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Rosen fractions and Veech groups, an overly brief
introduction
Thomas A. Schmidt

Abstract
We give a very brief, but gentle, sketch of an introduction both to the Rosen continued

fractions and to a geometric setting to which they are related, given in terms of Veech groups.
We have kept the informal approach of the talk at the Numerations conference, aimed at an
audience assumed to have heard of neither of the topics of the title.

The Rosen continued fractions are a family of continued fraction algorithms, each gives
expansions of real numbers in terms of elements of a corresponding algebraic number field.
A Veech group is comprised of the Jacobians of locally affine self-maps on a “flat” surface
to itself. The Rosen fractions are directly related to a certain family of (projective) matrix
groups; these groups are directly related to W. Veech’s original examples of surfaces with
“optimal” dynamics.

1. Review of Simple Continued Fractions

The Rosen continued fractions give one of many generalizations of the classical simple continued
fractions (SCF). We briefly review elementary properties of these latter; many standard texts give
good expositions of this material.

Each real x has SCF-expansion

x = a0 + 1

a1 + 1

a2 +
. . . + 1

an +
. . .

= [ a0; a1, a2, . . . , an, . . .] ,
whose convergents are of the form pn/qn := [ a0; a1, a2, . . . , an] .

There is an underlying interval map, for which the SCF encode the dynamics of composing the
map. Indeed, this Gauss map acts as a one-sided shift on SCF-expansions in the unit interval:

T : [0, 1)→ [0, 1)

x 7→ 1
x
−
⌊

1
x

⌋
, x 6= 0; (T (0) = 0 ) .

1.1. Consecutive convergents give elements in matrix group. By appropriately letting with

ε = ±1 ,
(
ε pn−1 pn
ε qn−1 qn

)
is of determinant one. Furthermore, letting

S : x 7→ x+ 1 and T : x 7→ −1/x ,
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we can at least formally write

[ a0 ; a1 , a2 , . . . ] = Sa0TS−a1TSa2T · · · .

The alternating sign is related to the fact that convergents alternate above and below x . The
matrices and these linear fractional maps are of course related.

With the usual möbius action (
a b
c d

)
x := ax+ b

cx+ d
,

we can recycle notation and let

S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
.

Recall that the möbius action is projective(
aµ bµ
cµ dµ

)
x = ax+ b
cx+ d

.

Thus, one observes that the group PSL(2,Z) (where we identity a matrix with its multiple by −1 )
is closely related to the theory of continued fractions. Recall that the larger group PSL(2,R) acts
on the upper half-plane (of C), sending circles to circles and indeed as isometries with respect to
the hyperbolic metric.

2. Hecke groups and Rosen Fractions

The Hecke (triangle Fuchsian) group, Gq, with q ∈ {3, 4, 5, . . . } is the group generated by

S =
(

1 λ
0 1

)
and T =

(
0 −1
1 0

)
,

λ = λq = 2 cosπ/q .

When q = 3 , we have G3 = PSL(2,Z) . Now also let U = ST , so U =
(
λ −1
1 0

)
and one

finds Uq = Id . Using this, one can show that Gq is the free product of finite cyclic groups:
Gq ∼= Z/2 ? Z/q .

Whereas any (
a b
c d

)
, ad− bc = 1

with integral entries gives an element of the modular group, when q > 3 one finds that Gq is of
infinite index in PSL(2,Z[λq]) and the word problem of determining whether a given matrix with
elements in Z[λq] lies in Gq is no longer trivial.

2.1. Rosen Continued Fractions. In his 1952 Ph.D. dissertation published as [R], David Rosen
proposed a new type of continued fraction to resolve this word problem. He decided to use the
nearest integer multiple of λq as the ai , and then with appropriate εi = ±1 found expansions (of
real numbers) of the form

α = a0λ+ ε1

a1λ+ ε2

a2λ+ ε3
. . .

=: [ a0 ; ε1 : a1λ , ε2 : a2λ , . . . ] .

For each index q there is here also an underlying interval map, see Figure 1.
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Figure 1: Approximate graph of interval map associated to Rosen fractions with
q = 5 . The branch at each extremity is not surjective.

2.1.1. Rosen’s Cusp Challenge. By continuity, we can extend the action of PSL(2,R) to include
infinity: a matrix in our standard form sends infinity to ac . By analogy with the classical case
of q = 3 , we call the Gq-orbit of ∞ the Gq-rationals. Rosen showed that for each q, set of real
numbers of finite length Rosen continued fraction expansion is exactly the set of finite Gq-rationals.
(The term cusp comes from the geometry of the quotient of the upper half-plane by the group.)

Rosen’s Cusp Challenge: Determine the orbit of infinity for each Gq.

When q = 3 , one of course has that this orbit is exactly Q ∪ {∞} ; and for q = 4, 6 one easily
determines the orbit, see [SS], [RT]. For q = 5 Rosen showed in 1963 that all of the units of Z[λ5]
are in the orbit of infinity. Leutbecher [Leu] completed this to show that G5 ·∞ = Q(λ5)∪ {∞} .
In an impressive series of papers though 1985, Leutbecher, Borho, Rosenberger, Wolfart, Seibold
showed that only for q = 3 or q = 5 is the cusp set exactly Q(λq)∪{∞} . (Using techniques related
to Veech groups, McMullen [Mc] determines the exact cusp set of hyperbolic triangle groups related
to quadratic number fields, see also [C]. Compare these results with [Be].) Recently, Towse et al.
[TetAl], extending techniques of this “German school”, show that both that (1) for any even q,
there are infinitely many Gq orbits of elements of Q(λ) , and (2) for odd q, the number of orbits
of the field elements goes to infinity with q .

Although already in his thesis Rosen showed that x = 1 is periodic for all even q , in general the
problem of characterizing those reals of periodic Rosen continued fraction expansion seems even
harder than the cusp challenge.

2.2. Further comments and references for the Rosen fractions. As already hinted above,
the parity of the index q of a Hecke group is significant. Many results must be phrased respecting
this fact. (In a certain sense, the even index groups tend to be simpler.) For all q > 3 , due
to the end branches of the underlying not being surjective (in dynamical terms, the continued
fraction map has non-full cylinders), there are restrictions on the possible consecutive sequences
of (signed) partial quotients. Rosen determined these, they also depend strongly on the parity of
the index. These restrictions can be viewed as coming from the orbits of the interval endpoints
±λq ; representations of “natural extensions,” such as given in the first two figures of [BKS], can
help visualize these (non)-admissibility rules.

2.2.1. Number theoretic aspects of the Hecke groups. Each Z[λq] is the full ring of algebraic integers
of the field Q(λq) . Since λq is the sum of the root of unity ζ2q := exp 2πi/(2q) with its complex
conjugate, K = Kq := Q(λq) is a number field of degree n := φ(2q)/2 over the rationals, where φ
denotes the Euler phi-function. See, say, [W] for these matters.

In fact, the field Kq is the maximal totally real subfield of the cyclotomic field Q(ζ2q ) — all field
embeddings σi : Kq ↪→ C into the complex numbers have real image. Using these embeddings,
Γ := PSL(2,Z[λq] ) acts on the n-fold product of the upper half-plane with itself; the action
is sufficiently nice that the quotient under this action is an example of a Hilbert(-Blumenthal)
modular variety. Each such Γ acts also on the K-projective line P(K) := K ∪ {∞} , the orbits of
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Figure 2: Unfolding; square table to torus surface.

this action are in 1–1 correspondence with the elements of the class group of OK (see say Exercise
1.7.3 of [B]). Since Gq is a subgroup of Γ , it is clear that the number of Gq-orbits of P(Kq) is at
least this class number. Now, one can show that the class number of the Kq goes to infinity.

Even when we have an explicit Gq-rational, x = a/c , we must be careful — for q > 3 there
are infinitely many units ε, ε−1 ∈ Z[λq] . In a certain sense, the Rosen continued fraction gives a
particular reduced representative of this element of the fraction field of Z[λq] .

2.2.2. Related continued fractions. Rosen made an unfortunate choice in defining his fractions —
they have a defect similar to the SCF in that not each step of the continued fraction map is given
by an element of the group Gq . This can be fixed in various ways, Haas and others have used
a continued fraction based upon taking the nearest greater integer multiple of λq . One can also
take the sign differently while still using the nearest integer multiple. [DKS] begins a study of a
continuum of continued fraction algorithms related to each Gq . (However, Smillie and Ulcigrai
find that using continued fraction steps with negative determinant aids them in their coding of
linear flow of the regular octagon[SU].)

2.2.3. Other Aspects. The article [SS] includes a brief review of much of the literature on the Hecke
groups and Rosen continued fractions up to the early 1990s. Work mentioned there includes that
by J. Lehner and of A. Haas and C. Series on diophantine approximation. Dynamical and metric
aspects of the Rosen fractions has seen much interest, see especially the work of H. Nakada (e.g.
[N]) and of C. Kraaikamp and various co-authors. Geodesic coding by way of SCF goes back
to at least Artin [A], variants of the Rosen fractions have been used, [BS] is an instance in the
physics literature. See also the recent [MS]. There continues to be much work on the (sub)group
structure of the Hecke groups, see for example [LLT] and [IS]. Finally, B. Rittaud presented a
fresh combinatorial perspective on continued fractions and these groups at the Numeration 2009
conference.

3. Veech Groups — flat torus is the touchstone

We turn to the geometric application; this section is directly influenced by the work of P. Arnoux
and P. Hubert [AH]. See the very recent [SU] for related continued fractions. Forewarning: in
this informal introduction, figures representing the geometry involved are quite helpful, however
there is limited page space here. We strongly recommend that the interested reader turn to related
surveys and introductions [HuS], [Z], [S], [Va], [G]. Particularly nice entry to the literature is given
by [Vo] and [GJ]. Here, we can only attempt to hint at the interest of this subject.

The flat torus has optimal dynamics — when we follow a line, we either return to starting point
or get arbitrarily close to every point. Say that a “flat” surface has optimal dynamics if the same
dichotomy as for flat torus holds. To each such surface, one can associate a subgroup of SL(2,R) .

Theorem 1. (Veech 1989) A “flat surface” has optimal dynamics if its associated group is appro-
priately large in SL(2,R) .

W. Veech [V] gave examples with this group being isomorphic to (an index 2 subgroup of) the
Hecke group, Gq . The straight line flow on a flat surface is of interest for several reasons; one
of these is that given any billiard table in the form of a Euclidean polygon with vertices that are
rational multiples of π , the possible paths of the billiard correspond to geodesics on a flat surface
made by gluing together an appropriate collection of copies of the polygon; See Figures 2 and 3.
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Figure 3: Triangle with angles (π/5, π/5, 3π/5) yields a genus two surface: flat
except for one point of angle 6π ; same translation surface. Parallel sides are
identified by translation.

( x, y )    −−−−−−−−−−−−−−−−−>  ( x ,    x + y mod 1 )

Figure 4: The classic affine Dehn twist — vertical circles are sent to circles. Left
and right ends are fixed, thus a (locally affine) self-map of the flat square torus
results.

Much progress has been made in the study of the dynamics of these polygonal tables by using this
construction, see say [KMS] for a landmark paper.

WhenX is (an appropriately defined) “flat” surface, an affine diffeomorphism is some f : X → X
whose derivative (off of singularities) is constant A ∈ SL(2,R) . The group of all these derivatives
is the Veech group: SL(X,ω). (The notation (X,ω) comes from thinking of the surface X with
a flat structure ω — this ω can be seen as a holomorphic differential on X with a complex
structure.) Besides rotations, such as that of order 5 on the surface of Figure 3, the easiest
elements to envision come from (nice) decompositions of X into cylinders. Indeed, a cylinder is
given by identifying opposite edges of a rectangle, and viewing this as a fibering of an interval by
circles, we can map each circle to itself by twisting by an amount linearly increasing from zero
twisting to a full rotation. Figure 4 gives a representation of this so-called Dehn twist when the

rectangle is the standard square; its derivative is A =
(

1 0
1 1

)
. Thus, whenever X is the union

of cylinders in some direction, there is a diffeomorphism defined piecewise by the Dehn twists in
each cylinder. Rarely, the cylinders match so well that appropriately composing powers of the
Dehn twist in each cylinder with itself results in a diffeomorphism whose derivative is given by a
common matrix. An example of this is hinted at in Figure 5; there the corresponding element of

SL(X,ω) is
(

1 0
µ 1

)
, µ = 2(1 +

√
2 ) . This and the obvious rotation generate all of SL(X,ω) , a

group isomorphic to an index 2 subgroup of G8 .
Given a chosen set of generators of an appropriate type of matrix group, we can often create some

analog of continued fractions, see [BSe]. When the group is SL(X,ω) , (under certain hypotheses)
finite length expansions correspond to period directions on X . Combining the work of [AH] with
results of Leutbecher, one can show that the set of periodic directions on octagon is given by slopes
in Q(

√
2) . Similarly, for the 12-gon, find Q(

√
3) . But for the decagon, one finds a proper subfield

of Q(µ10) := Q(2 cotπ/10) = Q(
√

5 +
√

5) .
Related to this, Rosen’s result that 1 has periodic expansion for even q gives (1+cosπ/q)/ sin π/q

is a non-periodic direction on the 2q-gon. In fact, there is a corresponding pseudo-Anosov diffeo-
morphism — pseudo-Anosov diffeomorphisms are in a certain the main interest in the geometric
side of this material, as emphasized by W. Thurston, see say [T].
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Figure 5: The octagon surface decomposes into two vertical cylinders, the Dehn
twists in these exactly match.
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