On finite p-groups minimally of class greater than two

Rolf Brandl (*) – Gabriella Corsi Tani (**) – Luigi Serena (***)

In memory of Mario Curzio and Guido Zappa

Abstract – Let G be a finite nilpotent group of class three whose proper subgroups and proper quotients are nilpotent of class at most two. We show that G is either a 2-generated p-group or a 3-generated 3-group. In the first case the groups of maximal order with respect to a given exponent are all isomorphic except in the cases where $p = 2$ and $\exp(G) = 2^r$, $r \geq 4$. If G is 3-generated, then we show that there is a unique group of maximal order and exponent 3; but a similar result is not valid for exponent 9.

Keywords. Finite p-groups, varieties of groups, relatively free groups.

1. Introduction

Let \mathcal{K} be a class of finite groups. The finite group G is called a minimal non-\mathcal{K}-group (we write $G \in \text{Min(}\mathcal{K}\text{)}$), if $G \not\in \mathcal{K}$ but every proper subgroup and every proper quotient of G belongs to \mathcal{K}.

For the class $\mathcal{K} = \mathcal{A}$ of all abelian groups, the structure of the groups in $\text{Min(}\mathcal{A}\text{)}$ can easily be derived from results of Miller-Moreno and Rédei (see [1, p. 281] and [1, p. 309]) and Lemma 2.1 below. Indeed, it is easy to see that such a group G

(*) Indirizzo dell’A.: Institut für Mathematik, Campus Hubland Nord, 97074 Würzburg, Germany
E-mail: brandl-verlag@t-online.de

(**) Indirizzo dell’A.: Largo F.Ili Alinari n. 15, 50123 Firenze, Italy
E-mail: gabycorsi26@gmail.com

(***) Indirizzo dell’A.: Dipartimento di Matematica e Informatica U. Dini, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
E-mail: luigi.serena@unifi.it
is either a semidirect product $G = [N]Q$ of a minimal normal subgroup N by a complement Q of prime order, or it is one of the following groups:

i) $G_r = \langle a, b \mid a^{p^r} = b^p = 1, a^b = a^{1+p^{r-1}} \rangle$, $r \geq 2$;

ii) $G = \langle a, b \mid a^p = b^p = 1, [a, b] = c, c^p = 1, [a, c] = [b, c] = 1 \rangle$, p odd;

iii) the quaternion group Q_8.

G_r is of exponent p^r, and from i), ii), and iii) it follows that, for every exponent $p^r \neq 2, 4$, there exists precisely one p-group $G \in \text{Min}(\mathcal{A})$ of exponent p^r. If $p^r = 4$ we get two groups: the dihedral group D_4 and the quaternion group Q_8, while the case $p^r = 2$ does not allow any such group.

In this paper, we discuss the minimal non-\mathcal{N}_2-groups, where \mathcal{N}_2 denotes the class of all nilpotent groups of class ≤ 2. The structure of non-nilpotent groups $G \in \text{Min}(\mathcal{N}_2)$ follows immediately from the aforementioned results of Miller-Moreno and Rédei. Hence we will restrict attention to finite p-groups.

We prove that the p-groups in $\text{Min}(\mathcal{N}_2)$ are either 2-generated or 3-generated 2-Engel. In order to give information on the p-groups in $\text{Min}(\mathcal{N}_2)$ we determine the structure of the 2-generated free groups in the variety \mathcal{W} of all nilpotent groups of exponent p^r ($r \geq 2$) and class three, satisfying the law $[x, y, z]^{p} = 1$, and the structure of the 3-generated free groups in the variety \mathcal{V} of all 2-Engel groups of exponent 3^r. We prove that there is a unique 2-generated group of exponent p in $\text{Min}(\mathcal{N}_2)$: its order is p^4 with $p \geq 5$. If G is a 2-generated group in $\text{Min}(\mathcal{N}_2)$ of exponent p^r with $r \geq 2$ and p odd we see that $|G| \leq p^{3r}$; if $p = 2$, $r \geq 3$ then $|G| \leq 2^{3(r-1)}$; and if $p = 2$ and $r = 2$ then $|G| \leq 2^{3r-1}$. We give an explicit construction of the groups in $\text{Min}(\mathcal{N}_2)$ of exponent p^r and maximal order and we show that such groups are all isomorphic except in the case $p = 2$ and $r \geq 4$. If G is a 3-generated group of exponent 3 in $\text{Min}(\mathcal{N}_2)$, we show that $|G| = 3^7$ and G is isomorphic to the 3-generated relatively free group in the variety of all groups of exponent 3 but the groups of exponent 9 of maximal order in $\text{Min}(\mathcal{N}_2)$ are not isomorphic.

In the following the notation is standard. $G = [N]Q$ indicates the semidirect product of the normal subgroup N by the subgroup Q, and $d(G)$ indicates the minimal number of generators of G. Moreover $o(x)$ is the order of the element x. If \mathcal{V} is a variety, $\text{Fr}_n(\mathcal{V})$ denotes the relatively free group of rank n in \mathcal{V}.

All groups considered in this paper are finite.
2. Preliminaries

Lemma 2.1. A finite nilpotent group of class \(c \geq 2 \) has all of its proper quotients of class at most \(c - 1 \) if and only if \(Z(G) \) is cyclic and the \(c \)-th term of the lower central series \(\Gamma_c(G) \) is of order \(p \).

Proof. Suppose that \(G \) has class \(c \) and that all proper quotients of \(G \) are of class at most \(c - 1 \). Then \(G \) is monolithic. Indeed, if \(N_1 \) and \(N_2 \) are two distinct minimal normal subgroups, then \(G = G/N_1 \cap N_2 \) is embedded in \(G/N_1 \times G/N_2 \) which is nilpotent of class at most \(c - 1 \). As \(G \) is monolithic, \(Z(G) \) is cyclic. If \(N \) is the minimal normal subgroup of \(G \), then \(G/N \) is nilpotent of class at most \(c - 1 \). So \(\Gamma_c(G) = N \).

Conversely let \(G \) be a nilpotent group of class \(c \) and assume that \(Z(G) \) is cyclic and \(\Gamma_c(G) \) is of order \(p \). Then for every normal subgroup \(K \) of \(G \), we have \(\Gamma_c(G) \trianglelefteq K \). So

\[
\Gamma_c(G/K) = \Gamma_c(G)K/K = 1.
\]

\(\square \)

Lemma 2.2. Let \(G \) be a nilpotent group such that all of its proper subgroups have class at most \(c \) but \(G \) has not class \(c \). Then \(Z(G) \subseteq \Phi(G) \).

Proof. Let \(M \) be a maximal subgroup of \(G \). Then \(M \trianglelefteq G \). Suppose that \(Z(G) \nsubseteq M \). Then \(G = Z(G)M \) and so \(G \) has class \(c \), a contradiction. \(\square \)

Lemma 2.3. Let \(G \) be a \(p \)-group in \(\text{Min}(N_2) \). Then either \(G \) can be generated by two elements, or \(G \) is a 2-Engel 3-group generated by three elements.

Proof. Suppose that \(G \) cannot be generated by two elements. Then for all \(x, y \in G \) we have that \(\langle x, y \rangle \) is a proper subgroup of \(G \). So it is nilpotent of class 2. In particular \(G \) satisfies the 2-Engel condition. If \(p \neq 3 \) then \(G \) is nilpotent of class two ([I, p. 288]), a contradiction. So \(p = 3 \). Moreover \(G \) is generated by three elements, otherwise all subgroups generated by three elements would be proper subgroups of \(G \), and \(G \) would be nilpotent of class two, a contradiction. \(\square \)

We now give a sufficient criterion for a \(p \)-group generated by two elements to have all of its proper subgroups of class two.

Lemma 2.4. Let \(G \) be a \(p \)-group which can be generated by two elements. Assume that \([\Phi(G), G] \leq Z(G) \). Then every proper subgroup of \(G \) is nilpotent of class two.
Proof. It suffices to show that every maximal subgroup M of G is of class two. As G is generated by two elements, we have $G/\Phi(G) \simeq \mathbb{Z}_p \times \mathbb{Z}_p$. So $M = \langle \Phi(G), x \rangle$ for some x in M. We get $M' = \Phi(G)' \cdot [\Phi(G), x]$. By hypothesis, both factors are contained in $Z(G)$, so that the class of M is two. \hfill \Box

3. Min(\mathcal{N}_2)-groups with two generators

We start with the smallest case:

Proposition 3.1. Let $G \in \text{Min}(\mathcal{N}_2)$ be a group of prime exponent p. If $d(G) = 2$, then $p \geq 5$, $|G| = p^4$ and $G \cong [N]/(u)$, where $N = \langle v_1 \rangle \times \langle v_2 \rangle \times \langle v_3 \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$ and the action of u on N is given by

$$v_1^u = v_1, \quad v_2^u = v_1v_2, \quad v_3^u = v_2v_3.$$

Proof. As $\exp(G) = p$, we infer that $p \neq 2$ and $|G/G'| = p^2$. Moreover $G'/\Gamma_3(G)$ is cyclic of order p and by Lemma 2.1, we have $|\Gamma_3(G)| = p$. So we get $|G| = p^4$. An inspection of the groups of order p^4 (see [1, p. 346]) yields the result. \hfill \Box

A group G in $\text{Min}(\mathcal{N}_2)$ of exponent p^r belongs to the variety \mathcal{W} of all groups of exponent p^r and nilpotent of class three satisfying the law $[x, y, z]^p = 1$ (see Lemma 2.1).

We now collect some information of $Fr_2(\mathcal{W})$.

Proposition 3.2. Let p^r be a power of a prime p and $r \geq 2$. Let $F = Fr_2(\mathcal{W})$ with free generators x, y. Then

a) $F/F' \simeq \mathbb{Z}_p \times \mathbb{Z}_{p^r}$ and either $|F'/\Gamma_3(F)| = p^r$ if $p \geq 3$ or $|F'/\Gamma_3(F)| = 2r^{-1}$. Moreover $\Gamma_3(F) \simeq \mathbb{Z}_p \times \mathbb{Z}_p$ and hence $|F| = p^{3r+2}$ for $p \geq 3$; and $|F| = 2^{3r+1}$ if $p = 2$;

\begin{equation*}
\begin{cases}
\mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_p \times \mathbb{Z}_p & \text{if } p \geq 3, \\
\mathbb{Z}_{2^{r-2}} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \text{if } p = 2 \text{ and } r \geq 3, \\
\mathbb{Z}_2 \times \mathbb{Z}_2 & \text{if } p = 2 \text{ and } r = 2;
\end{cases}
\end{equation*}

b) $Z(F) \simeq [F^p, F] \leq Z(F)$;

d) every proper subgroup of F is nilpotent of class two.
Proof. a) As \(\exp(F) = p^r \), we infer that \(|F/F'| \leq p^{2r} \). Moreover,
\(F'/\Gamma_3(F) = \langle [x, y] \Gamma_3(F) \rangle \) is cyclic of exponent dividing \(p^r \) if \(p \neq 2 \) and
\(2^{r-1} \) otherwise (we have \(1 \equiv (xy)^{2r} \equiv x^{2r} y^{2r} [y, x]^{(\frac{2r}{r-1})} \pmod{\Gamma_3(F)} \), so
\([y, x]^{2r-1} \equiv 1 \pmod{\Gamma_3(F)} \)). Then \(|F'/\Gamma_3(F)| \leq p^r \) if \(p \neq 2 \) or \(\leq 2^{r-1} \) otherwise. Finally, we have \(|\Gamma_3(F)| \leq p^2 \), because there are only two basic commutators of weight 3. This implies \(|F| \leq p^{3r+2} \) if \(p \neq 2 \), \(|F| \leq 2^{3r+1} \) otherwise.

We now construct a group \(F_0 \), belonging to the variety \(W \), which has order either \(p^{3r+2} \) if \(p \geq 3 \), or \(2^{3r+1} \). So it will be \(F_0 \simeq F_{r_2}(W) \).

Let \(N = [A] \langle x \rangle \) be the semidirect product of the abelian group
\[A = \langle u \rangle \times \langle v_1 \rangle \times \langle v_2 \rangle, \]
with the cyclic group \(\langle x \rangle \) of order \(p^r \); where
\[o(v_1) = o(v_2) = p \]
and
\[o(u) = \begin{cases} p^r & \text{if } p \geq 3, \\ 2^{r-1} & \text{otherwise.} \end{cases} \]

The action of \(x \) on \(A \) is given by
\[u^x = u v_1, \quad v_1^x = v_1, \quad v_2^x = v_2. \]

Then we consider the group \(F_0 = [N] \langle y \rangle \), where \(y \) is a cyclic group of order \(p^r \) and the action of \(y \) on \(N \) is given by
\[x^y = x u, \quad u^y = u v_2, \quad v_1^y = v_1, \quad v_2^y = v_2. \]

We can immediately verify that
\[u = [x, y], \quad v_1 = [u, x] = [x, y, x], \quad v_2 = [u, y] = [x, y, y]. \]

So \(F_0 = \langle x, y \rangle \). Moreover
\[F'_0 = A, \quad F_0/F'_0 = \langle x F'_0 \rangle \times \langle y F'_0 \rangle \simeq \mathbb{Z}_{p^r} \times \mathbb{Z}_{p^r}, \quad F'_0/\Gamma_3(F_0) = \langle u \Gamma_3(F_0) \rangle, \]
\[\Gamma_3(F_0) = \langle v_1 \rangle \times \langle v_2 \rangle \simeq \mathbb{Z}_p \times \mathbb{Z}_p, \quad \Gamma_3(F_0) \leq Z(F_0). \]

We observe that, if \(p \geq 3 \), then \(\langle u \Gamma_3(F_0) \rangle \simeq \mathbb{Z}_{p^r} \), while if \(p = 2 \), then \(\langle u \Gamma_3(F_0) \rangle \simeq \mathbb{Z}_{2^{r-1}} \). By the above conditions we deduce that \(F_0 \) is nilpotent of class three with \(|F_0| = p^{3r+2} \) if \(p \geq 3 \) while, if \(p = 2 \) then \(|F_0| = 2^{3r+1} \).

It remains to show that the exponent of \(F_0 \) is \(p^r \) for all \(p \).
First of all we prove that the exponent of N is p^r for all p. (We note that for $p \geq 3$ we have $\exp(N) = p^r$, and for $p \geq 5$ we have $\exp(F_0) = p^r$ by the regularity of these groups).

Let $w \in N$ where $w = ax^k$ with $a \in A$. Since N is of class two we have

$$w^n = (ax^k)^n = a^n x^{kn} [x^k, a]^{\binom{n}{2}}.$$

Since $[x^k, a] \in \Gamma_3(F_0)$ which has exponent p and $r \geq 2$, we have that $[x^k, a]^{\binom{r}{2}} = 1$. So $(ax^k)^{p^r} = 1$.

If w is an element of N we set

$$[w, y^h] = a_1 \in A, \quad [a_1, w] = c_1 \in \Gamma_3(F_0), \quad [a_1, y^h] = c_2 \in \Gamma_3(F_0).$$

For $n \geq 2$ it is easy to prove by induction the following results

(1) \[[w, y^{hn}] = a^n c_2^{\binom{n}{2}} \]

and

(2) \[(w y^h)^n = w^n y^{hn} a_1^{-\binom{n}{2}} c_1^{-\binom{n}{3}} c_2^{-2\binom{n}{3} - \binom{n}{2}}. \]

Since N is of exponent p^r and a has order 2^{r-1} for $p = 2$, we have by (2) that the exponent of F_0 is p^r for all p.

From now on we identify F_0 with F.

b) By the structure of F we can write an element $z \in F$ in the form

$$z = u^k v_1^i v_2^m x^i y^j.$$

We have $z \in Z(F)$ if and only if $[z, x] = [z, y] = 1$. So

$$1 = [z, y] = [u^k x^i y^j, y] = [u^k, y][u^k, x^i][x^i, y]$$

(3) \[= [u, y]^k [x, y]^i v_1^{\binom{i}{2}} = u^i v_1^{\binom{i}{2}} v_2^{k+ij}. \]

Similarly we have

(4) \[1 = [z, x] = u^{-j} v_1^k v_2^{-\binom{j}{2}}. \]

Therefore, for $p \geq 3$ we have $i \equiv j \equiv 0 \pmod{p^r}$ and $k \equiv 0 \pmod{p}$. It follows $z = u^{pk_1} v_1^i v_2^m$ with $k = pk_1$. This implies

$$Z(F) = \langle u^p \rangle \times \langle v_1 \rangle \times \langle v_2 \rangle \simeq \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_p \times \mathbb{Z}_p.$$
If \(p = 2 \) we must have \(i \equiv j \equiv 0 \pmod{2^{r-1}} \) and \(k \equiv 0 \pmod{2} \). So we have \(z = u^{2k_1}v_1^{i_1}v_2^{m}x^{2^{r-1}i_1}y^{2^{r-1}j_1} \) where \(k = 2k_1 \), \(i = 2^{r-1}i_1 \), \(j = 2^{r-1}j_1 \). Then, if \(r \geq 3 \) we get

\[
Z(F) = \langle u^2 \rangle \times \langle v_1 \rangle \times \langle v_2 \rangle \times \langle x^{2^{r-1}} \rangle \times \langle y^{2^{r-1}} \rangle \cong \mathbb{Z}_{2^{r-2}} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.
\]

If \(p = 2 \) and \(r = 2 \), we have \(u^2 = 1 \), so \(z = v_1^j v_2^m x^{2i_1} y^{2j_1} \) with \(i = 2i_1 \), \(j = 2j_1 \). But the condition \(\binom{j}{i} \equiv 0 \pmod{2} \) implies \(i_1(2i_1 - 1) \equiv 0 \pmod{2} \). So \(i_1 \equiv 0 \pmod{2} \). Similarly we obtain \(j_1 \equiv 0 \pmod{2} \). Therefore \(z = v_1^i v_2^m \) and

\[
Z(F) = \langle v_1 \rangle \times \langle v_2 \rangle = \Gamma_3(F) \cong \mathbb{Z}_2 \times \mathbb{Z}_2.
\]

c) Observe that for all \(a, b, c \in F \) we have \([a^p, b, c] = [a, b, c]^p = 1 \). So \([F^p, F] \leq Z(F) \).

d) We have \(\Phi(F), F = \left[F', F^p, F\right] \). Since \([F', F] = \Gamma_3(F) \leq Z(F) \) and \([F^p, F] \leq Z(F) \) by Part c), it follows that \(\Phi(F), F \leq Z(F) \). So by Lemma 2.4 every proper subgroup of \(F \) is nilpotent of class two.

Theorem 3.3. Let \(p \) be a prime and \(r \geq 2 \).

a) Let \(G \) be a 2-generator group in \(\text{Min}(\mathcal{N}_2) \) with \(\exp G = p^r \). Then

\[
|G| \leq \begin{cases}
 p^{3r} & \text{if } p \geq 3, \\
 2^{3(r-1)} & \text{if } p = 2, r \geq 3, \\
 2^{3r-1} & \text{if } p = 2, r = 2.
\end{cases}
\]

b) For each one of the above three cases, there is a group of exponent \(p^r \) in \(\text{Min}(\mathcal{N}_2) \) whose order attains the upper bound.

Proof. a) Every 2-generator group \(G \in \text{Min}(\mathcal{N}_2) \) of exponent \(p^r \) is a quotient \(F/H \) of \(F \) where \(H \cap Z(F) \) does not contain \(\Gamma_3(F) \) because \(G \cong F/H \) is of class three. As \(Z(G) \) is cyclic by Lemma 2.1, also \(Z(F)/(H \cap Z(F)) \) must be cyclic. Then \(H \cap Z(F) \) is abelian of rank \(\geq 2 \) if \(p \neq 2 \); of rank \(\geq 4 \) if \(p = 2 \) and \(r \geq 3 \); of rank 1 if \(p = 2 \) and \(r = 2 \). Thus if \(p \geq 3 \) we have \(|H| \geq p^2 \) and \(|G| \leq p^{3r} \); if \(p = 2 \) and \(r \geq 3 \) we have \(|H| \geq 2^4 \) and \(|G| \leq 2^{3(r-1)} \). Finally we observe that, if \(p = 2 \) and \(r = 2 \), no quotient of \(F \) by a proper subgroup of \(Z(F) \) is in \(\text{Min}(\mathcal{N}_2) \). In fact, there are only three proper subgroups of \(Z(F) \), namely \(H_1 = \langle v_1 \rangle \), \(H_2 = \langle v_2 \rangle \), \(H_3 = \langle v_1 v_2 \rangle \). We see that in each quotient \(F/H_i \), \((i = 1, 2, 3) \) there are couples of independent elements of \(Z(F/H_i) \); for example, \(x^2 H_1, v_2 H_1 \) in \(Z(F/H_1) \); \(y^2 H_2, v_1 H_2 \) in \(Z(F/H_2) \) and \((xy)^2 H_3, v_1 v_2 H_3 \) in \(Z(F/H_3) \). So no \(F/H_i \) belongs to \(\text{Min}(\mathcal{N}_2) \) and therefore \(|G| \leq 2^{3r-1} \).
b) For the first two cases of a) we consider respectively the subgroups of \(Z(F)\):

\[
\begin{align*}
R_1 &= \langle v_2, u^{r-1}v_1 \rangle \quad \text{if } p \geq 3, \; r \geq 2, \\
R_2 &= \langle v_2, v_1u^{2r-2}, v_1x^{2r-1}, v_1y^{2r-1} \rangle \quad \text{if } p = 2, \; r \geq 4, \\
R_3 &= \langle v_2, u^2, x^4, v_1y^4 \rangle \quad \text{if } p = 2, \; r = 3.
\end{align*}
\]

We want to show that \(G_t = F/R_t \in \text{Min}(\mathcal{N}_2) \; (t = 1, 2, 3)\). First, since \(R_t\) does not contain \(\Gamma_3(F)\) it follows that \(G_t\) is of class three. Moreover, as every proper subgroup of \(F\) is of class two, the same holds for \(G_t\). By definition of \(G_t\), we also have \(|\Gamma_3(G_t)| = p\). Therefore, by Lemma 2.1, it is sufficient to show that \(Z(G_t)\) is cyclic.

Let us consider a typical element \(zR_t \in G_t\) with \(z = u^kv_1^l v_2^m x^i y^j \in F\). Then \(zR_t \in Z(F/R_t)\) if and only if \([z, y] \in R_t\) and \([z, x] \in R_t\). By (3) and (4), this holds if and only if

\[
\begin{align*}
u^i v_1^{(l)} v_2^{k+ij} &\in R_t \\
u^{-j} v_1^k v_2^{-(l)} &\in R_t
\end{align*}
\]

For \(p \geq 3\) this happens if and only if there are \(\alpha, \beta \in \mathbb{Z}\) such that

\[
\begin{align*}
u^i v_1^{(l)} &= (u^{p^{r-1}}v_1)^\alpha, \\
u^{-j} v_1^k &= (u^{p^{r-1}}v_1)^\beta.
\end{align*}
\]

By equation (5) we obtain that \(i \equiv \alpha p^{r-1} \pmod{p^r}\) and \(i(\frac{r-1}{2}) \equiv \alpha \pmod{p}\). So

\[
\begin{align*}
i \left(1 - \frac{i - 1}{2}p^{r-1}\right) &\equiv 0 \pmod{p^r}
\end{align*}
\]

which gives \(i \equiv 0 \pmod{p^r}\).

By Equation (6) we get \(-j \equiv p^{r-1}\beta \pmod{p^r}\) and \(k \equiv \beta \pmod{p}\). So

\[
\begin{align*}j &\equiv -p^{r-1}k \pmod{p^r}.
\end{align*}
\]

Therefore, we have that \(zR_1 \in Z(F/R_1)\) if and only if

\[
z = u^k v_1^l y^{p^{r-1}} = (u^{p^{r-1}}v_1^l).
\]

We observe that

\[
(u^{p^{r-1}})^{-p^{r-1}} = u^{-p^{r-1}} y^{p^{2r-2}} = u^{-p^{r-1}}.
\]
Since \(u^{p^{r-1}}v_1 \in R_1 \), we have \(v_1 R_1 = u^{-p^{r-1}}R_1 = (uy^{-p^{r-1}})^{-p^{r-1}}R_1 \). Then
\(zR_1 = (uy^{-p^{r-1}})^{k-p^{r-1}}R_1 \). Thus \(Z(F/R_1) = \langle uy^{-p^{r-1}} \rangle R_1 \) is cyclic.

If \(p = 2 \) and \(r \geq 3 \) an analogous calculation yields

\[
(9) \quad u^i v_1^{(i/2)} = (u^{2^{r-2}} v_1)^\alpha
\]
and

\[
(10) \quad u^{-j} v_1^k = (u^{2^{r-2}} v_1)^\beta
\]

By (9) and (10) we obtain

\[
i(1 - (i - 1)2^{r-3}) \equiv 0 \pmod{2^{r-1}}
\]
and

\[
j \equiv -2^{r-2}k \pmod{2^{r-1}}.
\]

So if \(r \geq 4 \), we obtain \(i \equiv 0 \pmod{2^{r-1}} \); while if \(r = 3 \) we have \(i \equiv 0 \pmod{2} \).

In the case \(p = 2 \), \(r = 4 \) it follows that \(zR_2 \in Z(F/R_2) \) if and only if
\(z = (uy^{-2^{r-1}})^k v_1^{r-1} x^{2^{r-1}}y^i \) with \(i = 2^{r-1} - 1 \). Since
\((uy^{-2^{r-1}})^2 = u^{-2^{r-2}} \), we have
\(u^{-2^{r-2}} R_2 = v_1 R_2 = x^{2^{r-1}} R_2 = y^{2^{r-1}} R_2 \). Thus
\(zR_2 = (uy^{-2^{r-1}})^{k-2^{r-2}(i+1)} \) and
\(Z(F/R_2) = \langle uy^{-2^{r-2}} \rangle R_2 \) is cyclic.

In the case \(p = 2 \), \(r = 3 \) we have \(zR_3 \in Z(F/R_3) \) if and only if
\(z = (uy^{-2})^k v_1^i \). Since
\((uy^{-2})^2 = u^{-2} y^4 = u^{-2} \) and \(u^{-2} R_3 = v_1 R_3 \), we have
\(zR_3 = (uy^{-2})^{k-2l} R_3 \). Thus, \(Z(F/R_3) = \langle uy^{-2} R_3 \rangle \) is cyclic.

Finally, in the case \(p = 2 \) and \(r = 2 \), we consider the normal (non central) subgroup
\(R_4 = \langle v_2, y^2 \rangle \). Then
\(zR_4 \in Z(F/R_4) \) if and only if
\(z = u^k v_1^i x^j y^j \) with \(k \equiv 0 \pmod{2} \),
\(j \equiv 0 \pmod{2} \), \(i \equiv 0 \pmod{2} \) and
\(j(i-1)2 \equiv 0 \pmod{2} \). The last two conditions implies \(i \equiv 0 \pmod{4} \). Then
\(zR_4 = v_1^i R_4 \) and thus \(Z(F/R_4) = \langle v_1 \rangle R_4 \) is cyclic.

\[\square \]

Theorem 3.4. Let \(p \) be a prime and \(r \geq 2 \). If \(p \geq 3 \) or \(p = 2 \) and either \(r = 3 \) or \(r = 2 \), then all 2-generator groups in \(\text{Min}(\mathcal{N}_2) \) of exponent \(p^r \) and maximal order are isomorphic.

Proof. Using the same notation as in the proof of Theorem 3.3, let \(F/H \in \text{Min}(\mathcal{N}_2) \) be of exponent \(p^r \) \((p \geq 3)\) and maximal order \(|F/H| = p^{3r}\). By the proof of Theorem 3.3 it follows that \(H \simeq \mathbb{Z}_p \times \mathbb{Z}_p \). We will show that there exists
an automorphism \(\varphi \) of \(F \) with \(\varphi(H) = R_1 \) and so \(F/H \cong F/R_1 \). Since \(F/H \) is of nilpotency class three, we have that \(\Gamma_3(F) \not\subseteq H \). As \(Z(F) \) is of rank three and \(H \cong \mathbb{Z}_p \times \mathbb{Z}_p \), we get \(|H \cap \Gamma_3(F)| = p \). We construct the automorphism \(\varphi \) in two steps. First we give an automorphism which maps \(\langle \chi \rangle \) with \(\chi \) and a subgroup \(\langle \psi \rangle \) of nilpotency class three, we have that \(\varphi(\chi) = \chi \) and \(\varphi(\psi) = \psi \). Therefore we may assume that \(\varphi(\chi) = \chi \) and \(\varphi(\psi) = \psi \). Since \(\varphi(S) = S \) and \(\varphi(\psi^2) = \psi^2 \), we get \(|\varphi(\chi) \langle \chi \rangle | = 2^4 \). Finally let \(\varphi(\chi) = \chi \) and \(\varphi(\psi) = \psi \). Then we have \(\varphi(\chi) = \chi \) and \(\varphi(\psi) = \psi \). In both cases we have now found an automorphism of \(F \) which maps \(H \) onto a subgroup \(H^* \) of \(Z(F) \) with

\[
H^* \cap \Gamma_3(F) = \langle v_2 \rangle.
\]

Therefore we may assume that \(H^* = \langle v_2, v^n_1 u^{np^{r-1}} \rangle \) with \(m, n \in \mathbb{Z} \) and \(n \not\equiv 0 \pmod{p} \). Since \(n \not\equiv 0 \pmod{p} \), we have

\[
H^* = \langle v_2, v^n_1 u^{p^{r-1}} \rangle
\]

with \(h \equiv mn^{-1} \pmod{p} \). First let \(h \not\equiv 0 \pmod{p} \). We consider the automorphism \(\gamma \) of \(F \) such that \(\gamma(x) = x^h \) and \(\gamma(y) = y \). We have \(\gamma(v_2) = v_2^h \in H^* \) and

\[
\gamma([x, y] [x, y]^{p^{r-1}}) = [x, y, x]^{h^2} [x, y]^{hp^{r-1}} = ([x, y, x]^{h^2} [x, y]^{hp^{r-1}}) = H^*.
\]

So \(\gamma(v_1 u^{p^{r-1}}) = (v_1^h u^{p^{r-1}})^h \) and \(R^v_1 = H^* \).

Finally let \(h \equiv 0 \pmod{p} \). So \(H^* = \langle v_2, u^{p^{r-1}} \rangle \). Since \([x^{p^{r-1}}, y] = u^{p^{r-1}} \in H^* \), we have that \(x^{p^{r-1}} H^* \in Z(F/H^*) \). Similarly \(y^{p^{r-1}} H^* \in Z(F/H^*) \). But the images of \(x^{p^{r-1}} \) and \(y^{p^{r-1}} \) under the canonical epimorphism of \(F/H^* \) onto \(F/F' \cong \mathbb{Z}_{p^r} \times \mathbb{Z}_{p^r} \) are independent, and so the center of \(F/H^* \) is not cyclic. This case does not occur.

Let \(F/H \in \text{Min}(N_2) \) be of exponent \(2^3 \) and maximal order \(2^6 \). Then \(|H| = 2^4 \) and \(H \) must contain exactly one of the three subgroups \(\langle v_1 \rangle, \langle v_2 \rangle, \langle v_1 v_2 \rangle \) of \(\Gamma_3(F) \). The automorphism \(\alpha \) of \(F \), defined by \(\alpha(x) = y \) and \(\alpha(y) = x^{-1} y^{-1} \), is of order 3 and acts transitively on the non-identity elements of \(\Gamma_3(F) \). So without loss of generality we may assume \(H \cap \Gamma_3(F) = \langle v_2 \rangle \) and \(v_1 \not\in H \). Now consider the intersection of \(H \) with the subgroup \(E = \langle v_1, v_2, u^2 \rangle = \Omega_1(F') \). Since \(E/E \cap H \cong EH/H \leq Z(F/H) \) which is cyclic, we get \(|E \cap H| = 2^2 \).
The subgroups of E of order 2^2, that contain v_2 but not v_1 are precisely $L_1 = \langle v_2, u^2 \rangle$ and $L_2 = \langle v_2, u^2 v_1 \rangle$. If $L_2 \leq H$, then $v_1 L_2, x^2 L_2, u y^2 L_2 \in Z(F/L_2)$. So $Z(F/H)$ is not cyclic, because $Z(F/H) \cong Z((F/L_2)/(H/L_2))$ contains $Z(F/L_2)/(H/L_2)$ and $x^2 L_2, u y^2 L_2 \not\in H/L_2$ since $H \leq Z(F)$. Therefore $L_1 \leq H$ and H/L_1 is a subgroup of rank 2 of $Z(F/L_1)$ that does not contain $v_1 L_1$. Since $|Z(F)/L_1| = 2^3$, we get the following four subgroups:

$$\begin{align*}
H_1 &= \langle v_2, u^2, v_1 x^4, v_1 y^4 \rangle, & H_2 &= \langle v_2, u^2, x^4, v_1 y^4 \rangle, \\
H_3 &= \langle v_2, u^2, v_1 x^4, y^4 \rangle, & H_4 &= \langle v_2, u^2, x^4, y^4 \rangle.
\end{align*}$$

By a simple calculation, using the relations (3) and (4), we see that F/H_1 and F/H_2 have cyclic center, while the centers of the two remaining quotients are not cyclic. Finally, the theorem for the case $p = 2$ and $r = 3$ is proved by the automorphism β defined by $\beta(x) = xy$, $\beta(y) = y$ that fixes v_2 and u^2 and maps H_1 onto H_2.

Let $F/H \in \text{Min}(N_2)$ be of exponent 4 and maximal order 2^5. Then $|H| = 4$ and F/H is nilpotent of class 3 with cyclic center (see Lemma 2.1). Since $\Gamma_3(F) = \langle v_1, v_2 \rangle \cong \mathbb{Z} \times \mathbb{Z}$, we must have $|H \cap \Gamma_3(F)| = 2$. As in the previous case, without loss we may assume $H \cap \Gamma_3(F) = \langle v_2 \rangle$. Let $L = \langle v_2 \rangle$. It is easy to see that $Z(F/L) = \langle v_1 L \rangle \times \langle y^2 L \rangle \cong \mathbb{Z} \times \mathbb{Z}$. Now $H/L \leq F/L$ and $|H/L| = 2$. If $v_1 L \in H/L$, then $\Gamma_3(F) = \langle v_1, v_2 \rangle \leq L$ and so F/L would be of class two, a contradiction. Hence $v_1 \not\in H/L$, and hence either $H = \langle v_2, y^2 \rangle$ or $H = \langle v_2, v_1 y^2 \rangle$. But the automorphism γ of F, defined by $\gamma(x) = x$ and $\gamma(y) = x^2 y$, centralizes $\Gamma_3(F)$ and maps y^2 to $v_1 y^2$. Therefore all the quotients $F/H \in \text{Min}(N_2)$ of order 2^5 are isomorphic.

Remark 3.1. In the case $p = 2$ and $r \geq 4$, there are non-isomorphic groups in $\text{Min}(N_2)$ of exponent 2^r and maximal order $2^{3(r-1)}$. In fact, the two quotients F/R_2 and F/R_2^*, where $R_2 = \langle v_2, v_1 u^{2^{r-2}}, v_1 x^{2^{r-1}}, v_1 y^{2^{r-1}} \rangle$ and $R_2^* = \langle v_2, v_1 u^{2^{r-2}}, x^{2^{r-1}}, y^{2^{r-1}} \rangle$, have cyclic center but one can check that the power 2^{r-1} of an element $g = u^k v_1^j v_2^m x^i y^j$ in F is

$$g^{2^{r-1}} = (u^k x^i y^j)^{2^{r-1}} = (x^{2^{r-1}})^i (y^{2^{r-1}})^j (u^{-2^{r-2}(2^{r-1})})^i j;$$

so we have

$$g^{2^{r-1}} R_2 = v_1^{i+j+ij} R_2$$

and

$$g^{2^{r-1}} R_2^* = v_1^{ij} R_2^*.$$

It follows that the number of the elements of order 2^r is different in the two quotients and $F/R_2, F/R_2^*$ are not isomorphic.
Remark 3.2. The referee suggested to investigate the existence of groups in $\text{Min}(N_2)$ of exponent p^r and order p^k for all k with $r + 2 \leq k < 3r$. He gave an example of minimal order p^{r+2}. Namely the group:

$$G_1 = \langle \tilde{x}, \tilde{y}, \tilde{u} \mid \tilde{x}^{p^r} = 1 = \tilde{y}^{p^r} = \tilde{u}^p, [\tilde{x}, \tilde{y}] = \tilde{u}, [\tilde{u}, \tilde{x}] = \tilde{x}^{p^{r-1}}, [\tilde{u}, \tilde{y}] = 1 \rangle.$$
We have $G_1 = F/L_1$ where $L_1 = \langle v_2, u^p, x^{p^{r-1}}v_1^{-1}, y^p \rangle$.

An other example of minimal order non-isomorphic to the previous one is given by

$$G_2 = \langle \tilde{x}, \tilde{y}, \tilde{u} \mid \tilde{x}^{p^r} = 1 = \tilde{y}^{p^r} = \tilde{u}^p, [\tilde{x}, \tilde{y}] = \tilde{u}, [\tilde{u}, \tilde{x}] = \tilde{y}^{p^{r-1}}, [\tilde{u}, \tilde{y}] = 1 \rangle;$$
in fact, G_2 has an abelian maximal subgroup $\langle \tilde{u}, \tilde{y} \rangle$, while G_1 has no abelian maximal subgroup. This is the quotient of F by the subgroup:

$$L_2 = \langle v_2, u^p, x^p, y^{p^{r-1}}v_1^{-1} \rangle.$$

Other examples of order $p^{r+\frac{4r+1}{2}}$, with $r = 2h + 1$, are given by splitting meta-cyclic groups:

$$M_h = \langle \tilde{x}, \tilde{y}, \tilde{u} \mid \tilde{x}^{p^{2h+1}} = 1 = \tilde{x}^{p^{h+1}}, [\tilde{y}, \tilde{x}] = \tilde{y}^{p^h} \rangle.$$
These are the quotients of F by the subgroups:

$$N_h = \langle v_2, uy^h, x^{p^{h+1}}, v_1y^{p^{2h}} \rangle.$$

The problem of the existence of groups in $\text{Min}(N_2)$ of order other than of the maximal one seems of non easy solution. We have to construct quotients F/L of F with cyclic center. Considering the automorphisms α and β used in the proof of the Theorem 3.4, we can assume, W.L.O.G., that $L \geq H^* = \langle v_2, u^{p^{r-1}} \rangle$.

We prove that the orders of such quotients cannot be greater than p^{2r+1}. Since $Z(F/H^*) \cong \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, L has to contain a subgroup isomorphic to $\mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_p \times \mathbb{Z}_p$. In fact

$$F/L \cong (F/H^*)/(L/H^*)$$
and

$$Z(F/L) \geq (Z(F/H^*)(L/H^*))/(L/H^*);$$
since both

$$Z(F/H^*) = \langle u^{pH^*}, v_1H^*, x^{p^{r-1}}H^*, y^{p^{r-1}}H^* \rangle$$
and

$$(Z(F/H^*)(L/H^*))/(L/H^*)$$
has to be cyclic, it follows that L/H^* has to contain a complement of $\langle v_1H^* \rangle$ in $Z(F/H^*)$. Thus $|L| \geq p^{r+1}$ and $|F/L| \leq p^{2r+1}$.

4. \(\text{Min}(N_2) \)-groups with three generators

It follows from Lemma 2.3 that a group \(G \in \text{Min}(N_2) \), with three generators and exponent \(3^r \) \((r \geq 1)\), belongs to the variety \(V \) of all 2-Engel groups of exponent \(3^r \). So \(G \) is a quotient of \(Fr_3(V) \).

Proposition 4.1. Let \(F = Fr_3(V) \) be the relatively free group with free generators \(x, y, z \) in the variety \(V \).

a) \(|\Gamma_3(F)| = 3 \) and \(|F| = 3^{6r+1} \).

b) \(Z(F) \cong Z_{3^r-1} \times Z_{3^r-1} \times Z_{3^r-1} \times Z_3 \).

c) Every proper subgroup of \(F \) is nilpotent of class two.

d) \(F \) belongs to \(\text{Min}(N_2) \) if and only if \(r = 1 \).

e) Let \(F/H \) be a quotient of \(F \) of class three. Then \(F/H \in \text{Min}(N_2) \) if and only if \(Z(F/H) \) is cyclic.

Proof. a) Note that \(F/F' \) is a 3-generated group of exponent \(3^r \), so \(|F/F'| \leq 3^{3r} \). Similarly, we have \(|F'/\Gamma_3(F)| \leq 3^{3r} \). Now we show that \(|\Gamma_3(F)| = 3 \). In fact, \(\Gamma_3(F) \) is generated by the basic commutators of weight three and, as \(F \) is 2-Engel, they are all equal to 1, except at most \([y, x, z]\) and \([z, x, y]\) (see, for example [2, p. 54]). Moreover, in a 2-Engel group \(G \), for all \(x_1, x_2, x_3 \in G \) the following conditions hold:

i) \([x_1, x_3, x_2] = [x_1, x_2, x_3]^{-1} \),

ii) \([x_1^{-1}, x_2] = [x_1, x_2^{-1}] = [x_1, x_2]^{-1} \)

(see (2) and (3) in the proof of Satz 6.5 in [1, p. 288]).

So we get

\[
[z, x, y] = [[x, z]^{-1}, y] \quad \text{by ii)} \\
\quad = [x, z, y]^{-1} \quad \text{by i)} \\
\quad = [x, y, z] = [[y, x]^{-1}, z] \quad \text{by ii)} \\
\quad = [y, x, z]^{-1}.
\]

Hence \(\Gamma_3(F) = \langle [x, y, z] \rangle \) is cyclic of order 3 (see [4, p. 358]) and \(|F| \leq 3^{3r+1} \).

We now construct a group \(F_0 \), belonging to the variety \(V \), which has order \(3^{3r+1} \). Then it follows that \(F_0 \cong F \) and \(|F| = 3^{3r+1} \).

Let \(A \) be the abelian group of exponent \(3^r \) defined by

\[
A = \langle z \rangle \times \langle v_1 \rangle \times \langle v_2 \rangle \times \langle v_3 \rangle \cong Z_{3^r} \times Z_{3^r} \times Z_{3^r} \times Z_3
\]

and let \(Q \) be the group of exponent \(3^r \) and of nilpotency class 2 defined by

\[
Q = \langle x, y \mid x^{3^r} = y^{3^r} = 1, u = [x, y], u^{3^r} = 1, [u, x] = [u, y] = 1 \rangle.
\]
Let $F_0 = [A]Q$ be the semidirect product of A and Q with the action of Q on A defined by

$$
\begin{align*}
 z^x &= zv_2^{-1}, & v_1^x &= v_1v_3, & v_2^x &= v_2, & v_3^x &= v_3, \\
 z^y &= zv_1, & v_1^y &= v_1, & v_2^y &= v_2v_3, & v_3^y &= v_3.
\end{align*}
$$

Since

$$u = [x, y], \quad v_1 = [z, y], \quad v_2 = [x, z], \quad v_3 = [v_1, x] = [v_2, y]$$

we obtain that $F_0 = \langle x, y, z \rangle$ and we have $|F_0| = |A||Q| = 3^{3r+1}3^r = 36r+1$.

Also we have

$$[z, u] = v_3, \quad [u, v_1] = [u, v_2] = [u, v_3] = 1.$$

So $F_0' = \langle u, v_1, v_2, v_3 \rangle$ and $\Gamma_3(F_0) = \langle v_3 \rangle$ is of order 3. Therefore F_0 is nilpotent of class 3.

To prove a) we only need to show that the group F_0 we have constructed belongs to the variety V. In other words, we have to show that F_0 is a 2-Engel group of exponent 3^r. Since the right 2-Engel elements form a subgroup of a group (see [3]), it is sufficient to check that the generators x, y, z of F_0 are right 2-Engel elements. In fact, by the definition of F_0, it is easy to see that the basic commutators of weight three on the generators, are the following:

$$[x, y, y] = [x, y, x] = [z, x, x] = [z, y, z] = [z, y, y] = [z, x, z] = 1$$

$$[x, y, z] = v_3^{-1}, \quad [z, y, x] = v_3.$$

We observe that $v_3 \in Z(F_0)$ by (11) and (12). Then it follows that F_0 is nilpotent of class 3 and $\Gamma_3(F_0) = \langle v_3 \rangle$ is of order 3.

Moreover, since A is abelian, the relations (11), (12) yield

$$\begin{align*}
 [x^\alpha, z^\alpha] &= v_2^{\alpha\alpha}, & [v_1^b, x^\alpha] &= v_3^{b\alpha}, & [z^a, y^\beta] &= v_1^{a\beta} \\
 [v_2^c, y^\beta] &= v_3^{c\beta}, & [u^y, z^a] &= v_3^{-a\gamma}
\end{align*}$$

where $a, b, c, \alpha, \beta, \gamma$ belong to \mathbb{Z}_{3^r}. Using the above relations, we can directly check that for all $g \in F_0$ we have

$$[x, g, g] = [y, g, g] = [z, g, g] = 1.$$

Write $g = vw$ with $v \in A$ and $w \in Q$. Since Q is of class 2 and A is abelian, we have $[x, w, w] = [x, v, v] = 1$. So

$$[x, g, g] = [x, v, w][x, w, v].$$
Letting $w = y^j s$, where $s \in \langle x, u \rangle$, and $v = z^j \widehat{v}$, where $\widehat{v} \in \langle v_1, v_2, v_3 \rangle$, the relations displayed in (11), (12), and (13) yield

$$[x, v, w] = [x, z^j, w] = [v^j_2, y^i] = v^{ij}_3$$

and

$$[x, w, v] = [x, y^i, v] = [u^i, z^j] = v^{-ij}_3.$$

So $[x, g, g] = 1$.

The proof that y is right 2-Engel is analogous.

For z we observe that, since A is abelian and $[z, Q]$ is contained in A, we have

$$[z, v, v] = [z, w, v] = z, w, v = 1.$$

Moreover, letting $w = x^h y^i u^k$, by relations (11), (12), and (13) we have

$$[z, w] = [z, x^h y^i u^k] = [z, y^i][z, x^h]c, \quad c \in Z(F_0).$$

It follows that

$$[z, w, w] = [v^i_1 v^j_{2h}, x^h y^i] = v^{hi}_3 v^{-hi}_3 = 1.$$

It remains to check that the exponent of F_0 is 3^r. By the Hall-Petrescu identity (see [1, p. 317]) we have

$$g^{3^r} = (wv)^{3^r} = v^{3^r} w^{3^r} c_1^{(3^r)} c_2^{(3^r)},$$

where $c_1 \in F_0'$ and $c_2 \in \gamma_3(F_0) = \langle v_3 \rangle$. Since Q, A, F_0' are of exponent 3^r and $|\Gamma_3(F_0)| = 3$, we have $(wv)^{3^r} = 1$.

We can now identify F with F_0.

b) By the relations (11) and (12) we have that $u^3, v_1^3, v_2^3, v_3 \in Z(F)$.

Conversely, computing the commutators between an element $g = vw = z^a v^b_1 v^c_2 v^d_3 x^\alpha y^\beta u^\gamma$ and the generators x, y, z of F, we obtain

\begin{align*}
\text{(14)} & \quad [x, vw] = [x, w][x, v][x, v, w] = u^\beta v^a_2 v^b_3 v^c_1 x^\alpha y^\beta u^\gamma, \\
\text{(15)} & \quad [y, vw] = [y, w][y, v][y, v, w] = u^{-\alpha} v^a_1 v^c_3 v^d_1 v^b_3 x^\alpha, \\
\text{(16)} & \quad [z, vw] = [z, w][z, x^\alpha y^\beta u^\gamma] = [z, u^\gamma][z, y^\beta] x^\alpha[z, x^\alpha] = v^3_1 v^2_2 v^3_3 u^3 y^1.
\end{align*}

It follows that $g \in Z(F)$ only if $a \equiv \beta \equiv \alpha \equiv 0 \pmod{3^r}$ and $b \equiv c \equiv \gamma \equiv 0 \pmod{3}$. So the elements of $Z(G)$ have the following form

$$g = v^3_1 v^3_2 v^3_3 u^3 v^1_1.$$
where \(b_1, c_1, \gamma_1 \in \mathbb{Z}_{3^{r-1}} \) and \(d \in \mathbb{Z}_3 \). Thus

\[
Z(F) = \langle v_1^3 \rangle \times \langle v_2^3 \rangle \times \langle v_3 \rangle \times \langle u^3 \rangle.
\]

c) It is sufficient to show that every maximal subgroup \(M \) of \(F \) is of class two. As \(F/\Phi(F) \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \), we have \(M = \langle \Phi(F), x_1, x_2 \rangle \) for some \(x_1, x_2 \in M \). We want to show that \(M' = \langle [x_1, x_2], [x_i, F'], [x_i, F^3], \Phi(F)' \rangle \) \((i = 1, 2) \) is contained in \(Z(M) \). In fact, \(F \) is nilpotent of class 3, so \([x_i, F'] \leq Z(F) \). We observe that \(Z(F) = \langle v_3, F'^3 \rangle \) is contained in \(M \) and then \(Z(F) \leq Z(M) \). Therefore \([x_i, F'] \leq Z(M) \). Since the identity \([g_1, g_2^n] = [g_1, g_2]^n \) holds in the 2-Engel group \(F \), for all \(n \in \mathbb{Z} \) and \(g_1, g_2 \in F \), we have \([x_i, F^3] = [x_i, F]^{3} \leq F'^3 \leq Z(M) \). In the same way we see that \(\Phi(F)' \leq Z(M) \). Finally \([x_1, x_2] \in Z(M) \) because \([x_1, x_2, x_1] = [x_1, x_2, x_2] = 1 \) holds in the 2-Engel group \(F \).

d) Suppose \(r > 1 \), then \(v_1^3, v_2^3, u^3 \) belong to \(Z(F) \) (see b)). So \(Z(F) \) is not cyclic, contradicting Lemma 2.1.

Conversely, let \(r = 1 \), then \(Z(F) = \langle v_3 \rangle \) is cyclic of order three. So, by Lemma 2.1 and c), \(F \) belongs to \(\text{Min}(N_2) \).

e) Let \(L = F/H \) be a quotient of \(F \) of class precisely three. If \(M/H \) is a maximal subgroup of \(L \), then \(M \) is a maximal subgroup of \(F \) and, by c), it is nilpotent of class two. Since \(\Gamma_3(L) = \Gamma_3(F)H/H \) is cyclic of order 3, by Lemma 2.1, \(L \in \text{Min}(N_2) \) if and only if \(Z(L) \) is cyclic.

Proposition 4.2. a) Let \(G \) be a 3-generated group in \(\text{Min}(N_2) \) with \(\exp(G) = 9 \). Then \(|G| \leq 3^7 \).

b) There are at least two non-isomorphic groups in \(\text{Min}(N_2) \) of exponent 9 and order 3.

Proof. a) Using the same notation as in the previous theorem, \(G \) has to be isomorphic to a quotient \(F/H \) of the relatively free group \(F \) with \(\exp(F) = 3^2 \). Since \(F/H \) has to be nilpotent of class 3, we have \(v_3 \notin H \). As \(Z(F/H) \) must be cyclic and \(Z(F) \) is elementary abelian of rank 4, then \(H \) must contain a subgroup \(K \) of \(Z(F) \) which is of rank 3 and \(v_3 \notin H \). Now \(Z(F) \) contains 40 subgroups of index 3. Among these, 13 contain \(v_3 \). So there are 27 subgroups of \(Z(F) \) which do not contain \(\langle v_3 \rangle \). The subgroup \(K_1 = \langle v_1^3, v_2^3, u^3 \rangle = (F')^3 \) is characteristic in \(F \) and the other 26 form a single orbit under the automorphism \(\varphi \) of \(F \) defined by

\[
x^\varphi = y, \quad y^\varphi = z, \quad z^\varphi = x^{-1}y.
\]
In fact consider the subgroup $K_2 = \langle v_1^3, v_2^3 v_3^{-1}, u^3 \rangle$ of $Z(F)$. We observe that $v_1\phi = v_1^{-1} v_2^{-1}$, $v_2\phi = u$, $u\phi = v_1^{-1}$. A straightforward calculation shows that $K_{2}^{\phi^3} = \langle v_1^3, v_2^3 v_3, u^3 \rangle \neq K_2$. As ϕ is an automorphism of order 26, the orbit of K_2 has length 26. So we may assume that H contains one of the two subgroups K_i, $i = 1, 2$. Consider F/K_1. A generic element of K_1 can be written in the form

$$v_1^{3l}v_2^{3m}u^3n \quad \text{with} \quad l, m, n \in \{0, 1, 2\}.$$

From the relations (14), (15), and (16) we get that an element

$$gK_1 = z^a v_1^b v_2^c v_3^d x^\alpha y^\beta u^\gamma K_1$$

of F/K_1 belongs to $Z(F/K_1)$ if and only if

$$v_2^a v_3^{\beta-b} u^\beta = v_1^{3l_1} v_2^{3m_1} u^{3n_1},$$

$$v_1^{-a} v_3^{-c-\alpha} u^{-\alpha} = v_1^{3l_2} v_2^{3m_2} u^{3n_2},$$

$$v_1^{\beta} v_2^{-a} v_3^{y-\alpha\beta} = v_1^{3l_3} v_2^{3m_3} u^{3n_3},$$

for some $l_i, m_i, n_i \in \{0, 1, 2\}$; $i = 1, 2, 3$. It follows $a \equiv \beta \equiv b \equiv c \equiv \alpha \equiv \gamma \equiv 0 \pmod{3}$. Let $a = 3a_1$, $b = 3b_1$, $c = 3c_1$, $\alpha = 3\alpha_1$ and $\gamma = 3\gamma_1$. Then

$$gK_1 = z^{3a_1} v_1^{3b_1} v_2^{3c_1} v_3^{d} x^{3\alpha_1} y^{3\beta_1} u^{3\gamma_1} K_1 = z^{3a_1} v_3^{d} x^{3\alpha_1} y^{3\beta_1} K_1.$$

In a similar way we see that $gK_2 \in Z(F/K_2)$ if and only if $\beta \equiv c \equiv \alpha \equiv 0 \pmod{3}$ and $a \equiv 3b \pmod{9} \alpha \equiv 3\gamma \pmod{9}$. If $\beta = 3\beta_1$, $c = 2c_1$, and $\alpha = 3\alpha_1$, we have that

$$gK_2 = z^{3b} v_1^{b} v_2^{3c_1} v_3^{d} x^{3\gamma} y^{3\beta_1} u^\gamma K_2 = (z^{3} v_1)^b v_3^{d+c_1} (x^{3} u)^\gamma y^{3\beta_1} K_2.$$

Therefore $Z(F/K_1)$ and $Z(F/K_2)$ are abelian groups which can be represented as direct product

$$Z(F/K_1) = \langle z^3 K_1 \rangle \times \langle v_3 K_1 \rangle \times \langle x^3 K_1 \rangle \times \langle y^3 K_1 \rangle$$

and

$$Z(F/K_2) = \langle z^3 v_1^b K_2 \rangle \times \langle v_3 K_2 \rangle \times \langle x^3 u K_2 \rangle \times \langle y^3 K_2 \rangle$$

In order that a quotient $(F/K_1)/(H/K_i)$, $(i = 1, 2)$ of F/K_i would be nilpotent of class 3 with cyclic center, we need that $v_3 K_i \neq Z(F/K_i)$ and that H/K_i would contains a subgroup of rank 3 of $Z(F/K_i)$. So the order of a group $F/H \in \text{Min}(N_2)$ is at most 3^7.

On finite p-groups minimally of class greater than two 145
b) Consider the subgroups

\[H_1 = \langle v_1^3, v_2^3, u^3, x^3, y^3, z^3 v_3^{-1} \rangle \quad \text{and} \quad H_2 = \langle v_1^3, v_2^3 v_3^{-1}, u^3, x^3 u, y^3, z^3 v_1 \rangle \]

which contain \(K_1 \) and \(K_2 \), respectively. By the same argument used above to determine the center of \(F/K_1 \), one can check easily that the center of \(Z(F/H_1) \) is cyclic. If \(g = z^a v_1^b v_2^c x^d y^e u^f \) is, as before, a generic element of \(F \), we have

\[g^3 = z^{3a} v_1^{3(b-a\beta)} v_2^{3(c+a\alpha)} x^{3\alpha} y^{3\beta} u^{3(y-\alpha\beta)}. \]

Using this relation we see that the exponent of \(F/H_1 \) is 9. Moreover we see that the \(\mathcal{U}_1(F/H_1) = \langle v_3 H_1 \rangle \) while \(\mathcal{U}_1(F/H_2) = \langle v_1 H_2, v_3 H_2, u H_2 \rangle \) which is not cyclic.

References

Manoscritto pervenuto in redazione il 21 novembre 2015.