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An example of local analytic g-difference equation :
Analytic classification™®

FrREDERIC MENOUS()

ABSTRACT. — Using the techniques developed by Jean Ecalle for the
study of nonlinear differential equations, we prove that the g-difference
equation

zoqy =y +b(y, z)
with (oqf)(z) = f(gx) (¢ > 1) and b(0,0) = 9,b(0,0) = 0 is analytically
conjugated to one of the following equations :

Togy =Yy ou Togy =Y+

RESUME. — En utilisant les techniques développées par Jean Ecalle pour
I’étude des équations différentielles nonlinéaires, on montre que I’équation
aux g-différences

zoqy =y + b(y, z)
avec (oqf)(z) = f(gz) (¢ > 1) et b(0,0) = 9yb(0,0) = 0 est conjuguée
analytiquement & 'une des équations suivantes :

Togy =Yy ou Togy =Y+

1. Introduction

The aim of this paper is to study the formal or analytic conjugacy of
g-difference equations, using formal or analytic power series in G or G :

G = {f(z2) €Clza]] ; 0.f(0,0)#0, [f(0,0)=0}

(1.1)
g = {f(zvx) € C{va} ; 6Zf(0,0) # 0, f(0,0) = 0}

G and G are groups for the z-composition of series.

(*) Recu le 7 janvier 2005, accepté le 31 mars 2006

(1) UMR 8628, Département de Mathématiques, Université Paris-Sud, Centre d’Orsay,
91405 Orsay Cedex.
Frederic.Menous@math.u-psud.fr
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Let G, (resp. G1) be the subgroup of elements f of G (resp. G) such that
0. f(0,0) = 1. For two series z + b(z,z) and z + ¢(z,z) of G, the equation

(Eo)  woqy =y +b(y, )
is formally conjugate to the equation
(E.) xogz = z+ c(z,x)

if there exists f € G such that, if z satisfies (E.), then y = f(z,z) satisfies
(Ey). Here o4y(z) = y(gz), with ¢ > 1 (Note that we chose ¢ > 1 instead of
q € C, |q| > 1 for the sake of simplicity but this wouldn’t have change our
results.).

The formal conjugacy is an equivalence relation and the equations are
analytically conjugate if one can find a conjugating series f € G.

It was proven in [2] that, for any z + b(z,x) € Gy, the equation (E}) is
formally conjugate to
(Eo) TOgZ =z

and that, if b(0,x) = 0, then this conjugacy is analytic. We prove in this
paper that,

THEOREM 1.1. — For any z + b(z,z) € Gy, there exists a(b) € C such
that the equation (Ey) is analytically conjugate by an element of Gy to the
equation

(Baw)y) zrogz =z + a(b)z

Moreover, if a(b) # 0, (Ey) is analytically conjugate to the equation

(Ey) x04z =2+

This means that there exists exactly two classes of analytic conjugacy.
Using these results, as well as the theory of g-resummation (see [3]), one

can then express some local solutions of (F}) in terms of the solutions of
(Eo) or (El)

In section 1, we remind the results of [2] on the formal conjugacy of
(Ep) and (Ep). The main key to this result is that, to any formal (resp.

analytic) series f of Gy (resp. G1), one can bijectively associate a formal
(resp. analytic) substitution automorphism F € C[[z, z, 8.]] such that

Vo € (C[[va]]v F.QD(Z,.’E) = sD(f(Z, ac),x) (1'2)
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Starting with z 4+ b(z,z) € G, we prove that its associated analytic substi-
tution automorphism D can be written

D=Id + ) 2D, (1.3)
neH

where H is a semigroup which elements are of type n = ( Z ) (n € Z,

o € N) and
Vne H, D,eClz0.] (1.4)

It is then proven that the formal series w € G; that conjugates (Ep) to (Ep)
is associated to a formal substitution automorphism W that can be written :

wW=> > wmerD, ..D, => W'D,

520 (n1,...,ns)EH®

where H? = {0}, W? = 1 and Dy = Id . The collection of weights {Wm 7}
is called a mould W*. We remind a formula on W* that proves that its val-
ues are in Cl[z]]. We recall also that, as W* satisfies symmetry relations
(symmetrelity) : it automatically ensures that W is a formal substitution
automorphism. When b(0,z) = 0, W turns to be an analytic substitution
automorphism, or equivalently, W.z € G;. Otherwise, most of the coeffi-
cients of W* are divergent and g-multisummable but, unfortunately, the
resummation of all the weights involves an infinite number of critical times
in the resummation process (see section 2 below and [4] for details on ¢-
multisummability).

To circumvent this difficulty, we prove in section 3 that the mould W*
can be twisted in a mould U® whose coeflicient are in C{x} (U* is analytic).
Because of the symmetries of U® the operator

U=> U*D, (1.5)

is an a priori formal substitution automorphism such that y = u(z,z) =
U.z € G; conjugates the equation

(By)  wogy =y +b(y,x)
(E.) zogz =z+c(x) =2+ V.z € 2+ 2C[[z]]

to

where V is also defined by a mould V'* (see section 3).

In fact, U and V are analytic substitution automorphisms (u(z,z) =
U.z € G; and ¢(z) € xC{z}) but the analyticity of U® does not implies
the analyticity of U. Despite nice estimates on U® (section 4.4), which are
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derived from an explicit formula for the coefficients of U® (section 4.3), there
is no hope to prove that the series of analytic functions

u(z,z) =U.z = Z Z (gmr-Dy .. Dy, 2) = Z(U']D,.z)

520 (n1,...,ns)€H*®
is normally convergent in a (z,x)-neighborhood of (0,0).

To prove that U is analytic, we will need to reorganize the sum defining
it, such that U.z appears as a normally convergent series of analytic func-
tions in a neighborhood of (0,0). This reorganization of terms is simply the
arborification-coarborification defined by J. Ecalle (see [1]). The operator U
can be written

U=> (U*"D,-)

but here < means that the sum is over sequences of elements of H equipped
with an arborescent order, instead of a total order. Each coefficient of the
arborescent mould U™ depends on a combination of coefficients of U® : U =
is obtained by arborification of U® and the operators D, . are obtained from
the operators D, by a dual (but not unique) operation : the coarborification
(see section 5).

Using these operations, a formula is obtained for U *~ in section 5.2.

The estimates derived from this formula prove then that U is an analytic
substitution automorphism (section 5.4), as well as V (section 6.1).

A last but simple remark (section 6.2) leads us to the attempted result,
that is to say theorem 1.1.

2. Reminder about previous results and moulds

We resume here the results obtained in [2].

2.1. The operators D,

Let us first introduce some notations. We started with the equation

zoqy —y = b(y, ) (2.1)

where o,y(z) = y(gx), with ¢ > 1 and b(y,z) € C{y,z} with the following
conditions : 5(0,0) = 0 and (9,b)(0,0) = 0.
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The function b can be written :

b(z,z) =z Z bp(2)z" =z Z an,(,x”z" (b_1,0=0, by o =0)

n>—1 n>—10>0
If we consider the set (2.2)
Hy={n=(")nz-1oz08/( ! "Weom,um
0o=1"= o y W= 0 = 0 ) 0 — -1 >0
(2.3)
where H ,={neH;n=-1} H.o={neH;n=>0}
then, one can define the following operators.
VneHy ; B,=b,z""0, (2.4)

where b, » = b,. This kind of operators are useful in the study of nonlinear
differential equations but we will need here some slightly different operators
which are those described in equations (1.3) and (1.4).

DEFINITION 2.1. — Let
H={m+...+nss>Ln € Ho} (2.5)

For n € H, the operator D, is defined by :

1
D, = Z Z om o by gt s (2.6)
szl 4. 4ns=n :
n: € Ho

It is important to notice that, for any n = ( Z ) € H, the operator D,

is a finite sum which degree in 0, is at most n + 20. Moreover,

VneHy ; Dyz=DB,z (2.7)
and,
Bz = 2 nem, ¥ Bn-2 = b(zx)
(2.8)
D.z = (Id + ZneH J:UD,,) z = z40b(z,x)

In fact, D is a “convergent” substitution automorphism :

Vf,g€Cz,z} 5 D(fg) = (Df)(Dg) and (D.f)(z,z) = f(z + b(z,z), )

(2.9)
The notion of convergence will be developed in section 4.4. We introduce
also some notations :
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DEFINITION 2.2. — Let H = Us0H?® be the set of sequences of elements
of H (H° corresponds to the empty sequence ().

If’r]:(nla'“vns) €eH (52 1)7 then

" Y I
i =s ; n=( ) : .l =

7 lo]l = o1+...+o0s o]l
(2.10)
Moreover, if l(n) =2 1,'n = (n2,...,m5) (n=0ifs=1), n, =m and,

D, =D, ...D,, (2.11)

If k = (k1,....ks) € Z° (I(k) = s, s > 1) then, for 1 < i < s, ki =
ki+--+ks, ki=ki1+---+k;, and

) (o) (2.12)
kE = (ki,...,ks)
Finally if k and U are two sequences of same length in Z°, then
(k1) = kily + -+ - + ksl (2.13)

If we refer to [1], the set {ID;, },c i defines a cosymmetrel comould. In fact
the operator D is a first example of automorphism defined by a symmetrel
mould contracted with {ID, },cq.

2.2. Moulds

For the empty sequence () we define Dy =Id . A mould M*® on H, with
values in Cl[[z]], is a family {M" € C[[z]]}ycH-

2.2.1. Symmetrelity

A mould M* is symmetrel iff M? =1 and

V(n, ) € H?, > M= MMt (2.14)
A€ctsh (n,p)

where the sum is over all the sequence A obtained by contracting shuffling
of the sequences i and p : one shuffles the two sequences (1, p) — A* and,
eventually, one contracts pairs (A;, pj) — A; + p; that are consecutive in
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the sequence A* (see [1]). We shall often deal with symmetrel moulds since,
if M® is symmetrel, then the operator

M=>" M"D, =) MDD,
neH

is a formal substitution automorphism :
Vo e Cllzall, Mp(z2) = o(M.2,) = p(m(z,2), 2)
where m(z,z) € C[[z,z]] and 9,m(0,0) = 1.
Note that the mould X* defined by X? =1 and

z°t i s=1

Vg =(n,...,ns) € H, X"= 2.15
n=(m ns) {0 s> (2.15)

is symmetrel and D =3 X*D, (see equation 2.8).

2.2.2. Operations on moulds

Product. — Let M*® and N°® two symmetrel moulds. If M = >~ M°D,
and N=>" N°*D, (M.z = m(z,2), N.z = n(z,z)), then

NM.p(z,2) = o(m(n(zx),x),x)
= D NM'D, Y M'Dy.p(z, )

peEH nceH

Vo € C[z, 2], = Z Z NEMDy,,.0(z, x)

npeHneEH

= ) (M® x N*)"Dp.o(z, )
neH

The associative non-commutative product of M*® and N*® is defined by

(M®*x N*y"= 3" M"NT (2.16)

n'n?=n
where the sequences n® or 2 can be empty. Moreover M*®x N*® is symmetrel.
Note that the symmetrel mould 1* defined by 1° = 1 and 17 = 0 if 5 is
nonempty is the unity and every symmetrel mould M*® is invertible, of

symmetrel inverse inv(M)®. One can notice that the mould I*® defined by
1% = 1,I"™ =1and I" " = (0if s > 2 has a noticeable inverse H"> s =

(~1)".
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Composition. — The mould M*® o N* = P* is defined by P? =1 and,
if n € H is nonempty,

t

P — Z Aot sl gt

nl..nt=n

where the sequences n* are nonempty and P* is symmetrel. The composition
is associative and

(M. X N.) o Q. — (M. o Q.) X (N. oQ.)
In fact, for any symmetrel mould M®, I®* o M®* = M*® and
inv(M)* =H®*o M* (2.17)

2.3. Previous results

We remind here the results developed in [2]. We proved that the solution y
of the equation

zoqy =y + by, z)
is formally conjugated to the the solution z of
TOgz =%

by a formal substitution automorphism W = %" W*D, where W* is a sym-
metrel mould on H with values on C[[z]]. To prove this, one notices that

y+by,x) = Wz+bW.z x)
= W.Dz
and = ) (X*xW*)D,
zogy = x4 (D W°D,.2)

= > 5,(W*)D,.2

where s, (W) = z~I"lg, W7 with g = ( Z ) . We shall come back later

on this last identity. The mould W* is thus defined by the identities W? = 1
and
sq(W*)=X* xW* (2.18)

For a nonempty sequence n = (11, ...,7ns) € H, this reads
a1l g, W = W 4 2 w'n

and, solving these equations recursively,
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THEOREM 2.3. — If = (n1,...,ms) = | 1" ) = ( n > cH,

01y...,05 o
then the monomial W™ is a formal series with the following expression :

W (z) = en Z $||0'H+<l5,n>q*<l5,a> []%1 + 1]:111 o [];:S + 1];’;3 (2.19)
(k1yeesks)EZM™

with the notations

° g, = HKKSE@. with 7y, =n; + ...+ ns with e, =1 (resp. e, = —1)

ifn >0 (resp. n <0)

o Z"n=17M x...xZ" withZ" = Z* (resp. Z~ ) ifn >0 (resp. n <0)

[ ] I%Z:kl—‘r—f—k}z andk:(ifh...,iis) .

° [k—l— 1]q _ qfk(k+1)/2

Moreover, the mould W* is symmetrel. As discussed in [2], there are
severe obstacles to apply the techniques of g-resummation developed in [3]
and [4] to this mould. It is important to notice that the divergence of W7

is due to possibly negative finishing sequences n; = n; + ...+ n, : if all the
integers n; are non negative, then W7 is convergent.

This last condition is always fulfilled when b(0, z) = 0 and then
THEOREM 2.4. — The equation
(xog — 1)y = by, z) (2.20)

with b(0,z) =0 and g—Z(0,0) = 0 is analytically conjugate by y = W.z € Gy
to the equation
Togz =z

The ideas that will now be developed are based on the two fundamental
remarks

1. The divergence of W™ is due to possibly negative finishing sequences

2. Whenever, b(0, ) # 0, divergence appears but we could try to skip it
by analytic conjugacy to an equation which solution contains all the
divergence, that is to say of type :

xogz =z + c(x)
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3. Formal part : the moulds W*, J®* and U*®

3.1. Compensating the divergence in W*

To skip the divergence, one can try to change W* into a symmetrel
mould U*® which values are in C{z}. Let

H' ={neH;|n| >0} H ={necH;|n|| <0} (3.1)

For a sequence of length 1, if n; € H, W™ is convergent so U™ = W™,
otherwise, W™ is divergent and U™ = 0.

Let (n1,m2) € H.
o If (1,m2) € H" and no € HT, W™ is convergent so UM =
Wmomz

o If (n1,m2) € H and 1y € H™ (note that n, € HT), Wnm is
divergent but, because of the symmetrelity,

Wmnwnz — Wmnnz 4 Jnzm Wntnz

n2,mM
but W™ = U™ and Wn+nm2 = Um+n2 are convergent thus
um-m = Wwmnz — Wnwn is convergent.

o If (m,m2) € H™, then W2 ig divergent and U™ = (.

We transformed W* into a new mould that seems to remain symmetrel. In
fact, this suggests the following definition.

DEFINITION 3.1. — Let

» 1 if n>0 » 0 if n>0 5
ap(n) = a_(n)= .
* 0 if n<o0 1 i n<0

Then the symmetrel mould J* on H is defined as follows : J* =1, Jn =
ay(ny) and, for s > 2,

Jmens = o (7)o (a) . . . a_ (i) (3.3)

The above digression suggest to define
Ut =J*oW* (3.4)
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3.2. Some results on the mould J*
Asar =1+4a_,
J*=1*xK* K*=H*xJ*® (3.5)
where the symmetrel mould K*® is defined by
KMols = o (fg)a_(fig) ... a_(fg) (3.6)

We give now some identities related to J* and K*® (whose very simple proofs
are left to the reader).

J*oK*=K*cJ*=1° (3.7)
This implies that
JeoJ® = (I*xK®)oJ*
= (I*oJ*)x (K®*oJ*)
(3.8)
= J*x1°
= J.
and
K. o K. — (H. X J.) o K.
= (H*oK®)x (J*oK*)
)< ( (3.9)
= inv(K)®* x1°
= inv(K)*®
We end this section with a useful result :
PROPOSITION 3.2. — For any moulds A® and B®, we have
J*0A* =J%0(A®* x (K*® 0o B*)) (3.10)
For the proof, see section 7.1.
3.3. Definition and properties of U®* and V*
Let :
Ut=J*oW* (3.11)

From the definition of J® one easily deduce that U? = 1, and, if 5 is a
nonempty sequence of H™, U7 = 0.
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We remind that, for any mould A®, s, (A") = z~I"lg,. A" for a nonempty
sequence and qum = A? if A = 1. The mould W* is defined by the
identities W? =1 and

sq(W®) = X* x W* (3.12)

If the mould V*® is such that

s{(US) x V*=X*x U* (3.13)

then, as s,(U*®) is symmetrel (thus invertible), V'* is well defined and sym-

metrel.

Since J*® is a constant mould (with values in C),

sq(U®) = s4(J*oW?*)
= J®os,(W*)
= Jo(X*xW®)
o(X®xW*x (K*oW?*)) (3.14)
(X® X ((I* x K*)oW*))
(X® x (J*oW?*))
(X*xU*)

o

J.
= J.O
J.
J®o
thus V'* is defined by
(J*o(X*xU®))xV*=X*xU*

but
(J*o (X* xU*))

(I*x K®*)o (X* x U*))
= X*xU*x(K®*o(X*xU®*)

thus
(K*o(X*xU®))xV*=1"

and, since the inverse of K® o (X*® x U®) is (inv(K*®)) o (X* x U*),
V*® = (inv(K*®)) o (X* x U*) (3.15)

but if L* = inv(K*®) then L? = 1, L = —a_(ny) and, for (11,...,7n,) € H
(s>2):
Lmons = (=1)%aq(fg) . .. oy (Rs—1)a—(f1g) (3.16)

so it is clear that, if 77 is a nonempty sequence in H, then V7 = 0.
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3.4. Back to the equations

We have two moulds U® and V*® on H, with values in C[[z]], such that
U* (resp. V'*) vanishes on H™ (resp. H'). Let us consider the analytic
equation

zrogy =y + by, x)

and the a priori formal equation

x04z =V.z = (Z V']D).) .z

where V is a formal automorphism. We will prove that these equation are
conjugate by the a priori formal automorphism

U=> U*D, (3.17)
If y = U.z, then,

zogy = wx04(U.2)

= Z zoy (U"Dy,.2)

ncH

= > 20, (U") oy(Dy.2)

neH

but Dy.z = 2, and, for a nonempty sequence 7, there exists a constant 3,
such that D,.z = ﬁnzlﬂln\l .

og(Dy.2) = Uq(ﬂnzpr”"”)
= ﬁngq(zlﬂ\nll)
= 2B, (zoyz) I
= J;—l—\ln\lgn(vz)lﬂln\l
= g 1-lnlg v (I
= g1y (g, Il
= Iy,
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this identity still holds for the empty sequence with ||| = 0. One can
deduce that,

10y = Zwaq (UM oq(Dy.2)
neH

= Zxaq(U")x_l_“"”V.]D)n.z
neH
= V.Y s(UMDy.2 (3.18)
neH

= (Z V'ID).) ) (Z sq(U°)ID).) .z
_ (Z(sq(U') x V’)]D).) 2
But s4(U®) x V* = X* x U*® thus

zogy = (O(X*xU*)D,).z

U. (3 X°*D,) .z

U.(z 4 b(z,x)) (3.19)
U.z +b(U.z, )

y +b(y, @)

Finally, Dy.z = z, and, for a nonempty sequence m, there exists a con-
stant 3, such that D,.z = 5,7z1+”"” but since Dy, is a differential operator
in 2, if |[n|| < —1, then 3, = 0. As V* vanishes on H™, it is clear that

V.z=z+c(z) € z+ 2C[[z]] (3.20)

In conclusion

THEOREM 3.3. — Let us consider the equation
(zoq — 1)y =b(y,z) (3.21)

with b(0,0) = 0 and g—z(0,0) = 0. This equation is conjugate by the a priori
formal automorphism U :

y=TU.z= (Z U‘]D).) 2 € C[[z, )] (3.22)
to the a priori formal equation

xogz =V.z = (Z V'ID).) .z € z+ zCJ[z]] (3.23)
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It remains to prove that U.z € C{z,2} and V.z € z + 2C{z}. We will
first prove that the values of U® and V* are in C{z} (i.e. U® and V* are
analytic) then we will use the arborification process to prove that U and V
are convergent automorphisms, namely, U.z € C{z,z} and V.z € z+zC{z}.

4. Analyticity of U® and V*

4.1. The mould U*®

We prove that
vpe H, U"ezlolc{z} (4.1)

We already know that Vn € H, U" € C|[z]]. Let us remind (see [2]) that
if n > 0 and g € C{z}, then the equation

("o —1)f =y

has a unique solution in C{z} of greater valuation than g and if g € 2C{x},
then the equation

(g —1)f =g
has a unique solution in zC{z} of same valuation.

Let us prove 4.1 by induction on the length of the sequences in H. The
result is obvious for the empty sequence (U 0= 1). We remind that :

sq(U*) = J®* o (X* x U*)

For a sequence n € H of length i(n) =1 (n=m1),if;y € H™ then U™ =0
and, otherwise,

Sq(Um) — Jm(x01+U7h)

m_"lqu’“ = %1 + Um

note that n; > 0, 27t € C{z} and if ny = 0 then, by definition of H, o1 > 1
and 27t € xC{x}. So, in any case,

Um e z7 C{x}.
Let s > 2 and suppose that
Vne H;l(n) <s Un e zlelc{zy
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and n € H such that I(n) =s (n =n1,...,7ms). f p € H™ then U" = 0,
otherwise

sq(U™) = (J*o(X*xU*))"
alvlg (Umy = Jlinl(Un 4 gy
+ Z Jhn' Il xe x ey . (X x U*)"
U
— U4 gnyn
+ Z J|\771H=<~-»H’7t”(X' % U')"l (X x UO)nt
P
= Un4pn

By induction, it is clear the P7 depends on values of U® for sequences
of length smaller than s, thus, P? € zl°lC{z}. If ||n| > 0, then U" ¢
zlollc{z}, if ||n| = 0, by construction of H, ||o| > 0 and, once again
Un e gllc s},

This ends the proof by induction.
4.2. The mould V*

There is not much to say to prove that,
vne H, V"ezlolc{z} (4.2)
since this is already true for U® and

V= (inv(K*®)) o (X* x U*)

We end this section by giving an interesting formula for U® which is
similar to the one given in theorem 2.3.

4.3. A formula for U*®

o _ NnNiyy...,Ng _ n
THEOREM 4.1. — If n=(n1,...,ms) = oo )=\ & ) € H,
then the monomial U" is a convergent series with the following expression :
U'z) = ey Z gllol+En) o= (ko) ke + 1ym ks + 1re (4.3)

(k1. ,ks) EZPNPT

with the notations

— 788 —



An example of local analytic g-difference equation : Analytic classification

o cn =]l 8n withf; =n;+...+ng withe, =1 (resp. e, = —1)
ifn =0 (resp.n <0)

o 7" =17" x...xZ" with Z" = Z** (resp. Z~ ) ifn = 0 (resp. n < 0)

o P ={(ky,....ks) €Z%k; >0 if &4 =—1}

bi

[ ] IVCZ:]C1++]€1 andk: (];'1,...7]{5).

o [k+1],= g k(k+1)/2

Note that if [|n|| < 0, then €4, = g, = —1 thus k; € Z~ but, in P,
k1 > 0, thus Z™" N P™ = () and we recover that U = 0. We shall focus on

sequences in H1. The complete proof can be found in section 7.2. We just
give an example here to catch the idea.

For a sequence (ki,...,ks) € Z° let |; = ki, thus k1 = 1, and, for i
greater than 1, k; = I; — l;_1. For a sequence n = (ny,....,ns) € HT and
l=(~l1,...,1s) €Z° (s 2 1), let

] = gloltm =gyt + 1 = [ 77 (4.4)
i=1

With this notation, the formula in theorem 2.3 becomes

Wh(z) = &g Z Ty

(la,da—l1..ls—ls_1)EZL™

1 if n>0
using the function p;(n) = and p_1 =1 — p1, we get
0 if n<O0

W(z) = éen Z Pea, (ll)pEnQ (lo—=1y) ... Pes (ls_ls—l)Tln = Z w?Tln (4.5)
leZs eZs

and we have to prove that

En Z Pen, (1)pes, (2 —11) o pey (Ls — Ls—1) T} H p1(li)

eZs 1<i<s

Un(z)

= > Ty

leZs
(4.6)
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Let n = (771,1’}2,773) € H such that n1 2 0, ne < 0, ng < 0, then,

a
U

p1l)p—1(l2 — 1) p—1(ls — 12)p1(l2)p1(l3)

= prl)p-1lz = l)p—1(ls = l2)p1(l2)(1 = p-1(l3))

= pili)p-1(le = l1)p—1(l3 — l2)p1(l2)
—p1(l)p-1(l2 = l1)p-1(ls = l2)p1(l2) p-1(l3)

= pi(li)p-1(l2 = l1)p-1(l3 — l2)p1(l2)
—p1(l1)p-1(la = l1)p1(l2)p-1(l3)

p1(l1)p-1(lz = l1)p-1(ls = l2)(1 — p-1(l2))
—p1(l1)p—1(le = 11)(1 = p—1(l2))p-1(l3)

p1(l)p—1(lz =l )p—1(l3 — I2)
—p1(l1)p-1(l2 = 1) p-1(l3 — l2) p-1(I2)
—p1(l1)p-1(lz — 1) p-1(l3)
+p1(l)p-1(l2 = l1)p-1(l2)p—1(l3)

p1(l)p—1(la = l)p—1(ls = l2) — p1(l1) p—1(l2)p—1(l3 — I2)
—p1(l1)p-1(l2 = l1) p-1(l3) + p1(l1) p—1(l2) p-1(I3)

On the other hand,

un

= (Jrowey
=  Wnun2ns _ YWz yns — YW/ n2:ns L YWy 2y ns

= Z u)T}!

leZs

It is clear that ny > 0, ny +no > 0.

e If ny <0, then

n
U

= pi(l)p-1(lz —l)p-1(lz = l2) — pr(li)p-1(la = l1)p
—p1(l)p-1(l2)p-1(l3 — I2) + p1(l1) p-1(l2) p-1(l3)

_ "7

- l
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e If ny > 0, then

u) = pil)p-1(lz —l)p—1(ls = l2) + p1(lr) pr(la — 1) p—1(I3)
—p1(l)p-1(l2)p-1(ls = l2) — p1(l1)p1(l2)p-1(l3)
= pi(l)p-1lle —l)p-1(ls = l2) + pr () (1 — p—1(l2 — 1)) p-1(l3)
—p1(l)p-1(l2)p-1(ls — l2) — p1(l)(1 — p-1(l2)) p-1(l3)
= pi(l)p—1(lz = lh)p-1(ls = l2) — pr(ln)p—1(l2 — L) p—1(l3)
—p1(l)p-1(l2)p-1(ls = l2) + p1(l1) p-1(l2) p-1(l3)

= o7
= 1y

(
)
(
)
P
)

and that proves that the formula holds in this case.

4.4. Estimates for U*® and “divergence” of ) U°*D
Using the above formula for U®, one gets

+PROPOSITION 4.2. — Let 0 < |2| < e < ¢ V2 Form = (m1,...,ms) €
HT,
UM (@)] < C2Ja] 171l g~ Cini+lol (4.7)

For the proof see section 7.3.

Unfortunately, this is not sufficient to assume that U = > U°D, is
“convergent” : in order to study the convergence of the automorphism U =
> U*D,, it is sufficient to prove that U.z = > U®*D,.z is in C{z,z}. We
can’t establish directly the convergence of the series of power series because,
for a sequence n = (n1,...,ns) € HT the only estimates (in a neighborhood
of (z,z) = (0,0)) we got are

U(z)| < C;|I|H"HHIGHq*(\lanHUH)
whereas (see [1]) we can’t hope to improve lower estimate such as
D,z > stestlolling1+in (4.8)

Note that this does not prove that U.z is formal but that its expansion
> U*D,.z is not normally convergent. In fact, we prove in the next section
that U is analytic, using a different expansion obtained by arborification,
and that appears to be normally convergent.
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5. Analytic part : arborification

5.1. Reminder on arborification
5.1.1. Contracting arborification

We follow the definitions of J. Ecalle [1]. Let us consider an additive
semigroup H. The set H is the set of sequences on H, where a sequence is
a totally ordered sequence of elements of H, with possible repetitions.

An arborescent sequence on H is a sequence n< = (n1,...,1n,)< € H<
of elements of H with an arborescent order on the indices {1,...,s} : each
i €{1,...,s} possess at most one predecessor i_. We note n< = n'< @ n’’<

the disjoint union of 7'< and 1n”’<, the partial orders of i’ and 1”’< being
preserved and the elements 1'< are not comparable with those of n”<. )
is the empty sequence. A sequence < is irreducible if it is not a disjoint
union of smaller nontrivial sequences ; that is to say that it has exactly one
least element.

We remind here that a mould A®* = {A"} on H with values in a commu-
tative algebra is a family of elements A" indexed by the sequences n € H
of H. For example, U® is a mould on H with values in C{z}. Moreover, this
mould is symmetrel : U? = 1 and, for any pair (1, 1), we get

T =3 ctsh ( " )U” (5.1)
n

/ 1!
Where ctsh ( n ;777 ) is the number of ways to get m by contracting
shuffling of n’ and n".
We also remind that an arborescent mould A*~ = {A""} on H with
values in a commutative algebra is a family of elements A" indexed by the

arborescent sequences n< € H*< of H. Such an arborescent mould AT s
separative if :

AP =1 and Vi/<,p'<, ATTEUT = pnT pn"t (5.2)
We get such arborescent separative moulds by contracting arborification
of symmetrel moulds. This operation is defined as follows.

Let n< = (m,...,ns)< be an arborescent sequence and n’ = (1, ...,n./)
<
a totally ordered sequence. Let cont < :]7, ) be the number of monotonic
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contractions of n< on 7, that is to say the number of surjections o from
{1,...,s} into {1,...,s'} such that :

(i1 <ig in <) = (0(i1) < o(iz) in n') (5.3)

Vie{l,....s't 1 onp= > m (5.4)

o(i)=j

<
AT = Zcont ( 77/ ) A" (5.5)
n

defines a homomorphism from the algebra of moulds into the algebra of
arborescent moulds. Moreover, the contracting arborification of a symmetrel
mould is separative. One can also notice that, if  is a totally ordered
sequence and 1< is that arborescent sequence with the same order (total),
then A" = A".

The relation

5.1.2. Product and composition

We give here some formulas for the arborification of a product and of a
composition of moulds.

Product. — Let M*® and N°® two moulds on H, then

<

P = (M*x N*)S=M*" x N*" <= P" =Y MT"N""  (56)

with a sum extended to all the monotonic partitions of < in 7’< and n’'<,
that is to say all the partitions such that no element in 1'< is greater than
any element of 77”<. The order of ny’< and n’< is of course inherited from the
one of n<. For example, if n< = 71 ® (N2 ®n3) (12 and 73 are not comparable
but have 7; as a common predecessor), then

P15 = M N £ MONTT A NTOns e NTIs 4 s N2

The arborescent separative moulds are stable by multiplication and the

. . . . < . <
multiplicative inverse N°®  of a separative arborescent mould M*®  can be
computed with the formula :

N7 =3 (T T (5.7)

where the sum is extended to the monotonic partitions n*<,...,n°< of <,
with no empty sequence 1*<, counting separately partitions which differs
only by the order of the n*<.
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Composition. — Let M*® and N°® two moulds on H, then

<

P = (M*oN*)< = 1< =Y M el NS N1 (5.8)
where the sum is over the same set as in the formula for the multiplicative
inverse and [|[n<||=m + ...+ ns < = (n1,...,ns).

5.2. The arborified mould U*"
We will first change some notations. Let n< = (11, ...,75)< be an arbores-

cent sequence of length s and of sum || 9<| = m + ...+ ns. We redefine the
partial sums :

i m (5.9)
ng = Zj>i nj
where the orders < and > are now relative to the partial order on {1,...,s}.

We have the following theorem :

01y...,05

< <
THEOREM 5.1. — If n< = (n1,...,ns)< = < Myeees T > = ( n )

€ H<, then the monomial Wn s a formal series and :

Wﬂ< (2) = en< Z x|\a'||+<l5,n)q—(l5,cr> []%1_1_1](7;1 o [ks+1]gs (5.10)
(k1,...,ks)<€ZM<

with the following rules

o The sequences n< and (ki,...,ks)< inherit the partial order of n<.

e &, = ngigsi‘:ﬁi with f; = Zj%nj and €, =1 (resp. e, = —1) if
n >0 (resp. n <0).

o Z" = (Z™ x ...x Z")< and Z" = Z* (resp. Z") if n = 0 (resp.
n<0).

o ki= ngi ki

This result was given in [2]. The formula for W* was derived from the
fact that

sq(W*) = X* x W*
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As X* and W* are symmetrel the arborescent moulds X *~ and W*~ are
separative. Moreover, for an irreducible sequence < = (11,...,75)<
n1en'< € H<, it is easy to check that

P 7t it s=1
B 0 otherwise

and then B ; 3
sqWm ) =W + 27 W

It is then easy to check that the formula works. From this one can deduce
a formula for U®~ :

<
Niyy...,Ng
THEOREM 5.2. — If <~ = (m,...,m5)< = =
J01y...,05
n\<
€ H<, then the monomial U™ s a convergent series with the
o

following expression :

U () mens 3Dl RO 1+ 1 (510)
(k17"'7k5)<EZn<ﬂPn<

with the notations

o The sequences n< and (ki,...,ks)< inherit the partial order of <.

e &, = H1<i<s €p, With n; = Zpi n; with e, = 1 (resp. e, = —1) if
n>0 (resp. n<0)

o ZM = ZM x ... x ZM with Z" = L (resp. ") if n = 0 (resp.
n<0)

o PP ={(ky,... k)< €Zk >0 if ep =—1}
ki=ci k.

o [kt 1], = g HHD/2

The proof is essentially the same as in theorem 4.1, using the formula
linking arborification to composition.

One can notice that, for an irreducible sequence n<, if |[n<|| < 0 then
U"" =0 and as U®" is separative, for a sequence n< = 1< & ... ® p*<
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(n*< irreducible), if there exist ig such that |n®<| < 0 then U"" = 0. It
means that we can restrict ourselves to arborescent sequences

n< e H" ={n'“e.. an*< ;n<ireducible and |n‘<| >0} (5.12)

Using this theorem, it is easy to obtain, as in proposition 4.2, that

PROPOSITION 5.3. — Let 0 < |z| < ¢ V2 For n= = (m,...,ns)<
€cH',
U ()] < C§|x\“”<”*””<”q*”"<”7“”<” (5.13)

5.3. Coarborification

THEOREM 5.4. — There exists a unique arborescent comould De< with
the three following properties :

1. De< 1s coseparative : Dy = land
col (D<) = ZD,,/< @Dy~ (W<@n'<=n% (5.14)

with a sum extended to the arborescent sequences n'<,n"’< (even the
empty sequences) which disjoint union is n<.

ii. If deg(n<) = d, Dy< is a differential operator of degree d in 0. : if the
sequence < has exactly d minimal elements and thus :

NS =n'<@...en%  (with n™ irreducible and #0) (5.15)
the operator Dy< can be written :

Dy« = b(2)94 (5.16)

iii. If n< = n1.m*< (M= has a least element 1y followed by an arborescent
sequence n*< ) we get :

]D),,<.u = Dn*<.Dm.Z (517)

Moreover, as Do is cosymmetrel

Dy = Z cont <
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These results were proven by Jean Ecalle (see [1]). Note that Dy = 1 and

Bm if m € Hy

(5.19)
0  otherwise

]D)n1< = (ID)m.z)az = {
and if the length of < is greater than two :

e Either < is irreducible : n< = 1;.7*< and of degree d = 1. Thus :

Dp< = (Dye<.Dy, .2)0, (5.20)

e Either n* is reducible of degree d > 2 and =~ = < ®...onl<
(with *< irreducible and # (}), in this case :

1

< T dy)

(Dyi<2) ... (Dyac .2)0 (5.21)

where di,...,ds are the numbers of identical arborescent sequences
7°< in the decomposition into irreducible sequences, of course

SNd; = d.

One can also notice that if a sequence n< is irreducible of sum ||n<|| &
Hy, then D,< = 0. This property remains valid if n< has at least a mono-
tonic partition n*<, ..., n°< with an irreducible part < such that ||n°<| ¢
Hy. It means that we can restrict ourselves to the arborescent sequences
(11, .- -,ms)< such that, for 1 <i < s, % = > ,.;nm; € Ho. We note H§ this
set of sequences. For details, see [1].

Finally, because of equation 5.18,
U= U'Dy=) U* D, (5.22)

5.4. Analyticity of U
As U* is symmetrel, U is a formal substitution automorphism :
Vo € Cllz,z]], U.p(z,2) = p(u(z,z),z)

with u € C[[z, «]], u(0,0) = 0 and 9,u(0,0) = 1. U is analytic iff u € C{z, z}.
We will prove now that the series of analytic functions
u(z,x) =U.z = Z U"<Dn<.z

n<€H<
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is normally convergent in a neighborhood of (0,0). First of all, we remind

that, because of proposition 5.3, if 0 < |z| < ¢~ /2 and n< = (51,...,75)< €
<

H

<l

U™ (2)] < C2lalle (5.23)

In section 2.1, starting with

b(z,z) =z Z by’ 2" € C{z,x}

n€Ho

we built on H = {n1 + ... + 15 > 1;1; € Hy} the operators D, is defined
by :

1
Dy =) > Sy by 2] (5.24)
s21 4. 4ne=n
ni € Ho

Similarly, if
bt,z) =t |bylat" € C{t,x}

n€Hy

one can build the operators on H :

— 1
_ ni+...+ns+s9s
D= X bl bl 0
s2l i+ .. 4+ ns=n
ni € Ho

It is clear that, if |z| < ¢, then,
VneH, |Dy.z|l <Dyt

and, because of the chosen rule of coarborification, if, once again, |z| < ¢,
then,

Vn< € HS, |Dy<.z| < Dy<.t (5.25)
So u(z,x) = U.z = Z U"<ID,,<.Z is a series of analytic functions such
’r]<€H<

that, for |z| < ¢~'/? and |2| < t,

V< e HS, |U" Dy<.z| < 30 |g|lo"ID, < .t (5.26)
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Let

alt,|z)) = > O3 |zlID, 4 =Tt =Y C* Dacit (5.27)
7’<€H<

where s(n<) = s if n< = (n1,...,n,)< and C? =1 (Dy = Id ). If T is con-

vergent for |z| and ¢ small enough, then u(z,2) = U.z = Z U”<Dn<.z
n<€H<

is normally convergent in a neighborhood of (0,0), thus v € C{z,z} and U

is an analytic substitution automorphism.

We have -
where Uy =1Id , and U =Uo+ Uy + Uz +Us
El == Z C7I< Dn< = Z Cn<ﬁn<
n< € H< n<€H;y
1< irreducible
s(m<)=1
EQ = Z C7I< Dn< = Z C"<ﬁn<
,n< c H< n< €H2< (5.28)
1< irreducible
s(n<) =2
7, S o5 - Y o,
n< € H< n< 6H3<

7~ not irreducible
Because of the coarborification rule (applied to D,), we get the following
identities _
Uy =Cy Y oyl lz|7t" ™0, (5.29)

WEHO

and Uy.t = Cyb(t, |z|) = c(t, |z|). Using the rule 5.20, we get,

U, = Y "D,
n~ € H<

7~ irreducible

s(n<) =2

= Y "D,

n< cH; (5.30)
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and finally, using the rule 5.21,

U3 = Z " Dy
n< € H<
17< not irreducible
1 d! = oy d
- 2 Aar a1 Pt By 0

77<=771<_®---®17d<
d=22 ; n'< ¢ HUH;s

_ Z% (T + Ta).t)” 08

d>2

(5.31)
But .
u(t,|z]) = Ut

= (Uo+ Uy + Uy +Us).t
= t4+U;.t+Uqg.t
= t+®1.t + (Ul —|—®2 +U3).Ul.t

_ 1 — _
::Hmm+zgau+muﬁﬂu@
d=1

:t+Z%@ﬁ@m%WWW)

d=0

= t+z 7 u(t, |z|) —t) 8f(c(t7\ml))

d=0

t+ c(u(t,|=)), |z|)

But, as ¢ € RT{t, |z|} and ¢(0,0) = 9;¢(0,0) = 0, using the implicit function
theorem and majorant series, it can easily be proved that u € Rt {¢, |x|}.
Thus,

THEOREM 5.5. — There exists a > 0 such that the series of analytic
functions
u(z,z) =U.z = Z U’7<]D),,<.z
n<eH<

is normally convergent in V, = {|z| < «, |z| < a} which means that U is an
analytic substitution automorphism : u € C{z,x}.
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6. Analytic classification

We first prove that V is also an analytic substitution automorphism.

6.1. Analyticity of V
Let U, =3 54(U®)De =3

U, => 54U®)De = ZneHJ:*H"“U"(qx)Dn

The operator U, is a formal substitution automorphism, but, after arbori-
fication,
- 0 if n<eH</H<
WS e HY, s (U (@) =]
eIy (qz) if p<e HTS

thus, for |z| < ¢/2, using proposition 5.3,
L] < S 0'<
Vi< € HS, |5, (U (2)| < Cilale"! (6.1)

this proves once again that U, is an analytic substitution automorphism,
such that

ug(z,2) = Uq.z € C{z, 2} (6.2)

and,
VQO E(C{Z,Jf}, Uqgo(z,x) :Qp(uq(z7x)7x)
Finally (see section 3.4) V =" V*D, is a formal substitution such that

v(z,x2) = V.z € z 4+ 2C|[[z]]

and
V.U, =0D (6.3)

where D =} X*D, is an analytic substitution automorphism such that
Vp € (C{Z,.’ﬂ}, D‘P(zax) = gD(Z+b(Z,ﬂC),$)

but, as U, is analytic, its inverse substitution automorphism [Uq_l is also
analytic and V = U.D.U, ! is analytic :

v(z,z) =V.z € z4+ 2C{zx}
We can resume this in the following theorem
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THEOREM 6.1. — Let us consider the equation

(xog — 1)y = by, x) (6.4)

with b(0,0) = 0 and g—Z(0,0) = 0. This equation is conjugate by the analytic
automorphism U :

y=U.z= (Z U']D).) z=u(z,x) € C{z,x} (6.5)

to the equation

zogz =V.z =v(z,z) € z + 2C{z} (6.6)

To prove theorem 1.1, it remains to prove that the equation above is
analytically conjugate to
rogz =z +ax (6.7)

where o € C depends on v.

6.2. The equation zo,z = V.2 =v(z,z) € z + 2C{z}

We have
v(z,x) =z + Zvnx” € z+ 2C{x}
n>1
If
o= Zvnq_”("_l)/2 eC (6.8)

n>1
the equation

2oy(f) =v(f,z) —az=f+ (1 — @)z + > vua" € z+aC{z} (6.9)

n>2

possess an analytic solution : If f(z) = Z fnx™,

n>1

-TUqf_f — anflqn_lxn_anxn

n=>2 n>1

= (v —a)z+ Zvnx”

n>2

_ (kaq—k(k—l)ﬂ) $+Zvn$n

k>2 n>2
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thus f1 = z:vkq_k(k_l)/2 and
k>2
—1
vn = 2; .fn = fn—lqn — Un
but,

Vn>1, fo= Z qu—(k+n—1)(k—n)/2 — Z vk[k‘]q[n];1
k>n+1 k>n+1

and f € C{z} : there exists C' > 0 such that
V=1, |u,| <C"
thus, for n > 1,

|fn| < Z qu—(k—',-n—l)(k—n)/Z
k>n+1
< Oo" Z Ck—nq—(k+n—1)(k—n)/2
k=n+1
< on Z Ok g (k+2n=1)k/2 (6.10)
E>1
< Cankq—(k—l)k/Q
E>1
< MoC™
But if Z =2z — f, then
xog(2) = zo4(z) —xoy(f)
= z—i—Zvna:" —f—(n—a)zx— Zvnx"
n>1 n=2
= Z4ax

This proves finally theorem 1.1 :

Let us consider the equation

(xoq — 1)y = b(y, x) (6.11)

with b(0,0) = 0 and g—Z(0,0) = 0. There exists a(b) € C, such that this
equation is analytically conjugate to the equation

xogz =z + a(b)z (6.12)
and, if a(b) # 0, this last equation is analytically conjugate to
TOgz0 = 20+ T (6.13)
(Take z = a(b)z).
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7. Proofs

7.1. Proof of proposition 3.2

PROPOSITION 3.2. — For any moulds A®* and B®, we have

J® o A* = J* o (A® x (K* 0 B*)) (7.1)

Let C* = K*oB® and D* = A* x (K*oB®*) = A*xC® andlet n € H
nonempty. We can restrict ourselves to the case n € HT because, otherwise,
the equation becomes 0 = 0. We remind that :

nt..nt=n
One can expand the products D" ... D" such that we only get 5 type of

monomials :

1. The monomials A% ... A% where ol

oam =1,
2. The monomials A% ... A% OB where af=nandal...a”"=a,

3. The monomials A% ... A2 CBDY ... D7 where afBy =n and

al...a"=aand~t.. .y =17,

4. The monomials C8 ...C% DY ... DY where B~y =mn and
BL... B =pBandy'...~% =+,
5. The monomials C8' ...C8" where B*...8" = .

Let us now take look at the contribution to each type of monomial of the
expression (J® o D*®)".

1. The first type gives :
Z Jlhet ol gat - ga” — (y o A*)n

al..am=n

2. When a@ =7 and o' ...a” = a, the monomial A* ... A% CP has,
as a coeflicient :

Jllat a1 18] +J\lal||a-~7|\a"'|\+\|[3\| - JHalHv"'aHaTHJFHﬂH(1+a7(||/8||))
but, either ||3]| < 0 and it vanishes, either ||3]| > 0 and then
CP = (K* o B*)? =0 (see the definition of K*).
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3. When a8y = n and al...a”=aand 4'...v% =+, the monomial
A® A CPDY ...D" has, as a coefficient :

Jheet el IIBI I e I gl sl I IBIL Y -l

for the same reason, if || 3|+ [|v||+. .. +]|¥*|| < 0, this term vanishes
and if ||B]] + [|v* ] + ...+ [[7*]| = 0, this term still vanishes if ||v|| +
=0 (deﬁnitlon of J*) and otherwise ||y +...+[|~%]| <0,
which means that ||3| > 0 and then C® = (K*® o B’)B =0.
4. When By =mn and B8*...8" = B and 4'...~® = v, the monomial
o8 ...cA D" ... DY has, as a factor :

JUBHL- 871 - e

this vanishes if 8]+ ..+ 187 + [} + ...+ |yl < 0 or [[7*] +

e || > 0, otherwise ||y* ||+ Ayl < 0and [|BY|+. ..+ 187+
[ + ...+ [|7®]| = 0 thus ||B"(| +...+[B"|| = 0 which means that
at least one of the ||3¢|| is non negatlve and so C8' ... C?" vanishes.

5. The fifth type gives 0 for the same reason.
In conclusion, the only nonzero contribution is (J® o A®)" and we proved
that
J* o0 A®* =J% 0o (A® x (K*® o B*))
7.2. Proof of theorem 4.1

THEOREM 4.1.— If n = (m1,...,1ns) = Zi,...,zs _ Z)GH,

then the monomial U" is a convergent series with the following expression :

U'z) =¢ep > gl =)k L)k + 17 (7.2)
(k1,...,ks)EL™NPT

with the notations
° g, = HKKSE@. with iy, =n; + ...+ ns with e, =1 (resp. e, = —1)
ifn>0 (resp. n <0)
o 7" =7"M x...xZ" with Z" = Z** (resp. Z~ ) if n > 0 (resp. n < 0)
o P*={(ki,...,ks) €Z%k; >0 if &4, =—1}

[ ] I%Z:kl—‘r—f—k‘z andk:(k17...,ks).
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o [k+1],= g r(k+1)/2

Proof.— To prove this theorem we will introduce some notations. For
a sequence (ki,...,ks) € Z°, let l; = k;, thus k1 = Iy and, for i > 2, k; =

l; —l;_1. For a sequence n = (n1,....,m5) € H and Il = (I1,...,1,) € Z°
(s 2 1), let
1y = gl bm g=hoi gy g 1) = [ 1 (7.3)
i=1

With this notation, the formula in theorem 2.3 becomes

Wh(z) = e Z 17

(ll,lgfll...,lsfls_l)GZn

1 if n>0
using the function p;(n) = and p_1 =1 — p1, we get
0 if n<oO0

W(x) =en Y pep, (1)pe,, (la=11) - pe, (L=l )T = Y w]T]" (T.4)
leZs 17

and we have to prove that

Ulz) = e¢n Z Pen, (1)pey, (2 =11) o pey (Is = Ls1)TY H p1(l;)
leZs 1<i<s

Eﬁi = -1

= 2 un'=> wi| [ ;|1
leZs l€Zs 1<i<s

€h; = —1
(7.5)
Let U" be the second term of this equation. It is clear that the identities
hold if 7y < 0 because (J®* o W*)" = 0 and in U" we have the factor
p—1(l1)p1(l1) = 0. Let us suppose now that, in the sequel, 7; > 0. If I =
{1<i<s ; ep = —1} = 0 then, once again, we obtain the identity
because

H pl(li):HPI(li):]. and (JoW)"=Wwn
1<i< i€

Ehy

S
1
We need some notations to prove the identity. For v = (y1,...,7) € H,
a=(ay,...,op) € {-1,+1} and m = (my,...,my) € Z', then

wi® = (H ai) Py (1) oy (M2 —ma) . ... pa, (My — M4 —1)
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p1,.---,DP
and if e(y) = (gp,,-..,€p,) With v = ( ' ),then

01,...,0¢
w;’n:wz’;e("/)
Ifg=(n,...,ns) € H (s > 1) then

i) = 3 i ¥y’ (). W'

nl. mt=n

FI={1<i<s ; e =—-1}={i1 <...<iy} (note that 1 & I),
because of the definition of J*®, we get

kq kjt1
U'(x) = Z (=D)EIW o W
K={ki1<...<k;}CI

where j = | K| is the cardinal of K, kg =1, kj11 = s+ 1 and

nk“’l (Meys -+ Mgy —1)- Using formula 7.4, we get
e nratt
Kl ko kj Ul
Un(z) = E E 1) coow T,
TEAR T
leZs KCI kj
Rjt1 oopli+t
_ Z Z \K| nkoys(nko) wnkj ’E(nkj )Tn
= W !
leZs KCI kj

For0<r<gq,let I, ={i1 <...<i,} (Ig=1 and Iy = 0). If

=2 w1 mt) 17
leZs i €1,
then Ug] = W" and Ug = U". For 1 <r < g, we get

un >wll I e ]y

leZs i1 €I,

= Y wia-pa) | I et |17

IeZs i€ I

= U =) wipall,) I ~w)1

leZs i€ I._q
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One can notice that, in the sum, I; _, > 0 (take i,y =ip =1if r = 1) and
(lir_1+1 — li7~—1)7 ey (liT—l — liT_Q) must be pOSitiVG, thus lir—l > 0. As lir
is non positive, this automatically ensures that (I; —[; —1) is non positive,
thus we get the simplification

Q = wip-a(li) II ~

€I

= *é‘nHPsﬁi(li* i—1 Hﬂsn i —liz1) H p1(l)

1<ty P> i€ I._q

xp-1(li, = li,—1)p-1(Ls,)

= —en [] pen, (i = li)p—1li,) T e, i = lima) TT 221

i<ip >0y i€ Ir_1

(28 i ig+1
- M0 €(M)ip 4. na" e
= w io H P1 (lz) U}lqurl
i€ I r

) iq+1

Where ig = 1 and 441 = s. This gives

0,2 tq+1 &), q+1

~ Lo’slol” ( i€ Ir_1 prli )> q+1
un = E w

U]
Ty
leZs

Using this formula recursively, we get

K nk075("7)k0 kj+1 n
E E | | LW ki1 k; Tl

ki1 My
leZs KCI lk;“ Y el
which must be compared to
ki1 kit1\ M
Wk 76(77k ) ST e(m T,
|K| 0 0 w J
1 J+1
eZs KCI kj

For a given K = {k1 < ... <k;} C1, it is clear that
~"3(77)k]+1 = E(nk]+l) = Eipyr-- 1 Ch, (Kja1=19)
but generally speaking, we can have
e(m) o £e(m™)
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for 0 < jo < j. Nonetheless, we will prove that U7 = U". Let 1 < i < s and
ir €I (or r =¢+1 and 441 = s+ 1) such that i < i,. Let also

ICZ‘7Z‘7,:{K:{]{?1<...<I€]‘}C[ ,HOS‘]()S], kj0<i<kj0+1:ir}

For the partitions K € K;;_, the i'h sign of &y = e(n)f,z(lJ 5(77) ki1 _

e(n) i5 Enrs.in, Whereas, in ax = () ... o) 8 Enpoin s
If r = ¢ + 1 these signs are equal. Otherwise, if ¢,,4+  4+,, = +1, since
€n,, +..n, = —1,is implies that €,,+  4n, _, = +1so that the sign at it" po-
sition in & and a is the same (+1). But, if ever €,,, 4. 4n, = —1, we can’t
conclude : Enitootni, 1 could be +1 or —1. The main fact to prove is that in
U", we can, if necessary, change €,y . 1n, = —1 into €y, 4. 1, _,=+1, for
the terms corresponding to K € K; ; , without changing the value of Un. It
is clear that, iterating this result proves finally that U" = U". So, consider
the case when €y, 4 . yn, = —l and &y, . 4n, _,=+1 that can occur iff r<gq
and ¢ =4, € I (1 <t < r). The terms where we want to change this sign
are

k kj+1 1
|K| Uk075(ﬂ)ké nkj ’E(n)k; n
z Jip 2 : § : kl t wlkj+1 Tl
1€Z5 KCKi,. ro ki

Once again, let I,y = {i1 < ... <41} and ] = {i, < ... < ig}. It is
clear that KC;, ;, = K} , UK? (IC1 . NK2 . =10) where

Bty Ty Bty Tty Bty Ty

Kl . {K—K1UK2. 1{k%<'~-<k}1}ch—1}

P={i,=ki<...<kL}C, I

2 _ _ / - . 1
Ki i ={K =K U{it} ; "eKi, i}
thus, if
1 1
k1 kj kj
nk%,e(n) 77k,1_1 75(77)k11
0 J1—1 J1-1
W1 =W 1 LW g
Lo 1
kg k1
J1-1
and
k2 k2
n,5.e(m),3 M2 (n)2
_ 1 1 i2 i2
Wg2 =W, Ws
12 %2
2 i2
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then
(s i
n.1 e(n) 1
Fm _ KY4|K? ki1 ki
IS Z (—l)l I+ ‘wKuwlir1 wi2T)
leZ? k5
K?! ={k:} < ... <kjl-l} C Iy
K*={i,=k <...<k5,}C, I
ﬂitl 75(77)it1 ir ir
1 2 Kkl k1 n; 75(")1‘
+ § (,1)|K [+ K |+1wK1/wlit]1 i1 lz‘rt t wKQT;?
1 (3
leZs " '
K'={ki <...<kj}ClLia
K?={i, =k <...<k5L}C, I
nn e
If y,, " ;ﬁ = H €a;Pe, (L — li—1) (with the convention here
J1 1 °
k51 k} <i<ip—1,izi
{1 1 = 0), then
J1
n e(n) ne(n)
J1 Tr _ J1 Tr . N
Wi i Y pr Sy Peq, (L, = liy—1)
i (! i (! g
J1 J1
n en)
J 2
= —p-1lli, =L,y
J1 K1
J1
n e(n) n )
_ J1 lr J1 1r
= p(l, lu—l)ykl i Ypt pir
71 K1 71 k1
J1 J1
and
it it X ) ir ir
M1 75(77)k1_ i e(n)ir M1 75(77),61
J1 J1 nH’ n it _ J1 J1 ~ (l )
Wy, i = Y Ehiy Pen, \big
k1 it k1 t
J1 J1
LY 75(77)21
J— J1 J1
- —Pfl(l“)yli,.
k1
J1
n e(n) nn e
J K2 J J
P1 lit)ykl_ ! [er y[br ! !
i1 ! el
J1 J1
thus, using this in the expression Uz?ir we changed €5, = —1intoen, 4. 4n,,

= 41 without changing the value of UZ"% and thus of U". This ends the proof

of the theorem.

O
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7.3. Proof of Proposition 4.2

PROPOSITION 4.2.— Let 0 < |z| < e < ¢ V2. Form = (m1,...,ms) €
HY,

|UM(x)| < C;|x|H"HHlUHq*(H"HHlf’H) (7.6)
with Cy = 17(1%1/2‘
Proof.— We remind that, for n = (n1,...,1s) € HT

S
T (z) = glol+m o=y, 4 L L e HTZ’” (z)

q
=1

and

=E€n Z Psnl Pan (la—11).. < Pen, (Is — ls,l)Tl"(x) H p1(li)

€Zs 1<i<s

thus

U(@)| <Y pey ()pea, (2 =10) oo ey (s = Ls-)TP(l) - T ;mal)

leZs 1<i<s

Let

Rl=pe, ()pep, (e —10) oopey (s —1n) | [ o2l

1<i<s
en; = —1
and L"={l € Z* ; R] =1} C Z*. First of all, one can notice that
L" c (N*)® (7.7)
because, for 1 <@ < s, if 5, = —1, then the factor p;(I;) in R} ensures that

l; >0 and if €5, = +1, then
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e if 4 =1 then p1(l1) =1landl; >0,

e if i > 1 and all the signs €5, (j <) are +1, then Iy >0, Iy >[4, ...,
l; > ;1 thus [; >0,

e otherwise ¢ > 1 and there exist ig = max{i;e5, = —1}. Thanks to
the factor p1(l;,), once again, l;; > 0, ljy41 > liy, -, i > l;—1 and
l; > 0.

Based on a similar discussion, we get that

Yn=0n,...,ns) € HT, n(n):lrélg%(nllﬁr. cAngds) = (ni+. .. 4ng) =0

(7.8)
and
pe(n) = maxiepn([l + 15 .. [l + 1]3*)
Vn:(n17...7173)€H+, ! c 7q ?
< [l]glerJrns =gq [|7|
(7.9)

These inequalities can be proved by induction on the length s of the sequence
n=(n,...,ns) € H. These results are obvious for n = (,) € H' since
I1 > 0. Let s > 2, we remind that L7 C (N*)*® thus,

o If ¢4, = +1, then ny > 0 and I, > l[;_; > 0. It implies that nyls >
Tlsls_l and [lg + 1]35 g [ls—l —+ 1]25 (lg(lg —+ 1) 2 ls—l(ls—l —+ 1)) SO

”((Ulw-wﬁs) = ”(771,~--a775—1+775
) ( ) 10
pa((my---ims)) < pg((m,- -y ms—1 +15))
o If 5, = —1, then ny < 0 and 0 < I5 < ls—1. It implies that nsls >
nsls—1 and [Is + 1]7¢ < [lso1 + 17 (Is(ls + 1) < ls—1(ls—1 + 1)) so,

once again

n((m,...,ns)) = n((m,...,ns—1+7ns))
pq((nlv"'7ns)) < pq((nlv"'7ns—1+n8))

Since (n1,...,ms—1 + 1) € HT, the induction is then trivial. This result
implies that, for I € L™,

Tl"(|x\) < q—HnH‘xlnau|x‘lln1+4..+lﬁnsq—llal—.i.—lsas
< zflelitlinlg=leli=lnl|glmt +ens—lnl 15 g=oili=1)
<

lloll+ 1l ,—lloll—lnl T8 [p|mi(li—1) g—os (li—1)
2| q [Tizy l2] q

1=
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but, if |z| < ¢~ /2, since lyng + ... + lsng — ||n|| >0,

T)(|z]) || leli+lnl g=lloli=lnll(g—=1/2)linit..+lons =] I, g oitti—1)

<
< |x|HUHHIan—HUH—HnH Hle g~ 1/2(nit20:)(li—1)

and, as forn € H' and I € L" € (N*)*, n; 4+ 20; > 1,

TP(J2]) < aflel+imlg=lel=lnl T] g~1/20:-D

i=1
and, finally
U(leDl = iepn T (l)
< zleli+lnlg=lali=lnl S [Ty g~ 1/20i-1)
< Jzlelitlnlg=lali=lnl Zle(N*)S [1, ¢ /20D
< |x|HUHHIan*HUH*HnHC; O

8. Conclusion

We shall prove in a forthcoming paper that this result still holds for
systems of nonlinear g¢-difference equations (with some restrictions due to
resonance and small divisors). This means that g-difference nonlinear equa-
tions are almost always conjugated to linear g-difference equations: This
situation is totally different from the one encountered in the case of singu-
lar irregular equations.

We did not say much about the solutions of the equation
(zog — 1)y = b(y, x)
but, since it is analytically conjugated to an equation
xogz =z + a(b)z

it would be sufficient to study the “small” solutions of such an equation,
which can be obtained by g-resummation of the formal solution :

5(1’) _ —Oé(b) qun(nfl)/an

n>1

See [3] for details. One should also deduce some results on the Stokes phe-
nomenon.
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