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Representing real numbers in Möbius number
systems

Alexandr Kazda and Petr Kùrka

1. Introduction

The aim of this paper is to give the reader general idea of how can we represent real numbers
using Möbius transformations in a way that encompasses several already established systems.

The theory of Möbius number systems was introduced in [3]. A Möbius number system assigns
numbers to sequences of Möbius transformations obtained by composing a finite starting set of
Möbius transformations. Möbius number systems have connections to other kinds of number
representation systems. In particular, Möbius number systems can generalize continued fractions
(see [4]).

A criterium for the existence of the number system is already known for a considerable class of
sets of Möbius transformations (see [4], Theorem 9 and [2], Theorem 4.10), however there is still
a gap between the sufficient and the necessary condition.

2. Preliminaries

Let C be the complex plane. Denote by C∪ {∞} the complex sphere – the compact topological
space obtained from C by adding the point in infinity. Likewise, R = R ∪ {∞} will denote the
compactification of the real line. Denote by T the unit circle in C centered at 0. Note that R is
homeomorphic to T; this will be important later. Finally, we let H = {z ∈ C : =(z) > 0} (the
upper half plane) and by D we mean the open unit disc in the complex plane.

Our goal is to represent points in R or, equivalently, in T using sequences of Möbius transfor-
mations. To represent R we use transformations preserving H and to represent T we use transfor-
mations preserving D. Through the paper, we distinguish half plane preserving Möbius transfor-
mations from disc preserving ones by placing a hat above the name of each half plane preserving
transformation.

Definition 2.1. A Möbius transformation (MT) is any nonconstant function M : C ∪ {∞} →
C ∪ {∞} of the form

M(z) = az + b
cz + d

where a, b, c, d ∈ C.

As we have mentioned above, R and T are homeomorphic. The stereographic projection u :
T→ R and its inverse d : R→ T are actually Möbius transformations

u(z) = −iz + 1
z − i

, d(z) = iz + 1
z + i

that also act as homeomorphisms of D and H. Therefore we can translate MTs that represent T
to the ones that represent R by composing the transformations with d and u in the appropriate
order.

We will develop the theory of number representation only for T, where things become easier to
formulate. However, the example number systems represent the more practical set R.
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Möbius transformations have remarkable geometrical properties that we have mostly omitted
in this paper; we recommend the book [1] to the curious reader.

3. Möbius number systems

Definition 3.1. A sequence M1,M2, . . . of disc preserving MTs represents the number x ∈ T if
Mn(0)→ x for n→∞.

While the above definition might look arbitrary at first glance, it is actually quite natural and
has several different formulations (including the original definition by convergence of measures in
[3]). In particular, Theorem 3.6 in [2] gives us that if M1,M2, . . . represents x then Mn(K)→ {x}
for any K compact subset of the open unit disc (where we take convergence in the Hausdorff
metric).

The next step is to define what a Möbius number system is. Before we do that, let us recall
several standard notations from symbolic dynamics.

Let A be a finite alphabet. A word over A is a (finite or infinite) sequence of symbols from A.
By wi we mean the i-th letter of the word w. For u, v finite words (or letters) we denote by uv
the concatenation of u and v.

Denote by A+ the set of all finite nonempty words over A and by Aω the set of all one-sided
infinite words over A.

A set Σ ⊂ Aω is a subshift if there exists a set S of finite words such that w ∈ Σ if w does not
contain any s ∈ S as a factor (i.e. there are no i, j such that wiwi+1 . . . wj = s).

Assume that we have assigned to every letter a ∈ A a corresponding MT Fa. We then define
Fv for any finite word v as Fv = Fv1 ◦Fv2 ◦ · · · ◦Fvn (we compose mappings in the more usual way
(F ◦G)(z) = F (G(z))).

Definition 3.2. Assume we are given a system of MTs {Fa : a ∈ A}. A subshift Σ ⊂ Aω is a
Möbius number system if:

(1) For every w ∈ Σ, the sequence {Fw0w1...wn}∞n=0 represents some point Φ(w) ∈ T.
(2) The function Φ : Σ→ T is continuous and surjective.

4. Examples

Attempting to come up with a Möbius number system, we will first try to emulate the standard
binary representation of numbers.

Let us take the (half plane preserving) transformations F̂0(x) = x/2 and F̂1(x) = (x + 1)/2.
These transformations have their disc preserving counterparts F0 and F1. We want to see what
happens if we take the system {F0, F1} together with the full shift Σ = {0, 1}ω. It can be shown
that the function Φ maps Σ to an interval on T corresponding to [0, 1] under the stereographic
projection.

Essentially, we have obtained the ordinary binary system, as Φ(w) corresponds to the number
0.w. However, this is not a Möbius number system, as Φ is not surjective. We can fix this
deficiency by introducing new transformations, but we will have to forbid some combinations of
transformations to maintain convergence.

One way to do this is to take the following four transformations:

F̂1(x) = (x− 1)/2
F̂0(x) = x/2
F̂1(x) = (x+ 1)/2
F̂2(x) = 2x

and forbid the words 20, 02, 12, 12, 11, 11. The reason for disallowing 2 and 0 next to each other is
that these transformations are inverse to each other. The first four forbidden pairs ensure that twos
are going to be only at the beginning of the word. The last two forbidden words ensure continuity
of the function Φ at 2∞ and, as a side-effect, make the representation nicer (in cryptography, for
example, we often wish to only deal with redundant representations of integers without 1 and 1
next to each other).
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Figure 1: The Möbius binary signed system

The result is the Möbius number system depicted in Figure 1. The labelled points represent
the images of the center of the circle under the corresponding sequence of transformations. Curves
connect images of 0 that are next to each other in a given sequence. Observe that the images of 0
converge to the boundary of the disc.

The connection between MTs and continued fraction systems is well known. We show how
to implement continued fractions as a Möbius number system. Let us take the following three
transformations:

F̂1(x) = −1 + x

F̂0(x) = − 1
x

F̂1(x) = 1 + x

and forbid the words 00, 11, 11, 101, 101 (the first three for obvious reasons, we are disallowing 101
and 101 because the words (01)∞ and (01)∞ do not represent any number).

It turns out that we obtain the regular continued fraction system, see Figure 2. The only
complication is that we need to juggle with signs, using the transformation −1/x instead of 1/x
because the latter does not preserve the unit disc (1/x preserves the unit circle but turns the disc
inside out).

The function Φ : Σ → T mirrors the usual continued fraction numeration process which we
describe here for real numbers. Let x be a real number, without loss of generality let x ≥ 1. We
take xi+1 = xi − 1 = F−1

1 (xi) until 0 ≤ xi+1 < 1 then we take xi+1 = −1/xi = F−1
0 (xi) and

continue with xi+1 = xi + 1 = F−1
1 (xi) until −1 < xi ≤ 0, then we let xi+1 = F−1

0 (xi) and so on.
Writing down the labels of MTs in the order they were used, we obtain the representation of x.

Even a quick glance on Figure 2 reveals that parts of the circle are missing. While Φ is indeed
surjective, the convergence of the images of 0 is sometimes quite slow in this system and so the
depth used in our computer graphics was not enough to get near certain points. We can improve
the speed of convergence by adding more transformations like in [4].

5. Existence theorem

In this section we touch on the problem, how to decide, given a system of MTs {Fa : a ∈ A}
if there exists a Möbius number system using these transformations. Our goal is to come up with
a sufficient and necessary condition on {Fa : a ∈ A} to admit a number system. So far, we only
have a partial characterization.
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Figure 2: The regular continued fractions
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Figure 3: The expansion and contraction intervals of M̂0(x) = x/2 and M̂1(x) =
x+ 1

Definition 5.1. Given a system of MTs {Fa : a ∈ A}, let Uu = {z ∈ T : |F ′u(z)| < 1} resp.
Vu = {z ∈ T : |(F−1

u )′(z)| > 1} be the contraction interval of Fu resp. the expansion interval of
F−1
u (see Figure 3). Note that the sets Un, Vu are either intervals on the unit circle or (if Fu is a

rotation) empty sets.

Observe that it is Fu(Uu) = Vu. Intuitively, we expect that if a word w begins with the finite
sequence u then Φ(w) lies somewhere close to Vu, because that is where all of the points of Uu get
mapped by Fu. While in general Φ(w) and Vu need not posses any sensible relation (consider the
case of Fb = F−1

a when Fab is the identity map), we can use this idea to obtain some insight in
the existence problem if we consider all the intervals Vu:

Theorem 5.2. Let {Fa : a ∈ A} be MTs.
(1) If

⋃
{Vu : u ∈ A+} 6= T, then there does not exist any Möbius number system.

(2) If there exists a finite B ⊂ A+ such that {V u : u ∈ B} cover T, then there exists a Möbius
number system.

For proof, see Theorem 9 in [4] and Theorem 4.10 in [2].

6. Conclusions

In this paper, we have shown how sequences of MTs can represent real numbers in a rather
natural way. The notion of representation allows us to restate several known number systems in
the language of Möbius number systems. In particular, we can view regular continued fractions as
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a Möbius number system. The only drawback of Möbius number systems compared to commonly
used numeration systems is that Möbius system typically does not use the full shift and so we have
to make sure we avoid forbidden words.

We have some sufficient and some necessary existence conditions for a Möbius number systems,
however there is still a gap in the characterization that we hope to close in the future. A similar
question, which sets of MTs admit a number system with only finitely many forbidden words (i.e.
Σ is a shift of finite type) remains wide open.
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