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THEORY OF BERGMAN SPACES
IN THE UNIT BALL OF C"

Ruhan Zhao, Kehe Zhu

Abstract. B There has been a great deal of work done in recent years on weighted
Bergman spacesAP on the unit ball B, of C", where0 <p < ! and!> "1
We extend this study in a very natural way to the case where! is any real number
and 0 < p #! . This unibed treatment covers all classical Bergman spaces, Besov
spaces, Lipschitz spaces, the Bloch space, the Hardy spa¢¢?, and the so-called
Arveson space. Some of our results about integral representations, complex interpo-
lation, coelcient multipliers, and Carleson measures are new even for the ordinary
(unweighted) Bergman spaces of the unit disk.

RZsumZThZorie des espaces de Bergman dans la boule uni'jle

Ces dernisres annZes il y a eu un grand nombre de travaux sur les espaces de
Bergman pondZrZsAP sur la boule unitZB, deC", 0o 0 <p < ! et!> "1
Nous Ztendons cette Ztude, de maniere tres naturelle, au cas ok est un nombre rZel
quelconque et 0 < p # ! . Ce traitement uniPZ couvre tous les espaces de Bergman
classiques, les espaces de BZsov, de Lipschitz, IOespace de Bloch, |IOkshdeeHardy,
et celui appelZ espace dOArveson. Certains de nos rZsultats autour de la reprZsentation
entiere, de IQinterpolation complexe, des multiplicateurs de coelcients et des mesures
de Carleson, sont nouveaux, y compris pour les espaces de Bergman ordinaires (non-
pondZrZs) sur le disque unitZ.
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CHAPTER 1

INTRODUCTION

Throughout the paper we Px a positive integern and let
C"=C$4aaasC
denote the n dimensional complex Euclidean space. Foz = (z;,a44dz,) and w =

(wi,adawy) in C" we write
|

%, W&= ZiWy + A48 ZaWn, |2|= |zi2 + A4k |20

The open unit ball in C" is the set

" "
B,= z' C":|z|<1.
We useH (By) to denote the space of all holomorphic functions inB,,.
Forany "l <!< 1 we consider the positive measure

dv, (2) =@ "| 22" dv(z),

where dv is volume measure onB,. It is easy to see that dv, is Pnite if and only
if 1> "1 When!> " 1 we normalizedv, so that it is a probability measure.

Bergman spaces with standard weights are debned as
AP = H(Bn) ( LP(Bn,dv)),

wherep > 0Oand ! > " 1. Here the assumption that! > " 1 is essential, be-
cause the spacé.P(B,, dv, ) does not contain any holomorphic function other than0
when! #" 1. When! =0, we useAP to denote the ordinary unweighted Bergman
spaces. Bergman spaces with standard weights on the unit ball have been studied
by numerous authors in recent years. See Aleksandrov2], Beatrous-Burbea [L1],
Coifman-Rochberg R1], Rochberg §6], Rudin [47], Stoll [57], and Zhu [71] for re-
sults and references.
In this paper we are going to extend the debnition ofAP to the case in which!

is any real number and develop a theory for the extended family of spaces. More
specibcally, we study the following topics about the generalized spacesf : various
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2 CHAPTER 1. INTRODUCTION

characterizations, integral representations, atomic decomposition, complex interpola-
tion, optimal pointwise estimates, duality, reproducing kernels whenp = 2, Carleson
type measures, and various special cases. A few of these are straightforward conse-
guences or generalizations of known results in the cade> " 1 (we included them
here with full proofs for the sake of a complete and coherent theory), thanks to the
isomorphism betweenAP and AP via fractional integral and di"erential operators,
while most others require new techniques and reveal new properties. Several of our
results are new even in the case of ordinary Bergman spaces of the unit disk.

Our starting point is the observation that, for p> 0and !> " 1, a holomorphic
function f in B, belongs to AP if and only if the function (1" | z|?)Rf (z) belongs
to LP(Bn, dv, ), where

A
Rf(z)=  zi—(2)

PR
is the radial derivative of f. This result is well known to experts in the peld and is
sometimes referred to as a theorem of Hardy and Littlewood (especially in the one-
dimensional case). See Beatrou®], Pavlovic [42], or Theorem 2.16 of Zhu f1]. More
generally, we can repeatedly apply this result and show that, for any positive integek,
a holomorphic function f is in AP if and only if the function (1"| z|?)kR*f (z) belongs
to LP(By, dv, ).

Now forp> Oand" <!< ! we bx anonnegative integek with pk+ !> "1
and debneAP as the space of holomorphic functiond in B, such that the function
(1" z|?)*R*f (z) belongs to LP(B,, dv, ). As was mentioned in the previous para-
graph, this debnition of AP is consistent with the traditional debnition when ! > " 1.
Also, it is easy to show (see Section 4) that the debnition oAP is independent of the
integer k.

We also study a companion family of spaces debned using the sup-norm of a combi-
nation of powers of1"| z|? and partial derivatives of a holomorphic function f in B,,.
More specibcally, for any real! we debne! , to be the space of holomorphic func-
tions f in B, such that the function (1"| z|?)~' R*f (z) is bounded inB,, wherek is
any nonnegative integer withk >! . We are going to call them holomorphic Lipschitz
spaces. Once again, it can be shown that the debnition df, is independent of the
choice of the integerk.

The two families of spacesAP and !, with O<p < ! and! real, cover any
space (exceptH > and its equivalents) of holomorphic functions that is debPned in
terms of membership inLP(B,,dv), 0 < p # ! , for any combination of partial
derivatives of f and powers of1" | z|?. These spaces have appeared before in the
literature under di"erent names. For example, for any positive p and real s there is
the classical diagonal Besov spadBj consisting of holomorphic functionsf in B, such
that (1"] z|?)*~SR*f (z) belongs toLP(dv_1), wherek is any positive integer greater
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CHAPTER 1. INTRODUCTION 3

than s. Itis clear that By = AP with ! =" (ps+1);and AP = B3 with s= " (! +1)/p.
Thus our spacesAP are exactly the diagonal Besov spaces. See Ahern-Coheh],[
Arazy-Fisher-Janson-Peetre {], Arcozzi-Rochberg-Sawyer T], Frazier-Jawerth [26],
Hahn-Yousspb B0], [29], Kaptanoglu [33], [34], Nowark [40], Peloso f4], and Zhu
[71] for some recent results on such Besov spaces and more references. In particular,
our spacesAP are the same as the spaceBf (with g = !) in Kaptanoglu [33],
although an unnecessary condition' gp+ q > " 1 was imposed in B3].

On the other hand, if s is a positive integer, p is positive, and! is real, then there
is the Sobolev spaceéVp, consisting of holomorphic functionsf in B, such that the
partial derivatives of f of order up to N all belong to LP(B,, dv, ). It is easy to see
that our generalized Bergman spaces are exactly the holomorphic Sobolev spaces.
See Ahern-Cohen 1], Aleksandrov [2], Beatrous-Burbea [11] for results and more
references.

Therefore, for those who are more familiar or more comfortable with Besov or
Sobolev spaces, our paper can be considered a unibed theory for such spaces as well.
However, we believe that most people nowadays are familiar and comfortable with
the term OBergman spacesO, and our theory here is almost identical to the theory
of ordinary Bergman spaces (as presented in Zhu7fl] for example), so it is also
reasonable for us to callAP weighted Bergman spaces. We can stretch this a little
further. More specibcally, there has been a sizable amount of work in the literature
about spaces of holomorphic functions satisfying the condition

% &
sup 1"| zP7If ()| <!,
zeB,
wheret > 0. Such spaces are special cases of our Lipschitz spa¢es and they have
been called Bergman spaces as well by some authors; see S&@][[49] for example.
Therefore, we do not feel guilty to use the term OBergman spaces" to include all our
Lipschitz spaces! | .

It is apparent that this work is a natural extension of the recent book [71]. There
is undoubtedly some overlapping between the two. In particular, the notation here
is identical to that used in [71], and several techniques developed in7[l] are used
repeatedly in this paper. Since we are developing a more general theory here, complete
proofs are included for all but the obvious.

As was mentioned a little earlier, the spaces we study here are not new. There are
several papers in the literature that are very much related to this one, for example,
[11] and [33]. In fact, almost every result here has its origin somewhere else. There-
fore, in subsequent chapters, whenever a major theorem is proved, we will try to bring
the readerOs attention to these other sources where earlier versions or special cases of
the particular result can be found. These repetitive references may be annoying to the
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4 CHAPTER 1. INTRODUCTION

reader on the one hand, and on the other hand they may prove more o0"ensive to au-
thors whose papers have somehow been overlooked or inaccurately quoted. Whatever
the case, we apologize in advance. It is not our intention to claim a known result ours.
We also greatly appreciate the refereeOs complete understanding of this dilemma, as
well as his/her suggestions on how to improve the presentation of the paper.
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CHAPTER 2

VARIOUS SPECIAL CASES

In this chapter we spell out to the reader several special cases of the spaca$
and !, . In particular, this partially shows the scope of the paper and gives an orien-
tation to those readers who are only concerned with certain special cases.

As was mentioned in the introduction, when! > " 1, the spacesAP are tradition-
ally called weighted Bergman spaces. In this case, a holomorphic functioh in B,
belongs toAP (see Zhu [1]) if and only if

% &
gf (z)fp 1" z]> dv(z) < ! .

When! = "(n+1),orn+! +1=0, we have mentioned several times earlier
that the spaceAP is traditionally denoted by B, and is called a diagonal Besov space.
Alternatively, a holomorphic function f in B, belongs to the Besov spacé, if and
only if :

51 22%R4 fPae) < 1

Bn
wherek is any positive integer with pk >n and
_ dv(®)
PO @t

is the M3bius invariant measure onBy. See Zhu ¥1].

When! =" landp =2, the spaceAP coincides with the classical Hardy spacei 2.
See @O) later in the paper and (1.22) of Zhu [71]. Recall that HP consists of holo-
morphic functions f in B, such that

sup Ef (r$)Epd°/c($)<! ,
O<r< 1 s,

where d%is the normalized surface measure on the unit spher§, .
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6 CHAPTER 2. VARIOUS SPECIAL CASES

When! = " n and p = 2, the spaceAp is the so-called Arveson space, which is
usually debned as the Hilbert space of holomorphic functions iB, whose reproducing
kernel is given by (see Theorend1)

1 .
KW= oo we
This space has attracted much attention lately in the study of multi-variable operator
theory. We mention ArvesonOs8] inRuential paper and the recent monograph 17] by
Chen and Guo.

When 0 <! < 1, the space! , is the classical Lipschitz space of holomorphic
functions f in B, satisf)ying the condition
If (z) " f(w)

2w

*

sup zZ,Ww' Bh,zFw <!

See Section 6.4 of Ruding7]. The space! ; is also called the Zygmund class, especially
in the case whenn = 1.

When! =0, the space! | is just the classical Bloch space, consisting of functions
f ' H(B,) such that

%
sup 81 2P%Re (b <
zeB,

When ! < 0, the spaces! | have appeared in the literature under the name of
growth spaces. In this case, a holomorphic functiorf in B, belongs to!, if and
only if 0

%
sup 1"| z|2&! ‘gf (z)£< !
z€B,

The term OBloch type spaces" ot -Bloch spaces can also be found in recent litera-
ture. More specibcally, for any! > 0the ! -Bloch space is denoted byB, and consists
of holomorphic functionsf in B, such that

%2 b o
sup 1"| z| Rf (z2){ < !
zeB,
It is then clear that the ! -Bloch space B, is the same as our generalized Lipschitz
space! 1, . See Zhu ¥1].
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CHAPTER 3

PRELIMINARIES

In this chapter we present preliminary material on Bergman kernel functions and
fractional di"erential and integral operators. This material will be heavily used in
later chapters.

& Throughout the paper we use
m=(my,adamy)
to denote ann-tuple of nonnegative integers. It is customary to write
Im|=m;+ 4d4d&d m, and m!= mg!...my!.
If z=(2z;,444az,) is a point in C", we write
rAUES AEE-F-V: L

The following multi-nomial formula will be used (implicitly) several times later on:

$
(1) o8, w& = k—!lzm wm.

[m|=k

& If f is a holomorphic function in By, it has a unique Taylor series,

f(z) = amz™.
If we debne $
fr(z) = anzm, k=0,12,...,

Im|=k

then eachfy is a homogeneous polynomial of degrek, and we can rearrange the
Taylor series off as follows:

$°
f(z2)=  fk(2).
k=0
This is called the homogeneous expansion df.

SOCIfTf MATHfMATIQUE DE FRANCE 2008



8 CHAPTER 3. PRELIMINARIES

& Using homogeneous expansion df we can write the radial derivative Rf as

$e
Rf (z) = kfy(2).
k=1
More general, for any real numbert, we can debne the following fractional radial
derivative for a holomorphic function f in By:

$e
R'f (2) = k' (2).
k=1
& When we work with partial derivatives, we will use the following notation,
where m is any n-tuple of nonnegative integers:
wimig

umf - _

& An important tool in the study of holomorphic function spaces is the notion of
fractional di"erential and integral operators. There are numerous types of fractional
di"erential and integral operators, we introduce one that is intimately related to and
interacts well with the Bergman kernel functions. More specibcally, for any complex
parameterss and t with the property that neither n+ s nor n+ s+ t is a negative
integer, we debPne two operatorfR®! and Rs; on H(B,) as follows. If

$o
f(z)=  fk(@
k=0

is the homogeneous expansion of a holomorphic function iB,,, we debne
$ (n+l+ 9 (n+1+ k+s+1)

st —
RTT(@) - "(n+1+ s+t)(n+1+ k+5)

fr(z).
k

If H(B,) is equipped with the topology of Ouniform convergence on compact sets”, it is
easy to see that eactRS! is a continuous invertible operator onH (B,). We useRs;
to denote the inverse ofRS' on H(B,). Thus

$ "(n+1+ s+t)(n+1+ k+5s)
. "(n+1+ s)(n+1+ k+s+1t)

Rsif (2) = fr(2).

When s is real andt > 0, it follows from StirlingOs formula that
"(n+1+ s)(n+1+ k+s+1t), .
k
"(n+1+ s+t)(n+1+ k+5)

ask +! . Inthis case,R®! is indeed a fractional radial di"erential operator of order t
and Rg; is a fractional radial integral operator of order t.

The operators R®! and Rs; seem to have Prst appeared in Pelosat#], and inde-
pendently in Zhu [68], [69], [70], as a way to dePne and study holomorphic function
spaces on the unit ball, and more generally, on bounded symmetric domains. This
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CHAPTER 3. PRELIMINARIES 9

type of fractional di"erential and integral operators also became an important tool in
the books by Arcozzi-Rochberg-Sawyer] and Zhu [71].

Kaptanoglu [33], [34], [35] used these operators in a slightly more general way.
More specibcally, the technical conditions thatn + s and n + s+ t should not be
negative integers can be removed if one is willing to make a separate debnition for
RSt (and Rs;) in this case. However, since these operators are meant to transform
the kernel function (1" %z, w& ~("*1* ) to (1" %z, w& ~("*1* s*1) it is clear that the
technical conditions mentioned above are natural. Otherwise, these functions would
become polynomials and the corresponding reproducing Hilbert spaces would become
Pnite dimensional. Besides, in all our applications, it always involves in choosing a
sulciently large parameter s, and with the technical conditions imposed ons and
t, there is never a lack ofs for such choices. Also, the use of complex parameters
does not present any extra dilculty and will be more convenient for us on several
occasions.

Lemma 1. B Suppose neither N + S nor N + s+ t is a negative integer. Then

R ¢ = RS+I,7'[
st — .

Proof. B This follows directly from the debnition of these operators. O

Lemma 2. B Suppose S, t, and ' are complex parameters such that none of n + ' |
n+'+t andn+"' + s+t is a negative integer. Then

R",t R"+t,S - R",S +t'

Proof. B This also follows from the debnition of these operators. O

As was mentioned earlier, the main advantage of the operator®Rs! and R, is
that they interact well with Bergman kernel functions. This is made precise by the
following result.

Proposition 3 . B Suppose neither n + s nor n+ s+ t is a negative integer. Then
st 1 _ 1
(1" %z, wn+1+ s (1" %z, wQn+1+ set’
1 1 .
Rs,t " ir s t u 17 s &
(1" %z, w@n+1+ s+t (1" %z, wn+1* s

Furthermore, these relations uniquely determine the operators RSt and Rsy on H (Bp).
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10 CHAPTER 3. PRELIMINARIES

Proof. B See Proposition 1.14 of T1]. The proof there is for the case whens and t
are real. But obviously the same proof works for complex parameters as well. O

Most of the time we use the above proposition as follows. If a holomorphic func-
tion f in By has an integral representation

_ dp(w)
f(z)_ B, (1 "%le&n+l+ s’
then '
RS,If (Z) - dH(W) é_

B (1 " %Z, W&”"'l* s+t
In particular, if !> " landn+! +tis nota negative integer, then

L o f (rw)dv, (w)
R f(z)= rllnl! 5 (1" %z, w@n+iv I+t

for every function f ' H (B,). See Corollary 2.3 of 71].

Proposition 4 . B Suppose N is a positive integer and S is a complex number such
that n + s is not a negative integer. Then the operator RSN is a linear partial differ-
ential operator on H(By) of order N with polynomial coefficients, that is,

RN f(2) = Pm(2)" " f (2):
Im <N

where each Pm s a polynomial.

Proof. B The proof of Proposition 1.15 of [f1] works for complex parameters as well.

U
Proposition 5 . B Suppose S and t are complex parameters such that neither n + s
nor N+ S+t is a negative integer. If ! = s+ N for some positive integer N, then
st 1 _ h(%, w&
(1" %z, wgn+1+ ! - (1" %z, wQn+1+ T+t

where h is a certain one-variable polynomial of degree N . Similarly, there exists a
one-variable polynomial q of degree N such that
1 _ 0(%, w& .

Rs (1" %z, w@n+1+ ! +t - (1" %z, wgn+1+ !

Proof. D See the proof of Lemma 2.18 offf1] for the result concerningRst. Combining
this with Lemma 1, the result for Rs; follows as well.

Alternatively, we can use Proposition 3 to write

1 - RS,I RS'N 1

st ,
(1 "O/OZ,W&'H“ ! (1 " %Z,W&n+1+ sa
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CHAPTER 3. PRELIMINARIES 11

SinceRSN and R®' commute, another application of Proposition 3 gives

st 1 — RS,N 1 2
= a
(1" %z, w@n+i+! (1" %z, w@n+1+ s+t
The desired result then follows from Proposition4. O

We also include an easy but important fact concerning the radial derivative.

Lemma 6. D For any positive integer K the operator R¥ is a kth order partial differ-
ential operator on H (By) with polynomial coefficients.

Proof. D Obvious. O
We are going to need two integral estimates involving Bergman kernel functions.

Proposition 7 . DB Suppose S and t are real numbers with s > " 1. Then the integral

(1] wl?)sdv(w)
B, |1" %z, W& +1* s*t

1(2) =

has the following asymptotic behavior as |z| + 17 :

(@) Ift< 0, then | (z) is continuous on By, . In particular, | () is bounded forz"' By.
(b) Ift> 0, then | (2) is comparable to (1" ] z|?)~*.
(c) Ift =0, then | (2) is comparable to " log(1"] z|?).

Proof. B See Proposition 1.4.10 of Rudin47]. O

Proposition 8 . B Suppose a and b are complex parameters. If S and T are integral
operators defined by

P 1w (v
5, (" %z,wgnit arh

% W WRY (wdv(w)
|l " Oz, W&F+l+ a+b

%
Sf(z)= 1"|z

%
Tf(z)= 1"

then for any 1# p<! and! real, the following conditions are equivalent:

(@) The operator S is bounded on LP(By, dv, ).
(b) The operator T is bounded on LP(B,, dv, ).
(c) The parameters satisfy " pRea<! +1 <p(Reb+1).
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12 CHAPTER 3. PRELIMINARIES

Proof. B See 86] or Theorem 2.10 of f1]. Once again, those proofs are given for real
parameters, but the proof for the complex case is essentially the same. The only extra
attention to pay is this: when ' = u + iv is a complex constant, we have

L R
1"%z,w& = (1"%z,w& exp(iu( " v(),
where ( is the argument of 1" %z, w& say (' [0, 2)). It follows that
&
g(l "%z, W& | = gl " %z,wéu exp(" v().
Sincev is a constant and( ' [0, 2) ), we see that
1 "%z,w&"E* El"%z,w&gu = El"%z,w&fRe". O
Note that certain special cases of the above proposition can be found in Forelli-
Rudin [25] and Rudin [47].

Proposition 9 . B Suppose Re! > " 1. Then there exists a constant ¢ such that
f(w)(1 "] wl?)" dv(w)

f(z)= ¢ B, (1" %z, w@n+1+ ! z' B,
where T is any holomorphic function in B, such that
ol 2%
f(z2)V 1" z]*  dv(z) <!
Proof. B See Theorem 7.1.4 of Rudin47] or Theorem 2.2 of Zhu [1]. O
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CHAPTER 4

ISOMORPHISM OF BERGMAN SPACES

Our brst main result shows that for bxed p, the spacesAP are all isomorphic.
A word of caution is necessary here: while the isomorphism amongP reduces the
topological structure of AP to that of the ordinary Bergman spaceAP, it does not help
too much when the properties of individual functions are concerned. This is clear in
the Hilbert space case: the Hardy spacél 2, the Bergman spaceA?, and the Dirichlet
spaceB, are all isomorphic as Hilbert spaces, but their respective function theories
behave much di"erently from one to another.

There is a good amount of overlap between the material in this and the next
chapter with the results in Beatrous-Burbea [10], [11], Kaptanoglu [34], and Peloso
[44]. We present independent proofs here in order to achieve a complete and coherent
theory. As was mentioned in the introduction, the spacesBf in Kaptanoglu [34] and
our spacesAP are actually the same (with the identibcation of ! and g), while the
family of spacesAf in Beatrous-Burbea [11] covers ordinary Bergman spaces (OUAP
with !> " 1) and Hardy spacesHP.

Theorem 10 . D Suppose p > 0 and ! is real. If S is a complex parameter such that
neither N+ s nor N+ s+ (l/p ) is a negative integer, then a holomorphic function f
in By is in AP if and only if Rsyp T is in AP. Equivalently, Rgy, is an invertible
operator from AP onto AP.

Proof. B Recall that a holomorphic function f in By, is in AP if and only if there exists
a nonnegative integerk with pk+ !> " 1 such that the function (1"] z|?)*R¥f (2) is
in LP(By,, dv, ). Obviously, this is equivalent to the condition that

2) R¥f LP(Bn, dvpk+1).
By Theorem 2.16 of [r1], the condition that Rsy,, f ' AP is equivalent to
%
1" z|28kR'<RS,!,p f(2)' LP(Bn,dv).
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14 CHAPTER 4. ISOMORPHISM OF BERGMAN SPACES

Since RX commutes with Rsup » the above condition is equivalent to
Rsyp R*F ' LP(Bn, dvpk).
If 1> 0, then by Theorem 2.19 of 1], the above condition is equivalent to
% n 2&-'/P s,!lp ke v p
1"] z| R>® Rgyp R " LP(Bp, dvpk).
SinceRS'P s the inverse ofRsyp , the above condition is equivalent to
% &
1] 22 R ' LP(By, dvp),
which is the same as 2). This proves the theorem for! > 0.

If I =0, the operator Rgy, becomes the identity operator, and the desired result
is trivial.
If 1 < 0O, then by Lemmal, we haveRsy, f ' APifandonlyif RS*/P =P f ' AP
which, according to Theorem 2.16 of T1], is equivalent to
%
1] z|2&(RkRS+”p' P £ LP(B,, dv).
Since R* commutes with RS*'YP. =P | the above condition is equivalent to
RSt/ —Up RKE * LP(By, dvy), or
% &
17] z]2 P RSTIP <Y RKF (B, dVps ).
Since! < 0, it follows from Theorem 2.19 of [r1] that the above condition is equivalent
to (2). This proves the desired result for! < 0 and completes the proof of the
theorem. 0

As a consequence, we obtain the following result which shows that the debnition
of AP is actually independent of the integerk used. This is of course a phenomenon
that has been well known to experts in the peld.

Corollary 11 . B Suppose p > 0 and ! is real. Then the following conditions are

equivalent for holomorphic functions f in By:

(@) f ' AP, that is, for some positive integer K with kp+ ! > " 1 the function
(1"] zH*R*F (2) is in LP(B,, dv, ).

(b) For every positive integer K with kp+ !> " 1 the function (1"] z|2)¥R*f (2) is
in LP(Bn, dv, ).

Proof. B This follows from the proof of Theorem 10. This also follows from the equiv-
alence of (a) and (d) in Theorem 2.16 of T1]. O
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CHAPTER 4. ISOMORPHISM OF BERGMAN SPACES 15

Since the polynomials are dense iAP, and since the operatorsR®! and Rs; map
the set of polynomials onto the set of polynomials, we conclude from TheoreniO
that the polynomials are dense in each spacApf.

The following result is a generalization of Theorem10.

Theorem 12 . B Suppose ! is real, * is real, and p> 0. Lett = (! " *)/p and let s
be a compler parameter such that neither N + S nor N + S+ t is a negative integer.
Then the operator Ry maps AP boundedly onto Ag,

Proof. B We can approximates by a sequencd si} of complex numbers such that each
of the operatorsRg, , RS+ t#P  gnd Rs,p is well dePned. According to Lemmasl
and 2, we have

Rs,t = Rek* tHlP Rsk,!/p .
SinceRS+* 4P is the inverse OfRs, + t#/p , it follows from Theorem 10 that each Rs,
maps AP boundedly onto A}. SinceRs; is well debPned, an easy limit argument then
shows that Rs; maps AP boundedly onto Af;. O

For any positive p and real! we let N be the smallest nonnegative integer such

that pN + ! > " 1 and debne
+

@3) fo =bots B 2R @b @) "

By,
for f ' AP. Then AP becomes a Banach space whep - 1. For 0 < p < 1 the
spaceAP is a topological vector space with a complete metric
(4) dif,g9)=.f" g,p -
The metric d is invariant in the sense that

d(f,g)= d(f " g,0).
In particular, AP is an F-space. One of the properties of arF -space that we will use
later is that the closed graph theorem is valid for it.
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CHAPTER 5

SEVERAL CHARACTERIZATIONS OF AP

In this chapter we obtain various characterizations of AP in terms of fractional
di"erential operators and in terms of higher order derivatives.

Theorem 13 . D Suppose p > 0 and ! is real. Then the following conditions are
equivalent for holomorphic functions f in By .

(@ f ' AP.
(b) For some nonnegative integer K with kp+ !> " 1 the functions

%
1) 2"t ),

where M| = K, all belong to LP(By, dv, ).
(c) For every nonnegative integer K with Kp+ !> " 1 the functions

%
:(in | Z|2&m||- m ¢ (Z),

where M| = K, all belong to LP(By, dv, ).

Proof. B Fix a nonnegative integerk with pk+ !> " 1 and assume that
% »&
1" z]* "™ (2) " LP(Bn,dvi)

for all [m| = k, then

%
1" z|28k

“Mf(z) " LP(Bn,dvi)

for all |m| # k; see Theorem 2.17 off1]. Since R is a linear partial di"erential
operator on H (B,) with polynomial coe!cients (see Lemma 6), we have
%
301 22%R4 @)1 LP(By, dvi),
or f ' AP. This proves that condition (b) implies (a). That condition (c) implies (b)
is obvious.
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18 CHAPTER 5. SEVERAL CHARACTERIZATIONS OF AT

Next assume thatf ' AP. Then by Theorem 10, the function g = Ry, f isin AP,
where* is a sulciently large (to be specibed later) positive number. By Proposition 9,
we have '

_ gw)dvy(w)
R p f(2)= 5, (1" %z, wQn+1+ #

Apply R*'P  to both sides and use Proposition3. We obtain

g(w)dvs (W)
B, (1 " %z, W&”+1+ #+1p °

() f(2)=

If p- 1andk is any nonnegative integer such thatpk+ !> " 1, then we choose*

large enough so that
- .
(6) "pk<! +1<p *+'B,

Rewrite the reproducing formula (5) as

(1] w?)** " h(w)dv(w)

f (Z) = B, (1 " %Z,W&n+1+ #+1p

where
% . &
h(z)= 17| z| 9(2).
Di"erentiating under the integral sign, we obtain a positive constant C (depending
on the parameters but not onf and z) such that
| legk @] wA)** P |h(w)|dv(w)

% & %
" 27K fn "
1 I Zl g mf(z)g# c1 B |1-- %Z,W&F+k+l+ #+p

where|m| = k. Sinceh ' LP(By, dv, ), it follows from (6) and Proposition 8 that the
functions (1"| z|?)k" ™f (z), where |[m| = k, all belong to LP(B,, dv; ).
The case0 < p < 1 calls for a di"erent proof. In this case, we di"erentiate under

the integral sign in (5) and obtain a constant C > 0 (depending on the parameters
but not on f and z) such that

P44

o gL ] W) dv(w)

vng by o
f(Z) #C1 |Z B |1"%Z,W&P+k+1+ #+lp

%
1Il| Z

where |m| = k. We write
n+1+*
*= ———— " (n+1)
p
and assume that* is large enough so that*’ > 0. Then we can apply Lemma 2.15

of [71] to show that the integral

lg(wW)|(1 " | W[2)¥ dv(w)
B, |1 " %Z, W&P+ k+1+ #+lp
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CHAPTER 5. SEVERAL CHARACTERIZATIONS OF AT 19

is less than or equal to a positive constant times

+ 0, .
g(w) %, & *p
i E(l..%zyw&mw st 1wl dv(w)

It follows that there exists a positive constant C’ such that
|28kp |28kp lgW)IP(L" | wl?)* dv(w)
B |1" %Z,W&F(n+ K+1+ #)+ !

where |[m| = k. Integrate both sides against the measuredv, and apply FubiniOs

theorem. We see that the integral
0

o) %okt by, (2)

%
1"| z

f-'mf (z)gp # c’%l"| z

B,
is less than or equal toC’ times
(1" z[H*" dv(2)

%
Eg(W)Ep
. B, 11" %z, WEP(N+ k+1+ #)+ !

b .
1" W|28# dv(w)
Estimating the inner integral above according to Proposition 7, we bnd another con-

stant C” > 0 such that
0,

%) 2%bme pfav ¢ lgwPavw)
B, Bn

for all |m| = k. This proves that (a) implies (c), and completes the proof of the
theorem. 0

Note that several special cases of the above theorem are well known. See Beatrous-
Burbea [11] or Pavlovic [42] for example. In fact, any nontangential partial di"erential
operator of order k with C> coelcients may be used in place ofR¥; see Peloso44].
The proof above uses several techniques developed in Zhu].

Theorem 14 . B Suppose p > 0, ! is real, and f is holomorphic in Bn. Then the
following conditions are equivalent:
(@ f' AP.

(b) There exists some real t with pt+ !> " 1 such that the function
9

%

1" z|2&RS"f (2)

is in LP(Bp, dv: ), where S is any real parameter such that neither N + S nor
N+ s+t is a negative integer.

(C) For every real t with pt+ 1> " 1 the function
9

%
Gl 212%Rett (2)

is in LP(Bp, dv, ), where S is any real parameter such that neither N + S nor
N+ s+t is a negative integer.
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20 CHAPTER 5. SEVERAL CHARACTERIZATIONS OF AT

Proof. B It is obvious that condition (c) implies (b). To show that condition (b)
implies (a), we bx a sulciently large positive number * and apply Proposition 9 to
write .

RS (2) = Cv#

RS (W)L " | w|?)* #dv(w)
B (1" %z, wgn+1+ t+# '
where ¢+ » IS a positive constant such thatc;. » dvy is a probability measure onB,.
Apply R¥ to both sides, wherek is a nonnegative integer such thatkp + ! > " 1.
Then there exists a polynomialh of degreek such that

h(%, WRSf (W)dvys 4 (W) 4
B, (1 " %Z,W&”+l+ k+t+#

R¥R®'f (2) =

If * is chosen so that* " s is a sulciently large positive integer, we Prst write
% & ¥ % &
h %,w& = G 1"%z,w&,
j=0
then apply the operator Rs; to every term according to the second part of Proposi-
tion 5, and then combine the various terms. The result is that
g(z, W)RSHf (W) dvys # (W)

kpsit —
RstR R*'f(2) = B (1" %z, wn+1+ k+# '

where g is a polynomial. Since the operatorsRs;, R¥, and RS' commute with each
other, and sinceRs; is the inverse ofRS!, we obtain a constantC > 0 such that

& (@ WA)'R (W)|dvy (W)
| Zl B |1"°/OZ,W&|]+1+ k+ # .

o o
81 22%trer (b

We then follow the same arguments as in the proof of Theoreni3 to show that the

condition .

/i"l le&ERS’tf(Z)E' LP(Bn, dv)

implies
%
1 n | Z

|2&‘ka (z)" LP(By,dv,).
This proves that condition (b) implies (a).

To show that condition (a) implies (c), we bx a function f AP and choose a
sulciently large positive number * such that the function g= Ry, f isin AP. We
then follow the same arguments as in the proof of Theoreni3to Pnish the proof. The
only adjustment to make here is this: instead of di"erentiating under the integral sign,
we apply the operator RSt inside the integral sign and take advantage of Propositiorb
(assuming that * is chosen so that* " s is a positive integer). We leave the details
to the interested reader. O
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CHAPTER 5. SEVERAL CHARACTERIZATIONS OF AT 21

Several special cases of the above theorem have appeared before. See Kaptanoglu
[33], [34] and Peloso #4] for the case! = " (n+1), and Zhu [71] for the case! > " 1.
The book [11] of Beatrous and Burbea also contains a version of the result for> " 1
which is based on a di"erent family of fractional radial di"erential operators.
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CHAPTER 6

HOLOMORPHIC LIPSCHITZ SPACES

The classical Lipschitz spacel ,, 0 <! < 1, consists of holomorphic functionsf
in By such that

Ef (2)" f(W)E# Clz" w|', z,w' By,

where C is a positive constant depending orf . It is well known that a holomorphic
function f isin !, if and only if there exists a positive constantC such that

oy

" E
1"| z Rf (2){# C, z' B,.

See Rudin 7] and Zhu [71].

In this chapter we extend the theory of Lipschitz spaces! , to the full range
"I <l< I [ More specibcally, for any real number! we let!, denote the space
of holomorphic functions f in B, such that for some nonnegative integeik > ! the
function (1 "] z|?)*~' R¥f (z) is bounded in B,. We brst prove that the dePnition
of I | is independent of the integerk used.

Lemma 15. D Suppose f is holomorphic in B,. Then the following conditions are
equivalent:

() There exists some nonnegative integer K > ! such that the function

% .
31 225% Kt (2)

is bounded in By, .
(b) For every nonnegative integer kK > the function

o _
81 22% Kt (2)

is bounded in B, .
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24 CHAPTER 6. HOLOMORPHIC LIPSCHITZ SPACES

Proof. B Supposek is a nonnegative integer withk >! . Let N = k+1.

If the function (1"| z|?)N =" RNf (2) is bounded inB,, then an elementary integral
estimate based on the identity

I 1 N
RN (t2)
o 1

shows that the function (1 "] z|?)*~' RKf (z) is bounded inB,.

Rf (2)" R*f(0) =

Conversely, if the function (1" | z]?)*~' R*f (z) is bounded, then there exists a
constant ¢ > 0 such that

("] wP)~ R*f (w)dv(w) |
5. (1"%z,w@nir k-t
see Proposition9. Taking the radial derivative on both sides, we get

oa, W&1 " | w?)k—" R¥f (w)dv(w)
B, (l " %le&n+1+ N —! '
whereC = ¢(n+1+ k" !). This combined with Proposition 7 shows that the function
(1"| z»N " RNf (2) is bounded inB,.

Therefore, the function (1 "] z|?)k~' R*f (z) is bounded if and only if the func-
tion (1" z|?)*** ~' R**1f (2) is bounded, wherek is any nonnegative integer satisfy-
ing k >! . This clearly proves the desired result. 0

R*f(z)= ¢

RNf(z)= C

The above lemma is most likely known to experts in the beld, although we could
not bnd a precise reference. In the case> 0, the above result as well as everything
else in this chapter can be found in Zhu T1].

In what follows we let k be the smallest nonnegative integer greater thant and
debne a norm on! | by
% i
0= Ef (0)E+ sup 1"] z|2&‘ 'kaf(z)E.
zeB,

It is then easy to check that! | becomes a nonseparable Banach space when equipped
with this norm.

We write B =1 (. This is called the Bloch space. It is clear thatf ' B if and
only if

%
sup 81 2P%Re b <
zeB,

See ¥1] for more information about B. Our next result shows that all the spaces! |
are isomorphic to the Bloch space.

Theorem 16 . B Suppose s is complex and! is real such that neither N+ s nor n+ s+ !

is a negative integer. Then the operator R®' maps ! onto B.
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CHAPTER 6. HOLOMORPHIC LIPSCHITZ SPACES 25

Proof. B Supposef is holomorphic in B,. Then RS f is in the Bloch space if and
only if the function (1"| z|?)*RXRS! f (z) is bounded in B,,, wherek is any positive
integer. See Lemmal5 above.

If f ' !, then the function

|28k—!

%
9(z)= 1"| z R*f (2)

is bounded inB,, wherek is any positive integer greater than! . Let N be a sul!ciently
large positive integer such that the number* debned by

k"1 +*=s+N
has real part greater than" 1. Then we use Proposition9 to write

g(w)dvs (w)
B, (1 " %Z,W&“+1+ k—! +#

R*f(2)= ¢

Applying Proposition 5, we obtain a polynomial h such that

g(w)h(%, wgdvs (w) o

! pk —
R* R (2) = 5 (1" %z, wgn+i+ k+#

By Proposition 7, the function

%
g2 2

I ~k % Kk |
RS! RKf(z)= ‘1" RYRS! f (2)

is bounded inB,, soRS' f is in the Bloch space.

On the other hand, if R®' f is in the Bloch space, then by Lemmal, the function
Rs+1 -1 T is in the Bloch space. We Pbx a sulently large positive integer N such
that * = N + s+ | has real part greater than" 1. By part (d) of Theorem 3.4 in [71]
(the result there was stated and proved for real*, it is clear that the complex case
holds as well), there exists a functiong' L°°(B,) such that

g(w)dvy (w)
B, (l " %Z, W&I’I+l+ #

Rs+1, 21 f(2) =

We apply the operator RS*" ~' to both sides and use Proposition5 to obtain

fy=  PUBWIgW)dvy(w)

B, (1 " %Z,W&n"'l"' #—!
where p is a polynomial. An easy computation then shows that

R(D)= g g

wherek is any positive integer greater than! and qis another polynomial. By Propo-
sition 7, the function (1" ] z|?)*~' Rf (z) is bounded in B,, namely, f ' !, . This
completes the proof of the theorem. O
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26 CHAPTER 6. HOLOMORPHIC LIPSCHITZ SPACES

More generally, if s is any complex number such that neithern+ snorn+s+! " * is
a negative integer, then the operatorRS' —# is a bounded invertible operator from! |
onto ! 4. See the proof of Theoreml?2.

Theorem 17 . B Suppose f is holomorphic in B, and ! is real. If Re* > " 1 and
n+*" 1 isnot a negative integer, then f ' 1 if and only if there exists a function
g' L°(Bpn) such that, for z' By,

g(w)dvy (w)

(7) f(Z) = B, (1 " %Z,W&n+1+ #— a

Proof. B If f admits the integral representation (7), then for any nonnegative inte-
gerk>! we have '
p(%, wgg(w)dv (w)
ka = )
(Z) B, (1 " %Z,W&n+1+ #+ k—!
wherep(z) is a certain polynomial of degreek. An application of Proposition 7 shows

that the function (1"| z|?)*~' RKf (z) is bounded inB,.
On the other hand, if f * !, , then by Theorem 16, the function R*~" f is in
the Bloch space. According to the classical integral representation of functions in the

Bloch space (see Choelp] or part (d) of Theorem 3.4 in ZhuOs book1]), there
exists a functiong' L°°(B,) such that

#—1l _ g(w)dvy(w)
R f (Z) - B, (1 " ()/OZ,W&n+l+( #—1)+ !
Applying the operator R¢_;; to both sides and using Proposition3, we conclude
that '
_ gw)dvg(w)
f(z) = B, (1" %z, wn+1+ #-! a
This completes the proof of the theorem. O

Since the proof of Theorem 3.4 in Zhu T1] is constructive, it follows that there
exists a bounded linear operator

L:ly % L(By)

such that the integral representation in (7) can be given by choosingg = L(f).

Theorem 18 . B Suppose ! is real and K is a nonnegative integer greater than ! .
Then a holomorphic function f in B, belongs to ! if and only if the functions

% -
B 2% i), mi=k,

are all bounded in By, .

MEMOIRES DE LA SMF 115



CHAPTER 6. HOLOMORPHIC LIPSCHITZ SPACES 27

Proof. DIf f ' 1, , we apply Theorem 17 to representf in the form
g(w)dvy (w)
f = ’
(Z) B, (1 " %Z,W&n+1+ #—!
whereg ' L*(Bp), * > "1, and n+ * " | is not a negative integer. Di"eren-

tiate under the integral sign and apply Proposition 7. We see that the functions
(@"] z|»*=' "™f (z), where|m| = k, are all bounded inB,,.

Conversely, if the function (1"| z|?)k—' " ™f (z) is bounded inB, for every |m| = Kk,
then it is easy to see that the function (1" ] z|?)k—' "™f (2) is bounded in B, for ev-
ery [m| # k. SinceRK is akth order linear partial di"erential operator on H (B,) with
polynomial coelcients (see Lemma 6), we see that the function (1" | z|?)*~' R¥f (2)
is bounded inB,, namely, f ' I, . O

Various special cases (such as the Bloch space and the cdsé (0, 1)) of the above
theorem, as well as the next theorem, have been well known. See Aleksandra®],
Choe [18], Nowark [40], Ouyang-Yang-Zhao f1], Pavlovic [42], Peloso j4], and Zhu
[71] for related results.

Theorem 19 . D Suppose ! and t are real with t > . If S is a complex parameter
such that neither N+ s nor N+ s+t is a negative integer, then a holomorphic function f
in By, belongs to ! | if and only if the function (1"| z|?)'~" RS'f (2) is bounded in By, .

Proof. B First assume that the function
% " 2&—!
9z2)= 1] 7|

RS (2)
is bounded inB,. By Proposition 9, there exists a positive constantc such that
L () = g(w)dvy (w)
R¥f(2)=c 5 (1" %z, w@n+l+ t+#-! '
where * is a sulciently large positive number with * " 1| = s+ N for some positive

integer N. If k is a nonnegative integer greater than! , it is easy to see that there
exists a polynomial p of degreek such that

s _ p(%, w@g(w)dvs(w)
(8) RkR 'tf (Z) - B, (1 " O/OZ,W&n+1+ k+#t+#7! a

We decompose
% & & % &
p %,w& = G 1"%z,w& ,
j=0
apply the operator Rs; to both sides of 8), use Proposition5, and combine the terms.
The result is that

Rs,t Rk RS,If (Z) - h(Z!W)g(W)dV#(W)

5 (1" %z, wgn+i+ k+#-! ’
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28 CHAPTER 6. HOLOMORPHIC LIPSCHITZ SPACES

where h is a certain polynomial. Since all radial di"erential operators commute, we
have

RstR¥RSt = RK,
This together with Proposition 7 shows that

C
ngf (z)E# AL
for some constantC > O, thatis, f ' !,.
Next assume thatf ' !, . Let N be a sulciently large positive integer and write
*" 1 = s+ N.By Theorem 17, there exists a functiong' L°°(Bn) such that

gw)dvg(w)
f =
(Z) B (1 " %Z,W&n+l+ #—! a
According to Proposition 5, there exists a polynomialh such that
h(z, w)g(w)dv (w)
B, (1 " %Z, W&n+1+ #—1 +t

An application of Proposition 7 then shows that

RS (2) =

tretr by — C

RO ey
for some constantC > 0, that is, the function (1 "] z|?)!~' RStf (z) is bounded
in By. O

All results in this chapter so far are in terms of a certain function being bounded in
B . We mention that these results remain true when the big oh conditions are replaced
by the corresponding little oh conditions. More specibcally, for each real numbet ,
we let! , o denote the space of holomorphic functions in B, such that there exists
a nonnegative integerk > ! such that the function (1"| z|?)*~' R¥f (z) is in Co(B,).
Here Co(Bn) denotes the space of continuous functiont in B, with the property that

|z||[>nl! f(z)=0.
It can be shown that the depPnition of ! | ¢ is independent of the integerk used. The
special casé g is denoted by By and is called the little Bloch space ofB,,. Clearly,
f ' By if and only if Y &
lim 1"|z]>Rf(2)=0.

2|1
An alternative description of ! | ¢ is that it is the closure of the set of polynomials
in!,, orthe closure in! , of the set of functions holomorphic on the closed unit ball.
It is then clear how to state and prove the little oh analogues of all results of this
chapter. It is also well known that when dealing with the little oh type results of this
chapter, the spaceCo(B,) can be replaced byC(B,), the space of functions that are
continuous on the closed unit ball. We leave out the routine details.
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CHAPTER 7

POINTWISE ESTIMATES

We often need to know how fast a function inAP grows near the boundary. Using
results from the previous chapter, we obtain optimal pointwise estimates for functions
in AP.

Theorem 20 . D Suppose p > 0 and n+1+ !> 0. Then there exists a constant C > 0
(depending on p and!) such that, for allf ' AP and z' By,

Cuflp,! 7
(1 "| Z|2)(n+! +1) Ip a

Ef (Z)E #

Proof. D Supposef ' AP. ThenRNf ' AP

on + 1 WherepN +1> " 1. By Theorem 2.1
of [71],

%
) 28 v fen g )b C.f oy
for some positive constantC (depending only on! ). Since
n+1+ pN+! N+ n+1+1!
p

it follows from Lemma 15 that there exists a constant C’ > 0 (depending onp and
I') such that, forall z' B,.,

% +1+
01..| zlzgf” SR gf (z)g# C'f,p =

In the case! > " 1 the above theorem can be found in numerous papers in the
literature, including Beatrous-Burbea [11] and Vukoti# [60].

It is not hard to see that the estimate given in Theorem 20 above is optimal,
namely, the exponent(n + ! +1)/p cannot be improved. However, using polynomial
approximations, we can show that

fim 3|z e ) 2

|z|—1!
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wheneverf ' AP with n+1+ !> 0. Also, if ! > " 1, then the constant C can be
taken to be 1; see Theorem 2.1 inT1].

Theorem 21 . D Suppose p > 0 and n+ 1+ | < 0. Then every function in AP is
continuous on the closed unit ball and so is bounded in By .

Proof. B Given f ' AP, Theorem 10 tells us that we can bnd a functiong ' AP
such that f = RSYP g, where s is any real parameter such that neithern + s nor
n+ s+ (!/p ) is a negative integer. By Theorem20 and the remark following it, the
function (1" z]2)(™*D P g(z) is in Co(B,), which, according to the little oh version
of Lemma 15, is the same asg ' ! _(n+1) jp, 0. L€t * be a sulciently large positive
number such that

n+1
* o+ =s+N

for some positive integerN . We brst apply the little oh version of Theorem 17 to bnd

a function h* Co(Byn) such that
h(w)dvy (w)

g(Z) = B (1 1] %Z,W&n+l+ #+(n+l) Ip a

We then apply the operator R®"P  to both sides and make use of Propositiors. The
result is '
f(2) =

p(z, w)h(w)dv (w)
B (1 " %Z,W&'”“ #+(n+it )lp
where p is a polynomial. By part (a) of Proposition 7, the integral above converges
uniformly for z' By and so the functionf (z) is continuous on the closed unit ball. O

When n+1+ ! < O, functions in AP are actually much better than just being
continuous on the closed unit ball. For example, it follows from Theoremsl12, 19,
and 20 that every function in AP, n+1+ ! < 0, actually belongs to a Lipschitz
space! » for some* > 0. See Corollary 5.5 of Beatrous-Burbea11] for a slightly
di"erent version of this observation.

Theorems20 and 21 also follow from Lemmas 5.4 and 5.6 of Beatrous-Burbeal[l].
However, as our next result shows, the estimates in1fl] for the remaining case
I =" (n+1) do not seem to be optimal.

Theorem 22 . D Supposen+1+ | =0 andf ' AP.

(@) If0O<p # 1, then f (2) is continuous on the closed unit ball. In particular, f is
bounded in By .
(b) If 1l <p< ! and Up +1/q = 1, then there exists a positive constant C
(depending on p) such that, for allz' By,
* 2 14

gf (z)g # C log W
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Proof. ® Note that A”_(n+1) = Byp, the diagonal Besov spaces o, ; see Chapter 7
of [71]. If 0<p # 1, the Besov spaceB,, is contained in B, (this is well known, and
follows easily from Theorem32 and the fact that I° . I for 0< p # 1). SinceB; is
contained in the ball algebra (see Theorem 6.8 off[l] for example), we conclude that
B, is contained in the ball algebra whenevelO<p # 1.

If p> 1, we use Theorem 6.7 ofq1] to Pnd a function g' LP(Bn, d#) such that

g(w)dv(w)

f(z)= = -,
(Z) B, (1 n %Z,W&n+l
where dv(2)
V(z
WO = @zt
is the MSbius invariant measure onB,,. Rewrite the above integral representation as
[ O +
f(Z) = L\NIZ " (W)d#(W)
T s T'%zwe 9
and apply H3lderOs inequality. We obtain
+ , 1+ " 2\(n+1)( q—1) y L
v 1 a
Ef (z)%# [g(w) [P d#(w) (d7] wl) dv(w) .

. |1" %z, w&{n+D a
An application of Proposition 7 to the last integral above yields the desired estimate
for f (2). O
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CHAPTER 8

DUALITY

A linear functional F : AP + C is said to be bounded if there exists a positive
constant C such that

9) gF(f)E# C.f,p

for all f ' AP. The dual space ofAP, denoted by (AP)*, is the vector space of all
bounded linear functionals on AP. For any bounded linear functional F on AP we
use, F, to denote the smallest constantC satisfying (9). It is then easy to check
that (AP)* becomes a Banach space with this norm, regardless pf- 1orp < 1.

By results of the previous chapter, the point evaluation at anyz ' By, is a bounded
linear functional on AP. Therefore, (AP)" is a nontrivial Banach space for allp > 0
and all real ! .

Results of this chapter for the casep > 1 are motivated by the well-known duality
relation (AP)* = AY for ordinary Bergman spaces under the ordinary volume integral
pairing. Results of this chapter in the case0 < p # 1 are motivated by and are gener-
alizations of various special cases obtained in the papers Duren-Romberg-Shield@st],
Rochberg §6], Shapiro [51], and Zhu [68]. We also mention that this chapter in spirit
overlaps with Section 7 of Kaptanoglu B4].

Theorem 23 . B Suppose 1<p< ! |1 is real, and * is real. If
} + } = 1’
P q

and if Sy and Sp are complex parameters such that both Rs, jp and Rs, 4q are well-
defined operators, then (AP)* = Ag (with equivalent norms) under the integral pairing

% g &= Rs,up f Fmdv'
B

n

where f ' AP and g' A].
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Proof. B This follows from the identities
RsUP AP = AP, RS2#A A= AY

and the well-known duality (AP)* = A9 under the integral pairing

% g&= f gdv,

Bn

wheref ' AP andg' Aj. O

If 1> "21and*> " 1, then the integral pairing

I:251,!/p f Rsz,#/q ng

n

can be replaced by the integral pairing

fgdvs, f' AP,g" Af,
Bn
where

| *
10 += _+ 3
(10) 5t 3

See Theorem 2.12 of71]. For arbitrary ! and *, we can also use the integral pairing

lim Rssf(rz)g(rz)dv(z), f' AP, g' A9,
Bn

r—1!

where+ is debned by (0) and s is any complex parameter such that the operatoRs ¢
is well debned.

More generally, if + is given by (10) and if k is a sulciently large positive integer,
then the duality (AP)" = A{ can be realized with the following integral pairing

Iz&(

%g& =f(0)g(0)+ . (yg"l z|* "R (2) (1] zIA)*Rkg(2)dvs(2),

wheref ' AP andg' Ag. Many other di"erent, but equivalent, integral pairings are
possible.

Theorem 24 . D Suppose 0O<p # 1,! is real, and * is real. If S; and S, are complex
parameters such that the operators Rs, yp and RS2# are well-defined, then (AP)* =
I 4 under the integral pairing

9% g &= rli_rpl! . R, up f(rz) RS2#g(rz)dvg(z),

n

wheref ' AP, Q" !4, and+=(n+1)A/p " 1).
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Proof. B This follows from the identities
RsvMP AP = AP, R%#1, = B,
and the well-known duality (AP)* = B under the integral pairing
% g &= rlm’ an(rz)@dvsg(z).
See Theorem 3.17 off1]. O

Once again, it is easy to come up with other di"erent (but equivalent) duality
pairings. We state two special cases.

Corollary 25 . B For any real! we have (Al)* =! | (with equivalent norms) under
the integral pairing '

% g &= Iimr f(rz)g(rz)dv(z),
r—1 B.,
where f ' Al andg' !, .
Proof. B Simply chooses; = s,,! = *, and p=1 in the theorem. O

Corollary 26 . D Suppose ! is real and S is any complex parameter such that RS
is well defined. Then (Al)*= B (with equivalent norms) under the integral pairing

% gé&= Iiml, Rsy f(rz)g(rz)dv(z),
r—1 B,
where f ' Al andg' B.
Proof. B Simply choose* =0 in the theorem. O

Theorem 27 . D Suppose! and* are real. If S; and S, are complex parameters such
that the operators RSt and RS2# are both well defined, then (! #0)* = Al (with
equivalent norms) under the integral pairing

% g&= rlm . Rs, 1 f (rz) Rs2#g(rz)dv(z),
where f ' Al andg' ! 4.0.
Proof. B See the proof of Theorenm24. O
We also mention two special cases.

Corollary 28 . D For any real ! we have (! 1 o)* = Al (with equivalent norms)
under the integral pairing

%g&= lim f(rz)g(rz)dv(2),
r—1 B,

wheref ' 1 g andg' Al.
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Proof. B See the proof of Corollary25. O

Corollary 29 . D Suppose ! is real and S is a complexr parameter such that the
operator RS is well defined. Then (By)* = Al (with equivalent norms) under the
integral pairing '

% g &= rlimll Rs,) f(rz)g(rz)dv(z),
-4 B?L

where f ' By and g' A}l.

Proof. B Just set* =0 in the theorem. O
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CHAPTER 9

INTEGRAL REPRESENTATIONS

In this chapter we focus on the casel # p <! and show that each space\P is a
quotient space ofLP(B,, dv). We do this using Bergman type projections.

Integral representations of functions in Bergman spaces oB,, started in Forelli-
Rudin [25] and have seen several generalizations; see Chds], Kaptanoglu [34], and
Zhu [71]. The next result appears to be new even in the case of unweighted Bergman
spaces of the unit disk.

Theorem 30 . B Suppose p - 1 and ! is real. If + and ' are complex parameters
satisfying the two conditions,

(@) p(Re++1) > Re' +1,
(b) n+ ++(! " ")p is not a negative integer,

then a holomorphic function f in By belongs to AP if and only if

g(w)dvs (w)

(11) f (Z) = B, (1 " Oz, W&n+1+ $+(! —=")lp

for someg' LP(Bp,dv-).

Proof. B Suppose that the parameters satisfy conditions (a) and (b). Let

Then ' = p(+" *). Note that condition (a) is equivalent to p(Re* +1) > 1. In
particular, Re* > " 1 and n + * is not a negative integer. Also, condition (b) is
equivalent to the condition that n + (!/p ) + * is not a negative integer. So the
operatorsR**? and Ry, are well dePned.
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If f ' AP, then by Theorem 10, the function Ry y, f is in AP It follows from
Theorem 2.11 of ¥1] (note that the result there was stated and proved for real pa-
rameters, the case of complex parameters is proved in exactly the same way) and the
condition p(Re* +1) > 1 that there exists a function h' LP(B,, dv) such that

h(w)dvy (w)
B, (l " %Z, W&n+1+ #

Ruwp T(2)=

Apply the operator R**P  to both sides and use Proposition3. Then
h(w)dvg(w)

B, (1 " 0/OZ,W&n+1+ #+(p )

Let g(w) = (1 "| w|?)*~*h(w). Then g' LP(B,,dv-) and

_ g(w)dvs(w) .
f(z)= B, (1" %z, wn+i+ $+(1 —)p &

f(2) =

The above arguments can be reversed. So any function represented byl is
necessarily a function inAP. This completes the proof of the theorem. O

Once again, the proof of Theorem 2.11 of71] is constructive. So there exists a
bounded linear operator

L:AP "™ LP(B,,dv-)
such that the integral representation in (11) can be achieved with the choiceg = L (f).

If condition (b) above is not satisbed, then
1 % &
= " 0
(l " %%z, W&n+1+ $+(! =")lp 1" %z, w&

for some nonnegative integeik, and any function represented by (L1) is a polynomial
of degree less than or equal t&. In this case, the integral representation (L1) cannot
possibly give rise to all functions in AP. This shows that condition (b) is essential for
the theorem.

We can also show that condition (a) is essential. In fact, if every functiong
in LP(B,,dv-) gives rise to a functionf in AP via the integral representation (11),
then we can apply the operatorR¥*(! =")/Pk tg poth sides of (11) and use Theorem14
to infer that the operator

% gw)dvs (v)

—-— % n
Tog2)= 1 s (1" %Z,W&'”“ k+$+(! =")lp

maps LP(B,, dv-) boundedly into LP(B,, dv, ), where k is any nonnegative integer
such that pk+ !> " 1. Write

gw) = 3w P hw),
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Theng' LP(B,,dv-) ifand only if h' LP(B,,dv, ). It follows that the operator
& (@ wB)P TP h(w)dv(w)
l Z| @a" %Z,W&n+1+ k+$+(! =" )/p

maps LP(B,, dv, ) boundedly into LP(By, dv, ). By Proposition 8, the parameters
must satisfy the conditions

%
Sh(z)= 1"

"pk<! +1<pRe ++° 5

+ 1. .

It is easy to see that these two conditions are the same as the two conditions
pk+!> "1 and p(Re++1) > Re' +1.

Therefore, the conditions in Theorem30 above are best possible.

Corollary 31 . D Suppose p- 1 and! is real. If * is any complex parameter such
that

(@) p(Re* +1) >! +1,
(b) n+ * is not a negative integer,
then a holomorphic function f in By belongs to AP if and only if

- g(w)dvy (w)
f(2)= B, (1" %z, wn+1+ #

for some @' LP(Bp,dv,).

Proof. B Simply set+=* and' = ! in the theorem. O
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CHAPTER 10

ATOMIC DECOMPOSITION

Atomic decomposition for the Bergman spaceAP was brst obtained in Coifman-
Rochberg R1] in the case! > " 1. This turns out to be a powerful theorem in the
theory of Bergman spaces. We now generalize the result to al\P . We will also obtain
atomic decomposition for the generalized holomorphic Lipschitz spaces; .

Theorem 32 . B Supposep > 0, ! is real, and b is real. If b is neither O nor a negative
integer, and
o1 1+l
(12) b>nmax 1,- + ,
p p

then there exists a sequence {ax} in Bn such that a holomorphic function f in B,

belongs to AP if and only if, for some sequence {c}"' P,

(1 ul ak|2)b—(n+1+ )/p 3
(1" %z, Q>

$e
(13) f(z)= o
k=1

Proof. B Note that the condition in ( 12) implies that

| = .
b" = >n max 1,} + }>n.
p p p

This, together with the assumption that b is neither O nor a negative integer, shows
that the operators RSP and Rsup are well dePned, wheres is determined by

!
b=n+1+ s+ —-a
p

Also note that the condition in (12) implies that

b > n max 1,}. +}.
p p
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42 CHAPTER 10. ATOMIC DECOMPOSITION

whereld = b" (//p ). By Theorem 2.30 of [r1], there exists a sequencéax} such that
f ' AP if and only if, for some sequencdc}' P,

1" ax |2)b”7(n+1) I

$e
(14) (@= o g

k=1

If f is given by (13), then
(1 " | ak|2)b—(n+1+ )/p
(1" %z, a,&P-p

$e
Rs,!/p f (Z) = Ck
k=1
or

$o @ ak|2)b"—(n+1) Ip
Row 1= % w,a80
According to the previous paragraph, we haveRg,, f ' AP. Combining this with
Theorem 10, we conclude thatf ' AP.

a

The above arguments can be reversed, showing that every functioh ' AP admits
an atomic decomposition (L3). This completes the proof of the theorem. O

Recall thatwhen! = " (n+1), the resulting spacesAP are nothing but the diagonal
Besov spaces . Atomic decompositions for Besov spaces have also been obtained in
Frazier-Jawerth [26] and Peloso #4].

It can be shown that the assumptions on the parameters in the above theorem are
optimal. It can also be shown that forf ' AP, we have

%
!fyg'! * Inf |Ck|p1
k=1
where the inbmum is taken over all sequencefci} satisfying the representation (13).
The atomic decomposition for functions in the Bloch space was prst obtained in

Rochberg |6]. As a consequence of atomic decomposition for the Bloch space, we now
obtain an atomic decomposition for functions in the generalized Lipschitz spaces.

Theorem 33 . D Suppose ! and b are real parameters with the two properties:

@ b+!>n ,

(b) b is neither O nor a negative integer.

Then there exists a sequence {ax} in Bn such that a holomorphic function f in B,

belongs to ! 1 if and only if, for some sequence {cc}' ,°°,

@ aprt,

(15) f(z)= . Ckm

k
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CHAPTER 10. ATOMIC DECOMPOSITION 43

Proof. B Chooses so that b= n+ 1+ s. Then the operatorsRS' and R, are well
debned. Letb = b+ ! . Then a function f is represented by (5) if and only if

$o " 2\b’

RS,! f(Z) - C (1" | akl ) _

("%, 3P
for some{c} ' ,*. SinceRs'!, = B, the desired result then follows from the
atomic decomposition for the Bloch space; see Theorem 3.23 of1[]. O

Once again, the assumptions on the parameterband ! in the above theorem are
best possible.

A little oh version of Theorem 33 also holds, giving the atomic decomposition for
the space! | o. The only adjustment to be made is to replace the sequence spacé®
by ¢y (consisting of sequences that tend td). We omit the details.

As a corollary of atomic decomposition, we prove the following embedding
of weighted Bergman spaces which is well known and very useful in the spe-
cial case!> " 1, see Aleksandrov 2], Beatrous-Burbea [i1], Rochberg §6], and
Lemma 2.15 of Zhu fr1].

Theorem 34 . B Suppose O<p # 1 and! is real. If
+1+ !
T

then AP is continuously contained in A}.

Proof. B Suppose0 < p # 1and bx any positive integerbsuch thatb > (n+1+ ! )/p.
If f ' AP, then there exists a sequencécc}' ,P. ,! such that

. o @ ak|2)bf(n+l+ 1)/p
(Z)_ o1 Ck (l"%z,ak&b
where {ax} is a certain sequence irB,. For any k - 1 write
1
fi(z) =

(1" %z, a 8o
Then

B % 8 (n+1+ 1)/
Fois # leel 1] axl? (n++')p,fk

k=1
An easy computation shows that

y 1# -

h(%, & &

N =
RO(@ = 7o agon
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where N is the smallest nhonnegative integer withN + * > " 1 and h is a polynomial
of degreeN . It follows that

@] zZHN*dv(z)

1" %z, a &P N
where C is a positive constant (independent ofk). Estimating the second integral
above by Proposition 7, we obtain

@ 2N IRYfi(z)ldvy(z) # C
B

By

C/
(1" ] a|2)b—(n+1+ 1)ip ’

@ ZP)V IRNf(2)ldve(2) #

Bn

where C’ is another positive constant independent ofk. This shows that

$°
fo1s# C el <!,
k=1
completing the proof of the theorem. O

The above theorem can also be proved without appealing to atomic decomposi-
tion. In fact, if k is a sulciently large positive integer (such that kp+ !> " 1 and
k+ *> " 1), then the condition f ' AP, 0<p # 1, implies that R*f ' AP., where
"= kp+!.By Lemma 2.15 of [r1], we haveR*f ' Al., where

17 |
e 7””; v (n+1)= k+ 7”+1p+ " (n+1)= k+ %,

or equivalently, the function (1"| z|?)¥R¥f (z) belongs toL (B, dvs), thatis, f ' A}.

Theorem 35 . D Suppose p> 0 and ! is real. If  and r are positive numbers satis-

fying
1 1 1
— = — 4+ —

pq T

then every function f ' AP admits a decomposition

$e
f(z)= K (2)h (2),

k=1
where each g« is in Al and each hy is in A} . Furthermore, if 0<p # 1, then
e
1gk1q,!1hk1r,! #Cyfap,! ’
k=1

where C is a positive constant independent of f .

Proof. ® Consider the function

1

T @
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wherea' B, and bis the constant from Theorem 32. We can write f = gh, where
1 1 ;

(@7 %z, 87 (@ %z, g

If k is a sulciently large positive integer, then it follows from Proposition 7 that

@]z, (2)0 v

9(2) = h(z) =

*
o 5, |17 %z, a&p®+ k)
. + 1 p 1 )
@ a|2)pb—(n+1+ ) - @ a|2)b—(n+1+ 1)/p a
Similar computations show that
1 1
’ g’ q,! * and ’ hl r!

(1 " | a|2)(bp7n717! )q * (1 " | alZ)(bpfnflfl )r a
It follows that

Fopr ¥y Gogr sy
The desired result then follows from Theorem32 and the fact that

- $e + 1lp
lok| # C |cx [P
k=1 k=1

when0<p # 1. See the proof of Corollary 2.33 in T1] as well. O

When ! > " 1, the above theorem can be found in Coifman-Rochberg2fl] and
Rochberg |6].
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CHAPTER 11

COMPLEX INTERPOLATION

In this chapter we determine the complex interpolation space of two generalized
weighted Bergman spaces. We also determine the complex interpolation space between
a weighted Bergman space and a Lipschitz space.

Throughout this chapter we let

# o _ #
S= z=x+iy' C:0<x< 1, S= z=x+iy' C:0#x# 1.

Thus S is an open strip in the complex plane andS is its closure. We denote the two
boundary lines of S by

# #
L(S)= z=x+iy' C:x=0, R(S)= z=x+iy' C:x=1 .

The complex method of interpolation is based on HadamardOs three lines theorem,
which states that if f is a function that is continuous on S, bounded onS, and analytic

in S, then for any (' (0, 1)
9 _o &y,
sup Ef (Z)E# 0sup Ef (Z)E&l . 0sup gf (z)g "
Rez=% Re z=0 Rez=1
Let X and Y be two Banach spaces of holomorphic functions iBB,. Then X + Y

becomes a Banach space with the norm
% &
1f:X+Y=inf 1grx+yh:Y ’ fl X+Y1

where the inPmum is taken over all decomposition$ = g+ hwith g' X andh' Y.If
(' (0,1), the complex interpolation space[X, Y ]oconsists of holomorphic functionsf
in B, with the following properties:

1) There exists a function $ /+ fg from S into the Banach spaceX + Y that is
analytic in S, continuous on S, and bounded onS.

2) foo=f.

3) The function $/+ fg is bounded and continuous fromL (S) into X.

4) The function $/+ fg is bounded and continuous fromR(S) into Y.
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The space[X, Y ]y is a Banach space with the norm

. % &
,f,%:InfmaX Sup !f&;xy Sup 1f&yY ’
Re &0 Re &1

where the inbmum is taken over allf ¢ satisfying conditions 1) through 4) above. See

Bergh-LsfstrSm [14] and Bennett-Sharpley [13] for more information about complex
interpolation.

The complex method of interpolation spaces is functorial in the sense that if
T:X+Y"™% X'+Y/
is a linear operator with the property that T maps X boundedly into X’ and T
maps Y boundedly into Y’, then T also maps|[X,Y ]y boundedly into [X’,Y ], for
each(' (0,1).
The most classical example of complex interpolation spaces concerns’ spaces
(over any measure space). More specibcally, f# po<p: #! and

1_1"(, (

P P m

for some0< (< 1, then
[|_Po , Lpl]%: LP
with equal norms.

More generally, if wo and w; are weight functions of a measurqu, and if 1 # pg <
pp <! ,thenforany (' (0,1) we have
1 2
LPo(wo), LP*(w1) o= LP(w)
with equal norms, provided that
1 1" e
= (, L and wr = wy" w4
p Po P1
This is usually referred to as the Stein-Weiss interpolation theorem. See Stein-
Weiss B5].

Theorem 36 . B Suppose! and* are real. If 1# po# p1 <! and
1_1" (, (

p Po p1
for some (' (0,1), then 5
AP AL = AL
with equivalent norms, where + is determined by

+

bogn i
B: %(1 0O+ pl(-
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Proof. D Itis clearthat 1# p<! . We bx a large positive numbers such that
(16) p(s+1) >+ +1, po(s+1)>! +1, pi(s+1)>* +1.
Then by Corollary 31, the integral operator

g(w)dvs(w)
B, (1" %z, w&n+1+ s

To(2) =

mapsLP(By, dvg) boundedly onto Ag; it maps LP°(B,, dv, ) boundedly onto Af°; and
it maps LP:(Bn, dvy) boundedly onto AL*. It follows from the functorial property of

complex interpolation and the Stein-Weiss interpolation theorem that T maps the
space

1 2
LP°(Bn, dv, ),LP*(Bn, dvy) ,,= LP(Bq, dvs)
+

boundedly into APe, AL o SinceTLP(By, dvg) = AR, we conclude that
1 2
AR . AP AR %
and the inclusion is continuous.

On the other hand, if k is a sulciently large positive integer, the operator L
debned by

I le&(

% k
L(f)(z)= 1" RKf(z), f' H(Bn),

mapsAPe boundedly into LP°(By, dv, ); and it maps AL* boundedly into LP*(By, dvs).
By the functorial property of complex interpolation and the Stein-Weiss interpolation
theorem, the operator L also maps[APe, Ab*]y, boundedly into LP(B,, dvs). Equiva-
lently, if f ' [AP, AL]y then the function (1"| z|?)¥R¥f (z) belongs toLP(B,, dvs),
thatis, f ' AE. We conclude that

1. 02
AP, Ay

p
0w A%

and the inclusion is continuous. This completes the proof of the theorem. O

Corollary 37 . D Suppose ! is real, * isreal, L# p<! , and 0<(< 1. Then

1 2
AP, AP

— AP
%~ As,

where +=1 (1" ()+ *(.

Theorem 38 . D Suppose ! and* arereal. If 1# p<! and 0<(< 1, then
1 2

AP Ly o = A

with equivalent norms, where q= p/(1" () and +=1 " q*(.
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Proof. B First we consider the Iinee'lr operator
f (W)dvs. » (W)
B, (1"%z,wgn+it s
where s is a bxed and sulciently large positive number. By Theorem 17 and Theo-

rem 30, the operator T mapsL *°(B,) boundedly onto! 4; and it maps LP(By, dvi + p#)
boundedly onto AP. Since

Tf(z) =

it follows that T maps the space
1 2
Lq(Bn,dV!+p#)= Lp(BnadV!+p#),|—oo(Bn) %

boundedly into [AP,! 4] But we have TL9(B,, dv, +,s) = A according again to

Theorem 30. So 1 5
Ad. AP 1y %

and the inclusion is continuous.

Next we consider the linear operator

% .
@)= Ar| 225"

R¥f(z), f' H(Bn),

where k is a bxed and sulciently large positive integer. The operator L maps AP

boundedly into LP(By, dv: +p#); and it maps ! 4 boundedly into L°>°(B,). Therefore,
L also maps[AP,! 4], boundedly into LY(By, dv, +px), thatis, f ' [AP,! 4], implies
that the function (1"| z|?)*~#RXf () is in L9(Bn, dv, + p#), which is the same as the
function (1"| z|?)XRXf (z) being in LY(By, dvg), or f ' A$. We conclude that

1 2
AP Ly o A4,
and the inclusion is continuous. This completes the proof of the theorem. O

Theorem 39 . D Suppose ! is real, * is real, and 0< (< 1. Then
1 2

Pioly =t s

with equivalent norms, where + =1 (1" ()+ *(.

Proof. D Fix a sulciently large positive number s. If f ' | g, there exists a function
g' L°°(Bp) such that

5 (1" %z, wgn+i+ s—s’

see Theoreml7. For any $' S we dePne

gW)(1 " | w[?)! (=8 #&-9 dy g (w) 4

fe(z) =
&(2) B, (l " %Z,W&”"‘l"' s—$
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Let k be a sulciently large positive integer. Then it follows easily from Proposition 7
that the map $/+ f¢ is a bounded continuous function fromS into

Py + w =1 mincs ),

and its restriction to S is analytic. Also, the map $ /+ fg is a bounded continuous

function from L(S) into ! , , and from R(S) into ! 4. Sincef¢= f, we conclude from
the debnition of complex interpolation that f * [! | ,! #]o This shows that
Ps. [Mrutaly,

and the inclusion is continuous.
On the other hand, if f ' [!,,! 4], then there exists a family of functions fg,

where$' S, such that

(a) $/+ fgis abounded continuous function fromS into ! min( 14 ) Whose restriction

to S is analytic;

(b) $/+ fg is a bounded continuous function fromL(S) into !, ;

(c) $/+ fg is a bounded continuous function fromR(S) into ! 4;

(d) foo= 1.
Let k be a positive integer with k > max(!,* ) and consider the functions

w(2) = 10| 2R a9kt () 50 B g S

By conditions (b) and (c) of the previous paragraph, there exist Pnite positive
constants My and M4 such that

a7 sup Eg&(z)E: Mo, sup gg&(z)gz Mj.
z€B, z€B,
&€L(S) &€R(S)

For any bxed pointz' B, it follows from condition (a) of the previous paragraph that
the function F($) = ge(2) is a bounded continuous function onS whose restriction
to S is analytic. Moreover, it follows from (17) that |[F($)| # Mo for $' L(S) and
[F ($)|# My for $' R(S). By HadamardOs three lines theorem, we must have
0, 0, % — 0, 0,

FIO# MEMP or 1 z|28“ sfRks (z)g# M=% %
Since the constant on the right-hand side is independent ok, we have shown that
f ' 1g4. Therefore,

ot aly. !ss

and the inclusion is continuous. This completes the proof of the theorem. O
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CHAPTER 12

REPRODUCING KERNELS

In this chapter we focus on the Hilbert space case = 2. We are going to ob-
tain a characterization of A? in terms of Taylor coelcients, and we are going to
debne a canonical inner product omA? so that the associated reproducing kernel can
be calculated in closed form.

Reproducing kernels forA? are also calculated in Beatrous-Buebeal[l] in terms
of a certain family of hypergeometric functions. Our approach here is di"erent.
We wish to write the reproducing kernel of A2 as something that is as close to
(1" %z, w&("*1* ') as possible.

Theorem 40 . B Suppose ! is real and
f(z)= amz™.
m

Then f ' A? if and only if its Taylor coefficients satisfy the condition

$ mle™m|

(18) lam|* < !

>0 |m|n+\m|+! +1

3
Proof. B Fix a positive integer k such that 2k + !> " 1L If f(z)= , anz™ is the
Taylor series off in By, then

$
R*f (z) = am|m|<z™.

Im|>0
It follows that the integral
e )= tar 2R @Pav @)
is equal to ' o
an AP 2P 30 27 ava).

Im|>0 Br,
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54 CHAPTER 12. REPRODUCING KERNELS

By integration in polar coordinates (see 1.4.3 of Rudin 47] or Lemma 1.11 of Zhu
[71]), there exists a constantC > 0 (independent off ) such that

[m|%k m!

2
"(n+ [m[+2k+ ! +1) o ™

$
i (f)=C

|[m|>0

Sincen, k, and ! are all constants, an application of StirlingOs formula shows that
u( n+ |m|+2k+ I +1) *l m|n+|m\+2k+! +%e m|

as|m| +! . We conclude that the integral I, (f) is Pnite if and only if the condition
in (18) holds, and the proof of the theorem is complete. O

An immediate consequence of the condition in 18) is that the space A? is inde-
pendent of the integerk used in the debnition ofA2. Of course, we already knew this
from Section 4.

Theorem 41 . D Suppose ! > " (n+1). Then A? can be equipped with an inner
product such that the associated reproducing kernel is given by

1

(29) Ky (z,w) = (1" %z, @i | a

Proof. B It follows from StirlingOs formula again that the condition in (18) is equivalent

to

$ m!"(n+1+ 1)
(n+m[+ 1 +1)

(20) lam|* < !

Now debne an inner product onA? as follows:

$ mir(n+1+1)

%g& = o mi+ +1)amhn,

where
$

$
f(z)= anz™, g(2)= b,z™.

Then A? becomes a separable Hilbert space with the following functions forming an

orthonormal basis: 4

‘(n+ m+ 1 +1)
m!"(n+1! +1)

em(2) =
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wherem runs over all n-tuples of nonnegative integers. It follows from the multinomial

formula (1) that the reproducing kernel of A? is given by

$ "(n+mj+! +1)
m!'"(n+1! +1)

m

$ -
Ki(z,w) = en(2)em(w) =

T rnrk 4y Sk
|

kKI"(n+1+ 1) m
k=0 Im|=k
$ m(n+ek+1+ !
_ (n" k+1 .)%,W&(: ” 1 -
‘o kKI"(n+ ! +1) (1" %z, wgn+i+
This proves the desired result. O

When ! > " 1, the reproducing kernel for A? is of course well known. See Rudin
[47] or Zhu [71]. When! #" 1, the point here is that you need to use an appropriate
inner product on A? so that its reproducing kernel is computable in closed form.

Theorem 42 . D Suppose ! = " (n+1). Then A? can be equipped with an inner
product such that the associated reproducing kernel is
21 K_ z,w)=1+log ————4a
(21) (n+1) (Z,W) 9 T7 oz We
Proof. RIf I = " (n+ 1), then Theorem 40 tells us that a holomorphic function
f(z)= |, amz™ in B, belongs toAZ_(n+1) if and only if

$ mleml

ﬁ lam?< !,
im0 M2

which, according to StirlingOs formula, is equivalent to

Im|>0

m!

2
m|—- lam|[c <! .
|m|!| |

If we dePne an inner product onAZ_(n+l) by

m! -
7amh’n!

___ $
22) ho&ay = @0+ Il

|m|>0

where $ $
f(z)= anz", 9(z)= bnz™,

m m
then Ai(nﬂ) becomes a separable Hilbert space with the following functions forming
an orthonormal basis: 4
mi!

m!m| "~ "’
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wherem runs over all n-tuples of nonnegative integers withjm| > 0. It follows from ( 1)
that the reproducing kernel of Az_(n+l) is given by

m|! €13 K«
K_(n+1) (Z,W) =1+ n|1!|r|n| "wh =1+ K z"w"m
Im|>0 k=1 " |m|=k
4 $ on,we L 1
B k g 1" %z, W&
k=1
completing the proof of the theorem. O

The spaceAZ_(n+l) can be thought of as the high dimensional analog of the classical
Dirichlet space in the unit disk. It is the unique space of holomorphic functions in the
unit ball that can be equipped with a semi-inner product that is invariant under the
action of the automorphism group. See Zhu §7]. The formula in Theorem 42 above
also appeared in Peloso44] and Zhu [67].

Theorem 43 . B Suppose " N <n +1+ ! < "N +1 for some positive integer N .
Then for any polynomial

3
=l
3

Q(Z7W): 'mZ
Im|<N

with the property that
‘(n+[m+1 +1)

m > DY S T

we can equip A!Z with an inner product such that the associated reproducing kernel is
given by
(u 1)N )

(23) K (20) = QW)+ (g ez

~ 3
Proof. B By Theorem 40 and StirlingOs formula again, a functiorf (z) = anz™
is in A2 if and only if
$ m"(n+1+1)

2
a <
“(n+ [m|+! +1) ||

Im|>0
f*"N<n+1+ !< "N +1, it follows from the identity
"(n+! +1) _ 1
"(n+m[+! +1) (n+1+!)(n+2+ )ad@+ m|+!)
that for any |m| >N we have

"(n+!1 +1) .
"(n+ [m|+! +1) =(" "

"(n+! +1)
‘(n+ m[+ ! +1)
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Therefore, for any positive coelcients ¢y, where |m| # N, we can debne an inner
product on A? as follows:

m!'"(n+1 +1) _

$
(24)  Hg& = Cm 8m b + (" DN

“(n+ [m)+ 1 +1) 2m
[m|<N [m|>N
where $ $
f(z)= amz™, g(2)= bnz™.
m m

Then A2 becomes a separable Hilbert space with the following functions forming an
orthonormal basis:

1
em(Z): Qazm, |m|# N,

and 4

‘(n+ml+1 +1)
m!'"(n+ 1! +1)

em(2)= (" DN ,Im[>N.

Using the mutinomial formula (1), we bnd that the corresponding reproducing kernel
for A? is given by

3 -
Ki(z,w) = em (z)em (W) + em (2)em (W)
Im|<N [m|>N
$ $
= izmwm +(" 1)N (nl-: |m|-: ! +1) mm
mI<N Cm m >N m!"(n+1 +1)
$ (" )"
= -mZ" W™+ " 1+ 1!
mI<N (1" %z, w&"
where
_ 1, W (n+ml+ 1 +1) woaN+l N+ M+ +1)
™ Cm 1) mi"(n+1! +1) > D m!"(n+1! +1)
This completes the proof of the theorem. O

The appearance of the sign(" 1)N in (23) is a little peculiar; we do not know if
there is any simple explanation for it. We also note in passing that the reproducing
kernel given by (23) is bounded.

It remains for us to consider the case in whichn + 1+ ! = " N is a negative
integer. The principal part of the reproducing kernel in this case will be shown to be
the function

% "N log———— 35
(%8, W& " 1)7 log T55 el

Thus for every positive integer N we consider the function

fn()=(z" DN log oz

1" z

SOCIfTf MATHfMATIQUE DE FRANCE 2008



58 CHAPTER 12. REPRODUCING KERNELS

It is clear that each fy is analytic in the unit disk D and
fla@=(N+Dfy@" (2" V.
In particular,
fE&@=(N+1)f @), k>N.

It follows from this and induction that fﬁ,k)(O) > 0 for all k> N . Also observe that
the Nth derivative of fy is™ log(1" z) plus a polynomial, so the Taylor coelcients
of fy has the property that, ask +! |

fPo, 1,
k[ kN+1a

Theorem 44 . D Supposen+1+ | =" N for some positive integer N and

$o
(z" )N log 1,,1 = AZs.
z k=0

Then for any polynomial

3
g
3

$
Q(Z,W): 'mz

[m|<N
with the property that

s Iml!A|m|’

m!
we can equip A? with an inner product such that the associated reproducing kernel is

(25) Ky (z,w) = Q(z,w) + (%, w&" )" log 15 —— -4

N 3
Proof. B It follows from (18) and StirlingOs formula that a functionf (z) = | anz™

belongs toA? if and only if

m!
ImN*t ——Jan[*< !,

Im]!
m
which is equivalent to
L|am|2 < |
[m >N M|t Ajm
If ¢y > Ofor Im|# N, we can debne an inner product orA? as follows:
$ _ $ m! _
(26) %g& = Cm @m bin + T 8m b .
[M['Am
Im|<N |m|>N
where $ $
f(z)=  amz™, 9(2)=  bnz".
m m
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Then A? becomes a separable Hilbert space and the following functions form an
orthonormal basis:

1
em(2) = Gazm, [m]# N,

and

Mt A m
m!

The associated reproducing kernel foA2 is given by

en(z) = . |m|>N.

Ki(z,w) = €m(Z)em(w) + €m (Z)em (W)
Im|<N |m [>N
$ m M $ I
= zw + wzmwm
Im|<N Cm |m >N m:
| |
Im|<N Cm m: k=0 Iml=k
$

¥
= “mZ™WT + A%, wE
[m[<N k=0

Q(z,w) + (%, w&" 1)V log I

"%z, W&
where the coelcients of
Q(z,w) = -mZmwWm
Im|<N

satisfy

1 m|'A m|lA

_mzi..l Amy o M A

Cn m! m!

This completes the proof of the theorem. O

Once again, the reproducing kernel in 25) is bounded onB, $ B,,. Also notice that
we can rewrite the kernel in 25) as

1
1" %z,w&'

which is probably a partial explanation for the sign (" 1)N in (23).

Ky (z,w)= Q(z,w)+(" 1)N0/?L" %z,w&gN log

It is clear that the reproducing kernel of a Hilbert space of holomorphic functions
depends on the inner product used for the space. We close this chapter by examining
the reproducing kernel of A? that corresponds to the following natural inner product
which we have used in Chapter 7:

%g& = f(0)g0)+  Rf(2)R*g(z)dVaks1 (2),

n
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where k is any nonnegative integer with2k + ! > " 1. This inner product gives rise
to the norm ) '
5 g K Ez “1/2
oo = P O)7+ R*f (2)Udvak+ 1 (2)

n

for f ' AZ. For this inner product we can show that the corresponding reproducing
kernel for A? is
1
(1 " O/OZ, W&n+1+ 1 +2k
The result is a simple consequence of the identity, |

K\iv(z): Ki(z,w)=1+ R—Zk-

f(0g0)+ R (@R Kg@)dvas: (2)=  f(2)9(2)dVak+: (2),

n ]Bn
which can easily be proved by the use of Taylor expansions. We leave the details to
the interested reader.
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CHAPTER 13

CARLESON TYPE MEASURES

The purpose of this chapter is to study Carleson type measures for the Bergman
spacesAP. Unlike most other chapters of the paper, the results here depend very
much on the various parameters.

The notion of Carleson measures was of course introduced by Carlesonhs], [16]
for the unit disk. CarlesonOs original dePnition works well in the theory of Hardy
spaces, and this can easily be seen in such classics as Durg8][and Garnett [27].
The characterization of Carleson measures for the Hardy spaces of the unit ball can
be found in H8rmander [32] and Power 45].

Later, the notion of Carleson measures was extended to the context of Bergman
spaces. Earlier papers in this direction include Cima-Wogen0], Hastings [31], Lueck-
ing [38], Zhu [66]. Also, Carleson type measures have been studied for holomorphic
Besov spaces (of which the Dirichlet space is a special case); see Arcozzi-Rochberg-
Sawyer [7], Kaptanoglu [35], Stegenga $4], and Wu [61]. In particular, our results of
this chapter contain several special cases that have been known before.

Forany $' S, andr> Olet

#
QP = z' B, :|1"%z, &<

These are the high dimensional analogues of Carleson squares in the unit disk. They
are also called nonisotropic metric balls. See Rudin47] or Zhu [71] for more infor-
mation about the geometry of these nonisotropic balls.

Theorem 45 . B Suppose n +1+ 1 > 0 and W is a positive Borel measure on By .
Then the following conditions are equivalent:

(@) There exists a constant C > 0 such that, for all $' S, and allr > 0,

% & ,
(27) L Qr($) # Crnt+t,
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(b) For each s > O there exists a constant C > 0 such that, for allz' By,

@] 2P duw)

2
( 8) B, |1"%Z,W&F+l+ l+s

# C.

(c) For some s > 0 there exists a constant C > 0 such that the inequality in (28)
holds for all z' By.

Proof. P It is obvious that condition (b) implies (c). Now assume that condition (c)
holds, that is, there exist positive constantss and C such that the inequality in ( 28)
holds. If $' S, andr ' (0,1), then

(1"] z|*)*du(w)

#C
0. 1" %z, W&+ 1+

(29)

forall z' B,. If we choosez=(1" r)$, then
1"%z,w&=(1" r)%l" °/0$,W&&+ r
forall w' B,, so
El"%z,w&g# @"nr+r<2r
forall w' Q($), which gives

(1 "| Z|2)s rs _ 2—(n+l+ 1 +5)
|17 %z, W& 1+ !+ ) (2r)n+i+ L+s - pn+l+ !

for all w' Q; ($). Combining this with ( 29), we conclude that
% & 1+ +1+ !
l—l Qr ($) # 2n+1+ ! SCrn 1+ !

forall $' S, andallr' (0,1). The caser - 1 can be disposed of very easily. This
proves that condition (c) implies (a).

Next assume that condition (a) holds. In particular, p is a bPnite measure, so

p L1 ZP)du(w)
SR T AT R

for eachs > 0. We bx an arbitrary positive number s and proceed to show that the
inequality in (28) must hold for 2 < |z| < 1.

Fix some pointz' B, with % < |z| < 1and choose$ = z/|z|. For any nonnegative
integer k let r, = 2%*1 (1"] z|). We decompose the unit ballB,, into the disjoint union
of the sets

Eo=Qr($), Ex=Qr (9" Qr,, (%), 1#k<!
By condition (a), we have

o
W(EW) # W(Qr, (§) # 2D nias 1) et o
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for all k - 0. On the other hand, if k- 1andw' Eg, then
gl" %z,wé: E(l g z|) + |zﬁ " %3, W&E
%
-] z] &1" %$, w 1"|z|
3 Y0 & % w170 &
2525 1" 21 " 1"|z| 275 1" 2| .

This holds for k = 0 as well, because
% &

gl"%z,w&f- 1" z|- 1" 2| .
It follows that
@] z]P)%dp(w) _ $e (1" zI*)*du(w)
5, |17 %z, W& *1* T +s |1" %z, W& 1+ 1 +5

k=0 E&
@] z2P%u(EN)
@I "] z])n+i e

k=0
$e os+( k+1)( n+l+ ! )(1 " Z|)n+1+ t+sc R 1
= 4 — < |
(k—1)(n+1+ ! +5s) " n+l+ ! +s s)k Y
o 2 ("] zl) o @)
where C’ is a positive constant independent ofz. This completes the proof of the
theorem. O

Our results are most complete when0 < p # 1. The following result settles the
casen+1+ !> 0, and Proposition 49 deals with the casesn+1+ | # 0.

Theorem 46 . B Suppose !> " (n+1),0<p # 1, and U is a positive Borel measure
on Bn. Then the following two conditions are equivalent:

(@) There exists a constant C > 0 such that, for allf ' AP,

(30) f (w)f du(w) # C, f

n

(b) There exists a constant C > 0 such that, for all$' S, and allr ' (0,1),
% & \
(31) HQi($) # Crit .

ypl .

Proof. B First assume that condition (a) holds. We consider the function
f = 1 "B
(w) = (1" %w, z&(n+1+ L +s)ip rW n

where s is positive and z ' B,,. If k is the smallest nonnegative integer such that
kp+ !> " 1, then an elementary calculation shows that

Q(%, 2§
(1 " 0w, Z&)k+( n+l+ L +s)p

R*f (w) =
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where Q is a polynomial of degreek. It follows from Proposition 7 that there exists a
constant C > 0 (independent of z) such that

. c
f(l | w|2)kka(w)Epdv! (w) # G
forall z' B,. Combining th'is with condition (a), we conclude that
(1" z]*)>dp(w)
B, |1" %Z,W&P+1+ Il +s
forall z' B,, which, according to Theorem45, is equivalent to condition (b).
Next assume that condition (b) holds. Then condition (b) of Theorem 45 holds.
We proceed to prove the inequality in (30).
Givenf ' AP, we use the atomic decomposition folAP (see Theorem32) to write
. (Z) _ $o o (1 ul ak"|2)b—(n+1+ 1Ip
- (1" %z, &g

where b is a sulciently large positive number and

#C

lec|P # C, f .B,l
k=1
for some positive constantC independent off . SinceO<p # 1, we have
--l ak|2)pbf(n+1+ 1)
|1" %z, a &pP

Fo
Ef (z)Ep # |ck|p(1
k=1
and so

¥ d
p P m 2\pb—(n+1+ 1) IJ(Z) z
@Pdu@#  la@rl &l . "%, ac@p®

Apply condition (b) of Theorem 45 to the last integral above. We obtain C’ > 0
(a constant independent off ) such that

G ¥
f(2)Pdu(z)# ' |alP# CCf,D, .
Bn, k=1

This completes the proof of the theorem. O
Corollary 47 . D If!'> " 1 and p > O, then the following two conditions are equiv-

alent for a positive Borel measure [l on By .

(@) There exists a constant C > O such that, for allf ' AP,

Ef (z)Epdu(z) # C Ef (z)Epdv; (2).

B, n

(b) There exists a constant C > 0 such that, for alltr > 0 and $' S,
% &
LQ($) #Crh .
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Proof. B That (a) implies (b) follows from the prst part of the proof of Theorem 46.
Theorem 46 also tells us that (b) implies (a) whenO<p # 1.

Now assume that condition (b) holds andf * AP for somep > 1. Then the function
g= fN belongs toA?, where N is any positive integer andq = p/N . We chooseN
large enough so that0 <q < 1. Then

%Q(Z)Eqdu(z) #C fg(z)quv! (2),

n B

where C is a positive constant independent ofg. This is the same as

Ef (z)Epdu(z) # C Ef (z)Epdv! (2),

n B,

and the corollary is proved. O

Let * (z,w) be the distance betweerz and w in the Bergman metric of B,,. For any
R> 0Oanda' B, we write

#
D(@,R)= z' B,:*(z,a <R .
When !> " 1, the condition
% & +1+ !
HQI’($) #Crn .1 r> 01$' S’]a

is equivalent to the condition
0,

o0 & %
W D(aR) # Cg 1" a|28h+l+ ! '

, a' By.

See Lemma 5.23 and Corollary 5.24 off[L] (note that the debnition of Q, ($) in [71] is
di"erent from its debnition in this paper). It can be shown that these two conditions
are no longer equivalent when! #" 1. In fact, if f is a function in the Bloch space
that is not in BMOA, then the measure

du) = Rt 0% 2252

satisbes
H(Qr (%)) H(D(a,R))
sup———==1! and sup 77 <!
N act, (17| aP)"
Recall that the Hardy spaceHP, where0O < p < ! , consists of holomorphic func-

tions f in B,, such that

= sup Ef (r$)gpd0/f($)<! ,

O<r< 1

p
7f7p

n

where d%is the normalized surface area measure 08, . It is well known that every
function f ' HP has a bnite radial limit at almost every point on S, . If we write

f(®= lim (%), $' S,
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then we actually have '
f.0= [F(9IPAAS).
Sn

It is known that the following two conditions are equivalent for a positive Borel
measurep on By ; see HSrmander $2], Power [45], or Zhu [71].

(&) There exists a constantC > 0 such that, forall f ' HP,

gf (z)gpdp(z) # C Ef ($)Epd0/c($).

n Sn

(b) There exists a constantC > 0 such that, forall r> 0Oand $' S,,
% &
HQr($) # Crm.

Corollary 48 . D Suppose! =" 1, 0<p # 2, and | is a positive Borel measure on
Bn. Then the following two conditions are equivalent.

(8) There exists a constant C > 0 such that, for allf ' AP,

gf (z)gpdu(z) #C,f,0, .
B

(b) There exists a constant C > 0 such that, for allt> 0 and $' S,,
% &
HQr($) #Crm.

Proof. B That (a) implies (b) follows from the brst part of the proof of Theorem 46.
To show that condition (b) implies (a), we notice that A%, = H?, so the casep = 2
follows from the characterization of Carleson measures for Hardy spaces. The case
O<p # 1follows from Theorem46. The case ofl # p# 2 then follows from complex
interpolation. O

Proposition 49 . D Let U be a positive Borel measure on By. Ifn+1+ 1< 0 and
O<p< ! Jorifn+l+! =0 and O<p # 1, then the following two conditions are
equivalent.

(@) There exists a constant C > 0 such that, for allf ' AP,

gf (z)gpdp(z) #C,f,h, .

n

(b) The measure | is finite.
Proof. B SinceAP contains all constant functions, it is clear that condition (a) implies

(b). On the other hand, if p is a Pnite positive Borel measure, it follows from The-
orems 21 and 22 that AP is contained in LP(B,, du). By the closed graph theorem,
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AP is continuously contained in LP(B,, du), so there exists a positive constaniC > 0
such that, for all f ' AP, '

) If [Pdu # C,f,D, . O

As far as the conditjon

gf (z)gpdp(z)# C.f,B,, f' AP,

n

is concerned, the most dilcult case is probably when! =" (n+1) and1<p< !
This case is considered in Arcozzi-Rochberg-Sawyef] and complete results are ob-
tained in the range 1 < p < 2+ 1/(n" 1). Earlier results dealing with the Besov
spaces include Arcozzif], Arcozzi-Rochberg-Sawyer ¢], Stegenga $4], and Wu [61].

Theorem 50 . B Suppose 0<p # q<! ,! isreal, and | is a positive Borel measure

on Bn. Then for any nonnegative integer K with ! + kKp > " 1 the following conditions
are equivalent.

(@) There is a contant C > 0 such that, for allf ' AP,

[R¥f (w)|9dp(w) # C,f, 9, .

n

(b) For each (or some) s > 0 there is a constant C > 0 such that, for allz' By,
1| z]»)s
B |1" O/OZ,W&f"'( n+1l+ ! +kp)alp
(c) There is a constant C > 0 such that, for allt> 0 and $' (0,1),
)
U/(()gr ($)&# Cr(n+1+ I +kp)alp .

du(w) # C.

(d) For each (or some) R > 0 there exists a constant C > 0 such that, for all
al an 0,
|J/0D (a, R)&# C(l ul alz)(n+1+ ! +kp)a/p .
Proof. B Suppose (a) holds. Applying (a) to the functions fy(z) = z«, 1# k# n,
we see thaty is a bnite measure. For a bxed ' By let
(L") 21
(1 " (VOW, Z&s/q +(n+1+ | +k)/p
and let f ;(w) be an analytic function on B,, such that
kaz(W) = hz(w)" h;(0),
whereh,(0) = (1 "| z]2)%% # 1.
It follows from Proposition 7 that

hz(w) =

sup,fz,p1 # C.
z€B,
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Applying (a) to f, yields
fhz(w) " hZ(O)%qdu(W) # C.

n

It follows from the elementary inequality
% &
.l # 2, b+ IO

that ' E Eq % &
h,(w)Udp(w) # 29 C + p(Bn) ,

n

which gives us (b).
Next assume that (b) holds. Recall that D(z,r) is the Bergman metric ball at z
with radius R. By Lemmas 2.24 and 2.20 of71], we have

C

(1 " | Z|2)n+1+ 1 +kp %ka (W)%pdvl +kp (W)

D(zr)
|RKF (w)[P(1"| w|2)sP/a+kp
D(zr) 1" %W, z&pP/a +n+1+ 1+kp
(1 ||| W|2)sp/q d' (W)
5, |1" %z, W&PP/A +n+Lr Tk’

IR¥f ()P #

#C

dv, (w)

#C

where
d (w) = gR f(w)g 1] w|2&‘pdv (w)

is a Pnite measure onB, wheneverf ' AP. In fact, ' (B,) # C,f
constant independent off .

, b, for some
If p= g, an application of FubiniOs theorem to the estimate in the previous para-
graph shows that (b) implies (a). If p<q, we write p’ = g/p and /p’+1/q’ =1, and
apply HslderOs inequality to the estimate in the previous paragraph. The result is
* (L[ wP)sd (w) WL 2
B 1" %z, W&p*(n+1+ T +kp)alp (Bn) )

kaf (z)gp #

It follows that

&q” @] wp?)d' (w)

B |1 "z, W&f+( n+1+ ! +kp)alp
We now integrate against the measuredy, apply FubiniOs theorem, and use condition
(b) to obtain '

ngf (z)E du(z) # c (Bn)
B,

kaf (z)Eq # C%(Bn)

&_L+p/q

Since' (By) # C, f we get

1p|1

Eka (z)% du(z) # C,f,3, .
B,

This shows that (b) implies (a).
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The equivalence of (b) and (c) has already been proved in Theoremb5. Since
(n+1+ ! +kp)glp- n+1+ ! +kp>n,

the equivalence of (c) and (d) follows from the remarks after Corollary 47. This
completes the proof of the theorem. O

A similar result can be obtained in terms of fractional radial di"erential opera-
tors RS! instead of Rk above. We omit the details.

Once a certain result concerning Carleson measures is established, it is then rela-
tively easy to formulate and prove its little oh version. For example, with the same
assumptions in Theorem50, we can show that the following four conditions are equiv-
alent.

(@) If {f;} is a bounded sequence iRP and f;(z) + Oforeveryz' B,, then

j@p ERkn(z)@dp(z):o.

(b) For every (or some)sl> 0 we have
i (1] z]*)>dp(w)
z|-1 g, |1" %z, w&fr(n+i+ !t +kp)alp
(c) The following limit holds uniformly for $' S;:
H(Qr (%))

r“j& r(n+1+ T+kp)alp — 0

=0.

(d) For every (or some)R > 0 we have

u(D(a,R)) _
jal—1t (1" af?)(n+ie ! +odalp

The interested reader should have no trouble Pblling in the details.

As our next theorem shows, the assumption thatp # qis essential for Theorem50.
To deal with the casep > q, we associate two functions to any positive Borel measurg
on B,. More specibcally, for any reak+ and s we debne

(1"] z|*)*dp(w)

BS,$(“)(Z) = B, |1u %Z,W&P+1+ s+$’ z Bn;
and for any real + and positive R we debne
D(z,R .
frs (2) = _ub@R) g

(1 " | Z|2)n+1+ $’
If du(z) = h(z)dvg(z), we use the convention that
Bss(N)(2) = Bss(1), Brs(2) = Brs (2).

Itis clear that Bsg(M)(z) and fir s (z) are certain averages oft near the point z. The
function Bsg (1) is sometimes called a Berezin transform off.

SOCIfTf MATHfMATIQUE DE FRANCE 2008



70 CHAPTER 13. CARLESON TYPE MEASURES

Lemma 51. B Suppose W is a positive Borel measure on Bn. If + is real, p > 0, and
R > 0, then there exists a positive constant C such that

Eg(z)gpdu(z) #C gg(z)f"ﬁR,$ (z)dvs(2)

n Bn

for all holomorphic functions g in By .

Proof. B It follows from Lemma 2.20 and Corollary 2.21 of 1] that

% |2&1+1 % (yi,,l W|28h+1

0 % & % &
1"| z *v D(zR) *vD(MWR)

forw' D(z,R). We use Lemma 2.24 of71] and FubiniOs theorem to obtain
du(2)
B, (" 2P bR

lg(w)[Pdvg (w)
:-l W|2)n+1+ $

ﬁg(z)fpdu@ # Cy Eg(w)E"dv(w)

# C du(z
? B, () D(z,R) (1
|g(w)|Pdvs(w)

=C T TN § du(z)
2 b, WTWRS ey
= Cs . l9(w)[PBirs (W)dvs(w),
which proves the desired estimate. O

Lemma 52. B Let U be a positive Borel measure on Byn. If + is real, S is real, and
R > 0, then there exists a constant C > 0 such that Bgg (1) # CBss(Brs)-

Proof. B For w' B,, apply Lemma 51 to the function
@ wpys
(1 " %z, W&”+1+ S

with p=1. The desired result follows. O

9(2) =

Lemma 53. D Let U be a positive Borel measure on B, . If + and S are real and R s
positive, then there ezists a positive constant C such that irg # CBsg (M).

Proof. B Once again, we havel" | z|> * 1" | w|? * | 1" %z,w&|for w ' D(z,R).
It follows that

HOGER) ("] 2P)°du(w)

= S el VA # CB ,

Ars O)= @iz s © gy Mz wapers o8 CBas ()
proving the desired estimate. O
Theorem 54 . D Let 0 < q<p < ! and! be any real number, and let U be a

positive Borel measure on Bn. Then for any nonnegative integer K with ! + kp> " 1
the following conditions are equivalent.
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(@) There is a constant C > O such that, for all f ' AP,
N Eka (w)fqdp(w) #C,f,9,.
(b) For any bounded sequencel{fj} in AP with fj(z) + O for everyz' Bn,
lemoo ] |R¥f; (w)[%du(w) =0,
(c) For any fired r > O the function Brg is in LP P=D(B,, dvg), where + = | + Kkp.

(d) For any fized s > 0O the function Bsg (W) is in LP (P=9(B,, dvg), where + =
I + kp.

Proof. B Let s> O satisfy s+ ! + kg > " 1. It follows from Lemmas 2.24 and 2.20 of
[71] that

Cc

k q % k %q \
IR*f (2)[" # (1."| Z|2)n+1+ s+ 1 +kq D (zr) R (w)Udvse +kq(W)
|RF (w)[9(L" | w|?)>**d
#C d
D(zr) I1"%wW,2z&p+1* s+! +kg OV (w)
RXf (w)|9(1"| w|?)s*ka
= R e o Widvi ()

B |1" %w, Z&P+1+ s+ ! +kq
where. g (z) denotes the characteristic function of a setE. Integrate with respect to
du, apply FubiniOs theorem, and use Lemma 2.20 dff]. We see that the integral

Eka (z)qup(z)

is dominated by

D (w, % . &
T |“\Ev|z()vnv+1r+))!+kq Eka(w)Eq 1" w2 v, (w).

If condition (c) holds, then an application of H3lderOs inequality yields

+ -
k u(D (w, 1)) - pl (p—0q) v1—qlp
. IR¥f [9du # C,f, 9, @ wprT R dv,
n +' n )
_ (D (w,r)) - p/ (p—0q) 1 1—qlp
= C,f!g,! B (1..| W|2)n+1+!+kp V1 + kp
#C,f,9, .

This proves that (c) implies (a).
Sincel"| z|* 1"|w|forz' D(w,r) (see Lemma 2.20 of 71]), there exists a

constant /> 0 such that

1" z)?

[~
1" w|?

#/
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forall z' D(w,r). ForO<t< 1let
" , #
Ar= z' By:1"| z|° <t
Then the conditionsz' A andw' D(z,r) imply that w' Ay .

Let {fj} be a bounded sequence iP with fj(z) + O for every z' B,. Then
a normal family argument shows that f; (z) + O uniformly on every compact subset
of B,,. Using the estimate from the brst paragraph of this proof together with FubiniOs
theorem, we see that the integral

) EkaJ (Z)Eqdu(z)

is dominated by

- D(w,r) du(z)

% & i
k a7 u 235t Kq
ER fJ (W)E 1" w| dv (w) A, |17 %z, w&] 1+ s+ +kq

n

According to the previous paragraph,
. AmD(w,r)(Z) =0, z' Bp,
unlessw' Ay . It follows that th'e integral

IR“f; (2)|du(2)

Ay

is dominated by

% 8. k : du(z)
k 973 n 2 q D (w,r)
As, ER fi (W)E 1 | Wl dv, (w) A, |1.. %Z,W&F+1+ s+1 +kq

Since|1" %z, w&|is comparable to1" | w|?> wheneverz' D(w,r), we get

|[R*f;|“du # C as, @] WR)TE THRG Rt (W)U 1| w dv, .

At

By H3lIderOs inequlity, .

+

U(D(W1 r)) ' p!pq ’lfq/p
RKf: |9 # f..9, -
Atl Jl du C, Jrp)! A (1||| WIZ)I’]+1+ T+ kp dV_ kp
If the function
H(D(z,r))

firs (2) = (1] z|p)n+1+ ke
is in LP/(P=9(B,, dv, +kp), then for any given 0 > O there is at ' (0, 1) such that

) u(D(w,r)) * p/ (p—q)
po @ WP TR

Thus for sucht, .

dv, 4 kp (W) < OP/ (P=9),

Ekaj (z)quu(z) # CO.

Ay
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Since B, \ Ay is a compact subset ofB, and f; + 0 uniformly on every compact
subset ofB,,, we have

1im Ekaj (z)quu(z) =0.
J=oo B \A,
Combining this with an earlier e§timate we get
lim sup ngfj (z)quu(z) # CO.
j—oo B
Since0is arbitrary, we must havle
lim EkaJ- (z)quu(z) =0.

] —o0 Bn

This shows that (c) implies (b) as well.

The proof of that (b) implies (a) is standard. In fact, if (a) is not true, then there
is a sequencgf;} in AP such that ,f;,,, # 1and
(32) lim ngfj (W)qup(w) =1,

] —o0
n

Since, fj, o1 # 1, {f;} is uniformly bounded on compact subsets oB,. By MontelOs
Theorem, there is a subsequence §f; }, which we still denote by {f; }, that converges
uniformly on compact subsets ofB,, to a holomorphic function f in By, . It follows from
FatouOs lemma thaf ' AP with ,f,,, # 1. In particular,

i fL e # max(2,2'P)

andf; " f + O uniformly on compact subsets ofB,. If condition (b) holds, then

jlim EkaJ- (W) " R¥f (W)Eqdu(w) =0,
—oo .

which contradicts (32). This shows that (b) implies (a).

To prove that (a) implies (c), we follow the proof of Theorem 1 in Luecking [39].
Let {&} be the sequence of points irB, from Theorem 2.30 in [71]. Let b be a real
number such that

1+ 1+
b > n max 1,IS + .

p

Let
(1 " | 3 |2)b—(n+1+ 1)/p (1 " | 3 |2)(b+ k)—(n+1+ ! +kp)/p i

(1"%z,aj8)b+k (1"%z,aj8)b+'< a
Let {¢}' ,P. Then by Theorem 2.30 of f1], we have

g(2)=

G g (Z) ' A!p+kp'
j=1
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Let
% ., & $e
hj(z)= R™ g(2)" ¢(0) and f(z)= ¢ hj(2).
j=1
Then
) $ % &
R*f (2) = ¢ R*hj(2) = G g(2" g(@O) .
j=1 j=1

It is clear that R*f ' AP and sof ' AP. Moreover,

I +kp?
foh # C$>o g [P
v 1ap) . ’
j=1
where C is a positive constant independent off . If condition (a) holds, then

- $>o .
(R4 (2)ldu(2) # ct.g, #c  jgp "
B, =
Therefore,
(™ ool
Gg( du
n ]?1 '

T e caobes 7 ot

# 24 Gg" gg@Ofdu+ G g (0O)¢ du

Bn j=1 i=1 Bn j=1

‘ $’° + glp $’° - q
# 20 gR"f(z)Eqdu(z)+2qu(Bn) lglP  #C g |P
B, J:]_ ]:1
Let rj (t) be a sequence of Rademacher functions (see page 336 of Lueck®]). If we
replacec by r;(t)g, the above inequality is still true, so

/p

t$’° %q - $e - alp
r(t)c g (2)¢ du(z) # C Ic; [P
Bn j=1 j=1
Integrating with respect to t from 0 to 1, applying FubiniOs theorem, and invoking
KhinchineOs inequality (see Luecking3p]), we obtain

$’° - q/2 - $’° - q/p
Aq GPlg@P " du@#C Il
Brnoj=1 j=1
where A, is the constant that appears in KhinchineOs inequality. The rest of the proof
is exactly the same as the one in Luecking39].

The condition in (d) brst appeared in Choe-Koo-Yi [19], where it was used for the
embedding of harmonic Bergman spaces intd%(dp). Our proof of the equivalence
of (c) and (d) follows the method in [19]. In fact, if @.g is in LP (P9 (B, dvg),
then an application of Proposition 8 shows that the function Bsg(firs ) is also in
LP (P=9)(B,, dvg). By Lemma 52, we must have Bsg(l) ' LP (P=9(B,, dvg). This

MEMOIRES DE LA SMF 115



CHAPTER 13. CARLESON TYPE MEASURES 75

proves that (c) implies (d). That (d) implies (c) is a direct consequence of Lemmab3.
The proof of the theorem is now complete. O
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CHAPTER 14

COEFFICIENT MULTIPLIERS

Recall from Theorem12that for t = (! " *)/p, the operator Rs; mapsAP bound-

edly onto AQ. In terms of Taylor coelcients, we have

7 8
$ $

R anz"™ = cpamz™,

m m

where
_"(n+1+ s+t)(n+1+ m|+5s),

T '(n+1+ 9)"(n+1+ |m|+s+t)
Therefore, the operator R, is just a coelcient multiplier on holomorphic functions
in B,. When'! and * are real, an application of StirlingOs formula shows that
1

*
R

as|m|+! . We are going to show that this result still holds if we replace the multi-
plier sequence{cy,} above by the more explicit multiplier sequence{] m|#—')P} A
similar result will be proved for the generalized Lipschitz spacesd | .

We introduce two methods, one based on complex interpolation and the other
based on atomic decompaosition.

Lemma 55. D Suppose t is complex and K is a postive integer large enough so that
k+Ret> 0. There exists a constant C such that
“t+k—1(gr

1 -
1
R*f (rz) IogF =c Im|~tan, z™

0 r

|m|>0

3
for all holomorphic f(z) = ., amz™ in By.

Proof. B Fix z' Bp. We want to evaluate the integral

1 - Ctrk—1
I(f,z)= R (rz) Iogr} dri
0
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in terms of the Taylor expansion off . If f(z) = | amz™, then
R*f (2) = Im[¥a, z™,
Im|>0
S0 s Y
- 1 trk—1
I (f,z) = Im[fanz™  rimi=t log - dr.
0

[m|>0
Making the change of variablesr = e ~*, we obtain
$ o
1(f,z) = Im|*an, z™ g-Imisgt+k=lgg,
m|>0 0
Let u= |mj|s. Then $
I(f,.z)=c Im|~'am z™,
Im|>0

9
wherec= ° e Uu'**~1du. O

Given any real! and *, we are going to bx a sulciently large positive integer k
and consider operators orH (B,,) of the form

1 - (0 —#)(L -8+ k-1
Tf(2)= R (rz) IogFl O:r
0

where 0# Re$# 1.
Lemma 56. D If Re$ =0, the operator Tg maps Al boundedly into Ai.

Proof. B Let N be a sulciently large positive integer. We have
1 -
1- (0 —#)[-&+k-1(r |
RVNTef ()=  RV*%f(rz) log - —a
0
If Re$=0, it follows from Fubini()s theorem that the integral

= |RNTef (z)g(l " z|28N+#

n

dv(z)

does not exceed

1- R _ 0,
1-! —#+k-1( %
log - @ ERN”‘f(rz)E 31 222 dv(z),
0 r r s,
Let w = rz in the inner integral. Then | does not exceed the integral
1- o _ - 2.
1-! —#+k=1 (r E g |w|2: N+#
log = — RN *kf 1" - dv(w).
Sincel" | w|?/r 2# 1"| wl|? for all |w| <r, we have
1- . 0
1-1—#+k-1 dr %, &uas
| # log = T ERN+kf(W)E 1" w2 dv(w).

0 |w|<r
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We interchange the order of integration and obtain

1 -
1! —#+k=1 (dr ;
| # |RN+kf(w)E(1 " W|2&N+#dv(w) log = d
B |w] r r
It is easy to see that there exists a constaniC > 0 such that
1- 1 _ " 2\! —#+k
1! —#+k=1 (r @ wp)
w| IOQF r2n+1 #C |w|2n

forall w' B,, so

% +k+ !
Lec RV e wpS e T\‘/’v?‘z’:)
Bn

Since[RN**f (w)| # C|w| near the origin and
dv(w) <
B, |W|2n—l
by polar coordinates, we can bnd another constanC’ > 0, independent of f , such
that '

| # C ERN”‘f(W)E
B

This completes the proof of the lemma. O

%
3ol wig™ K av, (w).

Lemma 57. B If Re$ =1, the operator Tg is bounded on the Bloch space B.

Proof. B We have

1 - (=) -8+ k—1
RTef (2) = R¥1f(rz) IogFl dTra
0
If Re$=1 andf ' B, then
1 - Ck—1
%RT&f (z)g# ERk”f(rz)E Iogr} dri
1y & (k+1) " k-1 % &
#C 1 r2|z)2 IogF1 dr # C’ 01"| 2t

0
where C and C’ are positive constants independent ofz. This shows that Tgf is in
the Bloch space. O

Lemma 58. B Suppose s> " 1, t is a positive integer, and
@n x)sdx
o (1" Xz)s+t+1'
There exists a polynomial p(z) such that
P(2) .
1(2) = ——> D
@)= G 2

1(z) = z' D.
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Proof. B We compute the integral | (z) with the help of Taylor expansion.

$° nk+ s+ t+l)

1
k " S
K" (s+ (+1) . X" x)°dx.

1(2) =

k=0

Since ' (k+ 1) 1
K " s _ " + "( s+

Ox(l X)*dx = (k+5+2)

we have
1 ¥ "(s+2)(k+s+t+1) K
s+1 ‘o "(s+t+1)"( k+s+2)

1(2)

1 1 1
RS,tfl Zk — RS,t -1 a
s+1 - s+1 1" z

Sincet is a positive integer, the operator RS'~1 is a linear di"erential operator of
ordert” 1 on H (D) with polynomial coel!cients (see Proposition 4). It follows that
there exists a polynomialp(z) such that
z)
LCIA

@)= T o

This completes the proof of the lemma. O

We can now prove the brst main result of the chapter.

Theorem 59 . D Suppose ! is real, * is real, and p > 0. Then the operator T defined
on H(Bn) by
" $ o $
Tf(z)= £(0)+ Im[*=Pa,z™ f(z)=  anz",
Im|>0 m

maps AP boundedly onto Af.

Proof. B By switching the roles of ! and *, it is enough for us to show that the
operator T maps AP into Ag.
When p =1, the desired result follows from Lemmasb5 and 56.
First suppose that1<p< ! with Up +1/q =1. Let ( =1/q. Then
11, (G
p 1 !
Because the dual space oAl can be identiped with Aj under the integral pairing

%o&= (1" PR ()17 )N RSN g(2)dve (2),

where N is a sulciently large positive number, it sulces for us to show that there
exists a constantC > 0, independent off and g, such that

(33) g%f,g&f# C,f,p’! v O g
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forall f ' AP andg' Aj.

Fix a unit vector f in AP and bx a polynomialg that is a unit vector in Ag (recall
that the polynomials are dense inAY). It follows from the complex interpolation
relation (see Theorems38) Al, B, = AP that there exist functions f ¢, where$' S,
such that

(@ fo=f;

(b) $/+ fgis a bounded continuous function fromS into Al + B whose restriction
to S is analytic;

(c) $/+ fg is a bounded continuous function fromL(S) into Al with ,fg, 1, # C;

(d) $/+ fgis a bounded continuous function fromR(S) into Bwith ,fg, g# C.

Here C is a positive constant independent off .
Consider the function ,
% 28N s,N
F($)= 1"] z|* " R>" Tef &(2)9a(z)dV(2),

n

where$' S and

RN g(2)

RSN g(2)|

Becauseg is a polynomial, the function F is bounded and continuous onS and its

restriction to S is analytic. When $= (, it follows from Lemma 55that F(() = % f,g&
When Re$ = 0, it follows from Lemma 56 that Tg maps A} boundedly into A},

so there exists a positive constantCy such that

y Tefe, 14 # Co,fe, 1, # CoC

1
0(2) = @] 2N RSN g(@)]

for all Re$ = 0. Thus there exists a constantM( > 0 (independent of f, g, and $)
such that, for all Re$ =0,

gF ($)£# %1"| z|28N ERS'N T&f&(z)Edv#(z) # Mo.

B,

When Re$ = 1, it follows from Lemma 57 that Tg is bounded on the Bloch space,
so there exists a positive constantC; such that, for all Re$=1,

 Tefe, g# C1,fg, g# CiC.
We can then bnd a positive constantM ; (independent off , g, and $) such that, for
all Re$=1,

%F ($)E# C: %1"| z|28Nq£RS’N g(z)Eqdv#(z) # M.

n

It follows from Hadamard®s three lines theorem that

EF(()E# M3="wm
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SinceM and M; are independent off and g, this yields the estimate (33) and proves
the theorem for1<p < !

Next assume thatO < p # 1. By Theorem 32, there exists a positive numberb (we
can chooseb to be as large as we want) and a sequende} in B, such that every
function f ' AP can be written as

$e
f(z)= & fu(2),
k=1

with
|Ck|p # Cafyg’[ ]
k=1
where C is a positive constant independent off and
(1 --l ak|2)b—(n+1+ 1)/p 3
(1" %z, a &>
By Prst considering Pnite sums and then taking a limit, we may assume that

fk(2) =

$o
Tf = Ckak.
k=1

Since0 < p # 1, we must have

P ¥ P
1Tf!p’## |Ck|p1Tfk!p’#-
k=1
Since the sequencéfy} is bounded in AP, the proof of the theorem will be complete
if we can show that there exists a constantC > 0 such that

anypy# # C,f,p‘!
for functions of the form
1 .
(34) f(z) = m a' Bj.

We bx a sulciently large positive integer k and apply Lemma 55 to represent the
operator T as

1 - C k(! —#)p —1
Tf(z)= f(O)+ c R (rz) Iogr} dria
0

Write Rk = RK—1R and take the factor R~ out of the integral sign. Then

YRf(rz)”, 1 k+(! —#)ip -1
— IogF

Tf(z)= f(0)+ cR*! dr.
0
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We assume thatb is chosen so thatb” k" (! " *)/p is a sulciently large positive
integer. It is easy to see that

“log - k+(! —#)p -1 $ _
oL =1+ A" '+ HE),

=1

whereH(r)= O((1" r)-) asr + 1. It follows that
T=To+Ti+aa& T+ TL+1,
where '

Tof @)= f(O)+ R RLUD

r @ r)k+(! _#)_1dr,
0
and '

1
Tf(2)= cyret  RL(Z) frz)
0
and -
_ k w k(I —#)p —1 dr,
Toaf(z)=c R (rz)(1" 1) H(r)Ta
0

(1 n r)k+j+(! —#)Ip —1dr, 1# J # L,

It then follows from Lemma 58 that there exists a constant C > 0 such that
1ij|p,# # lelp,!

forall 0 # j # L and all functions f given in (34). The same estimate holds for
the operator T, +; as well, except this time we do not use Lemmab8, but use the
assumption that L is large enough so that

1
RVTL.af(2)= ¢ RNTKf(rz)@" r)ktC =% *1H(r)dr—r
0

is bounded, whereN is any nonnegative integer withpN + * > " 1 and f is given
by (34). This proves the case0 <p # 1 and completes the proof of the theorem. O

As the second main result of this chapter we establish an isomorphism betwedn
and! 4 by a simple coel!cient multiplier.

Theorem 60 . B Suppgse I' and* are real. Then thg operator T defined by
f(z)=  amz™ I+ Ti(2)= f(0)+ am|m|' ~#zM
m Im|>0

is an invertible operator from !\ onto ! 4.

Proof. B By reversing the role of! and *, it su!ces for us to show that the operator T
maps! , boundedly into ! 4.

Givenf ' 1, , we bx a sulciently large positive integer k and use Lemma5b5 to

write v
- k=l +#-1
Tf(z)= f(0)+ ¢ RXf(rz) Iogr} dria
0
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If N is another sulciently large positive integer, then

1 - ck—!+#-1
RVTf(z)=  RN*¥f(rz) Iogr} O:ia
0
Sincef ' !, it follows from Lemma 15 that
sup(1"] z|H)N*KH IRNFKE (2)] < !
ZeBn

But RN*Xf (0) =0, we must also have

vk RN @)

sup(1"] z|?
ZEBB( | 2I%) H
So there exists a constantC > 0 such that
1- .
1-k=!+#-1 dr
fRN Tf(z g# C log = a
( ) 0 gr (1 " r2|2|2)N+k7!

Now the above integral clearly converges near = 0. When r is away from O, Iog% is
comparable to1" r2. So there exists another constantC > 0 such that
1 (1 " r2)k7! +#-1qr
" r2|7]2)N + k! a
1" r2fz?) -

ERNTf (z)g# C
0

An elementary estimate then shows that

fen b, C

RYNTf(2)(# AEDLE
for some constantC > O and all z' B,. This shows that Tf isin ! 4 and completes
the proof of the theorem. O

We mention that, at least in the casen = 1, the theorem above also follows from
Theorem 12 and the asymptotic expansion of a ratio of two gamma functions as given
in Tricomi-Erdelyi [ 58]. In fact, in the one-dimensional case, it is easy to see that if

f(z)=  az*
k=0
is a function in !, then the sequence{k' ac} is bounded. It is also easy to show
that if the sequence{k' ** a} is bounded, then the functionf is in !, . This to-

gether with the main result of Tricomi-Erdelyi [ 58] easily gives Theorem59 above.
Coelcients of functions in Bloch and Lipschitz spaces are also studied in Bennet-
Stegenga-Timoney 12].
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CHAPTER 15

LACUNARY SERIES

One way to construct concrete examples in certain spaces of analytic functions is
by using lacunary series. In this chapter we characterize lacunary series in weighted
Bergman spaces and Lipschitz spaces.

We say that an analytic function f on B, has a lacunary homogeneous expansion
if its homogeneous expansion is of the form

$e
f@)=  fn.(2),
k=1
where my satisbes the condition
. .m
inf k+1
kMg
If n =1, the lacunary homogeneous expansions are just lacunary series in the unit
disk. When n > 1, we say a lacunary homogeneous expansion is a lacunary series if
every homogeneous polynomial ,, consists of just one term.

='> 1

Our brst result characterizes a lacunary homogeneous expansion & .

Proposition 61 . D LetO<p< ! , ! be any real number, and

$e
f@=fn.(2
k=1

be a lacunary homogeneous expansion. Then f ' AP if and only if

—1-1

p
mk ;fmlep<! ’

where '

- 1/p
Fonr = If ($)IPd%($)
Sn

denotes the HP-norm of f .
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Proof. B By Proposition 3 in Yang-Ouyang [64], if

$
92)=  o.(2)

k=1

is a lacunary homogeneous expansion, theg' AP if and only if

$e . 0

mk 1gmk1 HP» < '

k=1
Let f ' AP. By Theorem 10, if s is a real number such that neithern + s
nor n+ s+ (!/p ) is a negative integer, thenf ' AP if and only if Rgy, f ' AP,
which, by the above result, is equivalent to

-1
my ykafmk'Ew<! )
k=1

where
_"(n+1+ s+Up ) (n+1l+ mg+s),
FU"(n+1+ 9)(n+1+ m+s+lp)

It follows from StirlingOs formula that

—llp

Cm * mk
ask +! . Thus the above condition is equivalent to
$o
M g B <!
k=1
The proof is complete. O

The next result characterizes a lacunary series irAP.
Proposition 62 . D Let0<p< ! | ! be any real number, and

$°
f@= (2
k=1

be a lacunary series, where
fm (2) = aczy = 44 .
Then f ' AP if and ony if

$o |ak|p' in:1 “( %mkip+l) < |
Tn :
my* " 2mep+ n)

k=1
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Proof. D Let $" = $"* 44g"~ and [m| = m; + &44&d,. An easy modibcation of the
proof of Lemma 1.11 in [f1] shows that
(n" DL (Gmip+l)
"(zlmlp+ n)
Combining this identity and Proposition 61, we get the desired result. O

m —_
a$ 1|F—)1P_

Proposition 63 . D Let! be any real number, let

$o
f@=fn.(2
k=1

be a lacunary homogeneous expansion, and denote by

fmene = sup [fm, (9.
&eS,,

Then

@ f ' !y if and only if
supmi , fm,, v <!
k>1

(b) ' 1y oif and only if

lim mi,fm., 1+ =0.
k— o0

Proof. B The results follow easily from Theorem16, the corresponding result for! | o,
and Propositions 2 and 3 in Wulan-Zhu [62]. We leave the details to the interested
reader. O

Proposition 64 . D Let! be any real number and

$o
f@=fn.(2
k=1

be a lacunary series, where fm, (2) = axzy'* 4a# . Then

@ f "' !y if and only if 4
supifa| T S8BT _,
k>1 mk k
(b) ' 1y oif and only if
o my. " dddy
kI|_r>nOO my |ax| T =0.

Proof. B The results follow directly from Proposition 63 and Lemma 4 in Wulan-
Zhu [62]. O
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Several special cases of the main results of this chapter are known. For example,
lacunary series in the Bloch space of the unit disk are described in Anderson-Clunie-
Pommerenke B], lacunary series in weighted Bergman spaceAP of the unit ball,
where! > " 1, are described in Stevi#$6], and lacunary series in Bloch and certain
Lipschitz spaces of the unit ball are characterized in Wulan-Zhu §2].
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CHAPTER 16

INCLUSION RELATIONS

In this chapter we study inclusion relations among weighted Bergman spaces and
Lipschitz spaces. From the debnition and Proposition64 it is very easy to see that
if I>* then!, . !, and the inclusion is strict.

The inclusion relations between weighted Bergman spaces are more complicated in
general. Several embedding theorems have been known before, and our results here
overlap with some of them; see Aleksandrovd], Beatrous-Burbea [L1], Graham [28],
Luecking [39], and Rochberg §6]. We begin with the following simple case.

Proposition 65 . D Let0<p< ! | and let! and* be any two real numbers satis-
fying ' <* . Then
AP . AL,

and the inclusion is strict.

Proof. B The inclusion is obvious. To prove that the inclusion is strict, we only need
to test functions of the form f{(z) = (1 " z;)!. See Yang-Ouyang ¢4] for a similar
argument. O

To better describe the inclusion relations of Bergman spaces, we introduce the
notion of Lipschitz stretch brst. More specibcally, if X is a space of analytic functions,
we debne theLipschitz stretch of X as follows:

o #
I(X)=inf *" 100 X .y,
We also call the constants
" # " #
!OZSUp Pl 0 X, *g=inf *:X . | _4

the lower and upper bounds of the Lipschitz stretch, respectively. A similar concept
using Bloch type spaces was introduced in Zhao6p] for spaces of analytic functions
in the unit disk.

SOCIfTf MATHfMATIQUE DE FRANCE 2008



90 CHAPTER 16. INCLUSION RELATIONS

Theorem 66 . D Let 0<p < ! and let! be any real number. Then for any + <
L+ 1)p we have

-$ - A!p .- —(n+1+ 1)/p -

Both inclusions are strict and best possible, where “best possible” means that, for each
p and !, the index + of ! _g¢ on the left-hand side cannot be replaced by a larger
number, and the index (N + 1+ !)/p on the right-hand side cannot be replaced by a
smaller one.

Proof. D Supposef ' AP. Then RXf ASKH , Where k is a nonnegative integer

satisfying pk+ ! > " 1. By Theorem 20, there exists a positive constantC such that

%
1" z|28k+(n+l+ e firkg (z)E# C
forall z' Bp. This meansf ' ! _(n114 1y, SOAP . 1 _(nsas 1)pp -
Next suppose+ < (1+ !)/p andf ' ! _g. Let k be a nonnegative integer such

that k+ +>0. Thenkp+ !> " land! " p+>"1 so

% 2% R P av, )

B % % &
# sup ("] 2P SIRM (2)[ ] 171 22" v, (2)
Z n 0 n
4 Cosup 47| Z2)F S IRM ()
zeB,
Thus! _g . AP.

We only give a sketch of the rest of the proof since it is similar to the argument used
in Yang-Ouyang [64]. For t > 0 let k be a nonnegative integer such thatk + + > 0.
Since the radial derivative is an invertible operator on the space of holomorphic func-
tions in B, that vanish at the origin, we can debne a holomorphic functionf; in B,
b
y 7k1 n —t—k n 2
fe(z)= R™ (1" zp) 1.
Then
kat(z) - (1 " Zl)—t—k " 1'
soforanyz' B, andt# +,

% . %
eSestar obe B 2

0 %
1n| z |2&(+$

&
[1" za| "k +1 # C@A"| z)* " # C.

On the other hand, if t > +, then we takez = (X, 0,...,0), wherex is a real number
betweenO and 1, to obtain

% % &
1 z|28k+$gR"ft(z)E =L xS )R L (@ )3T+
asx + 1. Thus

(35) ft' !¢ ifandonlyif t# +.
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By a similar computation as used in Yang-Ouyang $4], we see that

|
(36) f.' AP when t< r”l%,
and
+1+ !
37) f.) AP when t= ”Ta

Forany 1>0lett=(n+1+ !)/p" 1/2. Then
(n+1+ 1)/p" 1<t< (n+1+ 1)p.
By (36) and (35) we hav
fo' AP but fo) ! _(ne1s 1)p—0-
This shows that the inclusion AP . ! (414 1) IS the best possible. At the same time
it also shows that the inclusion! _g . AP is strict, since

P s o b ((n+1+ Dyp =0

asl# nlp.
Lett=(n+1+ !)/p. Then by (37) and (35), fy )’ AP but fy " ! _(h414 1)p, SO
the inclusion AP . ! _ (414 1)y is strict.
To show that the left inclusion is the best possible, we let
for (2) = ¥ fm,(2) = ¥ KW, (2),
k=1 k=1

where {W,.} is a sequence of polynomials with Hadamard gaps as in Theorem 1.2 of
Ryll-Wojtaszczyk [48] and Corollary 1 of Ullrich [59] with the properties

1W2’91H# :11 !Wzlep>C(n1p)7

where C(n, p) is a constant depending only onn and p.
From Proposition 63 and Proposition 61 we easily deduce thatf,, ' ! _14 1), but
fpr ) AP. Thus the inclusion! _g . AP is best possible. The proof is complete. [

As a direct consequence we obtain the Lipschitz stretch oAP.

Corollary 67 . D LetO<p< ! andlet! be any real number. Then

I( AP) = %

with lower bound (1 + ')/p and upper bound (n+1+ 1)/p.

Corollary 68 . B All weighted Bergman spaces are different, that is, AP ¥ Ag when-
ever (p,!) ¥ (0,%).
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Proof. BIf p= qbut! ¥ *, then by Proposition 65, AP and Ag are di"erent. If
p ¥ g, then Corollary 67 tells us that !( AP) = n/p, while !( AY) = n/q. Thus AP
and Ag have di"erent Lipschitz stretchs, so they must be di"erent. O

The following two theorems completely describe the inclusion relations between
two weighted Bergman spaces.

Theorem 69 . D Let O<p # q<! . Then AP . Ag if and only if

n+1+! 4 n+1+ *
p q

and in this case the inclusion is strict.

Proof. DLet O<p # q<! andf ' AP. Let k be a nonnegative integer such that
pk+ !> "1andkg+ *> " 1 It follows from the closed graph theorem that the
inclusion AP . A{ is equivalent to

(38) Eka(zﬁqdvm+#(z)# cf.4,.
B,

Let s > 0 be a real number which is sulciently large. By Theorem 50, the inequality
in (38) is equivalent to
(1] zP)®
sup m [
2eB, B, |1" %2z, W&F(N+1+ T kp)a

or '

" (1] wpzyka+#
Sup(l | le)s " + kg + +1+ ! /|
ZeB., B, |]_ %z’w&f g+( n+1+ !)alp

By Proposition 7, the inequality above holds if and only if

Vg a(W) <!,

dv(w) <!

c=s+kq+(n+1+ )gp" (n+1)" (kq+*)# s,

which is easily seen to be equivalent to
n+1+! n+1+*
# a
p q
In view of Corollary 68 the proof is now complete. O

Theorem 70 . B Let0<q<p< ! . Then AP . A} if and only if
1+1  1+%
<
p q

and in this case the inclusion is strict.
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Proof. DLet 0<g<p< ! andf ' AP. Let k be a nonnegative integer such that
pk+!> "1andkq+ * > " 1. Once again, the closed graph theorem tells us that
the inclusion AP . Al is equivalent to

(39) Eka (Z)Eqdvkq+#(z) #C,f,9,.
B,

Let s > 0 be a real number which is sulciently large. By Theorem 54, the inequality
in (39) is equivalent to
(40) Bs,kp+! (qu+ #) ' Lp/ (p_q)(Bna dep+! )
If s is large enough, then by Proposition?,
(1"] zP)>@"| wppykar®
B |1"%w, z&*1t stkp+!
B gpBro-a-0-n

Bskp+t (Vig+#)(2) = dv(w)

as |z| approachesl. Thus (40) is equivalent to

@] z|?)~ K=+ =P (p=A* kP! gy (7) < |
which is equivalent to
1+! 1+*,
< a
p q
This along with Corollary 68 bnishes the proof. O
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CHAPTER 17

FURTHER REMARKS

Unlessp = 2, the spaceAP ; is not the same as the Hardy spaced P, although in
many situations it is useful to think of HP as the limit of AP as! approaches’ 1. One
particular problem here is to identify the complex interpolation space betweerH P and
AP when!> " landp- 1 ltis also interesting to ask for the complex interpolation
space betweerHP and ! | .

The spacesAP when! is a negative integer appear to be very special. It would be
interesting to see some Osingular propertiesO of these spaces.

One of the interesting problems left open in the paper is whether or not Theoren#6
remains valid when 1l < p < ! . This is certainly not an easy question, since an
alrmative answer would characterize Carleson measures for the Hardy spacéd ? as
a special case, and it is well known that the characterization of Carleson measures for
Hardy spaces is very technical. On the other hand, two special cases can be disposed
of easily: Corollary 47 covers the casé > " 1andp > 0, while Corollary 48 covers the

casel =" 1and0<p # 2. In view of recent work by Arcozzi, Rochberg, and Sawyer
(see p], [6], and [7]) concerning Carleson measures for the standard Besov spaces
Bp = Aﬂ(nﬂ) , the extension of Theorem46 to the casep > 1 when! is arbitrary is

most likely a very challenging problem.
After the completion of this paper, several other interesting characterizations for
Bergman spaces have appeared. Se&7], [43], and [63].
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