satisfies (3.2.3) and
(3.2.4) and let f be a Morse function satisfying Assumption 3.9 for some
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p0 ∈ {0, . . . , n}. Then there exist constants h0 > 0, c0 > 0 and c1 > 0,
such that the self-adjoint operator ∆N

f,h satisfies the following properties for
h ∈ (0, h0]:

i) For p ∈ {0, . . . , n} , the essential spectrum σess(∆
N,(p)
f,h ) is contained

in [c1,+∞).

ii) For p ∈ {0, . . . , n} , the range of 1[0,c0h)(∆
N,(p)
f,h ) has dimension{

δp,p0 if ∂xnf(0) = − 1
2∂xnf+(0) < 0 ,

0 if ∂xnf(0) = − 1
2∂xnf+(0) > 0 .

iii) In the first case,

Ran 1[0,c0h)(∆
N,(p0)
f,h ) = Ker ∆N,(p0)

f,h = Cϕh ,

where
‖ϕh −

(
ef+(xn)/2h

)
ψhp0‖ΛpL2 = O(h1/10) ,

and ψhp0 belongs to the kernel of a (n − 1)-dimensional Witten Laplacian

∆(p0)
g′,f−/2,h

in a metric g′, which is conformal to g̃′0 =
∑n−1

i,j=1 g̃
0
ij(x

′, 0)dxidxj
on Rn−1.

iv) For any χ ∈ C∞0 (Rn−) such that χ = 1 in a neighborhood of 0, there
exists Cχ > 0 such that the lower bounds

(1 − χ)∆N,(p)
f,h (1 − χ) � C−1

χ [1 − χ]2 , 0 � p � n ,

hold, for any h ∈ (0, h0/Cχ), in the sense of quadratic forms on ΛpH1
0,n(Rn−) .

Remark 3.17. — This proposition is an adaptation of Proposition 3.13
of [HeNi] in the case with normal boundary conditions: we have mainly
replaced f+(xn) by −f+(xn) and p0 + 1 by p0 and the proof is similar.

We also emphasize the fact that, as in [HeNi], there is no need of any
quadratic approximation to get these spectral results. The different approxi-
mations done are obtained by combination of the two previous lemmas with
different suitable metrics.

Proof. — The clue of this result is an accurate lower bound for the
quadratic form Dg̃0,f,h(η) , when evaluated for η such that supp η ⊂ {xn �
−C0h

2/5 . By Lemmas 3.14 and 3.15, one can find a metric g, which satisfies
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(3.2.3) and (3.2.4), with G(x) = G(x′) independent of the xn-coordinate,
gnn = 1 and a constant C > 1 such that

Dg̃0,f,h(η) � C−1Dg,f,h(η) − Ch7/5 ‖η‖2
ΛL2,g . (3.2.10)

Take two cut-off functions χ̃i ∈ C∞(R) , such that χ̃1 ∈ C∞0 (R) , χ̃1 = 1 in
a neighborhood of 0 such that χ̃2

1 + χ̃2
2 = 1 .

By the IMS localization formula (3.2.6), for any ω ∈ ΛH1
0,n(Rn−) ,

Dg̃0,f,h(ω) � Dg̃0,f,h(χ̃1(h−2/5xn)ω) + Dg̃0,f,h(χ̃2(h−2/5xn)ω)

−Ch6/5 ‖ω‖2
ΛL2,g̃0

.

By (2.6), since |∇f(x)|2 � C−1 on Rn− , the second term of the r.h.s. is
bounded from below by a constant times

∥∥χ̃2(h−2/5xn))ω
∥∥2

ΛL2,g̃0
and we

get:

Dg̃0,f,h(ω) � Dg̃0,f,h(χ̃1(h−2/5xn)ω) − Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2

ΛL2,g̃0

+
C−1

2

∥∥∥χ̃2(h−2/5xn)ω
∥∥∥2

ΛL2,g̃0
.

Finally after changing the constant C � 1, the inequality (3.2.10) yields

Dg̃0,f,h(ω) � C−1Dg,f,h(χ̃1(h−2/5xn)ω) − Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2

+C−1
∥∥∥χ̃2(h−2/5xn)ω

∥∥∥2

,

(3.2.11)
where the L2-norms in the r.h.s. can be computed with the metric g or g̃0
while possibly adapting the constant C, owing to Remark 3.12. Here and in
the sequel, we omit the subscript (ΛL2, g) for L2-norms.

Now the problem is reduced to the analysis of Dg,f,h with the metric
g. The product structure of the metric g allows an explicit analysis of the
spectrum.

(a) The case n = 1.

We have x = xn ∈ R−, f(x) = − 1
2f+(xn) . Here the metric is g = dx2

n. We
keep the reference to the index n for the later application.

The spaces Λ0H1
0,n(R−) and Λ1H1

0,n(R−) are respectively H1(R−) and{
β(xn) dxn , β ∈ H1

0 (R−)
}
.
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By identity (2.6), for any 1-form β dxn with β ∈ H1
0 (R−):

Dg,−f+/2,h(β dxn) = h2 ‖∂xnβ‖
2 +

1
4
‖∂xnf+β‖

2 − h
2
〈∂2
xnf+(xn)β | β〉 .

(3.2.12)
From (3.2.12), we get:

Dg,−f+/2,h(β dxn) � (C−2 − hC) ‖β‖2
,

and deduce that there exist c1(∂xnf+, ∂
2
xnf+) = c1 > 0 and h0 > 0 such

that, for all h ∈ (0, h0] ,

∆N,(1)
g,−f+/2,h � c1Id . (3.2.13)

Again by identity (2.6), we have for any 0-form α ∈ H1(R−):

Dg,−f+/2,h(α) = h2 ‖∂xnα‖
2 +

1
4
‖∂xnf+ α‖

2 +
h

2
〈∂2
xnf+(xn)α | α〉

−h
2
∂xnf+(0) |α(0)|2 , (3.2.14)

and there are two subcases:

(a1) Subcase ∂xnf+(0) < 0:

In this case, identity (3.2.14) implies:

∀α ∈ Λ0H1
0,n, Dg,−f+/2,h(α) � (C−2 − hC) ‖α‖2

,

which provides the existence of c1(∂xnf+, ∂
2
xnf+) = c1 > 0 and h0 > 0 such

that:
∆N,(0)
−f+/2,h � c1Id , ∀h ∈ (0, h0] . (3.2.15)

(a2) Subcase ∂xnf+(0) > 0:

If ∆N,(0)
−f+/2,h(α) = λhα , with λh < c1 , we have by Proposition 3.10:

∆N,(1)
−f+/2,h(d−f+/2,hα) = λhd−f+/2,hα .

Now suppose for a while that d−f+/2,hα is not 0. Then it is an 1-eigenform
of ∆N,(1)

−f+/2,h for λh < c1 , but this is in contradiction with (3.2.13). As a
consequence it is zero and we get by (2.1.6):

d−f+/2,hα = h∂xnα− 1
2

(∂xnf+)α = 0 .
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Hence:
α(xn) = C ef+(xn)/2h .

Since the 0-form ef+(xn)/2h belongs to Ker (∆N,(0)
−f+/2,h) , λh = 0 is the only

eigenvalue (with multiplicity one) of ∆N,(0)
−f+/2,h smaller than c1.

(b) The case n > 1.

First note that any ω ∈ ΛpH1
0,n(Rn−) is a sum

ω =
∑

#I=p−1

αI(x)dx′
I ∧ dxn +

∑
#J=p

βJ(x)dx′J =: α ∧ dxn + β ,

with αI , βJ ∈ H1(Rn−) , αI(x′, 0) = 0 , while dx′I = dx′i1 ∧ · · · ∧ dx′i#I ,
I = {i1 < . . . < i#I} ⊂ {1, . . . , n− 1} and J = {j1 < . . . < j#J} ⊂
{1, . . . , n− 1} .

If in addition ω ∈ ΛpH2(Rn−), the condition ndω = 0 reads, with the
metric g, ∂xnβJ(x′, 0) = 0.

Secondly, owing to the Weitzenböck formula with the product metric
g, the Riemannian connection, the Riemann tensor, R(4) (see [CyFrKiSi]
pp. 266-267 for the definition of this operator) and therefore the Hodge
Laplacian split like direct sums:

∇XY = ∇n
XnYn + ∇′X′Y ′ ,

Riem(x, y, z, t) = Riemn(xn, yn, zn, tn) + Riem′(x′, y′, z′, t′) ,

R(4) =
∑
ijkl

Riemijkl(dxi∧) ◦ i∇xj ◦ (dxk∧) ◦ i∇x� = Rn(4) +R′(4) ,

(d+ d∗)2 = (dxn + d∗xn)2 + (dx′ + d∗x′)
2 .

We also refer the reader to [GaHuLa] (p. 110 and p. 70) for details and more
general statements.

Thirdly, the decomposition f(x) = − 1
2f+(xn)+ 1

2f−(x′) with the product
metric g gives

|∇f |2 = |∇xnf |
2 + |∇x′f |2

L∇f + L∗∇f = −1
2

(
L∇f+ + L∗∇f+

)
+

1
2

(
L∇f− + L∗∇f−

)
.

For ω = α ∧ dxn + β ∈ D(∆N
f,h) (with the product metric g), we have

Dg,f,h(ω) = 〈ω |∆f,hω〉 =
〈
ω |∆n

−f+/2,hω
〉

+
〈
ω |∆′f−/2,hω

〉
.
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Since the two operators ∆n
−f+/2,h (acting only in the variable xn) and

∆′f−/2,h (acting only in the variable x′) preserve the partial degree in dxn,
we get

Dg,f,h(ω) =
〈
α ∧ dxn |∆n

−f+/2,h(α ∧ dxn)
〉

+
〈
β |∆n

−f+/2,hβ
〉

+
〈
α ∧ dxn |∆′f−/2,h(α ∧ dxn)

〉
+

〈
β |∆′f−/2,hβ

〉
(3.2.16)

Hence the variables (x′, xn) can be separated. The equivalence between the
norms

∥∥∥∑
J γJ(x′) dx′J

∥∥∥ and
∑

J ‖γJ(x′)‖ on ΛpT ∗Rn−, where

J = {j1 < . . . < j#J} ⊂ {1, . . . , n− 1}, leads to 2):

Dg,f,h(ω) �
1
c

∫
R
n−1

[ ∑
#I=p−1

Dn
−f+/2,h(αI(x

′, .) dxn) +
∑

#J=p

Dn
−f+/2,h(βJ(x′, .))

]
dλ(x′)

+
∫ 0

−∞
D′f−/2,h(α(., xn)) + D′f−/2,h(β(., xn)) dxn ,

(3.2.17)
where we used the notations D′f−/2,h for the quadratic form of the Witten
Laplacian on Rn−1 and Dn

−f+/2,h for the quadratic form of the 1-dimensional
Witten Laplacian on R− with boundary conditions. The measure dλ(x′)
simply equals (detG(x′))1/2 dx′. The absence of α − β cross product term
is due to (3.2.16).

Again there are two subcases.

(b1) Subcase ∂xnf+(0) < 0:

The analysis of the one dimensional problem implies the existence of
c1 > 0 independent of x′ such that:

Dn
−f+/2,h(αI(x

′, .) dxn) � c1 ‖αI(x′, .)‖2

and
Dn
−f+/2,h(βJ(x′, .)) � c1 ‖βJ(x′, .)‖2

.

Hence there exists c2 > 0 such that:

∀ω ∈ ΛpH1
0,n , Dg,f,h(ω) � c2 ‖ω‖2

(2) In [HeNi], at this level of the proof, one should read “Dg̃,f,h(ω) � 1
c

∫
Rn−1 · · ·”

instead of “Dg̃,f,h(ω) equals
∫
Rn−1 · · ·” accordingly to 2.

– 762 –



Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

and
∆N,(p)
f,h � c2Id , ∀p ∈ {0, . . . , n} .

(b2) Subcase ∂xnf+(0) > 0:

Then there exists c1 > 0 such that

Dg,f,h(ω) � 1
c

∫
Rn−1

∑
#J=p

Dn
−f+/2,h(βJ(x′, .)) dλ(x′)

+
∫ 0

−∞
D′f−/2,h(β(., xn)) + c1 ‖α‖2

.

(3.2.18)

If ω is a p-form with p �= p0 (deg β = degω), the lower bound

D′f−/2,h(β) � C
−1
1 h ‖β‖2

,

which was given in Proposition 3.8, yields:

Dg,f,h(ω) � C−1h ‖ω‖2
,

while the equality Dg,f,h(ω) = 0 implies that p = p0 and that
ω = c

(
ef+(xn)/2h

)
ψhp0 , where ψp0 belongs to the kernel of the

(n− 1)-dimensional Witten Laplacian associated with the metric

g′ =
n−1∑
i,j=1

gi,j(x′, 0)dxidxi .

We have now all the ingredients to check every statement for the metric g̃0.

We focus on the subcase ∂xnf+(0) > 0, which covers all possibilities.

Statements i) and iv)

Statement i) is a consequence of iv) together with Persson’s Lemma in [Per].
It is sufficient to check that, for all R > 0, there exists cR > 0, such that,
for all ω ∈ ΛpH1

0,n(Rn−) supported in {min(|x′|, |xn|) > R}, one has

Dg̃0,f,h(ω) � cR ‖ω‖2
.

The inequalities (3.2.11) and (3.2.18), together with the estimate

D′f−/2,h(β(·, xn)) � c′R ‖β(·, xn)‖2 if suppω ⊂ {|x′| > R} ,

provided by Proposition 3.8-iii), yield the result.

– 763 –



D. Le Peutrec

Statements ii) and iii)

If p �= p0 the inequalities (3.2.11), (3.2.18) and the inequality

D′f−/2,h(β(., xn)) � C−1h ‖β(., xn)‖2
,

imply
Dg̃0,f,h(ω) � c0h ‖ω‖2

,

and
∆N,(p)
f,h � c0h Id . (3.2.19)

If p = p0, by Proposition 3.10, the only possibility for λh ∈ [0, c0h) to be an
eigenvalue of ∆N,(p0)

f,h is λh = 0 .

Assume indeed ∆N,(p0)
f,h uh = λhuh with λh ∈ [0, c0h) and ‖uh‖ = 1.

By Proposition 3.10 and (3.2.19), d(p0)f,h uh = d(p0−1),∗
f,h uh = 0. Thus:

λh =
〈
∆N,(p0)
f,h uh |uh

〉
= Dg̃0,f,h(uh) = 0 .

When the metric is g, the corresponding spectral subspace is one dimen-
sional and equals C

(
ef+(xn)/2h

)
ψhp0 .

For the metric g̃0, equation ∆N,(p0)
g̃0,f,h

ω = 0 with ‖ω‖ = 1 (which implies
Dg̃0,f,h(ω) = 0 ) and inequality (3.2.11) lead to:

C2h6/5
∥∥∥χ̃1(h−2/5xn)ω

∥∥∥2

� Dg,f,h(χ̃1(h−2/5xn)ω) +
∥∥∥χ̃2(h−2/5xn)ω

∥∥∥2

.

Without the last term, Lemma 2.11 implies:

dist L2(χ̃1(h−2/5xn)ω,C
(
ef+(xn)/2h

)
ψhp0) � Ch

1/10 .

The upper bound of the last term,∥∥∥χ̃2(h−2/5xn)ω
∥∥∥2

� C2h6/5 ,

implies:

dist L2(ω,C
(
ef+(xn)/2h

)
ψhp0) = O(h1/10) .

It remains to check that Ker ∆N,(p0)
f,h is not reduced to {0} . The statements

of Lemma 3.14 and Lemma 3.15 are symmetric with respect to the choice
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of the metric. Hence the reverse inequality of (3.2.11) (with exchange of g
and g̃0),

Dg,f,h(ω) � C−1Dg̃0,f,h(χ̃1(h−2/5xn)ω) − Ch6/5
∥∥χ̃1(h−2/5xn)ω

∥∥2

+C−1
∥∥∥χ̃2(h−2/5xn)ω

∥∥∥2

, (3.2.20)

also holds for any ω ∈ ΛH1
0,n(Rn−). We apply it with ω =

(
ef+(xn)/2h

)
ψhp0

and this leads to:

Dg̃0,f,h(χ̃1(h−2/5xn)ωh) � Ch6/5
∥∥∥χ̃1(h−2/5xn)ω

∥∥∥2

.

The Min-Max principle then says that ∆N,(p0)
f,h admits an eigenvalue smaller

than Ch6/5 . It has to be 0 due to the above argument. �

3.3. Proof of Theorem 3.5

We end here the proof of Theorem 3.5 by introducing, after a partition
of unity, convenient coordinates which allow the comparison with the model
half-space problem.

That proof is almost the same as the proof of the corresponding theorem
in [HeNi], but we recall it for completeness.

Proof of Theorem 3.5. — Let {Uk , 1 � k � K} denote the union of the
critical points of f and f |Ω. Consider a partition of unity of Ω,

∑N
k=1 χ

2
k = 1,

such that the C∞0 (Ω) function χk identically equals 1 in a neighborhood of
Uk when 1 � k � K. A refinement of this partition of unity will be specified
later by the local construction of adapted coordinates.

We recall that the operator ∆N
f,h is the Friedrichs extension associated

with the quadratic form:

Dg0,f,h(ω) = ‖df,hω‖2
ΛL2,g0

+
∥∥∥d∗,g0f,h ω

∥∥∥2

ΛL2,g0
,

on ΛH1
0,n(Ω) . The IMS localization formula 3.2.6 gives, for any ω ∈ ΛH1

0,n ,

Dg0,f,h(ω) =
N∑
k=1

Dg0,f,h(χkω) − h2 ‖|∇χk|ω‖2
ΛL2,g0

.

If suppχk does not meet the boundary, the term Dg0,f,h(χkω) be-
haves like in the boundaryless case (see [HeKlNi] for details):
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• If k > K, then we have

∀ω ∈ ΛH1 , Dg0,f,h(χkω) � C−1 ‖χkω‖2
ΛL2,g0

.

• If k � K and Uk is a critical point of f with index pk �= p , then

∀ω ∈ ΛH1 , Dg0,f,h(χkω) � C−1h ‖χkω‖2
ΛL2,g0

.

• If k � K and Uk is a critical point of f with index pk = p , then there
exists a fixed 1-dimensional space F (p)

k (determined by Hess f(Uk))
such that,

∀ω ∈ ΛH1 , Dg0,f,h(χkω) � C−1h6/5 ‖χkω‖2
ΛpL2,g0

implies

∀ω ∈ ΛH1 , dist (χkω, F
(p)
k ) � Ch1/10 ‖ω‖ΛpL2,g0

.

Again like in the proof of Proposition 3.16-iii), this last statement
refers to Lemma 2.11 at the level of quadratic forms.

Consider now the case when suppχk ∩ ∂Ω �= ∅ , with the support of
χk centered around a point U0 ∈ ∂Ω . There are two cases: U0 is a critical
point of f |∂Ω with ∂f

∂n (U0) < 0 which is equivalent to − ∂f
∂n (U0) = |∇f(U0)|

or U0 is not a critical points of f |∂Ω with ∂f
∂n < 0 which is equivalent to

(− ∂f
∂n )(U0) < |∇f(U0)| . Indeed, U0 is either a critical point of f |∂Ω with

∂f
∂n (U0) > 0, i.e. ∂f

∂n (U0) = |∇f(U0)| or U0 is not a critical point of f |∂Ω, i.e.∣∣∣ ∂f∂n (U0)
∣∣∣ < |∇f(U0)|.

Case 1) (− ∂f
∂n )(U0) < |∇f(U0)| .

Then the cut-off χk is chosen so that, in a neighborhood V of suppχk ,

∀x ∈ V ∩ ∂Ω, (−∂f
∂n

)(x) < (1 − δ) |∇f(x)| ,

for some δ > 0. Locally it is possible to construct a function f̂ such that
−∂nf̂ =

∣∣∣∇f̂ ∣∣∣ in V ∩ ∂Ω and
∣∣∣∇f̂ ∣∣∣ = |∇f | in V . By setting ω̃ = χkω for

ω ∈ ΛH1
0,n, the Green formula (2.6) and the inequality Dg0,f̂ ,h

(ω̃) � 0 imply
(L∇f + L∗∇f being a tensor)

−h
∫
∂Ω

〈ω̃ | ω̃〉ΛpT∗σΩ

(
∂f

∂n

)
(σ) dσ � −(1 − δ)h

∫
∂Ω

〈ω̃ | ω̃〉ΛpT∗σΩ

(
∂f̂

∂n

)
(σ) dσ

� (1 − δ)
[
h2 ‖dω̃‖2

Λp+1L2 + h2 ‖d∗ω̃‖2
Λp−1L2 + ‖|∇f | ω̃‖2

ΛpL2 + C1h ‖ω̃‖2
ΛpL2

]
.
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• If k > K,

∀ω ∈ ΛH1
0,n , Dg0,f,h(χk ω) = Dg0,f,h(ω̃) � δ

2
‖|∇f | ω̃‖2

ΛpL2

� C−1
V ‖χkω‖2

ΛpL2 .

Case 2) − ∂f
∂n (U0) = |∇f(U0)|.

In this case we will conclude by applying Proposition 3.16. We recall
that U0 ∈ ∂Ω is a critical point of f |∂Ω with ∂f

∂n (U0) < 0 and with index p0.
Around U0, we introduce adapted local coordinates, denoted by x = (x′, xn).
This coordinate system is provided by Lemma 3.18 below, applied with
f1 = f and α = f |∂Ω∩V0 . Then the function Φ+ of Lemma 3.18 is nothing
but f and has the form f(x) = −xn + 1

2f−(x′). Moreover, Ω corresponds
locally to {xn � 0}.

In order to apply Proposition 3.16, it remains to check that the function
f can be extended to Rn−, so that it satisfies Assumption 3.9 where U0 is a
critical point of f |∂Ω.

We recall that we have not specified the choice of x′ in the boundary. The
function f |∂Ω∩V0 being a Morse function, we can choose in a small neigh-
borhood V ′0 ⊂ ∂Ω of U0 = (0, . . . , 0) Morse coordinates x′ = (x1, . . . , xn−1)
for f− which are normal at U0 for the metric

∑
i,j<n gij(x

′, 0)dxidxj . With
these coordinates, f has the form, in a small neighborhood V ′′0 of 0:

f(x) = −xn +
n−1∑
j=1

λjx
2
j + f(U0) . (3.3.1)

We choose χk such that suppχk ⊂ V ′′0 .

Choosing a cut-off χn−1 ∈ C∞0 (Rn−1) , χn−1 = 1 near suppχk ∩ ∂Ω, f
is extended to Rn− by:

f̃(x) = −xn +
[
χn−1(x′) +

1 − χn−1(x′)
|x′|

]n−1∑
j=1

λjx
2
j

 + f(U0) . (3.3.2)

Moreover, choosing another cut-off χn ∈ C∞0 (Rn−) , χn = 1 near suppχk, we
extend g0 to Rn− by:

g̃ = χn g0 + (1 − χn)ge , (3.3.3)

where ge is the Euclidian metric on Rn−.
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With these coordinates, the quantity Dg̃,f̃ ,h(χkω) = Dg0,f,h(χkω) attains
the form discussed in Proposition 3.16.

We can now discuss the lower bound of Dg̃,f̃ ,h(χkω), depending on the
localization by the cut-off χk, such that suppχk ∩ ∂Ω �= ∅.

• If k � K, the origin of the coordinate system is U0 = Uk. If Uk is not
a critical point of f |∂Ω with index pk = p and ∂f

∂n (Uk) < 0 , then

∀ω ∈ ΛpH1
0,n , Dg̃,f̃ ,h(χkω) � C−1h ‖χkω‖2

ΛL2,g .

• If k � K and Uk is a critical point of f |∂Ω with index pk = p and
∂f
∂n (Uk) < 0, then according to Proposition 3.16-iii) there exists a
fixed 1-dimensional space F (p)

k such that the inequality,

∀ω ∈ ΛpH1
0,n , Dg̃,f̃ ,h(χkω) � C−1h6/5 ‖χkω‖2

ΛpL2,g

implies:
dist (χkω, F

(p)
k ) � C h1/10 ‖χkω‖ΛpL2,g .

We now introduce the set Ap of indices k, 1 � k � K, such that

• either Uk is a critical point of f with index p ,

• or Uk is a critical point of f |∂Ω with index p such that ∂f
∂n (Uk) < 0 .

For ω ∈ ΛpH1
0,n(Ω) with ‖ω‖ΛpL2,g = 1 , we get

(
Dg0,f,h(ω) � C−1h6/5

)
⇒

 dist (ω,
∑
k∈Ap

F
(p)
k ) � Ch1/10

 .

Hence the dimension of the spectral subspace,

F (p) = Ran1[0,h3/2)(∆
N,(p)
f,h ) ⊂ Ran1[0,ch6/5)(∆

N,(p)
f,h ) ,

is at most #Ap = mΩ
p .

We next verify that dim F (p) � #Ap = mΩ
p . According to the Min-Max

principle, it suffices to find an orthonormal set of p-forms ωhk ∈ ΛpH1
0,n(Ω) ,

k ∈ Ap , such that
Dg0,f,h(ω

h
k ) = o(h3/2) .
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Indeed it is enough to take a truncated element of the kernel of the local
model for ∆N,(p)

f,h around Uk , k ∈ Ap . We give the details for the case
Uk ∈ ∂Ω.

Take two cut-off χ1,k ∈ C∞0 (Rn−), χ1,k = 1 near 0 (with suppχ1,k ⊂
suppχk) and χ2,k such that χ2

1,k + χ2
2,k = 1 . With the same coordinate

system as above, we write on Rn−,using the IMS localization formula (3.2.6)
and Proposition 3.16-iv),

Dg̃k,f̃k,h
(ω) � Dg̃k,f̃k,h

(χ1,kω) + C−1 ‖χ2,kω‖2 − Ch2
∑
i=1,2

‖|∇χi,k|ω‖2
,

where g̃k and f̃k are defined on Rn− according to the previous construc-
tion and coincide with g0 and f in a neighborhood of suppχk . Accord-
ing to Proposition 3.16, there exists ηhk ∈ ΛpH1

0,n(Rn−) in the domain of
the associated Witten Laplacian, such that Dg̃k,f̃k,h

(ηhk ) = 0 . By taking

ωhk =
∥∥χ1,k η

h
k

∥∥−1
χ1,k η

h
k , we obtain the existence of h0 > 0, C ′ and C ′′

such that, for h ∈ (0, h0]: ∥∥χ2,k η
h
k

∥∥2 � C ′h2
∥∥ηhk∥∥2

,

and, consequently,

Dg0,f,h(ω
h
k ) � C ′h2

∥∥ηhk∥∥2∥∥χ1,k ηhk
∥∥2 � C

′′h2 .

�

The following lemma, which provides in different situations the suitable
coordinate systems, simply makes use of the standard solution to Hamilton-
Jacobi equations in the non characteristic case. It is proved in [Lep2] (this
is indeed also Lemma 3.4 of [Lep2]).

Lemma 3.18. — 1) Let be f1 ∈ C∞(Ω,R) and U0 ∈ ∂Ω a critical point
of f1|∂Ω with ∂f1

∂n (U0) �= 0 .

Assume furthermore α ∈ C∞(∂Ω,R) be a local solution to |∇Tα|2 =
|∇T f1|2 around U0.

Then there exists a neighborhood V0 of U0 in Ω such that the eikonal
equation:

|∇Φ±|2 = |∇f1|2

(on the boundary, it means |∂nΦ±|2 + |∇TΦ±|2 = |∂nf1|2 + |∇T f1|2)
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with the boundary conditions

Φ±|∂Ω∩V0 = α , ∂nΦ±|∂Ω∩V0 = ±∂f1
∂n

|∂Ω∩V0

admits a unique local smooth real-valued solution.

2) There exists local coordinates (x1, . . . , xn) = (x′, xn) in a neighborhood
of U0 in Ω with (x′, xn)(U0) = 0 where the function Φ± and the metric g0
have the form:

Φ± = ∓xn + α(x′) and g0 = gnn(x) dx2
n +

n−1∑
i,j=1

gij(x) dxidxj .

Moreover, the boundary ∂Ω is locally defined by {xn = 0} and Ω corresponds
to

{
sgn

(
∂f1
∂n (U0))

)
xn > 0

}
.

Remark 3.19. — Lemma 3.18 will be used with various functions f1 and
α and will provide several coordinate systems:

• We have already introduced the coordinate system x = (x, xn) asso-
ciated with f1 = f and α = f

∣∣
∂Ω

.

• The coordinate system denoted simply by x = (x′, xn) will be as-
sociated with f1 = f and α = ϕ, where ϕ is the Agmon distance
along the boundary. This system will be used to give the simple
form Φ = Φ+ = −xn + ϕ(x′) to the Agmon distance Φ, solving
|∇Φ|2 = |∇f |2 with the boundary condition ∂nΦ = ∂nf . Agmon dis-
tances are specified in Section 4 below.

• Finally the coordinate system x̃ = (x̃′, x̃n) will be associated with
f1 = (f+Φ) and α = f

∣∣
∂Ω

+ϕ and will be used in the final application
of the Laplace method.

4. Accurate WKB analysis near the boundary for ∆(1)
f,h

4.1. Introduction

We work here under Assumption 3.1. Like in [HeNi], we have shown
that for 0 � p < n, some quasimodes of ∆N,(p)

f,h being near the spectral

subspace in 1
[0 , h

3
2 )

(∆N,(p)
f,h ) are localized near the boundary ∂Ω and more

precisely near critical points of f |∂Ω with index p such that ∂f
∂n < 0 . In

the boundaryless case ([HeKlNi]) and in the case with tangential Dirichlet
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boundary conditions ([HeNi]), the WKB analysis done in [HeSj4] and in
[HeNi] says that the small eigenvalues are of order O(e−C/h) and provides
an accurate approximate basis of Ran1[0,h3/2)(∆

(p)
f,h) .

In order to get a similar result, we need an accurate WKB analysis at
the boundary, and like in [HeNi], we restrict our attention on the case p = 1
because our motivation is to analyze the Witten Laplacian on 0-forms.

For an accurate comparison between eigenvectors and WKB quasimodes
near a critical point U1 of f |∂Ω with index 1 and ∂f

∂n (U1) < 0 , we introduce
another self-adjoint realization of ∆(1)

f,h in a neighborhood ΩU1,ρ with mixed
boundary conditions: Neumann boundary conditions on ∂ΩU1,ρ ∩ ∂Ω and
full Dirichlet boundary conditions on ∂ΩU1,ρ \ ∂Ω .

4.2. Local WKB construction

Take U1 a critical point of f
∣∣
∂Ω

with index 1 such that ∂f
∂n (U1) < 0.

According to Definition 3.1 and Proposition 3.2 of [Lep2], there exists a
local coordinate system (x1, . . . , xn) = (x′, xn) which satisfies the following
properties:

i) dx1, . . . , dxn is an orthonormal basis of T ∗U1
(Ω) positively oriented.

ii) The boundary ∂Ω corresponds locally to xn = 0 and the interior Ω
to xn < 0.

iii) ∂
∂xn

|∂Ω = (n, the outgoing normal at the boundary. Moreover, ∂
∂xn

is
unitary and normal to {xn = Constant}.

Moreover, the choice of the coordinates (x1, . . . , xn−1) (centered at U1

such that dx1, . . . , dxn is an orthonormal basis of T ∗U1
(Ω)) in the boundary

is arbitrary.

Let ϕ be the Agmon distance to U1 on the boundary (i.e. associated
with the metric |∇x′f(x′, 0)|2dx′2). Recall that ϕ satisfies

|∇T f |2 = |∇ϕ|2

on the boundary and that ϕ is smooth near U1 (see [HeSj1]). Apply now
the first point of Lemma 3.18 with f1 = f and α = ϕ and denote by Φ the
function Φ+ of the lemma (Φ is the Agmon distance to U1, i.e. associated
with the metric |∇xf(x)|2dx2). Hence the following equalities are locally
satisfied:

|∂nΦ|2 + |∇TΦ|2 = |∇Φ|2 = |∇f |2 ,
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Φ|∂Ω = ϕ ,

∂nΦ|∂Ω =
∂f

∂n
|∂Ω .

According to [HeSj4] pp. 279–280, there exist Morse coordinates
(v1, . . . , vn−1) for f

∣∣
Ω

centered at U1 and such that dv1(U1), . . . , dvn−1(U1),
(n∗U1

is orthonormal and positively oriented. With these coordinates

f(v, 0) =
λ1

2
v21 + · · · + λn−1

2
v2n−1 + f(U1) (4.2.1)

and

ϕ(v) =
|λ1|
2
v21 + · · · + |λn−1|

2
v2n−1 , (4.2.2)

with λ1 < 0.
Moreover, (x1, . . . , xn−1) can be chosen equal to (v1, . . . , vn−1) in the bound-
ary. Hence, Theorem 1.1 of [Lep2] (about the Neumann case) implies the
following proposition:

Proposition 4.1. — Consider around U1 the above system of coordi-
nates x = (x′, xn) which satisfies (4.2.1)(4.2.2) with λ1 < 0. There exists
locally, in a neighborhood of x = 0, a C∞ solution uwkb1 to

∆(1)
f,hu

wkb
1 = e−

Φ
hO(h∞) (4.2.3)

nuwkb1 = 0 on ∂Ω (4.2.4)

ndf,huwkb1 = 0 on ∂Ω , (4.2.5)

where uwkb1 has the form:

uwkb1 = a(x, h)e−
Φ
h ,

with a(x, h) ∼
∑
k

ak(x)hk and a0(0) = dx1 .

4.3. Another local Neumann realization of ∆(1)
f,h

Let U1 be a critical point of f |∂Ω with index 1 and ∂f
∂n (U1) < 0 and let

introduce a new system of local coordinates.

We apply Lemma 3.18 with f1 = f and α = ϕ , the Agmon distance to
U1 on the boundary. The function Φ+ of the lemma is then Φ, the Agmon
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distance to U1 and we have the existence of local coordinates (x′, xn) around
U1 where Φ and the metric g0 have the form:

Φ = −xn + ϕ(x′) and g0 = gnn(x) dx2
n +

n−1∑
i,j=1

gij(x) dxidxj .

Moreover, the boundary ∂Ω is locally defined by {xn = 0} and Ω corre-
sponds to {xn < 0}.

We work now with the local coordinate system defined above and x �→ |x|
is the Euclidean norm in these coordinates.

As in [HeNi], we consider the domain, for ρ > 0,

ΩU1,ρ =
{
|x− (0, 1)|2 < ρ2 + 1 , xn < 0

}
,

which has the shape of a thin lens stuck on ∂Ω with radius ρ and thickness
O(ρ2). Its boundary splits into

ΓD := ∂ΩU1,ρ ∩ Ω =
{
|x− (0, 1)|2 = ρ2 + 1, xn � 0

}
and

ΓND := ∂ΩU1,ρ ∩ ∂Ω = {|x′| < ρ, xn = 0} .

On this domain, we introduce the functional space

Λ1H1
0;0,n(ΩU1,ρ) =

{
u ∈ Λ1H1(ΩU1,ρ); nu|ΓND = 0, u|ΓD = 0

}
.

The Friedrichs extension associated with the quadratic form:

Λ1H1
0;0,n(ΩU1,ρ) % ω �→ DN

g,f,h(ω) = ‖df,hω‖2 +
∥∥d∗f,hω∥∥2

,

is denoted by ∆N,D,(1)
f,h . The domain of ∆N,D,(1)

f,h can be embedded in
Λ1H2(ΩU1,ρ′) for any 0 < ρ′ < ρ .
An element ω ∈ D(∆N,D,(1)

f,h ) satisfies indeed:

〈∆N,D,(1)
f,h ω | η〉 = 〈df,hω | df,hη〉 + 〈d∗f,hω | d∗f,hη〉 = Dg,f,h(ω, η) ,

for all η ∈ Λ1H1
0;0,n, taking ω = η ≡ 0 outside ΩU1,ρ. By testing with

η ∈ C∞0 (ΩU1,ρ), this gives ∆f,hω ∈ Λ1L2(ΩU1,ρ) and therefore ω admits a
second trace on ΓND thanks to the Green formula. By testing with any
η ∈ C∞0;0,n(ΩU1,ρ) , we get:

ndf,hω|ΓND = 0 .
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Along ΓND , ω solves an elliptic boundary value problem ∆(1)
f,hω ∈ Λ1L2 ,

nω = 0 , ndf,hω = 0 , which provides the H2 regularity in ΩU1,ρ′ for any
ρ′ < ρ .

We now prove:

Proposition 4.2. — For ρ > 0 small enough, there exist hρ > 0 and
Cρ > 0, such that the self-adjoint operator ∆N,D,(1)

f,h satisfies the following
properties:

a) For h ∈ (0, hρ], the spectral projection 1[0,h3/2)(∆
N,D,(1)
f,h ) has rank 1.

b) Any family of L2-normalized eigenvectors (uh)h∈(0,hρ] of ∆N,D,(1)
f,h

such that the corresponding eigenvalue E(h) is O(h), satisfies

∀ρ′ < ρ, ∀α ∈ Nn, ∃Nα ∈ N, ∃Cα,ρ′ > 0 such that, ∀x ∈ ΩU1,ρ′ ,∣∣∂αx uh(x)∣∣ � Cα,ρ′h−Nα exp
(
−Φ(x)

h

)
.

(4.3.1)

c) There exists ερ > 0 such that the first eigenvalue E1(h) of ∆N,D,(1)
f,h

satisfies

E1(h) = O(e−ερ/h) .

d) If uh1 denotes the eigenvector of ∆N,D,(1)
f,h associated with eigenvalue

E1(h) and normalized by the condition tuh1 (0) = tuwkb1 (0) , then

∀ρ′ < ρ, ∀α ∈ Nn, ∀N ∈ N, ∃CN,α,ρ′ > 0 such that, ∀x ∈ ΩU1,ρ′ ,∣∣∂αx (uh1 − uwkb1 )(x)
∣∣ � CN,α,ρ′hN exp

(
−Φ(x)

h

)
.

(4.3.2)

Once this is proved, one easily gets rough exponentially small upper
bounds for the mΩ

� first eigenvalues of ∆N,(�)
f,h (� ∈ {0, 1}) on Ω, by con-

structing quasimodes suitably localized near each of the critical points.

The next subsections are devoted to the proof of Proposition 4.2. A
fondamental ingredient for the proof is a variant of the integration by parts
formula of Lemma 2.6.

Lemma 4.3. — Let ρ > 0 and let ψ be a real-valued Lipschitz function
on ΩU1,ρ. The relation
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Re DN
g,f,h(ω, e

2ψh ω) = h2
∥∥∥deψh ω∥∥∥2

Λ2L2
+ h2

∥∥∥d∗eψh ω∥∥∥2

Λ0L2

+〈(|∇f |2 − |∇ψ|2 + hL∇f + hL∗∇f )e
ψ
h ω | eψh ω〉Λ1L2

+h
∫

ΓND

〈ω |ω〉Λ1T∗σΩ e
2
ψ(σ)
h

(
∂f

∂n

)
(σ) dσ

(4.3.3)
holds for any ω ∈ Λ1H1

0;0,n(ΩU1,ρ).

Moreover, when ω ∈ D(∆N,D,(1)
f,h ) , the left-hand side equals Re 〈e2ψh ∆(1)

f,hω | ω〉.

Proof. — For ω in Λ1H1
0;0,n(ΩU1,ρ) , we have ω̃ := e2

ψ
h ω in Λ1H1

0;0,n(ΩU1,ρ)
and the same computations as the ones done in [HeNi] to prove Lemma 4.3
lead to:

DN
g,f,h(ω, e

2ψh ω) = DN
g,f,h(ω̃, ω̃) − 〈|∇ψ|2 ω̃ | ω̃〉

−〈dψ ∧ ω̃ | df,hω̃〉 + 〈df,hω̃ | dψ ∧ ω̃〉
+〈i∇ψω̃ | d∗f,hω̃〉 − 〈d∗f,hω̃ | i∇ψω̃〉 .

By taking the real part, we obtain:

Re DN
g,f,h(ω, e

2ψh ω) = DN
g,f,h(ω̃, ω̃) − 〈|∇ψ|2 ω̃ | ω̃〉 .

We conclude by applying Lemma 2.6 . �

4.4. Exponential decay of eigenvectors of ∆N,D,(1)
f,h

As in [HeNi], the pointwise estimate, ∂αx u
h(x) = O(h−Nαe−

Φ(x)
h ) , which

is stated in Proposition 4.2-b), will be proved in several steps. We will first
consider H1-estimates and deduce afterwards higher order estimates from
elliptic regularity.

Even for H1-estimates we need two steps: we prove first the exponential
decay along the boundary ΓND by applying Lemma 4.3 with the function
ψ similar to ϕ introduced above ; then the exponential decay in the interior
of ΩU1,ρ is obtained with ψ similar to Φ once the boundary term is well
controlled.

Proof of a) and b) in Proposition 4.2. —

Statement a)

Actually it is a simple comparison with the full half-space problem via
Min-Max principle as we did for Theorem 3.5. Any ω ∈ Λ1H1

0;0,n(ΩU1,ρ)
can indeed be viewed as an element of Λ1H1

0,n(Rn−) by setting ω = 0 on
R
n
− \ ΩU1,ρ .
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Statement b)

Let uh ∈ D(∆N,D,(1)
f,h ) satisfy

∆(1)
f,hu

h = E(h)uh , E(h) = O(h) ,
∥∥uh∥∥ = 1 .

We will use the notation
ũh = e

ψh

h uh .

The integration by parts formula (4.3.3) will be applied with ψ = ψh where
ψh will be similar to ϕ or similar to Φ .

Let us recall

|∇f |2 = |∇Φ|2 , ∂f

∂n
=
∂Φ
∂n

and Φ(x′, xn) = −xn + ϕ(x′), (4.4.1)

where x′ = 0 is a local minimum for ϕ with ϕ(0) = 0 . Moreover we have
∇xn · ∇ϕ(x′) = 0 so that:

|∇f |2 = |∇Φ|2 = |∇xn|2 + |∇ϕ|2 . (4.4.2)

We will first show the decay along the boundary before we propagate the
decay in the normal direction inside Ω (see [HeSj5] and [HeNi] for referen-
ces).

Step 1: Decay along ΓND .

We take:

ψh(x′, xn) =
{
ϕ(x′) − Ch log ϕ(x′)

h , if ϕ(x′) > Ch
ϕ(x′) − Ch logC , if ϕ(x′) � Ch ,

where the constant C > 1 will be fixed later.

We associate the sets:

Ωh
− = {x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) < Ch} ,

and
Ωh

+ = {x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) > Ch} .

The condition E(h) = O(h) the formula (4.3.3), (4.4.1) and (4.4.2) imply
the existence of C1 > 0 such that:

C1h
∥∥ũh∥∥2

Λ1L2(Ωh−)
�

∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2 + 〈|∇xn|2ũh | ũh〉Λ1L2

−h
∫

ΓND

〈ũh | ũh〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ + 〈(|∇ϕ|2 − |∇ψh|2)ũh | ũh〉

−C1h〈1Ωh+
(x)ũh | ũh〉 , (4.4.3)
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with C1 determined by f and the upper bound of E(h) .

Furthermore,

∇ψh = ∇ϕ− 1Ωh+
(x)
Ch∇ϕ
ϕ

,

so we have:

∣∣∇ψh∣∣2 = |∇ϕ|2 + 1Ωh+
(x)

(
−2Ch

|∇ϕ|2

ϕ
+ C2h2 |∇ϕ|

2

ϕ2

)
.

Consequently,

C1h
∥∥ũh∥∥2

Λ1L2(Ωh−)
�

∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2 + 〈|∇xn|2ũh | ũh〉Λ1L2

−h
∫

ΓND

〈ũh | ũh〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ

+〈
[
|∇ϕ|2

(
2Ch
ϕ

− C
2h2

ϕ2

)
− C1h

]
1Ωh+

(x)ũh | ũh〉 .

For x ∈ Ωh
+ ,

2Ch
ϕ

− C
2h2

ϕ2
� Ch
ϕ

( since 2a− a2 � a ∀ a ∈ [0, 1])

then, ϕ being a positive Morse function, there exists C2 > 0 which is deter-
mined by ϕ such that, for all x ∈ Ωh

+,

C2 �
|∇ϕ(x′)|2
ϕ(x′)

� C−1
2

and we get:

C1h
∥∥ũh∥∥2

Λ1L2(Ωh−)
�

∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2

+〈|∇xn|2ũh | ũh〉Λ1L2 − h
∫

ΓND

〈ũh | ũh〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ

+
(
CC−1

2 − C1

)
h〈1Ωh+

(x)ũh | ũh〉. (4.4.4)

Since ∂nf(U1) = ∂nxn(U1) �= 0, we can choose ρ small enough such that:

C3 � |∇xn|2 � C−1
3 on ΩU1,ρ ,

where C3 is a stricly positive constant.

– 777 –



D. Le Peutrec

Hence we get, by adding the term (CC−1
2 − C1)h〈1Ωh−

(x)ũh |ũh〉 to
(4.4.4):

CC−1
2 h

∥∥ũh∥∥2

Λ1L2(Ωh−)
�

∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2

+ (1 + 2δ(C)h) 〈|∇xn|2ũh | ũh〉Λ1L2

−h
∫

ΓND

〈ũh | ũh〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ ,

where δ(C) = 1
2C
−1
3 (CC−1

2 − C1) is positive and large for C large enough.

At least, we have on Ωh
− by the definitions:∣∣ũh∣∣ � eC |uh| a.e.

and the condition
∥∥uh∥∥ = 1 leads to:

δ̃(C)h �
∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2 + (1 + 2δ(C)h) 〈|∇xn|2ũh | ũh〉Λ1L2

−h
∫

ΓND

〈ũh | ũh〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ ,

(4.4.5)
where δ̃(C) = e2CCC−1

2 .

We now apply (4.3.3) to ũh with ψ = 0, f and h replaced respectively
by −xn and h

1+δ(C)h , in order to get,

(1 + δ(C)h)−1
∥∥hdũh∥∥2

Λ2L2 + (1 + δ(C)h)−1
∥∥hd∗ũh∥∥2

Λ0L2

+(1 + δ(C)h)〈|∇xn|2ũh | ũh〉 − h
∫

ΓND

〈ũh | ũh〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ

+hC4 ||ũh||2Λ1L2 � 0 ,
(4.4.6)

with C4 > 0 independent of C.

The difference (4.4.5)−(4.4.6) yields:

δ(C)h3

1 + δ(C)h

[∥∥dũh∥∥2

Λ2L2 +
∥∥d∗ũh∥∥2

Λ0L2

]
− hC4 ||ũh||2Λ1L2

+δ(C)h〈|∇xn|2ũh | ũh〉 � δ̃(C)h .

We choose C > 1 large enough such that δ(C)C−1
3 − C4 > 0.

This leads, after choosing h0 > 0 small enough, to the existence of a
constant C5 > 0 such that, for all h ∈ (0, h0],

C5h � h3
∥∥ũh∥∥2

Λ1H1 .
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Since ψh � ϕ + C̃h log h (for all C̃ > C), we have proved the existence of
N0 > 0 such that: ∥∥∥eϕh uh∥∥∥

Λ1H1
� C6h

−N0 . (4.4.7)

Remember that ϕ � 0 vanishes only at x′ = 0 . Using the trace theorem,
this also leads to: ∥∥∥eϕh uh|ΓND∥∥∥

Λ1H1/2(ΓND)
� C7 h

−N0 . (4.4.8)

Step 2: Normal decay inside Ω .

We follow a very similar approach by working with the function Φ .

We take:

ψh(x′, xn) =
{

Φ(x) − Ch log Φ(x)
h , if Φ(x) > Ch

Φ(x) − Ch logC , if Φ(x) � Ch ,

where the constant C > 1 will be fixed later.

We associate the sets:

Ωh
− = {x = (x′, xn) ∈ ΩU1,ρ ; Φ(x) < Ch}

and
Ωh

+ = {x = (x′, xn) ∈ ΩU1,ρ ; Φ(x) > Ch} .

The formula (4.3.3) is used like in Step 1, with ũh = e
ψh

h uh and E(h) =
O(h). The difference comes from the fact that the boundary term is already
estimated with (4.4.8).

We have indeed on the boundary xn = 0 the inequality: e
ψh

h � eϕh , due
to the relation Φ|xn=0 = ϕ .

From (4.3.3) used like in Step 1 (see (4.4.3)) we get the existence of
C1 > 0 such that:

C1h
∥∥ũh∥∥2

Λ1L2(Ωh−)
+ C1h

∥∥eϕh u∥∥2

H1/2(ΓND;Λ1T∗ΩU1,ρ)
�

∥∥hdũh∥∥2

Λ2L2

+
∥∥hd∗ũh∥∥2

Λ0L2 + 〈(|∇f |2 − |∇ψh|2)ũh | ũh〉 − C1h〈1Ωh+
(x)ũh | ũh〉 .

Moreover, from (4.4.8) and the inequality

|ũh(x)| � eC |uh(x)| a.e. in Ωh
− ,
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we get, for any C > 1, the existence of δ̃(C) > 0 such that the following
estimate is satisfied:

δ̃(C)h1−2N0 � C1h
∥∥ũh∥∥2

Λ1L2(Ωh−)
+ C1h

∥∥∥eϕh u∥∥∥2

H1/2(ΓND;Λ1T∗ΩU1,ρ)

�
∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2 + 〈(|∇f |2 − |∇ψh|2)ũh | ũh〉
−C1h〈1Ωh+

(x)ũh | ũh〉 . (4.4.9)

Since |∇f |2 = |∇Φ|2 and Φ is a positive function without critical points,
we can use the same computations as the ones done in Step 1 with ϕ replaced
by Φ to get:

|∇f |2 − |∇ψh|2 = 1Ωh+
(x)

(
2Ch

|∇Φ|2

Φ
− C2h2 |∇Φ|2

Φ2

)

� Ch|∇Φ|2
Φ

� C−1
2 Ch ,

with C2 > 0 independent of C.

We take C � 2C1C2. By adding the estimated term
(C−1

2 C − C1)h〈1Ωh−
(x)ũh |ũh〉 to (4.4.9) we get:

δ̃2(C)h1−2N0 �
∥∥hdũh∥∥2

Λ2L2 +
∥∥hd∗ũh∥∥2

Λ0L2 + (C−1
2 C − C1)h

∥∥ũh∥∥
Λ1L2 ,

which gives, by analogy with Step 1, the existence of C3 > 0 and N1 > 0
such that: ∥∥∥eΦ

h uh
∥∥∥

Λ1H1(ΩU1 ,ρ)
� C3 h

−N1 . (4.4.10)

Step 3: Elliptic regularity.

We now set ũh = e
Φ
h uh. For ρ′ < ρ, we take a cut-off χ ∈ C∞(ΩU1,ρ) with

compact support in ΩU1,ρ ∪ΓND and such that χ = 1 on a neighborhood of
ΩU1,ρ′ . The form vh = χũh satisfies the boundary value problem:{

vh − ∆vh = rh0 in Rn− ,
nvh = 0 and ndvh = rh1 on {xn = 0} ,

with
∥∥rh0∥∥

Λ1L2(Rn−)
= O(h−N1) and

∥∥rh1∥∥
Λ2H1/2(Rn−1)

= O(h−N1) .

This implies, by [Sch], the existence of N2 > 0 such that:∥∥vh∥∥
Λ1H2 = O(h−N2) .

We conclude by induction for any finite decreasing sequence (ρk)0�k�K with
ρK > ρ

′ and associated cut-offs χk , with χk = 1 in a neighborhood of ΩU1,ρk

and suppχk ⊂ {χk−1 = 1} , using the Sobolev injections. �
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4.5. Small eigenvalues are exponentially small

We now check that the eigenvalue E1(h) of ∆N,D,(1)
f,h lying in [0, h3/2) is

actually of order O(e−ερ/h) for some ερ > 0. We prove this by comparison
with the half-space problem as it is done in [Lep2] at the end of the proof
of Theorem 1.1.

Proof of Proposition 4.2-c). — Again we introduce in a neighborhood
of U1, the coordinate system x = (x′, xn) leading to (3.3.1). The function
f and the metric g0 are extended according to (3.3.2) and (3.3.3) so that
Proposition 3.16 can be applied. Consequently, the half-space Witten Lapla-
cian, ∆N,(1)

f̃ ,h
, has a one dimension kernel and its second eigenvalue is larger

than Ch6/5.

Let uh be a normalized eigenvector of ∆N,D,(1)
f,h associated with the first

eigenvalue E1(h), which belongs to the interval (0, h3/2] . Let χ ∈ C∞(ΩU1,ρ)
be a cut-off function with compact support in ΩU1,ρ ∪ ΓND and such that
χ = 1 in a neighborhood of 0 with ∂χ

∂n

∣∣
∂Ω

≡ 0.

The form vh = χuh ∈ Λ1H2(Rn−) belongs to the domain of ∆N,(1)

f̃ ,h
, i.e.

nvh = ndf̃ ,hv
h = 0. Moreover, vh satisfies

(∆(1)

f̃ ,h
− E1(h))vh = −h2[∆, χ]uh in Rn−

and the 1-form rh = −h2[∆, χ]uh vanishes in a neighborhood V1 of x = 0 .
Due to the exponential decay of uh stated in Proposition 4.2-b), there exist
C and N0, such that rh also satisfies

∣∣rh(x)∣∣ � Ch−N0

 ∑
1�|β|�2

|∂βxχ(x)|

 e−Φ(x)
h � e−

cχ
h .

With
∥∥vh∥∥

Λ1L2 = 1+O(e−c/h),
∥∥rh∥∥

Λ1L2 = O(e−c/h) and the a priori esti-
mate E1(h) = O(h3/2), the spectral theorem implies |E1(h)−0| = O(e−c/h)
like in the proof of Theorem 1.1 given in [Lep2] (p. 245). �

4.6. Accurate comparison with the WKB solution

We now compare the eigenvector associated with an exponentially small
eigenvalue with its WKB approximation. We adapt the method presented
in [Hel2, HeSj1] and in [HeNi] by following the same strategy as in Sub-
section 4.4. The H1-estimates are done in two steps with ψh similar to ϕ
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and then with ψh similar to Φ . Finally the elliptic regularity is used for the
C∞-estimates.

Proof of Proposition 4.2-d) . — Let uh1 ∈ D(∆N,D,(1)
f,h ) be an eigenvector

associated with the first eigenvalue E1(h) of ∆N,D,(1)
f,h :

∆N,D,(1)
f,h uh1 = E1(h)uh1 ,

∥∥uh1∥∥ = 1 .

According to Proposition 4.2-c), we know that E1(h) = O(e−
ερ
h ), with

ερ > 0, while the second eigenvalue of ∆N,D,(1)
f,h is larger than h3/2.

By taking ρ > 0 small enough, the WKB approximation uwkb1 presented
in Subsection 4.2 satisfies

∆(1)
f,hu

wkb
1 = O(h∞) e−

Φ(x)
h in ΩU1,ρ ,

nuwkb1 |ΓND = 0 ,

ndf,huwkb1 |ΓND = 0 ,

and there exists c > 0, such that for any ρ′ > 0, we have∥∥uwkb1

∥∥
Λ1L2(ΩU1,ρ′ )

∼ ch
n+1

4

(see indeed further the proof of Proposition 5.19).

Let us choose the cut-off function χ ∈ C∞(ΩU1,ρ) to be supported in
ΩU1,ρ/2∪ΓND and to satisfy χ = 1 on ΩU1,ρ′ with 0 < ρ′ < ρ/2, ∂χ∂n

∣∣
∂Ω

≡ 0.
Later, we will take ρ′ > 0 small enough, so that χ can be taken in the form

χ(x′, xn) = χ1(x′)χn(xn) .

From
(∆N,D,(1)

f,h − E1(h))χuwkb1 = O(h∞)

and the comparison result of [Hel2] (see Proposition 4.1.1), the real constant
factor c(h) in the truncated WKB approximation vwkb1 = c(h)χuwkb1 can be
chosen so that ∥∥vwkb1 − uh1

∥∥
Λ1L2 = O(h∞) .

But then 〈∆N,D,(1)
f,h (vwkb1 − uh1 ) | vwkb1 − uh1 〉 = O(h∞), which implies∥∥vwkb1 − uh1

∥∥
Λ1H1 = O(h∞)

and, due to the exponential decay of uh1 and uwkb1 ,∥∥χ(uh1 − c(h)uwkb1 )
∥∥

Λ1H1 = O(h∞) .
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Set
wh = χ(uh1 − c(h)uwkb1 ) .

The 1-form wh satisfies in ΩU1,ρ

(∆(1)
f,h − E1(h))wh = χ(x)(∆(1)

f,h − E1(h))(uh1 − c(h)uwkb1 )
+[∆(1)

f,h, χ](uh1 − c(h)uwkb1 )

= r̃h e−
Φ(x)
h + rh ,

(4.6.1)

where r̃h and rh satisfy, according to Proposition 4.2-b),

r̃h = O(h∞) , supp rh ⊂ supp∇χ and rh = O(h−N0)e−
Φ(x)
h .

The last estimate can be done for any Ck0-norm, with k0 ∈ N.

On the boundary ∂ΩU1,ρ = ΓND ∪ ΓD , we have simply

nwh|ΓND = 0, wh|ΓD = 0 ,

and ndf,hwh|ΓND = 0 .

With the different of choices for ψh given below, we will use the notation

w̃h = e
ψh

h wh .

The 1-forms w and w̃ belong to Λ1H2(ΩU1,ρ) and their supports do not
meet ΓD. Hence the integration by parts given in formula (2.2.7) can be
used in addition to (4.3.3).

Step 1: Comparison along ΓND.

Like in the proof of Proposition 4.2-b) presented in Subsection 4.4, we
introduce the sets

Ωh
− = {x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) < Ch} ,

and Ωh
+ = {x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) > Ch} .

For any N ∈ N , we take:

ϕhN (x′) = min
{
ϕh(x′) +Nh log h−1 , ψ(x′)

}
,

where ϕh(x′) =
{
ϕ(x′) − Ch log ϕ(x′)

h , if ϕ(x′) > Ch
ϕ(x′) − Ch logC , if ϕ(x′) � Ch ,

and ψ(x′) = min
{
ϕh(y′) + (1 − ε)|ϕ(x′) − ϕ(y′)| , y′ ∈ supp∇χ1

}
.
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We recall that |ϕ(x′)−ϕ(y′)| is the Agmon distance between x′ and y′ along
the boundary, d∂Ω

Ag(x
′, y′) (i.e. associated with the metric |∇x′f(x′, 0)|2dx′2),

and that ϕ(x′) = d∂Ω
Ag(x

′, 0). Morever, due to the triangular inequality,

|ψ(x′) − ψ(y′)| � (1 − ε)|ϕ(x′) − ϕ(y′)| = (1 − ε)d∂Ω
Ag(x

′, y′), (4.6.2)

which implies, owing to the properties of the Agmon distance (see e.g. [DiSj]
p. 53):

for almost all x′, |∇ψ(x′)| � (1 − ε) |∇x′f(x′, 0)| = (1 − ε) |∇ϕ(x′)| .
(4.6.3)

Let us also recall that the cut-off χ writes χ(x′, xn) = χ1(x′)χn(xn) . The
constant C � 1 will be fixed at the end like in the proof of Proposition 4.2-b).
The constants ρ′ ∈ (0, ρ/2) and ε > 0 are chosen so that, for h ∈ (0, hN,ρ′,ε) ,

ϕhN (x′) = ϕh(x′) +Nh log h−1 in ΩU1,ρ′ . (4.6.4)

Consequently, ϕ being the Among distance on the boundary,

ϕhN (x′) = ϕh(x′) +Nh log h−1 = ϕ(x′) − Ch logC +Nh log h−1 on Ωh
− .

(4.6.5)
Note furthermore the inequalities:

ϕhN (x′) � ϕ(x′) +Nh log h−1 in ΩU1,ρ

ϕhN (x′) � ϕ(x′) � Φ(x) , if x′ ∈ supp∇χ1 ,

and ϕhN (x′) � ϕ(x′) +Nh log h−1 � Φ(x) , if xn ∈ suppχ′n .

In particular, we have for h ∈ (0, hN,ρ′,ε) ,

ϕhN (x′) � Φ(x) , for x ∈ supp∇χ ,
which implies ∥∥∥∥eϕhNh rh∥∥∥∥

Λ1L2

= ON (h−N0) .

We apply the integration by parts formula (4.3.3), where the left-hand

side is computed with (2.2.7), and we obtain for the form w̃h = e
ϕh
N
h wh,

by analogy with the proof of Proposition 4.2-b), using (4.6.1) and E1(h) =
O(h∞) = O(h):

C1h
∥∥w̃h∥∥2

Λ1L2(Ωh−)
+

∥∥∥∥r̃h + e
ϕh
N
h rh

∥∥∥∥
Λ1L2

∥∥w̃h∥∥
Λ1L2 �

∥∥hdw̃h∥∥2

Λ2L2

+
∥∥hd∗w̃h∥∥2

Λ0L2 + 〈|∇xn|2w̃h | w̃h〉Λ1L2

+h
∫

ΓND

〈w̃h | w̃h〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ + 〈(|∇ϕ|2 − |∇ϕhN |2)w̃h | w̃h〉

−C1h〈1Ωh+
(x)w̃h | w̃h〉 ,
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where the constant C1 > 0 is determined by f and r̃h = O(h∞).

In Ωh
− the weight e

ϕh
N
h is bounded by C2(C)h−N and this provides∥∥w̃h∥∥

Λ1L2(Ωh−)
� C2(C)h−N

∥∥wh∥∥
Λ1L2(Ωh−)

� C3(C,N) ,

due to
∥∥wh∥∥

Λ1H1 = O(h∞) .

We obtain:

δ̃(C,N)(h−N0
∥∥w̃h∥∥

Λ1H1 + 1) �
∥∥hdw̃h∥∥2

Λ2L2 +
∥∥hd∗w̃h∥∥2

Λ0L2

+〈|∇xn|2w̃h | w̃h〉Λ1L2 + h
∫

ΓND

〈w̃h | w̃h〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ

+〈(|∇ϕ|2 − |∇ϕhN |2)w̃h | w̃h〉 − C1h〈1Ωh+
(x)w̃h | w̃h〉 .

In Ωh
−, |∇ϕ|2 =

∣∣∇ϕhN ∣∣2, using (4.6.5).
In Ωh

+, the point x fulfills almost surely one of the two possibilities:

• Either ∇ϕhN = ∇ψ , and we get, owing to (4.6.3),

|∇ϕ|2 −
∣∣∇ϕhN ∣∣2 � (2ε− ε2) |∇ϕ|2 � δρ,ε ,

where the last lower bound is due to the fact that ϕN (x) = ψ(x)
cannot occur in a neighborhood of x′ = 0 for ε > 0 small enough and
h ∈ (0, hN,ρ′,ε);

• or ∇ϕhN = ∇ϕ(1 − Ch
ϕ ) .

So we get, similarly to the proof of Proposition 4.2-b), for C big enough
and h ∈ (0, hN,ρ′,ε] , with hN,ρ′,ε > 0 small enough:

δ̃2(C,N)(h−N0
∥∥w̃h∥∥

Λ1H1 + 1) �∥∥hdw̃h∥∥2

Λ2L2 +
∥∥hd∗w̃h∥∥2

Λ0L2 + (1 + 2δ(C)h)〈|∇xn|2w̃h | w̃h〉Λ1L2

+h
∫

ΓND

〈w̃h | w̃h〉Λ1T∗σΩ

(
∂xn
∂n

)
(σ) dσ .

After treating the r.h.s. like in the proof of Proposition 4.2-b)-Step 1,
we obtain, for a constant N0 > 0 ,∥∥w̃h∥∥

Λ1H1(ΩU1,ρ)
� C4 h

−N0 .
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Our choice of (ε, ρ′) implies

∀x ∈ ΩU1,ρ′ , ϕhN (x′) � ϕ(x′) +Nh log h−1 + C̃h log h .

We have proved the existence of N1 and ρ′0, such that, for any N ∈ N and
ρ′ ∈ (0, ρ′0] , there exists hN,ρ′ > 0 and CN,ρ′ > 0 , such that:∥∥∥eϕh (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1(ΩU1,ρ′ )

� CN,ρ′ hN−N1

holds for any h ∈ (0, hN,ρ′).

This last estimate and Φ|ΓND = ϕ imply∥∥∥eΦ
h (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1/2(ΩU1,ρ′∩ΓND)

= O(h∞) .

Step 2: Comparison in the normal direction.

After replacing ρ′ by ρ , Step 1 provides the estimate∥∥∥eϕh (uh1 − c(h)uwkb1 )
∥∥∥

Λ1H1
= O(h∞) . (4.6.6)

We work in ΩU1,ρ with the above estimate and ρ′ ∈ (0, ρ/2) will be taken
again small enough.

In order to get the interior estimate with the weight e
Φ
h , we modify the

previous analysis like in the proof of Proposition 4.2-b). The sets Ωh
± are

now given by

Ωh
− = {x = (x′, xn) ∈ ΩU1,ρ ; Φ(x) < Ch} ,

and Ωh
+ = {x = (x′, xn) ∈ ΩU1,ρ ; Φ(x) > Ch} .

The function ϕhN , N ∈ N, is given by

ϕhN (x) = min
{
ϕh(x) +Nh log h−1, ψ(x)

}
,

with ϕh(x) =
{

Φ(x) − Ch log Φ(x)
h , if Φ(x) > Ch ,

Φ(x) − Ch logC , if Φ(x) � Ch ,
and ψ(x) = min

{
ϕh(y) + (1 − ε)dAg(x, y), y ∈ supp∇χ

}
.

We recall that the Agmon distance dAg(x, y) is the distance between x
and y for the metric |∇f |2 dx2 and that Φ(x) = dAg(x, U1).
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Moreover, equivalently to (4.6.3) in Step 1, the following inequality is
satisfied:

for almost all x, |∇ψ(x)| � (1 − ε) |∇f(x)| . (4.6.7)

Furthermore, the constant C � 1 will again be fixed in the end like in the
proof of Proposition 4.2-b), while the constants ρ′ ∈ (0, ρ/2) and ε > 0 are
chosen so that:

ϕhN (x) = ϕh(x) +Nh log h−1 in ΩU1,ρ′ .

Again, this implies:

ϕhN (x) = ϕh(x) +Nh log h−1 on Ωh
−

Now we have the inequalities

ϕhN (x) � Φ(x) +Nh log h−1 in ΩU1,ρ

and ϕhN (x) � Φ(x) in supp∇χ .

Hence the estimate ∥∥∥∥eϕhNh rh∥∥∥∥
Λ1L2

= O(h−N0)

is still valid.

Inequality (4.6.6) implies that the L2-norm of the trace of w̃h on ΓND
is O(h∞) and we have the following estimate:∥∥w̃h∥∥

Λ1L2(Ωh−)
� C2(C)h−N

∥∥wh∥∥
Λ1L2(Ωh−)

� C3(C,N) .

With these estimates, the integration by parts formula (4.3.3) and (2.2.7)
lead to:

δ̃(C,N)(h−N0
∥∥w̃h∥∥

Λ1L2 + 1) �
∥∥hdw̃h∥∥2

Λ2L2 +
∥∥hd∗w̃h∥∥2

Λ0L2

+〈(|∇f |2 − |∇ϕhN |2 − C1h)1Ωh+
(x)w̃h | w̃h〉 .

Finally, for almost all x ∈ Ωh
+ we have:

• Either: ∇ϕhN (x) = ∇ψ(x)

and, owing to (4.6.7),

|∇f |2 −
∣∣∇ϕhN ∣∣2 = (2ε− ε2) |∇f |2 � δρ,ε > 0 ;

• or: ∇ϕhN (x) = ∇ϕh(x)
and we get like in the proof of Proposition 4.2-b)

|∇f |2 −
∣∣∇ϕh∣∣2 � C4Ch .
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By taking C big enough, we get that ||e
ϕh
N
h wh|| = O(h−N0) for some

N0 > 0.

Like in Step 1, this leads to∥∥∥eΦ
h (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1(ΩU1,ρ′ )

= O(h∞) ,

for ρ′ ∈ (0, ρ/2) small enough.

Step 3: The estimates in higher order Sobolev spaces are done like in
the proof of Proposition 4.2-b) by a bootstrap argument after writing a
boundary value problem for χ(uh1 − c(h)uwkb1 ) in Rn−. �

5. Labelling of local minima and construction of the quasimodes

5.1. Preliminaries

Here we adapt to our case with Neumann boundary condition the method
of selecting the proper critical points with index 1 which was used in [HeKlNi]
and in [HeNi]. We recall that the intuition for getting the good labelling of
local minima, which is useful even to state properly the assumptions and
results, comes from the probabilistic approach. The local minima have to
be labelled according to the decreasing order of exit times. We refer to
[BoGaKl], [BoEcGaKl] and [FrWe] for details.

Note that a similar strategy has independently been considered in
[CoPaYc] for the spectral analysis on Markov processes on graphs.

The existence of such a labelling is an assumption which is generically
satisfied. After this, it is possible to construct accurately quasimodes lead-
ing, with the help of the Witten complex structure, to accurate asymptotic
expansions of the low lying eigenvalues.

5.2. Generalized critical points and local structure of the level
sets of a Morse function

We recall that we work here on a compact connected oriented Rieman-
nian manifold Ω = Ω ∪ ∂Ω with boundary and that the function f satis-
fies Assumption 3.1. According to our preliminary results on the Witten
Laplacian ∆N

f,h in Theorem 3.5, we introduce the following definition of
generalized critical points with index p .
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Definition 5.1. — A point U ∈ Ω will be called a generalized critical
point of f with index p if:

• either U ∈ Ω and U is a critical point of f with index p ,

• or U ∈ ∂Ω and U is a critical point with index p of f |∂Ω such that
∂f
∂n (U) < 0 ((n being the outgoing normal vector).

Remark 5.2. — In particular, for p = 0, we get that the generalized
minima are simply the local minima.

The set of generalized critical points with index p is denoted by U (p) .
We recall that we want to analyze the Witten Laplacian on 0-forms so we
restrict our attention to the cases p = 0 and p = 1. From now on, we will
use the notation:

mp = #U (p) for p = 0, 1 (5.2.1)

instead of mΩ
p .

Finally it is convenient to call U the union of all critical points of f and
f |∂Ω.

Before labelling the local minima, let us recall a few remarks coming
from the local analysis of a Morse function which satisfies Assumption 3.1
(we refer to [Mil1], [HeKlNi], and [HeNi]).

Local structure of the level sets of a Morse function.

In order to analyze the local situation near a point x0 of Ω, let us introduce:

A<f (x0) :=
{
x ∈ Ω ; f(x) < f(x0)

}
∩Bx0 ,

where Bx0 is a ball centered at x0. Similarly, we can introduce

A�f (x0) :=
{
x ∈ Ω ; f(x) � f(x0)

}
∩Bx0 .

Interior points:

First we observe that, near a non critical point x0 ∈ Ω of f , one can find
Bx0 and a set of local coordinates such that

A<f (x0) = {y1 < 0} ∩Bx0 .

Secondly, if x0 is a critical point with index p, then there exists a ball Bx0

around x0 and a set of local coordinates centered at x0 such that
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A<f (x0) =

−
p∑
�=1

y2� +
n∑

�=p+1

y2� < 0

 ∩Bx0 ,

and

A�f (x0) =

−
p∑
�=1

y2� +
n∑

�=p+1

y2� � 0

 ∩Bx0 .

We now observe that

1. When p = 0 (local minimum), A<f (x0) is empty and A�f (x0) is reduced
to {x0} .

2. When p = 1 , A<f (x0) has two connected components and x0 belongs
to the closure of each of the two components. This property will be
crucial in the discussion.

3. When p � 2, A<f (x0) is (arcwise) connected.

Points on the boundary:

If x0 belongs to ∂Ω, Assumption 3.1 leads to two cases:

First case.

If x0 is not a critical point of f |∂Ω, then the hypersurfaces {x | f(x) = f(x0)}
and ∂Ω intersect transversally in a neighborhood of x0. Hence there is a ball
Bx0 around x0 and a set of local coordinates such that

A<f (x0) = {y1 < 0, yn � 0} ∩Bx0 ,

and
A�f (x0) = {y1 � 0, yn � 0} ∩Bx0 ,

with Ω ∩Bx0 = {yn < 0} ∩Bx0 .

Second case.

If x0 is a critical point of f |∂Ω with index p and with ± ∂f
∂n (x0) > 0, there

are local coordinates (y1, . . . , yn−1, yn), constructed from the second point
of Lemma 3.18, such that (y1, . . . , yn−1) are Morse coordinates for f |∂Ω and
such that

A<f (x0) =

±yn −
p∑
i=1

y2i +
n−1∑
i=p+1

y2i < 0 , yn � 0

 ∩Bx0 ,
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and

A�f (x0) =

±yn −
p∑
i=1

y2i +
n−1∑
i=p+1

y2i � 0 , yn � 0

 ∩Bx0 .

These local models allow to see that

1. If x0 is a local minimum of f |∂Ω such that ∂f
∂n (x0) < 0 , then

A<f (x0) = ∅ and A�f (x0) = {x0} .

2. If x0 is a local minimum of f |∂Ω such that ∂f
∂n (x0) > 0 , then

A<f (x0) ∩ ∂Ω = ∅ and A�f (x0) ∩ ∂Ω = {x0} . Moreover, A<f (x0) is
connected.

3. If p = 1 and ∂f
∂n (x0) < 0 (i.e. if x0 ∈ U (1) ∩ ∂Ω), A<f (x0) has two

connected components with a non-empty intersection with ∂Ω and
x0 belongs to the closure of each of the two components. Again, this
property will be crucial in the discussion.

4. In all other cases, A<f (x0) is connected with a non-empty intersection
with ∂Ω.

5.3. Labelling of local minima and first consequence

Remember our main Assumption 1.1:

The function f has #U distinct critical values and the quantities
f(U (1)) − f(U (0)), with U (1) ∈ U (1) and U (0) ∈ U (0) are distinct.

Definition 5.3. — For λ ∈ R, we define H0({f < λ}) as the number
of connected components of the level set L(λ) = f−1((−∞, λ)) .

Due to local structure of the level sets of a Morse function and to As-
sumption 1.1, the function H0({f < λ}) of λ ∈ R is a step function which
satisfies, with λ decreasing from +∞:

• H0({f < λ}) decreases by 1 around every λ = f(U (0)) with U (0) ∈
U (0).

• wherever H0({f < λ}) increases by 1, it is around a λ = f(U (1)) with
U (1) ∈ U (1).

• H0({f < λ}) is locally constant away from those points.
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Remark 5.4. — Ω is connected and compact so H0({f < λ}) equals re-
spectively 1 or 0 for λ � λf or λ � −λf for some λf > 0.

Consequently, the previous discussion implies that the number of critical
values of f with index 1 where H0({f < λ}) increases (by 1) is equal to
m0 − 1 and so that m1 + 1 � m0 .

We now label the local minima of f as follow:

1. We set U (0)
1 = minx∈Ω f , z1 = ∞, f(z1) = z1 = ∞ and we consider

H0({f < λ}) for λ decreasing from f(z1) = +∞.

2. When U (0)
k and zk are defined for k = 1, . . . ,K − 1, decrease λ from

f(zK−1) until H0({f < λ}) increases by 1. Denote by λK this value.

3. By Assumption 1.1 and by the previous discussion, there exists a
unique point in U (1), that we denote by zK , satisfying f(zK) = λK .
Then we denote by U (0)

K the global minimum of the new connected
component.

4. We iterate 2. and 3. until all the local minima have been considered.

5. At least we permute the k’s to make the sequence(
f(zk) − f(U (0)

k )
)
k∈{1,...,m0}

strictly decreasing, which is possible by

Assumption 1.1.

Definition 5.5 (The map j) . — If the generalized critical points with
index 1 are numbered U (1)

j , j = 1, . . . ,m1 , we set U (1)
1 = z1 = ∞ and we

define the application k �→ j(k) from {1, . . . ,m0} to {0, 1, . . . ,m1} by:{
j(1) = 0 and U (1)

j(1) = z1
∀ k � 2 , U (1)

j(k) = zk .

Definition 5.6. — For k ∈ {1, . . . ,m0}, we denote by Ek the connected
component of U (0)

k in

f−1((−∞, f(U (1)
j(k))]) \ {U

(1)
j(k)} .

Remark 5.7. — By the previous construction, U (0)
k is the global mini-

mum of Ek.

Proposition 5.8. — Under Assumption 1.1, the following properties
are satisfied:
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a) The sequence
(
f(U (1)

j(k)) − f(U
(0)
k )

)
k∈{1,...,m0}

is strictly decreasing.

b) E1 = Ω is compact and for any k > 1 the set Ek is a relatively
compact subset of f−1((−∞, f(U (1)

j(k))]) satisfying Ek = Ek ∪
{
U

(1)
j(k)

}
.

c) For any (k, j) ∈ {1, . . . ,m0} × {0, 1, . . . ,m1}, the relation U (1)
j ∈ Ek

implies:

either (j = j(k′) for some k′ > k) or j �∈ j({1, . . . ,m0}) .

d) For any k �= k′ ∈ {1, . . . ,m0} , the relation U (0)
k′ ∈ Ek implies:(

k′ > k and f(U (0)
k′ ) > f(U (0)

k )
)
.

e) The application j : {1, . . . ,m0} → {0, 1, . . . ,m1} is injective.

Proof. — By Assumption 1.1 and by construction, the points a), b) and
e) are obvious.

c) Assume now U (1)
j(k′) ∈ Ek .

Since U (1)
j(k) /∈ Ek, one has k �= k′. Moreover, by definition of Ek and by

Assumption 1.1, we have the inequality f(U (1)
j(k′)) < f(U

(1)
j(k)) which implies

that Ek′ is contained in Ek, by connectedness of Ek and Ek′ .

Consequently, U (0)
k′ ∈ Ek and by Assumption 1.1, f(U (0)

k′ ) > f(U (0)
k )

(because U (0)
k is the global minimum of f on Ek) which yields:

f(U (1)
j(k′)) − f(U

(0)
k′ ) < f(U (1)

j(k)) − f(U
(0)
k )

and the point a) gives k′ > k .

d) Assume U (0)
k′ ∈ Ek for k �= k′.

Again one has f(U (0)
k′ ) > f(U (0)

k ) which implies k′ �= 1 (then U (1)
j(k′) ∈ Ω)

and there are two possible cases:

U
(1)
j(k′) ∈ Ek or U

(1)
j(k′) /∈ Ek .

In the second case, let us look at Ek′ . Ek′ is connected and U (0)
k′ is the

global minimum of f on Ek′ . Moreover, U (0)
k′ ∈ Ek′∩Ek and U (1)

j(k′) ∈ Ek′\Ek
imply, by connectedness, that ∂Ek ∩ Ek′ �= ∅.
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Ek is then contained in Ek′ and U (0)
k ∈ Ek′ , which cannot occur.

Consequently, U (1)
j(k′) ∈ Ek and the points b) and c) imply k′ > k . �

5.4. Construction of the quasimodes

Like in [HeKlNi] and in [HeNi], we associate with every U
(0)
k ,

k ∈ {1, . . . ,m0}, a quasimode for ∆N,(0)
f,h which is approximately supported

in Ek, while the quasimodes for ∆N,(1)
f,h will be supported in the balls

B(U (1)
j , 2 ε1), for j ∈ {1, . . . ,m1}. A ball B(U, ρ) , with U ∈ Ω and ρ > 0 , is

a geodesic ball and the geodesic distance is denoted by dΩ . The parameter
ε1 > 0 is fixed so that:

• dΩ(U,U ′) � 10 ε1 for U , U ′ ∈ U , U �= U ′ .

• For all U ∈ U and all k ∈ {1, . . . ,m0} , U �∈ Ek implies

dΩ(U,Ek) � 10 ε1 .

• The construction of the WKB approximation of Subsection 4.6 is
possible in the ball B(U (1)

j , 2 ε1). If U (1)
j is a boundary point, this

means the introduction of the coordinates (x′, xn) used in Section 4.3
and the existence of Φ. Recall that in these coordinates, Φ and g0 have
the form:

Φ = −xn+ϕ(x′) and g0 = gnn(x) dx2
n+

n−1∑
i,j=1

gij(x) dxidxj . (5.4.1)

The parameter ε1 > 0 will be kept fixed, while we need another parameter
ε ∈ (0, ε0) which will be fixed in the final step of the proof.

Like in [HeNi], the construction presented in [HeKlNi] has to be adapted
when U (1)

j(k) ∈ ∂Ω or U (0)
k ∈ ∂Ω (recall that in [HeNi], the case U (0)

k ∈ ∂Ω
did not occur) and we focus on these changes.

However, note that in [HeNi] the set Ek intersected ∂Ω at most at one
point (Ek ∩ ∂Ω ⊂

{
U

(1)
j(k)

}
). It is not the case here and we cannot use the

same construction when U (1)
j(k) ∈ ∂Ω.

For every k ∈ {1, . . . ,m0} and ε > 0, we introduce the set:

Ω̃k(ε, δ) =
{
x ∈ Ω, dΩ

(
x,Ek \B(U (1)

j(k), ε)
)
< δ

}
∪B(U (1)

j(k), ε) ,

with δ ∈ (0, δε) , δε > 0 small enough.
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The cut-off function χ̃k,ε ∈ C∞0 (Ω) , 0 � χ̃k,ε � 1 is chosen so that:

supp χ̃k,ε ⊂ Ω̃k(ε, δε) and χ̃k,ε|Ω̃k(ε,δε/2)\B(U
(1)
j(k),ε)

= 1 .

Around U (1)
j(k), the cut-off function χ̃k,ε is chosen (more accurately below

when U (1)
j(k) ∈ ∂Ω) so that U (1)

j(k) �∈ supp χ̃k,ε and

∀x ∈ B(U (1)
j(k), ε) ,

(
χ̃k,ε(x) �= 0 , and f(x) < f(U (1)

j(k))
)
⇒ x ∈ Ek . (5.4.2)

Remark 5.9. — The cut-off functions χ̃k,ε are used in the construction
of quasimodes for ∆N,(0)

f,h .

Moreover, in the case k = 1, we have by construction χ̃k,ε ≡ 1 in Ω
because U

(1)
j(1) /∈ Ω. This case provides directly the eigenvector∥∥e−f(x)/h

∥∥−1
e−f(x)/h (of ∆N,(0)

f,h ) with the eigenvalue 0.

Like in [HeKlNi] and in [HeNi], we deduce from Proposition 5.8 the
following properties for χ̃k,ε .

Proposition 5.10. — By taking δ = δε with ε ∈ (0, ε0] , 0 < ε0 � ε1
small enough, the cut-off functions χ̃k,ε (k ∈ {1, . . . ,m0}) satisfy the fol-
lowing properties:

a) If x belongs to supp χ̃k,ε and f(x) < f(U (1)
j(k)) , then x ∈ Ek.

b) There exist C > 0 and, for any ε ∈ (0, ε0] , a constant Kε > 0 , such
that, for x ∈ supp∇χ̃k,ε ,

either x �∈ B(U (1)
j(k), ε) and f(U (1)

j(k)) +K−1
ε � f(x) � f(U (1)

j(k)) +Kε ,

or x ∈ B(U (1)
j(k), ε) and

∣∣∣f(x) − f(U (1)
j(k))

∣∣∣ � Cε .
c) For any U ∈ U , U �= U

(1)
j(k), the distance dΩ(U, supp∇χ̃k,ε) is bounded

from below by 3ε1 > 0 . If in addition U ∈ supp χ̃k,ε, then U ∈ Ek .

d) If, for some k′ ∈ {1, . . . ,m0}, U (0)
k′ belongs to supp χ̃k,ε , then k′ � k

and

f(U (0)
k′ ) > f(U (0)

k ), f(U (1)
j(k′)) � f(U

1
j(k)) , if k �= k′ .
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e) For any j ∈ {1, . . . ,m1} , such that U (1)
j ∈ supp χ̃k,ε ,

either j �∈ j ({1, . . . ,m0}) ,
or j = j(k′) , for some k′ � k and U (0)

k′ ∈ supp χ̃k,ε .

The quasimodes for ∆N,(1)
f,h associated with the U (1)

j ∈ Ω are constructed
like in [HeKlNi] and in [HeNi] (and rely on the approximation by the Dirich-
let problem in small balls B(U (1)

j , 2ε1)). We will not recall the complete
construction here.

In the same spirit as in [HeNi], the quasimodes associated with the U (1)
j ∈

∂Ω will rely on the approximation by the Neumann realization associated
with the neighborhood Ω

U
(1)
j

,ρ
(ρ > 0 small enough) which was studied in

Subsection 4.6.

Once ρ > 0 is fixed uniformly for all U (1)
j ∈ ∂Ω , the parameter ε1 > 0

is reduced so that B(U (1)
j , 2ε1) ⊂ ΩU1,ρ for all U (1)

j ∈ ∂Ω.

For all j ∈ {1, . . . ,m1}, uj denotes a normalized eigenvector associated
with the first (exponentially small) eigenvalue of this Dirichlet or Neumann
realization. The cut-off function θj ∈ C∞0 (B(U (1)

j , 2ε1)) is taken such that

θj = 1 on B(U (1)
j , ε1) and ∂θj

∂n

∣∣
∂Ω

≡ 0 for boundary points U (1)
j ∈ ∂Ω.

Note that the function χ̃k,ε depends on ε ∈ (0, ε0], while θj is kept fixed
like ε1 > 0.

Definition 5.11. — For cut-off χk,ε satisfying the properties of Propo-
sition 5.10 like χ̃k,ε, introduce the following quasimodes.

For any k ∈ {1, . . . ,m0}, the (ε, h)-dependent function ψ(0)
k is defined by

ψ
(0)
k (x) =

∥∥∥χk,ε(x)e−(f(x)−f(U
(0)
k

))/h
∥∥∥−1

χk,ε(x)e−(f(x)−f(U
(0)
k

))/h .

For any j ∈ {1, . . . ,m1}, the h-dependent 1-form ψ
(1)
j is defined by

ψ
(1)
j (x) =

(
‖θjuj‖−1

)
θj(x)uj(x) .

We set λapp1 (ε, h) = 0, and for any k ∈ {2, . . . ,m0} :

λappk (ε, h) =
∣∣∣〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k

〉∣∣∣2 .
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Remark 5.12. —

a) In the case U (1)
j(k) ∈ Ω, χk,ε is χ̃k,ε with additional properties (see

[HeKlNi] for details) and we will still denote it here by χ̃k,ε. In the case
U

(1)
j(k) ∈ ∂Ω, the real choice of χk,ε will be fixed further (see Definition 5.20).

Moreover, χk,ε also satisfies the properties of Proposition 5.10.

b) For the sake of conciseness, we omit the (ε, h)- and h- dependence in
the notations ψ(0)

k and ψ(1)
j .

c) We will show in the next section that the λappk (ε, h)’s are approxi-
mated values of the small eigenvalues of ∆N,(0)

f,h .

By Remark 5.9, this definition is coherent for k = 1 and ψ(0)
1 is the

normalized eigenvector associate with the eigenvalue 0.

d) Due to the condition ∂θj
∂n

∣∣
∂Ω

≡ 0, ψ(1)
j belongs to D(∆N,(1)

f,h ) and this,

even if U (1)
j belongs to ∂Ω.

5.5. Quasimodal estimates

We end this section by reviewing the quasimodal estimates which are de-
rived from Propositions 5.8 and 5.10. The asymptotic expansion of the quan-
tity

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
has also be done in [HeKlNi] when U (0)

k and U (1)
j(k) ∈ Ω

are interior points. Like in [HeNi], we will simply complete this analysis by
establishing the asymptotic expansion of

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
, when U (0)

k or

U
(1)
j(k) is in ∂Ω .

Remark 5.13. — In this subsection, we make computations with differ-
ent coordinate systems v = (v1, . . . , vn) (around U = U (0)

k or U = U (1)
j(k)) all

given given by Lemma 3.18.

Looking at the proof of Lemma 3.18 given in [Lep2], notice that the
coordinates (v1, . . . , vn−1) in the boundary can be chosen freely. Moreover,
according to [HeSj4] pp. 279-280, they can be chosen such that dv1(U),. . .,
dvn−1(U), (n∗U is orthonormal and positively oriented and

f(v, 0) =
λ1

2
v21+· · ·+λn−1

2
v2n−1+f(U) and ϕ(v) =

|λ1|
2
v21+· · ·+ |λn−1|

2
v2n−1 ,

(5.5.1)
with λ1 < 0 when U = U

(1)
j . Hence all the coordinate systems around

U ∈ ∂Ω will coincide on ∂Ω while they may differ in Ω according to the case
when a normal form is used for f , Φ or f + Φ in Ω.
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Remind that the parameter ε1 > 0 is fixed, while ε0 and ε ∈ (0, ε0] may
have to be adapted during the proof. We shall denote by α a generic
positive constant which is independent of ε ∈ (0, ε0] .

Introduce the following notation which will be very useful:

Definition 5.14. — The notation g(h) = Oε(e−
α
h ) means that, for all

ε ∈ (0, ε0], there exists a constant Cε > 0 such that:

∀h ∈ (0, h0] , |g(h)| � Cεe−
α
h .

From Proposition 5.8-d) and the good localization of ∇χk,ε, we deduce
the following estimates for ψ(0)

k .

Proposition 5.15. — The system of (ε, h)-dependent functions
(ψ(0)

k )k∈{1,...,m0} of Definition 5.11 is almost orthogonal with(
〈ψ(0)

k | ψ(0)
k′ 〉

)
k,k′∈{1,...,m0}

= IdCm0 + Oε(e−
α
h ) ,

and there exists α > 0 and, for any ε ∈ (0, ε0], C(ε) and h0(ε) such that,
for any h ∈ (0, h0(ε)] ,

〈∆N,(0)
f,h ψ

(0)
k | ψ(0)

k 〉 =
∥∥∥d(0)f,hψ

(0)
k

∥∥∥2

� C(ε)e−2
f(U(1)

j(k)
)−f(U(0)

k
)−αε

h .

Corollary 5.16. — There exists ε0 > 0 and α > 0 such that, for any
choice of ε in (0, ε0] and for all k ∈ {1, . . . ,m0} , the (ε, h)-dependent quasi-
modes ψ(0)

k satisfy the estimate

〈∆N,(0)
f,h ψ

(0)
k | ψ(0)

k 〉 = Oε(e−
α
h ) .

The exponential decay of the first eigenvector uj , associated with an ex-
ponentially small eigenvalue, of the Dirichlet realization of ∆(1)

f,h around

U
(1)
j , provides the following estimates for ψ(1)

j . We refer the reader to

[HeKlNi] or [HeSj4] for U (1)
j ∈ Ω and to Subsection 4.6 for U (1)

j ∈ ∂Ω.

Proposition 5.17. — The system of h-dependent 1-forms,(
ψ

(1)
j

)
j∈{1,...,m1}

given in Definition 5.11 is orthonormal and there exists

α > 0 independent of ε such that

〈∆N,(1)
f,h ψ

(1)
j | ψ(1)

j 〉 = O(e−
α
h ) ,

for all j ∈ {1, . . . ,m1} .
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Let us now compute some asymptotic expansions.

Proposition 5.18. — For k in {2, . . . ,m0} and x in Ω ,

ψ
(0)
k (x) = γk(h)(1 + ak(h))χk,ε(x)e−

f(x)−f(U(0)
k

)

h ,

where γk(h) is defined in Definition 1.2 and ak(h) ∼
∑∞

�=1 ak,�h
�.

Proof. — In the case U (0)
k ∈ Ω, we refer the reader to [HeKlNi].

If U (0)
k ∈ ∂Ω, we use again, in a neighborhood of U (0)

k , the coordi-
nate system (x′, xn) introduced in the second part of the Section 3.3 (with
x(U (0)

k ) = 0). In this coordinate system, f and g0 equal:

f(x) = −xn + f |∂Ω(x′) = −xn + f(U (0)
k ) + ϕ(x′) , (5.5.2)

g0 = gnn(x) dx2
n +

∑n−1
i,j=1 gij(x) dxidxj , (5.5.3)

where ϕ = f |∂Ω − f(U (0)
k ) is the Agmon distance to U (0)

k on the boundary.
We denote by Vg0(dx) the normalized volume form:

Vg0(dx) = (detG0(x))1/2dx′ ∧ dxn =: ν(x′, xn)dx′ ∧ dxn .

From (5.5.2),

dxn(U (0)
k ) = −∂f

∂n
(U (0)

k ) (n∗
U

(0)
k

and ν(0, 0) =
(
−∂f
∂n

(U (0)
k )

)−1

. (5.5.4)

For some constants η > 0 and δη > 0,∥∥∥∥∥χk,εe− f(x)−f(U
(0)
k

)

h

∥∥∥∥∥
2

=
∫

Ω

χ2
k,εe
−2

f(x)−f(U(0)
k

)

h Vg0(dx)

=
∫
B(0,η)

e2
xn
h e−2

ϕ(x′)
h ν(x′, xn)dx′ ∧ dxn + O(e−

δη
h ) .

According to (5.5.1),∥∥∥∥∥χk,εe− f(x)−f(U
(0)
k

)

h

∥∥∥∥∥
2

=
∫
B(0,η)

e2
xn
h e−

|λ1|x21+···+|λn−1|x
2
n−1

h ν(x′, xn)dx ∧ dxn

+O(e−
δη
h ) .
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By expanding ν(x′, xn) to a Taylor Series of arbitrary order k ∈ N∗, we can
separate the variables x′ and xn in the last integral term.

Hence, using the Laplace Method for each term, we obtain an asymptotic

expansion of arbitrary order of

∥∥∥∥∥χk,εe− f(x)−f(U
(0)
k

)

h

∥∥∥∥∥
2

.

Moreover, from (5.5.4), the first term is:(
−∂f
∂n

(U (0)
k )

)−1
h

2
(πh)

n−1
2∣∣∣det Hess f |∂Ω(U (0)

k )
∣∣∣ 1
2

= (γk(h))−2 .

�

Proposition 5.19. — In B(U (1)
j(k), ε1), choose the coordinate system x

which satisfies (5.4.1) and (5.5.1) with λ1 < 0. For k in {2, . . . ,m0}, the
equality

ψ
(1)
j(k)(x) = δj(k)(h)b(x, h)e−

Φ(x)
h ,

holds up to a phase factor, when δj(k)(h) is defined according to Defini-
tion 1.2, b(x, h) ∼

∑∞
�=0 bk,�(x)h

�, bk,�(x) =
∑n

i=1 b
i
k,�(x)dxi, and bik,0(0) =

δ1 i.

Proof. — In Section 4, we found a WKB approximation uwkb1 of an
eigenvector uh1 such that,

e
Φ(x)
h uwkb1 =

∑n
i=1 a

0
i (x)dxi + ha1(x, h) ,

a0i (0) = δ1 i , a1(x, h) ∼
∑

� h
�a�(x) ,

and

∀x ∈ B(U (1)
j(k), 2ε1), e

Φ(x)
h

∣∣∂αx (uh1 (x) − uwkb1 (x))
∣∣ � Cα,NhN .

The WKB approximation uwkb1 was initially constructed in another coor-
dinate system (x1, . . . , xn). Remark 5.13 recalls that the tangential coordi-
nates x1, . . . , xn−1 and x1, . . . , xn−1 can coincide in ∂Ω with different de-
formations as entering into Ω.

The normalized eigenvector that we take here is

uj(k) =
uh1∥∥uh1∥∥ .
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Let us first compute accurately:∥∥uh1∥∥ =
∥∥θj(k)uh1∥∥ + O(h∞) =

∥∥θj(k)uwkb1

∥∥ + O(h∞) .

Moreover,∥∥θj(k)uwkb1

∥∥2
=

∫
θj(k)(x)2〈a(x, h) | a(x, h)〉e−

2Φ(x)
h Vg0(dx) ,

where the integral is over xn � 0. Note furthermore that,

dxn(U (1)
j(k)) = −∂Φ

∂n
(U (1)

j(k)) (n
∗
U

(1)
j(k)

= −∂f
∂n

(U (1)
j(k)) (n

∗
U

(1)
j(k)

.

Proceeding like in the proof of Proposition 5.18, we obtain, using the Laplace
method, a full asymptotic expansion of

∥∥θj(k)uwkb1

∥∥2. The first term is given
by the first term of∫

θj(k)(x)2〈a0(x) | a0(x)〉e
2xn
h e−2

ϕ(x′)
h Vg0(dx) ,

and from 〈a0(x) | a0(x)〉(0) = 1, we conclude like in the proof of Proposi-
tion 5.18. �

Before stating the next result, let us specify the choice of χk,ε when
U

(1)
j(k) ∈ ∂Ω. We assume ε ∈ (0, ε0), with 0 < ε < ε1

10 . We introduce

locally near U (1)
j(k) a new coordinate system (x̃1, . . . , x̃n) by application of

Lemma 3.18 with f1 = f + Φ and α = (f + Φ)|∂Ω.

Hence, we can write in B(U (1)
j(k), 2ε1), choosing ε1 small enough:

(f + Φ)(x̃) = −x̃n + (f + Φ)|∂Ω(x̃′) = −x̃n + f(x̃′, 0) + ϕ(x̃′)

with an arbitrary choice of x̃′ in the boundary.

Remark moreover that in this case,

dx̃n(U (1)
j(k)) = −2

∂f

∂n
(U (1)

j(k)) (n
∗
U

(1)
j(k)

.

We choose the coordinate system x̃′ in the boundary like it was chosen in
the boundaryless case (see [HeSj4][HeKlNi]) according to the geometry of
stable and unstable manifolds in order to write (f + Φ)|∂Ω as a function of
n− 2 coordinates:

(f + Φ)|∂Ω(x̃′) = f(x̃′, 0) + ϕ(x̃′) = (f + Φ)|∂Ω(x̃2, . . . , x̃n−1) . (5.5.5)
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Definition 5.20. — For any k ∈ 1, . . . ,m0 we define the cut-off χk,ε
by:

• If U (1)
j(k) ∈ Ω, χk,ε = χ̃k,ε.

• If U (1)
j(k) ∈ ∂Ω, we first construct near ∂Ω ∩ Ek the cut-off χ∂Ω

k,ε like it
was constructed in the boundaryless case (see [HeKlNi] pp. 26-29).

Then, choosing a cut-off

χn(x̃n) ∈ C∞0 (R−), χn = 1 on (−δε, 0]

we take for χk,ε:

χk,ε(x̃) = χn(x̃n)χ∂Ω
k,ε + (1 − χn(x̃n))χ̃k,ε .

Note that χk,ε, for δε small enough, satisfies the same properties as
χ̃k,ε in Proposition 5.10 and we make that choice. Moreover, according to
[HeKlNi] p. 28, in a neighborhood of {x̃1 = 0} ∩ ∂Ω, the cut-off χk,ε only
depends on x̃1: χk,ε = χk,ε(x̃1).

Proposition 5.21. — There exist ε0 and sequences (ck,m)m∈N∗ , such
that the (ε, h)-dependent and h-dependent quasimodes ψ(0)

k and ψ(1)
j ( (k, j) ∈

{1, . . . ,m0} × {1, . . . ,m1} and ε ∈ (0, ε0]) satisfy:

|〈ψ(1)
j | d(0)f,hψ

(0)
k 〉| = 0 if j �= j(k) ,

|〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉| = γk(h)δj(k)(h)θj(k)(h)e−

f(U(1)
j(k)

)−f(U(0)
k

)

h

(
1 + hc1k(h)

)
where γk(h), δj(k)(h), and θj(k)(h) are defined in Definition 1.2 and ck(h) ∼∑∞

�=0 ck,�h
�.

Proof. — The first statement for j �= j(k) is a consequence of our choice
of ε1 > 0 and χk,ε which gives according to Proposition 5.10-c) suppψ(1)

j ∩
supp∇χk,ε = ∅. We conclude with d(0)f,hψ

(0)
k = Cε,h

(
d(0)χk,ε

)
e−f/h.

The second case was completely treated in [HeKlNi] when U (1)
j(k) ∈ Ω and

U
(0)
k ∈ Ω. Moreover, in the case when U (1)

j(k) ∈ Ω and U (0)
k ∈ ∂Ω, the proof

done in [HeKlNi] remains valid if we take the convenient γk(h).

Show now the cases when U (1)
j(k) ∈ ∂Ω and U (0)

k ∈ Ω ∪ ∂Ω by adapting
the proofs done in [HeKlNi] and [HeNi].
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From Proposition 5.18, Proposition 5.19, and

d
(0)
f,h

(
χk,εe

− f(x)h
)

= e−
f(x)
h hd(0)χk,ε ,

we obtain the existence, for any ε > 0, of σε > 0 such that〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= hγk(h)δj(k)(h)

×
∫
B(U

(1)
j(k),ε)

〈b(x, h) | dχk,ε〉(x)e−
(Φ(x)+f(x)−f(U(0)

k
))

h Vg0(dx)

+Oε

(
e−

f(U(1)
j(k)

)−f(U(0)
k

)+σε

h

)
,

with b(x, h) defined in Proposition 5.19.

Using the coordinate system x̃, with the choice of χk,ε,〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= hγk(h)δj(k)(h)

×
∫

˜B(U
(1)
j(k),ε)

〈b(x̃, h) | dχk,ε〉(x̃)e−
−x̃n+ϕ(x̃′)+f(x̃′,0)−f(U(0)

k
)

h Vg0(dx̃)

+Oε

(
e−

f(U(1)
j(k)

)−f(U(0)
k

)+σε

h

)

= r(h)
∫
Cε

〈b(x̃, h) | dx̃1〉χ′k,ε(x̃1)e
x̃n−ϕ(x̃′)−(f(x̃′,0)−f(U(1)

j(k)
))

h Vg0(dx̃)

+Oε

(
e−

f(U(1)
j(k)

)−f(U(0)
k

)+σ′ε
h

)
,

where

r(h) = hγk(h)δj(k)(h)e
f(U(0)

k
)−f(U(1)

j(k)
)

h

and Cε is a cylinder |x̃′| < cε, −cε < x̃n < 0. Expanding 〈b(x̃, h) | dx̃1〉 to a
Taylor Series (of arbitrary order), we can obtain, using the Laplace method,
an asymptotic expansion (of arbitrary order) for

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
.

Moreover, the first term in the expansion of 〈b(x̃, h) | dx̃1〉 equals at
x̃ = 0, 〈bk,0(x̃) | dx̃1〉(0) = 1. After recalling (5.5.5) which says that the
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exponent f(x̃′, 0)+ϕ(x′) does not depend on x̃1, the first term of the wanted
expression is then given by

r(h)
∫
e
x̃n
h dx̃n

∫
e−

ϕ(x̃′)+(f(x̃′,0)−f(U(1)
j(k)

))

h dx̃2 . . . dx̃n−1

∫
χ′k,ε(x̃1)dx̃1 .

Using the Laplace method and∫
R

χ′k,ε(x1) dx1 = −1 ,

we find

r(h)
h

2 ∂f∂n (U (1)
j(k))

|λ̂∂Ω
1 (U (1)

j(k))|
1
2

|det Hess f |∂Ω(U (1)
j(k))|

1
2

(πh)
n−2

2 .

�

6. Final proof

6.1. Main result

Recall first some notations.

The generalized critical points with index 0,
{
U

(0)
k , k ∈ {1, . . . ,m0}

}
,

are labelled according to Subsection 5.3 and the generalized critical points
with index 1,

{
U

(1)
j(k) , k ∈ {2, . . . ,m0}

}
, are those introduced in Defini-

tion 5.5.

Moreover, the quantity λappk (ε, h) introduced in Definition 5.11 is asso-
ciated with the quasimodes ψ(0)

k and ψ(1)
j(k):

λappk (ε, h) =
∣∣∣〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k

〉∣∣∣2 .
At a generalized critical point U with index i (i ∈ {0, 1}), the Hessians
Hess f(U) or Hess f

∣∣
∂Ω

are computed in orthonormal coordinates for the
metric g0, while considering only the tangential coordinates x′ = (x1, . . .,
xn−1) for the second case.

At least, for a generalized critical point U ∈W with index 1 for W = Ω
or W = ∂Ω, λ̂W1 (U) denotes the negative eigenvalue of Hess f |W (U).

With these notations, we have the following theorem, which implies
Theorem 1.3:
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Theorem 6.1. — Under Assumptions 3.1 and 1.1, the first eigenvalue
λ1(h) of ∆N,(0)

f,h is 0 and its m0 − 1 first non zero eigenvalues λ2(h), . . . ,
λm0(h) admit the following asymptotic expansion. There exist ε0 > 0 and
α > 0 such that, for any ε ∈ (0, ε0],

∀k ∈ {2, . . . ,m0} , λk(h) = λappk (ε, h)
(
1 + Oε(e−

α
h )

)
.

Recall also that, from Proposition 5.21, for any ε ∈ (0, ε0],

λappk (ε, h) = γ2
k(h) δ

2
j(k)(h) θ

2
j(k)(h) e

−2
f(U(1)

j(k)
)−f(U(0)

k
)

h

(
1 + hc1k(h)

)
where γk(h), δj(k)(h), and θj(k)(h) are defined in Definition 1.2 and c1k(h)
admits a complete expansion: c1k(h) ∼

∑∞
m=0 h

mck,m.

6.2. Finite dimensional reduction and final proof

Set first, for � ∈ {0, 1}:

∀i ∈ {1, . . . ,m�} , v
(�)
i = 1[0,h3/2)(∆

N,(�)
f,h )ψ(�)

i , (6.2.1)

where the ψ(�)
i are the (ε, h)- and h- dependent quasimodes introduced in

Definition 5.11.

Remark 6.2. — Note that here again we omit the (ε, h)-dependence (resp.
h-dependence) of the functions v(0)k (resp. 1-forms v(1)j ) in the notation.

Recall furthermore the definition of the space F (�) given in introduction
(� ∈ {0, 1}),

F (�) = Ran 1
[0,h

3
2 )

(∆(�)
f,h) ,

which has dimension m� according to Theorem 3.5.

According to Lemma 2.11, Corollary 5.16 (for � = 0) and Proposi-
tion 5.17 (for � = 1),

∥∥∥1[h3/2,+∞)(∆
N,(�)
f,h )ψ(�)

i

∥∥∥ is estimated from above by

Oε(e−
α
h ), which implies the two following propositions:

Proposition 6.3. — For � ∈ {0, 1}, the �-forms (v(�)i )i∈{1,...,m�}
satisfy: ∥∥∥v(�)i − ψ(�)

i

∥∥∥ = Oε(e−
α
h )

for some α > 0 independent of ε ∈ (0, ε0].
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Proposition 6.4. — For � ∈ {0, 1}, the system
(
v
(�)
i

)
i∈{1,...,m�}

is a

basis of F (�) satisfying:

V (�) :=
(
〈v(�)i |v(�)i′ 〉

)
i,i′∈{1,...,m�}

= IdCm� + Oε(e−
α′
h ) ,

for some α > 0 independent of ε ∈ (0, ε0].

Finally, we can also establish:

Proposition 6.5. — There exist ε′0 > 0 and α′ > 0 such that, for all
ε ∈ (0, ε′0], the estimates

∣∣∣〈v(1)j | d(0)f,hv
(0)
k 〉

∣∣∣ � Cεe− f(U(1)
j(k)

)−f(U(0)
k

)+α′

h , if j �= j(k) ,

and
〈v(1)j(k) | d

(0)
f,hv

(0)
k 〉 = 〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k 〉

(
1 + Oε(e−

α′
h )

)
,

hold for all (k, j) ∈ {1, . . . ,m0} × {1, . . . ,m1}.

Proof. — Remark first, 1[0,h3/2)(∆
N,(1)
f,h ) being a spectral projector and

using Corollary 2.10:

〈v(1)j | d(0)f,hv
(0)
k 〉 = 〈1[0,h3/2)(∆

N,(1)
f,h )v(1)j | d(0)f,h1[0,h3/2)(∆

N,(0)
f,h )ψ(0)

k 〉

= 〈1[0,h3/2)(∆
N,(1)
f,h )v(1)j | 1[0,h3/2)(∆

N,(1)
f,h )d(0)f,hψ

(0)
k 〉 = 〈v(1)j | d(0)f,hψ

(0)
k 〉 .

The end of the proof is a straightforward consequence of Proposition 5.15,
which gives ∥∥∥d(0)f,hψ

(0)
k

∥∥∥ � Cεe− f(U(1)
j(k)

)−f(U(0)
k

)−α′′ε

h ,

Propositions 5.21 and 6.3. �

Proof of Theorem 6.1. — By Propositions 6.4 and 6.5, the bases
(v(�)i )i∈{1,...,m�} of F (�), for � ∈ {0, 1}, satisfy Assumptions 2.1 and 2.2 of
[Lep1]. Theorem 2.3 of [Lep1] then implies Theorem 6.1 (which immediately
implies Theorem 1.3).

Remark 6.6. — The conditions of [Lep1] are not exactly satisfied here
because the one to one map j should act from {1, . . . ,m0} to {1, . . . ,m1},
with dim F (i) = mi.
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We can easily reduce the study to this last case, by setting:

m0 = m0 , m1 = m1 + 1 ,

and,
F (0) = F (0) , F (1) = F (1) ⊕⊥ Cv(1)m1+1 .

Setting in addition j(1) = m1 + 1 instead of j(1) = 0, the conditions of
[Lep1] are fulfilled.

Note furthermore that the decreasing sequence (αk)k∈{1,...,m0} of [Lep1]

is then here
(
f(U (1)

j(k)) − f(U
(0)
k )

)
k∈{1,...,m0}

whose first term is by definition

+∞.

�
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[Hen] Henniart (G.) . — Les inégalités de Morse (d’après E. Witten). Seminar
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[HeSj1] Helffer (B.) and Sjöstrand (J.). — Multiple wells in the semi-classical
limit I. Comm. Partial Differential Equations 9 (4), p. 337-408 (1984).
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