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ON MAPPING PROPERTIES OF THE GENERAL
RELATIVISTIC CONSTRAINTS OPERATOR
IN WEIGHTED FUNCTION SPACES,
WITH APPLICATIONS

Piotr T. Chrusciel, Erwann Delay

Abstract. — Generalizing an analysis of Corvino and Schoen, we study surjectivity
properties of the constraint map in general relativity in a large class of weighted
function spaces. As a corollary we prove several perturbation, gluing, and extension
results: we show existence of non-trivial, singularity-free, vacuum space-times which
are stationary in a neighborhood of i®; for small perturbations of parity-covariant ini-
tial data sufficiently close to those for Minkowski space-time this leads to space-times
with a smooth global .#; we prove existence of initial data for many black holes which
are exactly Kerr — or exactly Schwarzschild — both near infinity and near each of the
connected components of the apparent horizon; under appropriate conditions we ob-
tain existence of vacuum extensions of vacuum initial data across compact boundaries;
we show that for generic metrics the deformations in the Isenberg-Mazzeo-Pollack glu-
ings can be localized, so that the initial data on the connected sum manifold coincide
with the original ones except for a small neighborhood of the gluing region; we prove
existence of asymptotically flat solutions which are static or stationary up to r=™
terms, for any fixed m, and with multipole moments freely prescribable within cer-
tain ranges.
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Résumé (Sur les propriétés de I’opérateur de contraintes relativistes dans des espaces a
poids, et applications)

Nous étudions les propriétés de surjectivité de ’application de contraintes en rela-
tivité générale dans une large classe d’espaces fonctionnels & poids, généralisant ainsi
une analyse de Corvino et Schoen. Comme corollaire on obtient plusieurs résultats
de perturbation, de recollement, ou d’extension. Ainsi, nous démontrons ’existence
d’espaces-temps non triviaux, sans singularités, solutions d’équations d’Einstein du
vide, qui sont stationnaires dans un voisinage de i°. Pour des données initiales proches
de celles de Minkowski ceci conduit, sous une condition de parité approximative, a
des espaces-temps avec un infini isotrope .# global et lisse. Nous prouvons ’existence
de données initiales pour des trous noirs multiples qui sont exactement kerriennes,
ou exactement schwarzschildiennes, dans une région asymptotique, mais aussi prés
de chaque composante connexe de ’horizon apparent. Nous montrons que pour des
métriques génériques les perturbations des données initiales introduites par les re-
collements du type Isenberg-Mazzeo-Pollack peuvent étre localisées, de sorte que les
données initiales sur la variété obtenue en prenant la somme connexe coincident avec
les données initiales originelles, sauf dans un petit voisinage de la zone de recollement.
Nous prouvons l’existence de solutions asymptotiquement plates qui sont statiques ou
stationnaires modulo des termes en »~™, avec m arbitrairement prescrit, et avec des
moments multipolaires qu’on peut spécifier librement dans certains ouverts.
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CHAPTER 1

INTRODUCTION

In a recent significant paper [30] Corvino has presented a new gluing construction
of scalar flat metrics, leading to the striking result of existence of non-trivial scalar
flat metrics which are exactly Schwarzschildian at large distances; see also [33]. Ex-
tensions of the results in [30] have been announced in [31], and those results should
be available(!) in a near future [32]. A reading of the proofs in [30] reveals that the
arguments there can be simplified or streamlined using known techniques for PDE’s
in weighted Sobolev spaces (¢f., e.g. [1,3,7,16,41,52]). Further, the methods intro-
duced by Corvino and Schoen can be applied in other contexts to obtain new classes
of solutions of the general relativistic constraint equations. The object of this paper is
to present an abstract version, in a large class of weighted Sobolev spaces, of the argu-
ments of Corvino and Schoen. Specific results on compact manifolds with boundary
(as considered by Corvino), or on asymptotically flat manifolds, or on asymptotically
hyperboloidal manifolds, can then be obtained by an appropriate choice of the weight
functions. More precisely, we develop a general theory of mapping properties of the
solutions of the linearized constraint operator in a class of weighted Sobolev spaces,
assuming certain inequalities. The class of weighted Sobolev spaces includes those of
Christodoulou — Choquet-Bruhat [16], appropriate in the asymptotically Euclidean
context, as well as an exponentially weighted version thereof, and distance-weighted
spaces near a boundary, or an exponentially weighted version thereof; the latter two
classes are relevant near a compact boundary, or in an asymptotically hyperboloidal
context. We establish the required inequalities in all the spaces just mentioned. An
appropriate version of the inverse function theorem allows one to produce new classes
of solutions of interest. One application is that of existence of space-times which are
Kerrian near spatial infinity; this has already been observed in [31]. We apply our
techniques to produce two further large classes of initial data sets with controlled
asymptotic behavior at spatial infinity. The first class is obtained by gluing any

(D This paper has been written after [30,31], but independently of [32].



2 CHAPTER 1. INTRODUCTION

asymptotically flat initial data with data in the exterior region which are exactly sta-
tionary there. This leads to a large class of space-times which are exactly stationary
away from the domain of influence of a compact set. The second class consists of
initial data which are approximately stationary in the asymptotic region, with the
non-stationary part decaying at a prescribed (as high as desired) order in terms of
powers of r. On the other hand the stationary part is controlled by a set of multipole
moments which are freely prescribable within certain ranges. Such initial data are
relevant to the program of [37,39]. Yet another application is an extension result for
initial data near the Minkowskian ones, which leads to asymptotically simple space-
times, or to new “many black hole” space-times. Our final application here is a gluing
construction for generic CMC initial data sets, in which the perturbation of the met-
ric is localized in a small neighborhood of the points where the gluing is performed.
This makes use of, and refines, the recent gluing construction of Isenberg, Mazzeo and
Pollack [45,46]. Some further applications, involving local extensions near positively
or negatively curved space forms, or concerning the construction of initial data with
controlled Bondi functions, will be discussed elsewhere.

We note that all the results in Section 3 are valid when M is a compact manifold
without boundary by setting all the weight functions to one, ¢ = ¢ =1 =1, and by
taking the compact set J# appearing in Proposition 3.1 and elsewhere equal to M.

Acknowledgements. — We thank R. Beig, J. Corvino, H. Friedrich and W. Simon for
useful comments or discussions, as well as a referee for detailed criticism.
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CHAPTER 2

THE CONSTRAINTS MAP

The aim of this section is to establish some algebraic-differential properties of
the constraints map, and some elementary properties of the associated differential
operators in a class of weighted Sobolev spaces. The reader is referred to Appendix A
for the definition of the latter.

Initial data (g, K) for the vacuum Einstein equations belong to the zero level set
of the constraints map:

J 2(_ijij + V,; tr K) 0
(2.1) (K, g) = =
p R(g) — |K* + (tr K)? 0

These are the general relativistic constraint equations whatever the space-dimension
n. As Equations (2.1) are trivial in space-dimension zero and one, in the remainder
of this paper we shall assume that n > 2.

Let h = dg and @ = 6K, the linearization of the constraints map at (K, g) reads

—KPiV;hpg + K%(2V7 hgj — Vahly)
—2VIQi; + 2V, tr Q — 2(V; KP1 — VIKP ) hypg

(2.2) P(Q,h) =
—A(trh) + divdivh — (h,Ric (g)) + 2KP K 9h,,
—2(K,Q) + 2tr K(—(h, K) + tr Q)
REMARK 2.1. — We note that for any real numbers a and b it holds
(a—0)J(K,g)
(2.3) P(aK, bg) =

—bR(g) +2(b — a)[|K[* — (tr K)?]

The order of the differential operators that appear in P is

(02)
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which can be written in the Agmon-Douglis-Nirenberg form (cf., e.g. [54, p. 210])

(51 +11 851 +t2)

So+t1 s2tta)’

with s; = —1, s5 = 0, t; = to = 2; here it is understood that an operator of order 0 is
also an operator of order 2 with vanishing coefficients in front of the first and second

derivatives. It follows that the symbol P’ of the principal part of P in the sense of
Agmon-Douglis-Nirenberg reads

2(—&°07 + &ig®™") —qu&-i—?infp—Klifzgpq) (Qst)
0 —|¢[2g7e + gPea hoq )

while the formal L2-adjoint of P takes the form
(2.4)

P'(z,)(Q,h) = (

2(ViYj) — VYigi; — KijN +tr K Ng;j)
PYY,N) = | VIV Kij — 2K' VY + K4V, Y'g;; — ANgi; + ViV;N
+(VpKlpgij — VlKij)Yl — NRic (g)ij + 2NKlinl — 2N(t1‘ K)K”

From this we obtain the Agmon-Douglis-Nirenberg symbol P*’ of the principal part
of P*,

2(£0) — Egis) 0 Y,

25) PY@.6Y.N) = ( o e 2 .
K& —2K' &5 + KP8gi5 &€ — €% g5 N
REMARK 2.2. — Recall that the formal adjoint P* is defined by the requirement that
for all smooth (Q, h)’s and for all compactly supported smooth (Y, N)’s we have
<P* (Yv N)a (Qv h)>L2(9)€BL2(g) = <(Ya N)v P(Qv h)>L2(9)€BL2(g)~

It is easily seen by continuity and density arguments that this equation still holds
for all (Q,h) € HL . x HZ_ and for all (Y,N) € Hdlw) X H;,w'

loc loc

We wish to check ellipticity of PP*, for this we need the following;:
LEMMA 2.3. — Suppose that dim M > 2, then P*'(x,&) is injective for & # 0.

Proof. — We define a linear map « from the space Sy of two-covariant symmetric
tensors into itself by the formula
(2.6) a(S) =5 — (tr9)g.

Let & # 0, if (Y, N) is in the kernel of P*'(z,¢) then
so that £;Y;) =0, and Y = 0. It follows that
a(&&)N =0,
which implies N = 0. O

(1See Appendix A for the definitions of the function spaces we use.
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CHAPTER 2. THE CONSTRAINTS MAP 5

The lemma implies:

COROLLARY 2.4. — The operator L := PP* is elliptic in the sense of Agmon-
Douglis-Nirenberg (cf., e.g. [54, Definition 6.1.1, p. 210]).

Proof. — The differential order of the various entries of L is

23\ _(si+tti sitie
34/ so +t1 So + to ’

with s1 = —1, 9 =0, t; = 3, to = 4. Now, P’(z,£) is of the form

AB
E'<OD>’

()

~BD )’

where !X denotes the transpose of X. Let £ # 0; by Lemma 2.3 4 and D are
injective (hence A and D are surjective), which implies that 'E is injective (hence
E is surjective). This shows that E ‘E is bijective: indeed, £ ‘FX = 0 implies
XE'EX =0, which is the same as |'EX|? = 0, hence X = 0. It is straightforward to
check that the Agmon-Douglis-Nirenberg symbol of PP*, defined as the symbol built
from those terms which are precisely of order s; + t;, equals

Paoreo-se( ).

while P*'(z,£) can be written as

01

and its bijectivity for £ # 0 follows. This is precisely the ellipticity condition of
Agmon, Douglis, and Nirenberg, whence the result. O

We note the following simple fact:(")
LEMMA 2.5. — Let k € Z, k > —2. Suppose that® g e V[/'l]f)j?”oo and that
. —2 k42,00
(2.7) Ric(g) € ¢ W, ,
(2.8) K e Wyt ng 2w 2,
If (A.2) holds with 0 < i < k + 2, then the linear operators
% . 1 Frk+3 2 Frk+4 Tht2 k42

P .¢H¢}w X ¢ Hw —)Hdmﬁ ><H¢}w, k> -2,

PP (HETE x HIY?) — 02 (¢ 'HEL x o7 2HE ), k>0,
are well defined, and bounded.

(A The local differentiability conditions follow from the requirement that the k+ fourth covariant

derivatives of N and the k+ third ones of Y can be defined in a distributional sense; both of those
k+3,00
W ,

loc
derivatives of N do not involve the Christoffel symbols of g since N is a function.

conditions are fulfilled by a metric g € — the reader should note that the first covariant

SOCIETE MATHEMATIQUE DE FRANCE 2003



6 CHAPTER 2. THE CONSTRAINTS MAP

Proof. — The result follows immediately from (A.4); we simply mention the inequal-
ity
1
[oK] < 5 (%K + |K]),

which shows that under (2.8) we have K € ¢_1W£+2’°°; this is used to control the
K? terms in P* and in P. O

We define a map ¢ by
(2.9) O(z,y) = (¢, ¢%y).

As before, we have the

LEMMA 2.6. — Let k € Z. Suppose that g € Wlﬁj‘g’m and that
(2.10) Ric (g) € ¢ 2W5 >,
(2.11) K € ¢ tWitse,
If (A.2) holds with 0 < i < k + 2, then the linear operators
« . Frk+3 ., Frk+4 Tht2 |, prk+2
QP*H P < Hy b — Hy P x Hi P k> =2,
-2 2, rrk+2 k42 k41 Tk
YTEPOY? L HM2 MR AR k>0,

are well defined, and bounded.

Let us establish now some estimates satisfied by P*:

LEMMA 2.7. — Suppose that g € W2, that (A.2) holds with 0 < i < 2, and that

loc
(2.12) Ric (g) € ¢72L,
(2.13) KeW,>n¢ L™

Then for any C* vector field Y and C? function N, both compactly supported on M,
we have
(2.14)

C (1P 8V, 6Nl + 1V llz + IVl s |+ [6(60Y)2) > [Vl + IVl
where

b(Y):/ (V.Y V' =V, YY)
oM

Proof. — Throughout this work the letter C' denotes a constant which might change
from term to term and line to line. The leading order terms in P* are of the form

P; (Y, ¢*N)

_. <2a(v(i(¢yj)) >
"\ B(Vi(¢Y))) + a(ViV;(¢*N)) )

P*(¢Y, ¢>*N) — sub-leading terms =: <P1* (¢Y, ¢2N)>
(2.15)

MEMOIRES DE LA SMF 94



CHAPTER 2. THE CONSTRAINTS MAP 7

and this defines the ﬁl*, ﬁQ* and (3 operations (recall that o has been defined in (2.6)).
Invertibility of o shows that

12(V i Y5)) |2 = ClIV i Y5l 2-

o 1 o y
/ VY ViYyd = —(/ V,Y; VY +/ vinww),
M 2\ M
and Stokes’ theorem gives
[ vwwivi—— [ @ivwyis [ @xpye,
M M oM
supposing for the moment that Y is C2. Using V/V,Y; = V,;V?Y; + (Ric (Y, -));, and
integrating again by parts,

—/ vivjyj«w‘:/ VJ’YjviYi—/ VY Yy,
M M oM

We have

one is led to

/ VY ViYyd = 1(/ VY |> 4 (divY)? — Ric (Y,Y)
M 2 M

+ [y - @y,
oM
We have thus showed that for C? compactly supported vector fields we have
(2.16) BY)] + 120(F 65l z2 + [Ric (¥, V)11 > CIVY |2,
and it should be clear that this remains true for vector fields which are only differ-

entiable once. To continue, we use (2.16) with Y replaced with ¢¢Y’; the hypothesis
that Ric (g) € qb’zL;O allows us to write

b(¢0Y )| + [12a(V (oY) 22 + VY |22 = c|[V(69Y)]| 2.
We have
12V i (@Y)) Dl 22 = [120(4V (i(9Y)))) [ 22
= [2a(V i (¥9Y}))) = 2((V(i0)8Y ) 12
2 [2a(Vi(¢9Yy))llLz — Cl(Vv)dYy || 2
> C(V (¢¢Y)||L2 — Clb(¢pY)| = Cll9Y ||
(2.17) = ClI(V @)oYy [l 2
2 Cl(V(@Y)Y + ¢VY |2 — Clo(¢9Y )| — Cl[9Y | 12
= Cll(Vay)oY Il 2
2 Cl¢pVY |l = ClIV(¢9)Y |22 — Clb(¢9Y)| = Cll9pY |
= CI(V )oY ll 2,
which finally gives
(2.18) b(eY) + Y |2z + [20(V(i(0Y)))l L2 = Cllgp VY| 2.

SOCIETE MATHEMATIQUE DE FRANCE 2003



8 CHAPTER 2. THE CONSTRAINTS MAP

Invertibility of « leads us to

(VY (&2 N)) 2 = CIIVV($°N)| 2

> C||¢*VVN|| 2 = 2C[|V(¢*)VN) |12 = CIVV(¢*)N ||z,

so that
(2.19) (VY (2 N))|[ 2, + 1Nl = Cllp*VVN| Lz

Using the hypothesis that K € Wg’oo we obtain

(Vv N)) 2 = | B3 (6Y, 9 N) = B(Vi(¢Y3)) 12
<155 (@Y, 6* N2 + 1B(Vi(¢Y)))I 2
<185 (@Y, 6* N1z + ClIVi(0Y;) 12
< [|B5 (8Y,¢°N)|| 1z + C|I P} (6Y, 6° NIz
+ ClIY 22 + Clb(¢pY)],

and in the last step we have used (2.18). The lower order terms are controlled using
the hypotheses K € Wé’oo ﬂ¢72W£’°° and Ric (g) € qb’ng’oo (compare the proof of
Lemma 2.5), leading to (2.14). O

We have the following equivalent of Lemma 2.7 for the map considered in
Lemma 2.6:

LEMMA 2.8. — Suppose that g € VV&);X’, that (A.2) holds with 0 < i < 2, and that
(2.20) Ric (g) € 2L,

—1 1,00
(2.21) K e ¢ wy.

Then for any C' wvector field Y and C? function N, both compactly supported on M,
we have
(2.22)

C (1P (V. N)llg + 1Y Nz, + NIy | + b@U0)IM2) > ¥l |+ Nl s
where

b(Y) = / (V.Y Y =V, Y'Y;)d
oM

Proof. — The proof is essentially identical with that of Lemma 2.7, with the inequality
(2.17) replaced by

126a(ViYj)llrz = Cllov VYl = CV(¢y)Y |2 — Clb(¢yY))
— ClYY|lr2 = ClIY V) ()] 2,
and inequality (2.19) replaced by
16°a(TVN)llzz > Cl2VVN]|z. O

MEMOIRES DE LA SMF 94



CHAPTER 3

ISOMORPHISM THEOREMS

In this section, we assume that we have a solution (Kj, go) to the constraint map,
with possibly a non-trivial kernel for the associated operator P, defined as P* with
(K, g) replaced by (Ko, go). We present here a general abstract method to construct
“solutions-up-to-kernel” to the constraint equations which are close to (Ko, go); our
argument is a straightforward generalization of [30]. (In particular if the kernel is
trivial we obtain solutions.)

PROPOSITION 3.1. — Under the hypotheses of Lemma 2.7 with (K, g) = (Ko, go), let
Ko be the kernel of

Py ﬁlqlsw(go) X ﬁ[;w(go) — Li(go) X L'?/;(go)a
and let Koo be its Lf/} (g0) ® Lf/} (go)-orthogonal. Assume there exists a compact set

H C M such that for all I-Dléw(go) vector fields Y and fliw(go) functions N, both
supported in M ~ & we have

(3.1) CIRS R Nz o) = IV 1122 00) + 1Ny

Then there exists a constant C' such that

« for all (K,g) close to (Ko, go) in (W(;’w(go) N¢~2L>(gg)) X Wi’oo(go) norm,
. and for all (Y,N) € Ky 0 (£} ,(9) x H32 ,(9)).
it holds that

!/ *
(3.2) CIP Y, Mz = Wl o) +INl42 -
REMARK 3.2. — The conclusion still holds if (3.1) is replaced by
33)  C(IP*@Y,*Mllzz +1(8Y, ¢*Nllx ) > IV 122 + NIl .

where X is a normed space such that we have a compact inclusion d)ﬁ é o X > H ;,w C X;
however, (3.1) is sufficient for our purposes.
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Proof. — For (K,g) = (Ko, go), this is proved by a standard argument, compare
[1,16]: assuming that the inequality fails, there is a sequence

(Yo, Nu) € (Hj,(90) % Hj 4 (90)) N Ko™ o0
with norm 1 such that ||Py®(Y,, Nn)”L?p(go) approaches zero as n tends to infinity.

One obtains a contradiction with injectivity on (Hdlmp (go) X foliﬂp(go)) NKoL#0 by using
the Rellich-Kondrakov compactness on a conditionally compact open set & O ¢,
applying (2.14) with b(¢0Y) = 0, and (3.1), to Y and N multiplied by suitable cut-
off functions; we simply note that (2.14) holds without the boundary term for smooth
compactly supported fields(), hence on Koo N (ﬁ[éw(go) X ﬁliw(go)) by density.
Increasing C’ if necessary, the inequality at (Ko, go) together with straightforward
algebra shows that the inequality remains true for (K, g) close to (Ko, go). O

Similarly one obtains:

PROPOSITION 3.3. — Under the hypotheses of Lemma 2.8 with (K, g) = (Ko, go), let
Ko be kernel of

PRy qus,w(go) X Hfs,w(go) - Li(go) X Li(go),
and let Koo be its L?p (go0) ® L?p(go)-orthogonal. Assume there erists a compact set
H C M such that for all I-Dldl)}w(go) vector fields Y and fliﬂp(go) functions N, both
supported in M ~ J¢ we have

(3.4) CI®P; (Y, Nz o) = V1122 00) + 1Ny

Then there exists a constant C' such that for all (K, g) close to (Ko,go) in
¢71W(;’°°(g0) X Wj’oo(go) norm, and for all (Y,N) € ICOLQ N (qusw(g) X Hiw(g)) it
holds that

(35) NP (Y. M)z iy > ¥ sy + IVl

Set
Lgy =Y 2Py P*d.

We denote by Tt the Li(g) projection onto IC(J)"". We are ready now to prove:
0

THEOREM 3.4. — Let k > 0, gg € VVIIZ#’OO, suppose that (A.2) holds with 0 < i <
4+ k, and that
Ric (g0) € ¢ 2W, % (go),

Ko € W£+3,OO(QO) N ¢—2W(§+2,00(g0).

(D'We use the analysts’ convention that a manifold M is always open; thus a manifold M with
non-empty boundary &M does not contain its boundary; instead, M := M UM is a manifold with
boundary in the differential geometric sense. Unless explicitly specified otherwise no conditions on
M are made — e.g. that OM, if non-empty, is compact — except that M is a smooth manifold;
similarly no conditions e.g. on completeness of (M, g), or on its radius of injectivity, are made.

MEMOIRES DE LA SMF 94



CHAPTER 3. ISOMORPHISM THEOREMS 11

We further assume that the weights ¢ and 1 have the scaling property, cf. the
end of Appendiz A and Appendix B. If there exists a compact set & C M such
that for all ﬁé,w(go) vector fields Y and ﬁliw(go) functions N, both supported
in M ~ ¢, the inequality (3.1) holds, then for all (K,g) close to (Ky,go) in
(W£+3’°°(go) N qb_QW(fH’OO(gO)) X W(f+4’°°(go) norm, the map

L o G o lq o o
(3:6) ey Lo K" 0 (H (9) x Hy ' ) — Ko” 1 (Hyl (g) x HE (9)

is an isomorphism such that the norm of its inverse is bounded independently® of
(K, 9)-

REMARK 3.5. — It is easily seen (see Equation (3.8) below and Remark 2.2) that,
in our context, the image of L4 4 is orthogonal to the kernel of P*®. We emphasize,
however, that the projection m ., in (3.6) is on the orthogonal to the kernel of Pj®,
0

and not on that of P*®.

K

Proof. — For (8.J,6p) € Ky? N (L7 (9) x L (g)) let F be the following (continuous)
functional defined on ICOLQ N (Halﬂb (g9) x H;w(g))

PN = [

(1P B0V, N2 — (V. N), (57,50
M

we set

HE = inf F(Y,N).
(V,N)EKy I N (T, (9)x 2, (9))

We claim that F is coercive: indeed, Proposition 3.1 and the Schwarz inequality give
FON) 2 COY s i+ IVl ) = 10 N2 ) 160,8) 2.
> CUY i o) + Nl o) = (¥ i) + DNz )18 80) 1230

Standard results on convex, proper, coercive, ls.c. (¢f., e.g., [36, Proposition 1.2,
p. 35]) functionals show that pp is achieved by some

1, . .
(Y,N) e Ky n (Hislp(g) X Hfsw(g))
satisfying
(3.7) ¥V (8Y,0N) € H} ,(g) x H3 ,(9)
/ (P*®(Y,N), P*®(3Y,5N)), — ((8Y,0N), (6.1,6p))y) 3 dpy = 0.
M
It follows that (Y, N) € ICS"’ N (Héw(g) X sz(g)) is a weak solution of the equation
Oy 2PY P ®(Y, N) = (8.J,0p).

The variational equation (3.7) satisfies the hypotheses of [54, Section 6.4, pp. 242—
243] with sj, t as in Corollary 2.4, and with m; =1, mg = 2, hy = —2. By elliptic

() The bound on the norm might depend upon (Ko, 90).
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regularity [54, Theorem 6.4.3, p. 246] and by standard scaling arguments (c¢f. the
discussion at the end of Appendix A) for (4.J,dp) € Héle(g) X I;f(’;,w(g), we have

(Y,N) € Hgff’ (g9) x H(’;J{f (9), and surjectivity follows. To prove bijectivity, we note

that the operator m 1, Ly is injective: indeed, if (Y, N) € IC(J)"" is in the kernel of
0

Ticto Ly, then (see Remark 2.2)

(38) 0=(Lsu(Y,N),(Y,N))r2 (gyer g = (P R, N), P*®(Y, N)) 12 (9yer2 (9)>

so (Y, N) =0 from inequality (3.2). O
There is yet another operator which is of interest in our context,

(3.9) Ly = 2Poy> o P*.

Similarly to Theorem 3.4, using Proposition 3.3 instead of 3.1, we have:

THEOREM 3.6. — Let k > 0, go € VVIIZ#’OO, suppose that (A.2) holds with 0 < i <
4+ k, that

Ric (g0) € ¢ 2W, (o),
Ko € ¢~ ' W, (gy),

and that the weights ¢ and 1 have the scaling property, cf. end of Appendiz A. If
there exists a compact set & C M such that for all Hd%,w(g()) vector fields Y and

ﬁliw(go) functions N, both supported in M ~ ¢, the inequality (3.4) holds, then for
all (K, g) close to (Kg, go) in ¢71W(f+3’°°(go) X W£+4’°°(go) norm, the map

o o lq o o
Toeto Lo+ Koo 0 (HG P g) x HH9) — Ko* 0 (HE7 (9) x HE y(9)

is an isomorphism such that the mnorm of its inverse is bounded independently of
(K, g). O

Whenever the weighted Sobolev spaces are such that the constraints map is defined
and differentiable we obtain:

THEOREM 3.7. — Under the hypotheses of Theorem 3.4, if the map

Ko® O (H P g) x HE (9)) — Ko? 0 (HE S g) > HE 4 (9))
(3.10) L J . J
Y, N) = 11,072 ) (K, 9) + ¢ P*@(Y,N)] - ) (K,9)

is differentiable in a neighborhood %, of zero, then it is bijective in a (perhaps smaller)
neighborhood Vi, of zero. In particular there exists € > 0 such that for all (K, g)
close to (Ko, go) in (W£+3’°°(go) N ¢_2W£+2’°°(g0)) X W£+4’°°(go), and for all pairs

MEMOIRES DE LA SMF 94



CHAPTER 3. ISOMORPHISM THEOREMS 13

(8J,6p) € 2@ ~1 (H;ffbl (g9) x Hfgw(g)> with norm less than €, there exists a solution
(6K,89) = v*P*®(Y,N) € 1/)2(H§L2(g) X H(’;jf (9)), close to zero, of the equation
J J oJ
) _ -2
1) w2 { (1) w s omgron - (1) wa) | =rve (3],
REMARK 3.8. — The question of differentiability of the map (3.10), or even of its
existence, will depend upon the weight functions ¢ and v, and requires a case-by-case
treatment.
Proof. — We apply Proposition G.1 with
« A a neighborhood of (K, go) in (W!;H’OO(QO) N ¢’2W£+2’°°(g0)) X W£+4’°°(go),
e T = (K7g)7 or = (5Ka 59);
o o L o o
. Vzd: GHHST (9) x H P (g)), Wa = Ky* 0 (HEH (g) x HE ,(9))
e all

312 ) = { (D) ok i - (V) ko). O

We also have the following analogue of Theorem 3.7, with an identical proof, based
on Theorem 3.6:
THEOREM 3.9. — Under the hypotheses of Theorem 3.6, if the map
Ko N (HG (9) x HYH 9) — Ko 0 (HL (9) x HEy (9))
) = mew { (1) g+ vrerp ) - (1) (o)}
is differentiable in a neighborhood of zero, then it is bijective in a (perhaps smaller)

neighborhood of zero. Thus, there exists € > 0 such that for all (K, g) close to (Ko, go)
m

(3.13)

¢TI (go) x W (o),
and for all pairs (6.J,0p) € 2 (H;ﬁ; (g) % H(’Zw (g)) with norm less than €, there exists

a solution
(0K, 3g) = DUDP* (Y, N) € p2(¢HE 2 (g) x 6 HE2(9)),
close to zero, of the equation
J J oJ
) _ -2
311w {() uromgron - (1) o f =r (5.
O
The last results allow us to construct solutions of the nonlinear equation in weighted
Sobolev spaces. The drawback of working in such spaces is that the differentiability

of the perturbative solutions is considerably worse than that of the starting data
(Ko, go), even when solutions with zero sources are considered. In the usual analysis
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of nonlinear PDE’s with implicit-function techniques the higher regularity is obtained
by bootstrap arguments. In our set-up this does not work, because the coefficients of
the equations do not have enough regularity for the bootstrap. It has been shown by
Corvino [30] that there exists a (non-standard) way of getting a partial improvement
on the regularity of solutions. This carries over to the general weighted spaces setting
considered here provided some further properties of the weights are assumed:

(1) First, note that (A.2) can be rewritten as ¢ € Cé;;_l, (NS Cé,_wl_l, pE Ci;l_l.
When dealing with Holder spaces one also needs to assume Holder continuity of the
derivatives of the weights, so (renaming ¢ — 1 to ¢) we will assume:

(3.15) GpeCyS ., YeC ., peCyt ..

(2) As discussed in Appendix B, the following conditions are useful for deriving the
scaling property: Let us denote by B,, the open ball of centre p with radius ¢(p)/2.
We assume that there exist constants C7, Cs, C3 > 0 such that for all p € M and all

y € By, we have

(3.16) Cy M o(p) < d(y) < Cro(p),
(3.17) Cy 'e(p) < ¢ly) < Cap(p),
(3.18) Cs '0(p) < P(y) < Csip(p)

(3) Since the tool to handle non-linearities in this paper is the inverse function
theorem, we need to make sure that the changes in the initial data are small as
compared to the data themselves. A necessary condition for that is that the new
metric be uniformly equivalent to the original one. For example, in the setting of
Theorem 3.6, one way of ensuring this is

(3.19) YPP*Cl % (g0) C C5 (g0).
This will hold under the following condition:
PROPOSITION 3.10. — The inequality

(3.20) Ve < C.
implies (3.19).

In order to check this the reader might wish to prove first that the conditions
imposed so far imply that

LEMMA 3.11. — Ifu € Czigl(g) and v € CQ’ZQ (g9), with one of the p,’s satisfying

(3.17) and ¢ satisfying (3.15) with £ > k, then uv € Cg:glw (9)-

Lemma 3.11 can be used to show an equivalent of Lemma 2.5 in weighted Holder
spaces.
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(4) The last condition will be the contents of Definition 3.12 that follows. We em-
phasize that all the conditions spelled out here will be satisfied in all the applications
we have in mind.

DEFINITION 3.12. — We will say that an operator L from Hg » X Hé y to Hé » xﬁ[g »
satisfies the weighted elliptic regularity condition if there exists a constant C' such that
for all (Y, N) in H}, x H} , satisfying L(Y,N) € C5"1% x CJ'% we have (Y, N) €
CtPe s Cith with

N N

(321) ¥ Nl grsegrne <O (LY Nllgrene g + 105Nl xms ) -

Armed with those conditions we can pass to an existence theorem in weighted
Holder spaces:

PRrROPOSITION 3.13 (Existence of solutions in weighted Holder spaces, I)
Let k € N, 0 < a < 1, assume that (3.15) with £ > k + 4 holds, and that (3.16)-
(3.18) and (3.20) hold, together with

(3.22) Yo7l < C.
In addition to the hypotheses of Theorem 3.7, suppose that go € C*t4 and that
Ric (g0) € ¢2C51>%(g0), Ko € CE1*%(g0) N 672CE 1> (g0)-

We further assume that the weights ¢, ¢ and ¥ have the scaling property, cf. the end
of Appendix A and Appendiz B. Suppose, next, that we have the continuous inclusion

(3.23) PPCyea(9) C H 4 (9)
for i = k,k + 1, with the inclusion norms uniformly bounded for g close to gy in

C§j4’a(go), Assume finally that Lg. (K, g) satisfies the weighted elliptic regularity
condition, with a uniform constant C in (3.21) for (K, g) close to (Ko, go) in

(ChE>(90) N 672C5 T (90) ) x CET (0).

If the source (6J,0p) is in
WP HE (9) x HE ,(9)) N * @1 (g) x Ci(g)),

with sufficiently small norm, then the solution obtained in Theorem 8.7 is in

° 7 k42, k42,

YAHT(g) x HEW2(9)) N (CLT2%(g) x CEE24(g)).

Proof. — We start with a lemma, which we leave as an exercise to the reader (here
Lemma 3.11 together with Equations (3.20) and (3.22) are useful):

LEMMA 3.14. — Under the conditions of Proposition 3.13, the map
k43, k+4,a k+1,« k,a
Cq&:‘; (9) x Cq&:‘; (9) — Cq&:‘; (9) x C¢,¢(9)

v — v { (1) 1050+ P - (1) ()

18 smooth in a neighborhood % of zero.

(3.24)
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Returning to the proof of Proposition 3.13, we use the notations of the proof of
Theorem 3.7 and we apply Proposition G.2 with E, = wQ(szpz’a(g) X C(];Jf’a(g)),
k+1, k,
Fp, = C¢,—; “(g) x C¢7f,f(9),

G, = Ky 1 (V(C51E%(0) x Chal9))
and with A — a neighborhood of (Kjy, go) in

[W£+3’w(go) N ¢_2W£+2’00(90) X W£+4’Oo(go)]
N [Cz:li&,a(go) N ¢_QC§I2’a(go) % C(l;;‘,iﬁl,a(go)].

We have continuous inclusions G, C F, and G, C W, by (3.23). The condition 1.
of Proposition G.2 holds by the hypothesis that Ly, satisfies the weighted elliptic
regularity condition, and the form of the right inverse used here. Condition 2. and
3. there hold because J and p are twice-differentiable (actually smooth) functions of
their arguments by Lemma 3.14. O

REMARK 3.15. — There is an intriguing mismatch between the order of differen-
tiability of the initial data set (K, g) at which the inverse function theorem is being
applied, and the order of differentiability of the final data (K +0K, g+0dg). This seems
unavoidable in our setup, and leads to several unpleasant features such as dependence
of the neighborhoods on which we can solve the equations upon the degree of differ-
entiability, or failure to produce a Banach manifold structure for the set of solutions,
etc. In a forthcoming publication we will give a partial cure to this problem [24].

We continue with Holder continuous solutions in the setup of Theorem 3.9:

ProOPOSITION 3.16 (Existence of solutions in weighted Holder spaces, 1)

Let k € N, 0 < a < 1, assume that (3.15) with £ > k + 4 holds, and that (3.16)-
(3.18) and (3.20) hold. In addition to the hypotheses of Theorem 3.9, suppose that
go € CF42 and that

Ric (g0) € ¢2C 1> (g0), Ko € ¢~ 'Cy 1> (g0).

We further assume that the weights ¢, ¢ and ¥ have the scaling property, cf. the end
of Appendiz A and Appendiz B. Suppose, next, that we have the continuous inclusions

(3.25) WP6*C5% (9) € H 4(9)
for i = k,k + 1, with the inclusion norms uniformly bounded for g close to gg in
C§j4’a(go), Assume finally that Le.(K,g) satisfies the weighted elliptic reqular-

ity condition, with a uniform constant C in (3.21) for (K,g) close to (Ko, go) in
¢_1C§j3’a(go) X ng‘l’“(go). If the source (6J,8p) is in

V(HSE (9) x H 4 (9)) N (C5H Y (g) x CL2(g)),
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with sufficiently small norm, then the solution obtained in Theorem 3.9 is in
2 2 k+2, k42,
VHOHST () x P H 2 (9)) N2 (9Cy 0% (g) x *C 2% (9)).
Propositions 3.13 and 3.16 give existence of Holder continuous solutions. We can
apply the usual bootstrap arguments to those solutions to obtain smoothness, when

all the objects at hand are smooth (however, as already pointed out, the bootstrap
does not appear to work for solutions in Sobolev spaces):

PROPOSITION 3.17 (Higher regularity). — Let k € N, o € (0,1), assume that (3.15)
with £ =2 k + 4 holds, and that (3.16)-(3.18) and (3.20) hold. Suppose moreover that
the scaling property, as spelled out at the end of Appendiz A, holds. Assume that
(K,g) € Ck+3:a x Ck+4a gnd (Y,N) € C’gi(g) X C’;:Z(g).

(1) If (3.22) holds and if

(3.26) <‘; ) (K, g) + 0*P*(Y, N)] - (‘; ) (K, g)] € 2 1(CEE12 (g) x C2(g),

then (Y,N) € Cszzs’a(g) X Cf;:l’a(g), and thus
(6K, dg) := > P*®(Y,N) € v*(C5 2% (g) x C 12 (g)).
(2) Similarly, if

(3.27) <‘; ) (K, g) + v>82P*(Y, N)] - (‘; ) (K, g)] € $3(CEF12(g) x CE2(g)),
then (Y,N) € Cg:;&a(g) X C’g;‘l’a(g)), thus

(6K, 0g) € ¥*(6Cy 2% (9) x 9*Cy 2% (g)).

Proof. — It suffices to rewrite the rescaled non-linear elliptic equation (3.27) for
(Y,N) as a linear elliptic equation for (Y, N) and freeze coefficients (depending on
(K +0K,g+dg) hence on (Y, N)). The interior Holder estimates [54, Theorem 6.2.5,
p. 223] on the sets (AZQ appearing in the definition of scaling property give the local
regularity, and the scaling property gives the global weighted regularity. O

In situations in which P* has trivial kernel the above theorems produce solutions of
the constraint equations. As made clear by the analysis of Corvino [30], solutions can
be obtained even when a non-trivial kernel is present in the following circumstances:
Suppose that the kernel Ky of P* at (Ko, go) is non-trivial, set k¥ = dim/kCy. Assume
we are given a family of pairs (Kg x, gg,x), where A € [Ag, 00 and @ € U, where U is
an open in R¥, such that zg \ == (Kg .\, 9g.x) goes to (Ko, go) in A when A goes to
infinity, uniformly in @Q € U. Assume, in the setup of Theorem 3.7, further that

o (502) o 0 (s (o).

goes to zero in H(’;‘Z}l (9o.2) X fliﬂp(gQ’)\) when A goes to infinity, uniformly in @ € U.
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If in the setup of Theorem 3.9, assume instead that the same holds for the family

2 (32) = (s (1) )

Then for A large enough, <§ZQ)‘) is less than ¢ for all Q € U. So, in the setup of
QA

Theorem 3.7, we can solve
0J
_ -2 QA
(3'28) fiCQ,A((SxQJ\) = TTteqa (I <5PQ,)\) )

while in the setup of Theorem 3.9 we omit the ® factor in (3.28); recall that f, has
been defined in (3.12). Let e(;),i = 1,...,k, be any basis of Ky, we define the family
of maps

(3.29) Fy:U —RF

Q L— (<7/172‘I) { <i) (KQ,)\ + (sKQ,)\agQ,)\ + 69@,)\) - <Z) (KOaQO)} ae(i)>Ko)a

assuming that we are in the context of Theorem 3.7. In the case of Theorem 3.9 the
® factor should be removed from (3.29). We note the following result:

LEMMA 3.18. — Let U and V' be open sets in R™, suppose that G is a homeomorphism
from U to V, and consider a family {Gx}xer of continuous functions from U to R™
which converge uniformly to G when X goes to infinity. Then for all y in V, if X is
large enough, there exists xx € U such that

Gi(zx) = ¥.

Proof. — Consider the family of maps uy := Id — G o G~! from V to R", the u)’s
converge uniformly to 0 when A goes to infinity. Let y in V' and let » > 0 be such that

the closed ball B(y,r) is included in V. If X is large enough, SUD_ BT lua(z)] <,

then the map z — y + ux(z) is a continuous map from B(y,r) to B(y,r). From
the Brouwer fixed point theorem (cf., e.g. [42]) there exists yx € B(y,r) such that
yx =y + ux(ya), we then set xy = G~ 1(yy). O

If there exists a function h(A) such that Gy := h(\)F) satisfies the condition of
Lemma 3.18, and assuming further that 0 is in V', then for all A\ large enough we can
choose @y such that F (@) = 0, hence

J J
(p> (Koux +0KqQ, 2 90: 0 + 090, ,0) = <p) (Ko, 90)-
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It is important to emphasize that if (Kq x,9q,x) — (Ko, go) is not in V, ,, then
(xox + dxgn) # (Ko,90), i.e., we have constructed a solution different from the
original one. Summarising, we have shown:

THEOREM 3.19. — Under the hypotheses just described, the projection operators

Tte in (3.11) and (3.14) can be removed for all A large enough. O
0
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CHAPTER 4

AN ASYMPTOTIC INEQUALITY

The isomorphism theorems of the previous section all rely on the asymptotic esti-
mate (3.1). The object of this section is to reduce the proof of that estimate to two
simpler estimates, one involving only Y and the other involving only N. It turns out
that some decay conditions are needed for that:

DEFINITION 4.1. — We will say that (M, g, K, ¢) satisfy the asymptotic condition a)
if there exists a sequence U; C M of open relatively compact sets such that U; C U
(closure in M, not in M) with

(4.1) M =UZ,Us,

and

(4.22)  lim [| K| poe(arivy = lim 16° K || Lo a0y = Jim oV K[ Lo (mv) = 0,
(4.2b) Aim [*Ric (9)| o< (ar~z) = 0-

We will say that (M, g, K, ¢) satisfy the asymptotic condition b) if (4.1) and (4.2b)
hold and if instead of (4.2a) we have

(4.3a) Zlggo H(bKHLN(M\Ui) = zlg{.lo ||¢2VK||L°°(M\U,-) =0,
For any vector field Y set
1
(4.4) S(Y)ij = VY = 5 (V¥ +V;Yi).
We can now give a sufficient condition for (3.1):

LEMMA 4.2. — Under the hypotheses of Lemma 2.7, assume that (M, g, K, ¢) sat-
isfies the asymptotic condition a). Then (3.1) is equivalent to the requirement that
there exists a compact set and a constant C such that for all smooth (Y, N) supported
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outside this compact set we have

(4.5) CIS@Y Iz (90) > V122 (90).
(45b) CIVV (S N) |2z (90) > [N (a0)

Proof. — Setting Y = 0 or N = 0 in (3.1) one obtains (4.5) by straightforward
manipulations (replacing the compact set £ of Proposition 3.1 by a larger compact

set if necessary). In order to prove the reverse implication let us start by establishing
the inequality

(4.6) Yl o) T 1Nz (o) < ClIPT (Y, NIl 22 (go)
for all (Y, N) supported in M ~\. U;, for i large enough. Let P¥, a = 1,2, be defined as
Pf(Y,N)
P*(Y,N)=:( 1> ;
= (i)
from Equation (2.4) one finds
47) = 2a(S@Y)) + P{(8Y,6°N) 12 (g50) < ClO* KL= lIN |l 22 (4o),

where « is as in (2.15). Equation (4.5a) together with Equation (2.18) (with b = 0
there) yield

¥ iy ooy < 20 123 o) + 2a(S@Y D) 22 g

< ClIS@Y )l 2 (go) + 2la(S@Y )2 (g0) < Cl(S(EY)) 22 (g0
= '] a(S(6Y)) + P (9Y,6°N) — Pr(9Y,¢°N)l| 2 (o)

(4.8) < C'(IPF (&Y, 6 N) 22 (g0) + CIG*K 1w IN 3 g )
Applying (4.5b) it holds that
(49) IVl oy < CIVIEN) 2200y < Ca(TV(EN) |13 g0

From Equation (2.4) we have

(VY (@*N)) = P35 (8, ¢ N)|l 2 ()

< C<||K||L°°(M\U,:)”v(qSY)HLfb(go) +ISVE || Loe v 1Y [l 22 (g0)
(4.10)
+ (1o Ricllmtary + 10K =0r0) IV L)

<e(I7 i1 gy + IV lz2 0 )

where € can be made as small as desired by choosing i large enough. It then follows
from Equation (4.9) that

(4.11) HNHFI#)w(gO) < C||P5(9Y, ¢2N)||Li(go) + Cé:(”y”[:’[i)w(go) + ”N”Li(go))'
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Adding (4.8) and (4.11), and choosing i large enough — so that ¢ is small enough —
one obtains Equation (4.6). We note that from (4.6) by similar manipulations one
can further obtain

(4.12) Yl o) 1N 52 (o) < ClIPT (Y, ¢2N)||L12p(g0)7
but this is irrelevant for our purposes. O
An identical calculation yields:

LEMMA 4.3. — Under the hypotheses of Lemma 2.8, assume that (M, g, K, $) satis-
fies the asymptotic condition b). Then (3.4) is equivalent to the requirement that for
all smooth (Y, N) supported outside a compact set we have

C||¢5(Y))||pr (90) = ||Y||L§p (90),
C||¢2VVN||L5 (90) 2 ||N||131;),w(90)-
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CHAPTER 5

COMPACT BOUNDARIES

Let us justify the inequality (4.5a) in a neighborhood of a compact boundary OM.
We assume that the metric is as in Appendix C, in particular Equation (C.3) holds.
We start with the following:

PROPOSITION 5.1. — Let s # —1/2 and suppose that
|Hess (z)| = o(z™1).

Then there exists a neighborhood Oy of OM such that for every C vector field with
compact support in Os \ OM we have

(5.1) [amwr < [aswp,
for some constant C, where S is defined by FEquation (4.4).

REMARK 5.2. — The restriction s # —1/2 is sharp, which can be seen by considering
the family of vector fields x,(1 — xn,)Y, n = no, where Y is a Killing vector which
does not vanish on dM, and where the cut-off functions y,, are defined as x,(z) =1
for > 1/n, xn(x) = In(2nz)/In2 for 1/(2n) < = < 1/n, xn(r) = 0 otherwise. The
resulting x,,’s are not C'', but this is enough to invalidate (5.1); in any case, a small
smooth perturbation of y,, will yield the required C'! example.

Proof. — The result is a straightforward consequence of Corollary D.4. O

We shall consider metrics which can be quite singular near the boundary; this
is mainly motivated by the applications to conformally compactifiable metrics, see
Section 6 below. To control the boundary behavior of g we thus introduce the following
definition:

DEFINITION 5.3. — Let k£ € N and let W be a space of symmetric tensors on M. We
shall say that g has an (W, k)-behavior at M if there exists a metric g3; on M of
class C*(M) such that g — gz7 € W.
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In the remainder of this section we assume that M is a compact manifold with
boundary. We take the weight function ¢ as

¢ =,
where x is any defining function for 9M. For k € N and s € R, we define
(5.2) Hi(g) = HY .. .2(9).

The labeling of the spaces here is motivated by the following decay property (cf.,
e.g., [1])
(5.3) fell(9), k>n/2 = f=o(’).
We also have )
2% €Hi(g) it o >s+(n—1)/2.

Let us define in the same way

Chale) = Cp-(9).

When studying boundary behavior of solutions of PDE’s near boundaries, alterna-
tive useful classes of weighted spaces are obtained as follows: in a collar neighborhood
of &M one introduces coordinate systems (z,v?), with M being given by the equa-
tion {x = 0}. Instead of adding a weight factor = for each derivative, one adds =
factors to the 0, derivatives only. Functions in such weighted spaces have more tan-
gential regularity, as compared with functions in the H spaces or C spaces. However,
some of the simple scaling arguments which we have been using so far do not apply,
and considerably more work is required (see, e.g., [3]) to obtain a priori estimates
in such spaces. While those alternative spaces could probably be used in our con-
text here, leading to solutions with higher regularity, we have not attempted to carry
through a systematic study.

We start with the following:

THEOREM 5.4. — Let M be a compact manifold with boundary, let k > 0, and sup-
pose that go is a metric on M which has (W4 k + 4)-behavior at OM, with

(5.4a) x2|RiC (90)|go — 2—00,
(5.4b) z|VVz|g, — 2200,
(5.4c) Ko € a7 ' W3 (g0),  2|Kolg + 2%V EKo|g, — 2—00.

Then for all s # (n—1)/2,(n—3)/2 and all (K, g) close to (Ko, go) in x~1WkE+3:20(gq) x
Wkt450(gq) norm, the map

Lg ‘|—s ‘|—s L ‘|—s °|—s
Mo L gonrz Ko N (Hi3(9) x Hify(9)) — Ko 0 (i (9) > Hi(g))
is an isomorphism such that the norm of its inverse is bounded independently of (K, g).

REMARK 5.5. — Conditions (5.4a)-(5.4b) will hold if there exists & > 0 such that g
has (z®Wk+4° L + 4)-behavior at OM.
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Proof. — We wish to apply Theorem 3.6, in order to do that we need to establish the
inequality (3.4) for Y’s and N’s supported outside of a sufficiently a large ball. For
s # (n —1)/2, Proposition 5.1 yields

(5-5) Yl < ClleS(Y) g

Applying Proposition C.3 twice we find that for s # (n—1)/2, (n —3)/2 it holds that
o o 2 2 o 3 2 o

(5.6) [Nl < ClleVN[[e < Cz"VVN|[[g-e < C7lla"a(VV N[y,

where « is as in (2.6). Now (M, g, K, x) satisfy the asymptotic condition b) of Def-
inition 4.1 with U; = {& > 1/i}, and Lemma 4.3 shows that we can apply Theo-
rem 3.6. O

Our first main application of the abstract results of the previous sections is surjec-
tivity up to kernel of P* of the constraint map. In particular surjectivity is obtained
if no kernel is present; a case with kernel will be analyzed in Section 8.1.

THEOREM 5.6. — Under the hypotheses of Theorem 5.4 with s > n — 2, s > 1 if
n=3, k>n/2, the map

Ky 0 (Hiss(9) x Hia(9)) — Ko N (Hy21(9) x Hy*(9))

) — mesa 2 { (V) g 4 rarp ) - () ()}

(5.7)

is bijective in a neighborhood of zero. More precisely, there exists € > 0 such that for
all (K,g) in a7 TWET3:2(g0) x WE+40(gq) for which

1K = Ko, 9 = go)ll-awi oo gy w42 go) < €
and for all pairs (8J,0p) € Hi;_'f(g) X Hifn(g) satisfying
(61, 6p)

M (o)X (9) < €

there exists a solution (0K,d8g) = z**7"®2P*(Y,N) € HZ;Z“(Q) X ﬁz;g“(g)), close
to zero, of the equation

J J oJ
—2s+n _ —2s5+n
(5.8) Tieto® {<p>(K+6K,g+5g) <p>(K,g)}—7rKégx <§p>'

Proof. — The conditions s > n—1 and k > n/2 ensure that the map of Equation (5.7)
is well defined and differentiable in a neighborhood of zero; a relatively straightforward
though lengthy check of that can be done using weighted Moser inequalities (see [26]
for proofs in a slightly different context; the arguments there adapt to the current
setting in a straightforward way). The result follows then from Theorem 3.9. O

We also have solutions with Hoélder regularity:
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PROPOSITION 5.7. — Let M be a compact manifold with boundary, let k > ko =
[n/2| + 1 (the smallest integer strictly larger than n/2), a € (0,1), and suppose that
go is a metric on M which has (C},, .,k + 5)-behavior at OM , with

(5.9a) 2?[Ric (g0)]go — 200,
(5.9b) z|VVz|g, — 2-00,
(5.9¢) Ko € Cilsa(90), 2 Kolg, + 2%V Kolgy — 2—00.

There exists € > 0 such that if (K,g) in C,;i&a(go) X C2+4,a(90)’ and if

”(K — Ko, g - go)||x*1WfO+3’°°(go)XWf0+4’°°(go) <e

(6, 5/’)”C}‘€O+1)a(g)xczoya(g) + |10, 5P)||F|Zo+l(g)xﬁ;€0(g) <e

for somet = —2,t > —2 if n = 3, then the solution (0K,dg) given by Theorem 5.6
(with s =t+n) is in C;‘(’)’_}_Q’a(g) X CgiQ,a(g), If moreover

(6J,6p) € Ci1.0(9) X Ch.o(9)

then the solution given by Theorem 5.6 is in Cf:g_l&a(g) X CZan(g)

REMARK 5.8. — All the hypotheses in Proposition 5.7 will hold if g has (C£+4,a, k+5)
behavior at M, for some F > 0, with Ky € Cf;; i in particular they will hold if
(Ko, g0) € C*4(M) x C*5(M).

Proof. — Under the current hypotheses all the conditions of Proposition 3.16 with k
there equal to kg are met. (The weighted elliptic regularity condition of Definition 3.12
is satisfied by the calculation (B.4), Appendix B.) The higher Holder regularity follows
from Proposition 3.17. O

A useful class of solutions is obtained by taking the weight to decay exponentially
at the boundary: the weighting functions are then chosen to be ¢ = 22 and ¢ = e*/%.
The main interest of this class of spaces stems from the inclusion

NeenCrFe,, c C°°(M),

22 ,e5/w

which holds on a compact manifold with boundary M for any s > 0. Here the space
C°°(M) denotes the space of tensor fields which extend smoothly to M, together with
all their derivatives; in fact all fields belonging to the left-hand-side of the inclusion
above can be smoothly extended by a zero tensor field. It is shown at the end of
Appendix B that the spaces H ;’;2,65 /» satisfy the hypotheses of Lemma B.1; the latter
asserts that the scaling property holds for those spaces. This gives:

THEOREM 5.9. — Let M be a compact manifold with boundary, let s > 0, k > n/2
and suppose that go is a metric on M which has (ij4’°°, k + 4)-behavior at OM ,
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with

(5.10a) z*[Ric (g0)|go — 2—00;

(5.10b) 2|VVz|gy — 200,

(5.10¢) Ko € 27 2W5™(g0),  2?|Kolgy + 2*|VKo|gy — 2—00.

There exists € > 0 such that for all (K, g) in x’Qijs’oo(go) X ij4’°°(go) for which
G = Ko, g = go)llo—2pyss.os go) s+ go) < &
and for all pairs (8J,dp) € Hf;fis/m (g9) x H;fz’es/w(g) satisfying
(5, 5p)||H:;}1€S/x(g)><H:2yes/x(g) <e

there exists a solution (6K,8g) = e~ 2/*®2P*(Y,N) € 2> H"2,, (9) xz*H*F2, (9)),

22,e8/® 22,e8/®
close to zero, of the equation

(5.11) W’CLQGQS/;C {(i) (K+6K,g9+dg) — (i) (K,g)} = w’CLgeQS/” (gj) .

Proof. — As before, we apply Theorems 3.6 and 3.9. We first show the inequality
(3.4) for Y’s and N’s supported in a sufficiently small neighborhood of dM. For
s # 0, consider the equality in Corollary D.5. Taking absolute values of both sides,
and applying Cauchy-Schwarz to the left term in the resulting equality one obtains
(5.12) Wi, . < OISO o, -
Applying Proposition C.4 with u := 22V N and with u = N, we find that for s # 0 it
holds that

[ VYN, > Colle VN

22,08/

Ci, -
e T 12V N0

a,‘.2’65/:15

Cy
= THJTQVNHHS%

Ch
> THJJQVNHH:Z,ES/E + CQHNHH'Sz,eS/‘T

> GslINlm, -

The inequality (3.4) is then satisfied. Now (M, g, K, x) satisfy the asymptotic con-
dition b) of Definition 4.1 with U; = {« > 1/i}, and Lemma 4.3 shows that we can
apply Theorem 3.6. The conditions s > 0 and k > n/2 ensure that the map of
Equation (3.13) is well defined and differentiable in a neighborhood of zero. (Here
one should use weighted Moser inequalities, which can be established by the methods
of [26] together with the scaling arguments of Appendix B.) The result follows then
from Theorem 3.9. O
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It is easy to check that the spaces H !;2 oo/ i Theorem 5.9 can be replaced by the
spaces H ;“2 for any a € R, we leave the details to the reader. The need for
such a generalization arises when wishing to pass from weighted Sobolev spaces to

exponentially weighted Holder spaces: indeed, Equation (B.4), Appendix B, gives

7xZaES/am

1 m,a g P <
(5.13) ||U,||c’;;$2'%s/x(M) (]l u||c:2“

Y

2%S/W(M) + ”u”LiQ(a—nm)es/m(M))'

and leads to the following proposition, the details are left to the reader:

PROPOSITION 5.10. — Let M be a compact manifold with boundary, let k > ko =
[n/2] + 1 (the smallest integer strictly larger than n/2), and suppose that go is a
metric on M which has (C:j;l’a,k + 5)-behavior at OM. Assume that (5.10) holds.

Then there exists e > 0 such that if (K, g) in z=2C* 3% (go) x CFFH%(go) with

22,1 2,1
I = Ko..9 = 90) |y amwigros gy iyt (go) <&
and if

(57, 50)”0:3:1;2 (%', (o) T (6, 6P)||H:g}+ml_net/w(g)XH:gw_%t/x(g) <e

with t > 0, then the solution (0K,dg) given by Theorem 5.9 is in xQCngrQ’a(g) X

22,6t/

k ; k+1, k, . .
x4Cx§:?/f(g). If moreover (8J,8p) € ij,ij; (g) x C;ﬁ?e‘/x (g) then the solution given
by Theorem 5.9 is in J;QC’:;;::;?; (g) x 95405;32% (9). O

Choose some o > 0 and define the Fréchet spaces C?7 . ,2(g) as the collection of
all functions or tensor fields which are in Ck;a +/=(g) whatever k € N, equipped with
z2,es/

the family of semi-norms {| - || ;%o g k€ N}. We then have:
22 /x

COROLLARY 5.11. — Under the hypotheses of the preceding proposition, if (0J,0p) €
C2% oa(9) X C% .. (9), and if (K,g) € C°°(M) x C>(M), then the solution given
by Theorem 5.9 is in

20 urul9) X TC 1. (g) € C(F) x C(H).
In fact (0K,0g) can be smoothly extended by zero across OM. O
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CONFORMALLY COMPACTIFIABLE INITIAL DATA

A Riemannian manifold (M, g) will be said to be conformally compactifiable if

(1) M = M UOM is a compact manifold with non-empty boundary;
(2) let z be any defining function for M, then the tensor field 22g extends by
continuity to a continuous Riemannian metric g on M.

This definition encompasses Riemannian manifolds such as hyperbolic space. The
associated initial data occur in the context of space-times which are asymptotically
flat in lightlike directions [3,4, 39], or in that of asymptotically anti-de Sitter space-
times [38,48].

The topological setup here is thus identical to that of the previous section, but the
metrics g differ from the ones used there by a rescaling factor 22. It turns out that
there is a simple correspondence of the functional spaces Hg from the previous sec-
tion with a class of natural weighted spaces associated to conformally compactifiable
metrics: since ¢ = x72g on M we obviously have

Li(9) = L3-0/2(@)-

Further, assuming that (A.2) holds for 0 < ¢ < k with ¢ = x and g there replaced
by g (recall that this will hold if g has (W% k)-behavior at M in the sense of
Definition 5.3, in particular that will be the case if g is C*(M)) it is simple to check
that

HY y(9) = Hy /2, (@)

for tensors; 0 < ¢ < k — 1 in (A.2) would suffice for functions. It is therefore natural
(see (5.2)-(5.3)) to define

(6.1) Hi(g) = H{ - (9) = Hi(@).
Let us define in the same way

Cialg) == Cro.(9) = Cia(@).
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We note that

2’ €My iffo>s+(n—1)/2.
Similarly to (5.3) we have
(6.2) ferg), k>n/2 = f=o(").

We will be mainly interested in conformally compactifiable metrics such that x2g
has ( 1 o k) or CZ, ,,—behavior at the conformal boundary, o > 0; such metrics arise
naturally when solving the constraint equations via the conformal method [3,4].

We will need some estimates on P*(Y, N) extending those of Section 4, when

K=X+1L,
where A is a uniformly bounded function on M. We will further assume that
|Llg = o(x™?) and |VL|g = o(z?).
If we use this particular choice of K in equation (2.4), we find
P;(Y,N)
. P*(Y,N) = 1A

69 P = ()

2(VY)) = V'¥igij — 9ijAN +nA Ngi;) + o(z=?)N

2)\(VlYlgij — V(in)) — ANgij + ViVjN — NRic (g)ij ’

+2NA2g;; — 2NnA%g;; + o(z72)(VY) + o(x=3)(Y) + o(z=2)N
where o(z%) denotes a tensor the g—norm of which is o(z®). We then have
(64) AP(Y,N)+ P;(Y,N) = —ANgi; + ViV, N — NRic (g),;

+o(x7H)(VY) +o(z73)(Y) + o(z"?)N.

If we prove that for all (Y, N) supported in a neighborhood O of M,

(6.5a) [SY)lyzs = ClIY Il

(6.5b) | = ANg+ VVN — NRic(g)lly = ClIN|lys-
then we will have from (6.5a) and (2.18):

(6.6)

¥l < CUIY Il + ISO)llie) < CUSW s < CPE (Y, Nl + N1,
and from (6.5b) and (6.4),
(6.7) Ao 127 (Ys Nl + (125 (Y, N)

g > ClINIls — £l1Y I

where ¢ is arbitrary close to zero, reducing O if necessary. Finally £(6.6)+(6.7) gives

(IM[zee + DIIPEY, Nl + 1122 (Y, Nl g = ClIN

H
then for £ small, we obtain the asymptotic inequality (3.4) (with ® = id) for P*:
(Al zoe + DIPEY, N)llyge + 155 (Y, Nl 2 CHY [l + ClIN s -
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Let us justify the inequality (6.5a) in a neighborhood of a compact boundary OM.
We have the following:

PROPOSITION 6.1. — Let s # (n—1)/2,(n+1)/2. Then there exists a neighborhood
O, of OM such that for every C! vector field with compact support in O, ~ OM we
have

(6.8) [P duy < € [ S1S0P du,
for some constant C, where S is defined by Equation (4.4).

REMARK 6.2. — The argument given in Remark 5.2 shows that the restriction s #
(n+1)/2 is sharp. We suspect that the restriction s # (n — 1)/2 can be removed.

Proof. — This is just a rewriting of Corollary D.12. O

THEOREM 6.3. — Let M be a compact manifold with boundary, let k > 0, and sup-

pose that go is a conformally compact metric on M such that go = x~2g,, with g,
having (WkE+4 k + 4)-behavior at OM. Assume that

(6.9) Ko =Xogo+ Lo, Lo, Xo € Wi ™¥(go), |Lolge — 00, [VLolgy — z—00.

Then for all s # (n—3)/2,(n—1)/2,(n+1)/2 and all (K, g) close to (Ko, go) in the
W (go) x WEY(go) norm, the map

1 o o i o o
Ticla Ly K2 N (ij3(g) X Hki4(9)) — Ky N (Hki1(9) x H;*(9)
is an isomorphism such that the norm of its inverse does not depend upon (K, g).

Proof. — We wish to apply Theorem 3.6. It follows from the discussion above that
we only need to establish the inequality (6.5) for Y’s and N’s supported outside of a
sufficiently a large compact set. For s # (n — 1)/2, (n + 1)/2, Proposition 6.1 yields

(6.10) 1V li-e < OISO -

Applying Proposition D.13 we find that for s # (n—3)/2,(n—1)/2, (n+1)/2 it holds
that

(6.11) INlly-- < Cll - ANg + VIN — NRic (g) -+

which is what had to be established. O
A proof identical to that of Theorem 5.6 yields:

THEOREM 6.4. — Under the hypotheses of Theorem 6.3 with

s20, s#(n-3)/2,(n—-1)/2,(n+1)/2, k>n/2,
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the map
Ko™r 0 (Higa(9) x Hita(9) — Ko 0 (Hif4(9) x Hy®(9)

) — a2 { (1) (g + 2P - (1) ()}

is bijective in a neighborhood of zero. Thus, there exists € > 0 such that for all (K, g)
close to (Ko, go) in Wit (g0) x WY (g0), and for all pairs (8J,6p) € H; . 1(g) %
HZ(g) with norm less than e, there exists a solution (0K,dg) = x**P*(Y,N) €

o

(6.12)

Hi o) ¥ |:|2+2(g)), close to zero, of the equation

(6.13) me,cox {(i) (K + 6K, g+ 8¢) — (i) (K,g)} = e, Lz (‘”) .

op
REMARK 6.5. — For metrics which are sufficiently regular at the conformal boundary
it can be shown that any non-trivial solution of the equation P*(Y, N) = 0 satisfies
|N|+ Y|4 ~ 1/x near x = 0. This shows that if 0 < s < (n+ 1)/2, then Ky = {0},
so that no projection operator is necessary in (6.13).

Proof. — The conditions s > 0 and k > n/2 ensure that the map of Equation (6.12) is
well defined and differentiable in a neighborhood of zero; a relatively straightforward
though lengthy check of that can be done using weighted Moser inequalities (see [26]
for proofs in a slightly different context; the arguments there adapt to the current
setting in a straightforward way). The solvability of the equation (6.13) follows then
from Theorem 3.9. (]

A proof identical to that of Proposition 5.7 gives solutions with Holder regularity:

PROPOSITION 6.6. — Let M be a compact manifold with boundary, let k > ko =
[n/2] + 1 (the smallest integer strictly larger than n/2), o € (0,1), and suppose
that go is a conformally compact metric on M such that go = 127, with G, having
(CRy 4 0r k + 5)-behavior at M. Assume that

(6.14) Ko = Xogo + Lo, Lo, Ao € Ciy3.4(90), [Lolgy — 2—00, [VLolgy — 200
Then for allt >0, t # (n—3)/2,(n —1)/2,(n+ 1)/2 there exists € > 0 such that if
(K7 g) Zn Clg+3,o((g0) X Clg+4,o((g0)7 and Zf

I = Ko, 9= g0) oo g xwrpot:= g

16,80)cs, ..oty o0+ 1000 g oyt < &
then the solution (0K,dg) given by Theorem 6.4 (with s = t) is in Cj 4y ,(9) X

Cloro.a(9). If moreover (8J,0p) € Cjyy ,(9) X Cp ,(g) then the solution given by
Theorem 6.4 is in Ci 5 ,(9) X C15 4(9)- O

<e

One has very similar results in exponentially weighted Holder and Sobolev spaces
as at the end of Section 5, the details are left to the reader.
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ASYMPTOTICALLY FLAT INITIAL DATA

DEFINITION 7.1. — Let W be a space of symmetric tensors on R"™ \ B(Ry), Ry >
1, where B(Rp) is an open coordinate ball of radius Ry in R™. We shall say that
(M, g) is W—asymptotically flat if there exists a set # C M and a diffeomorphism

X t: M~ — R\ B(Rp) such that
(X"9)ij = dij € W.

The region Mgyt = M ~ £ will be called an end of M. M will be said to have
compact interior if £ is compact.

In the above definition we have assumed that M has only one end, there is an
obvious natural generalization of the above notion to any finite number of ends; the
results below generalize without any difficulties to such cases. We emphasize that in
Definition 7.1 the manifold M is allowed to have a compact boundary. We will often
use the symbol r to denote a function f on M such that f o x coincides with the
radius r on R™ \ B(R) for R large enough. The requirement Ry > 1 has been made
for notational convenience, to guarantee that the function r, which will be used as a
weight on My , is strictly positive there.

The simplest choice for the W spaces above are the C}' Holder spaces, defined as
the spaces of functions such that

(7.1) /]

where |- [|co is the sum of sup norms of f and its derivatives up to order k, with each
derivative entering with a supplementary factor of r. If

cp = 11+ o < o,

is a tensor field, then (7.1) should be used for each entry f““'i’“jl___jz of f, with respect
to the natural coordinates x* on R", and a sum over the i,’s and j,’s of the norms
[ £, _jlloe should be made.
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Somewhat sharper results can be obtained when working with manifolds for which
W is a weighted Sobolev space. We shall say that f € r®Wk if (1 +72)~*/2f ¢
Wk This is equivalent to the requirement that f € Cy_,, and that the dis-
tributional k’th derivatives of f satisfy a weighted Lipschitz condition. The met-
rics, solutions of the constraint equations which are obtained by our methods, are
(rmewhkt2oo 4 I—ifﬁr_a)fasymptotically flat with some a,0 > 0, k > 2.

It is convenient to relabel the ﬁﬁru spaces as follows: for k € N and 5 € R we set
(7.2) AR = HE s,

so that the %”g spaces are the weighted Sobolev spaces of (A.1) with ¢ = 7o x~!
and v a power of 7o x~!; the labeling here follows [7], and is motivated by the simple
inclusions [7]

(7.3) ClCcHy B <Bs  HLCC) k02
In fact [7]
(7.4) fel k>n/2 = f=o(").

In order to apply Theorem 3.6 we need to establish the inequality (3.4) for tensor
fields with compact support in the asymptotic region, and we will use Lemma 4.3
for that. In addition to (C.7), we assume that the Hessian Hessr satisfies, in the
preferred coordinates on the asymptotic region,

(7.5) (Hessr);; = %((55 —nn;) +o(r ).

(Equation (7.5) will clearly hold without the error term for a flat metric; similarly
(7.5) will hold for metrics which are Cf-asymptotically flat, for some a > 0; we note
that (7.5) implies (C.8).) For the convenience of the reader we restate Proposition D.9:

PROPOSITION 7.2. — Let S be defined by Equation (4.4). Assume that g € VVﬁ)COO,
that

(7.6) lgij — 5;| <e on {r>R.},

and that (7.5) holds. Then for s € R~ {0,1} there exist constants R = R(s) and Cs
such that for all differentiable vector fields Y compactly supported outside of a ball of
radius R we have

(77) /7“7257”|Y|2 < Cs/rf2sfn+2|5(y)|2.

REMARK 7.3. — The result is sharp, compare the argument in Remark 5.2.

Proposition 7.2 gives, in essence, the inequality needed in Theorem 3.6 for s ¢
{0,1}. This leads to the following rewording of Theorem 3.6 in the asymptotically
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flat context (there is also an equivalent of Theorem 3.4 here, we leave the transcription
to the reader):

THEOREM 7.4. — Let go be r~Wk+t4 —asymptotically flat for some a > 0 and
k € N, suppose that
(7.8) Ko € r tWhtde Ky =o(r ).
Then for all o € R~ {0,1} and for all (K,g) close to (Ko, go) in r~1Wk+T3:(gq) x
Wkt420(gq) norm, the map
1y Do Do Ly Do Do

Tyko Lipp=nsz-o : Ko? N (A 74s(9) x #714(9)) — Ko? N (H{41(9) x #7(9))

is an isomorphism such that the norm of its inverse does not depend upon (K, g).

Before passing to its proof, we note that Theorem 7.4 immediately implies:

COROLLARY 7.5. — Under the hypotheses of Theorem 7.4, the space of linearized
fields (6K, d6g) € %”,;ff"“ X %”,;f{"“ splits as a direct sum KerP & B, with the
restriction of the linearization P of the constraint map to B being an isomorphism of
B and of

Ktsn (%”,;f;“ X %ﬂ;”‘") :
In particular if there are no solutions (Y, N) € A x #5 of the equation P*(Y, N) =
0, then the map
T ) AT 5 (0K, 89) — (07,0p) == P(6K,0g) € 517 x H3"C
18 surjective. O

Proof of Theorem 7.4. — We wish to apply Theorem 3.6, in order to do that we need
to establish the inequality (3.4) for Y’s and N’s supported outside of a sufficiently a
large ball. For o # 0, 1, Proposition 7.2 yields

(7.9) 1Yl < OISO os .
Applying Proposition C.5 twice we find that for o #£ 0,1 it holds that
(7.10) [Nl ze S CIVN| po-1 < C*[VVN| pr-2 < C*|a(VVN)| o2,

where « is as in (2.15). Now (M, g, K,r) satisfy the asymptotic condition a) of
Definition 4.1 with U; = (x 1)~ (B(i) ~ B(Ro)) UU, where U is a relatively compact
open neighborhood of JZ (x, Ro and J# as in Definition 7.1), and Lemma 4.3 shows

that we can apply Theorem 3.6. O

Elements in the kernel of P* are called Killing initial data (KIDs) [9]. Existence of
non-zero KIDs implies existence of non-zero Killing vectors in the associated vacuum
space-time (see [8, 9] and references therein). We have the following corollary of
Theorem 7.4:
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COROLLARY 7.6. — Let go be 1~ “WEt4>° _asymptotically flat for some o > 0 and
k € N and suppose that Equation (7.8) holds.

(1) If 0 <0, orif
(2) o € 40,1} and the set of nontrivial KIDs is empty,

then the conclusions of Theorem 7.4 hold without any projection.

Proof. — There are no nontrivial KIDs in £ x 5 for o < 0, then Ky = {0}.
O

THEOREM 7.7. — Let go be r~*Wk+t4 —asymptotically flat for some a > 0 and
k > n/2, suppose that

(7.11) Koer WS Ko=o(r™).
Then for all o > 2 —n, o ¢ {0,1} the nonlinear map

Ky? N (A7 5(9) x H7,4(9)) — Ko? 0 (A#41(9) x #(9))

) = mgear 2 { () [,0) 4w ) - () (o)}

(7.12)

is bijective in a neighborhood of zero. Thus, there exists € > 0 such that for all (K, g)
close to (Ko, go) in r=1WE3:°0(g) x WET42°(g0), and for all pairs

(8,6p) € A7 (9) x A" ()
with norm less than e, there exists a solution
(6K, 89) = r "2 ®*P*(Y.N) € #1757 (9) x #3157 (9)),

close to zero, of the equation

J J o0J
n+2o o _ N n+2o0
(7.13) Tital {(p)(K+5K,g+6g) (p)(K,g)} Mital <5p>

Proof. — The conditions ¢ > 2 —n and k > n/2 ensure that the map of Equa-
tion (7.12) is well defined and differentiable in a neighborhood of zero. The result
follows then from Theorem 3.9. O

Clearly, the projection operator in (7.13) is not needed when the hypotheses of
Corollary 7.6 are satisfied.
We also have solutions with Holder regularity:

PROPOSITION 7.8. — Let go be C} 5 —asymptotically flat for some a >0, B € (0,1),
and k = ko := |n/2] + 1 (the smallest integer strictly larger than n/2), suppose that

(714) Ky € Ck_JiB,ﬁ’ Ko = 0(7‘71).
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Then for allt > 2, t & {n,n+1} there exists € > 0 such that if (K, g) in Ck_ﬁgﬂ(go) X
Ciliap(go), and if

||(K - K07g - gO)||T—lwf0+3:°°(go)xwk0+4:°° <e€

r (g0)
(8, 5P)||c;0‘+11ﬁ(g)><c,:0‘ﬁ(g) + [|(67, 5P)||3§7;g+1(g)x3§7;g(g) <e

then the solution (0K,0g) given by Theorem 7.7 (with o =t —mn) is in C,;f_gﬂ(g) X
C,;Otfiﬁ(g). If moreover (0J,8p) € C’,;:Lﬁ(g) X C’,;tﬁ(g) then the solution given by

Theorem 7.7 is in C’,;:;rlﬁ(g) X C’,;f;r%(g)

Proof. — Under the current hypotheses all the conditions of Proposition 3.16 with k
there equal to kg are met. (The weighted elliptic regularity condition of Definition 3.12
is satisfied by the calculation (B.4), Appendix B.) The higher Holder regularity follows
from Proposition 3.17. |

REMARK 7.9. — One has very similar results in exponentially weighted Holder and
Sobolev spaces as at the end of Section 5, the details are left to the reader. However,
the exponentially weighted conditions seem difficult to verify in the current case,
unless one is in a setting where the results of Section 5 can be applied. In such a case
sharper results are obtained by using the theorems of that section.
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CHAPTER 8

APPLICATIONS

In this section we will give several applications of the general results proved so
far. It should be clear that a key role in this approach is played by the kernel of P*.
As already mentioned in the previous section, elements of this kernel will be called
Killing Initial Data (KIDs). Thus, a KID is a pair (Y, N) such that

P*(Y,N) = 0.

Our first application of the techniques developed so far concerns the construction
of initial data which are exactly Kerrian outside of a compact set:

8.1. Space-times that are Kerrian near i°

(A version of) the following result has been announced in [31]; we assume that the
initial data manifold is three-dimensional:

THEOREM 8.1. — Let g be r~ Wkt asymptotically flat for some a > 1/2 and
2 <k eN, with K € r—"1Wkt3:° and suppose that (K,g) satisfies the vacuum
constraint equations. We further assume that (K, g) satisfy the 3+ 1 equivalent of the
parity conditions (E.9),

(8.1) 91 + 7|0k (g;;)| + 7| K| < C(L+7)7%, a->a, ata- >2,

so that all Poincaré charges of (K, g) are finite and well defined, with the ADM four-
momentum being timelike. Then there exists Ry < oo such that for all R > Ry there
exists an initial data set

(Kr,gr) € CFF2 x CFF2
satisfying the vacuum constraint equations everywhere such that (IA( R, gRr) coincides

with (K, g) for r < R, and (Kg,Gr) coincides with initial data for some Kerr metric
forr > 4R. If K and g are smooth, then (Kgr,gr) is smooth.
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REMARK 8.2. — A family of (n + 1)-dimensional generalizations of the Kerr metric
has been found by Myers and Perry [55], we expect that it can be used to prove a
corresponding result in (n + 1) dimensions. The argument below carries over to any
dimension, the only element missing is an equivalent of Proposition F.1 for the family
of translated, rotated, and boosted Myers-Perry metrics.

REMARK 8.3. — The factor 4 has been chosen for definiteness; an identical result
holds with (Kg,gr) being Kerr for > AR for any constant A > 1.

REMARK 8.4. — The ADM momentum and angular momentum of (Kg,gr) con-
verges to that of (K, ¢g) as R tends to infinity.

Proof. — The required initial data will be constructed by a gluing procedure, on an
annulus, using a method due to Corvino [30, 31], together with Theorem 3.19. Let
€@y, ¢t = 1,...,10, be any basis of the space of KIDs for Minkowski space-time, let
Q(;) denote the Hamiltonian charge Q(Y(;), N, K, g) of (K,g) as given by (E.25)
with (Y(;), Ny) = e(). Let, as in Appendix F, %o denote the set of initial data
for boosted, rotated, and translated Kerr metrics, and let (K¢, gg) denote an initial
data set in o with Hamiltonian charge Q@ = (Q(;)) € R'. For R € [Ry, o0) let the
scale-down map ®r be defined as

®p:T'(R,4R) := B(0,4R) ~ B(0,R) — TI'(1,4),

x+— z/R.

(8.2)

Let x € C*(R?) be a spherically symmetric cut-off function such that 0 < y < 1,
x=1onT(1,2), and xy =0 on I'(3,4). On I'(1,4) set

9go.r = R2(x®Rg + (1 — x)®h90) ,
Kor=R"(x®RK + (1 - x)®:Kq).

Then the gg r’s form a family of metrics that converge, as R tends to infinity, in
weighted Sobolev topologies with arbitrary decay (at the boundary) index ¢ > 1, to
the Euclidean metric go on I'(1,4), while the K¢ r’s converge to Ko = 0:

(83)  lgor—golly , +I1Ke k-1 < CareR™,  f:=min(a,1)

(recall that the weighted Sobolev spaces used here have been defined in (5.2)). Further
the convergence is uniform in @) on any compact set of @’s. We shall write z for (K, g),
zg for (Kg,gq), etc. We choose the index t to be larger than or equal to k + 5 —
say t = k + 6, in particular initial data in the space H}:é X I:|§€Jr2 vanish on 0I'(1,4),
as well as their first derivatives. Further, this ensures the continuous embedding

HiZL c HF2
k+2 :
It follows from (8.3) that for R sufficiently large we have
(54) 1 @e.m)la2 + lolag.m)llg = < CR,
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and Theorem 5.6 with s =t — 1 provides a solution dxg r € H;:}Q X Ii|§€Jr2 of Equa-

tion (5.8) satisfying
L -8
(8'5) H(st’R”kaXHt < CR™7.

k+2
Set 8J = J(zg,r+0xq,R), 0p = p(xg,r+IxQ,Rr), let the parameter A in Theorem 3.19
be equal to R, and consider the map F) defined in (3.29). We have

<e(i),¢_2 (gi) >Li@Lfb = <(Y(i)aN(i))7¢_2 (f{;) >L1®pr

= / (Y(sz)‘SJj + N(i)5p) dpig-
T(1,4)

Note that the weight factor ¢ has vanished from the last integral. By (E.26) we have

0J
) N2 = o ) dSe
(8.6) <€<z)ﬂ/’ (5p> >L1®Li /{7:4} U (zq,r + 02q,r)dSap

- / U (zq.r + 0xg.r)dSap + O(R™),
{r=1}

with the error term O(R~2%) being uniform in @ whenever Q) ranges over a compact
set. Now, on S(0,1) all the initial data considered coincide — up to a rescaling —
with (g, K) together with their first derivatives, so that by (E.19) we have

af _ p—1 0 -5
/{r=1} U*dSap = R {Q(i) +O(R )} ;

where Q?i) denotes the Hamiltonian charge of (K, g), for some § > 0. Similarly,
on S(0,4) all the initial data considered coincide (up to scale-down) with (K¢, gq)
together with their first derivatives, so that

/ U*dSas = R {Qu) + O((4R) ™)},
{r=4}
It follows that

o0J ;
) -2 _ p-1 . _ 0O — min(6,28—1)
(8'7) <e(z)7 P ( 8p ) >L§;@Li R {Q(z) Q(z) + O(R )} .

This implies that, up to an additive constant, the maps AF) converge as A = R tends
to infinity to the map @ of Proposition F.1; that last map is a homeomorphism, as
desired. The conclusion is obtained now from Theorem 3.19 by taking V C R0 to be
a ball around (Q?i)) of a radius small enough so that V' is included in the image of
the map @ of Proposition F.1, with U = Q~(V).

Finally, if ¢ and K are smooth, then smooth solutions can be obtained by using
the exponentially weighted spaces of Proposition 5.10, compare Corollary 5.11. In
the construction above one should choose the cut-off function x to be constant in a
neighborhood of the boundary of the annulus I'(1,4). O
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8.2. Gluing asymptotically flat initial data sets

The gluing technique used in Section 8.1 does apply to much more general sit-
uations, as follows: a family of vacuum initial data {(Ky,gw)}wen will be called a
reference family if the following holds:

(1) There exists R > 0 such that all the data sets (K, g,) are defined on R? ~
B(0,R).

(2) The metrics g, are r~ W4 _asymptotically flat for some w-independent
constant o > 1/2 and 2 < k € N, with K, € 7~ 1Wk*+3:° and with the norms in
those spaces being bounded independently of w € .

(3) The parity conditions (8.1) hold with g and K there replaced by g, and K,
for some w-independent constants a_ and C.

(4) The map which to (K, g.) assigns its Poincaré charges (p*(w), J*"(w)) is a
diffeomorphism between ) and an open subset of R'?:

(8.8) U = {(p"(w), J" (W) }wea C R* x RE.

There is an obvious equivalent of the definition above in the time symmetric con-
text: in this case one assumes that K, = 0, and one requires % to be an open subset
of R4, with one parameter corresponding to mass, and three parameters corresponding
to the centre of mass.

It is proved in Appendix E that the collection of initial data obtained from boosted
and space-translated Kerr space-times provides an example of a reference family. More
generally, consider any one parameter family of vacuum initial data sets (K, gx) on
R3 \ B(0,R), A € (—¢,¢), which satisfies the decay and parity conditions of the
definition of a reference family. For definiteness we shall suppose that the ADM
four-momentum p*(A) of (K, gy) is a A-independent timelike future pointing vector,
and that the length squared J%(\)J;;(\) of the ADM angular momentum J%()) of
(K, g») varies smoothly in some open interval as A changes. Then scaling (z° — az?,
g — a~2g for a € RT), translating, and rotating the initial data, and boosting the
initial data hypersurface in the associated maximal globally hyperbolic development,
leads to a reference family such that the associated Poincaré charges form a neighbor-
hood of (p*(0), J#*(0)); this follows from the boost theorem [15,17] together with
the analysis in Appendix E (here one needs to apply the boost theorem first to the
full metric, and then to its odd part).

Similarly, in the time symmetric context, an example of a reference family is pro-
vided by translated Schwarzschild initial data. More generally, if g is a scalar flat
metric on R? \ B(0, R) which satisfies the decay and parity conditions of the defini-
tion of a reference family and which has non-vanishing ADM mass, then scaling and
translating provides a time-symmetric reference family.

A repetition of the proof of Theorem 8.1 gives:
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THEOREM 8.5. — Under the hypotheses of Theorem 8.1, consider any reference fam-
ily {(Kwu, 9uw) tweq such that the associated set U defined by (8.8) forms a neighbor-
hood of the Poincaré charge (p*, J*) of (K, g). Then the conclusion of Theorem 8.1
holds with the new initial data set coinciding in the asymptotic region with one of
the members of the reference family rather than with one of the members of the Kerr
Sfamily. O

The point of Theorem 8.5 is that it provides large families of initial data with well
controlled asymptotic behavior. As an example of application, let the reference family
consist of stationary metrics. Such metrics have well understood asymptotic behavior
(cf., e.g., [60]), and large families of non-trivial solutions (defined and smooth outside
of a compact set) have been constructed in [49,57,59]. Theorem 8.5 allows one to
modify an arbitrary initial data set in the asymptotic region so that it coincides
with exactly stationary, but not necessarily Kerrian, data there. Further, there is
a rather large freedom available. Now, a significant result of Dain, Damour and
Schmidt [34, 35] implies that the resulting vacuum space-time will have a smooth
# 7T complete to the past. Thus, initial data so constructed do have reasonably well
controlled maximal globally hyperbolic developments. We will see in Section 8.6 below
how to construct initial data that produce space-times with a complete smooth &,
by using a variation of the technique above.

Another possibility is to choose as the reference family appropriate subsets of the
set of “almost stationary” metrics constructed in Section 8.3 below, see Theorem 8.9.
The metrics there are stationary (or static, in the time-symmetric case) to an order
as high as desired in an asymptotic expansion, without being exactly stationary out-
side of a compact set, which further increases the freedom available. One expects
(compare [40]) that some of those metrics will also admit complete, or past-complete,
conformal completions with a reasonably high degree of differentiability, but no rig-
orous statements of this kind are known so far.

All the constructions described so far can be repeated by specializing to the time-
symmetric case, setting

Y=K=0

throughout. In this context Theorem 8.5 can be rephrased as:

THEOREM 8.6. — Let g be r~ Wkt asymptotically flat for some a > 1/2 and
2 < k € N, and suppose that

R(g) = 0.
We further assume that g satisfies the parity conditions
(8.9) 191 +710k(g)l SCA+7)"%, a->a, ata- >2,

so that the mass m and the centre of mass C of g are finite and well defined, with
m # 0. Consider any time-symmetric reference family {(K, = 0, gu)}weq such that

SOCIETE MATHEMATIQUE DE FRANCE 2003



46 CHAPTER 8. APPLICATIONS

the associated set Uq of masses and centres of mass forms a neighborhood of (m,c).
Then there exists Ry < oo such that for all R > Ry there exists a scalar flat metric

§R c Ck+2

such that gr coincides with g for r < R, and gr coincides with a member of the
reference family for r > 4R. If g is smooth, and the g,,’s are smooth, then gr can be
chosen to be smooth. O

8.3. Initial data which are stationary to high asymptotic order

The results in Section 7 can be used to construct large classes of asymptotically
flat vacuum initial data sets with controlled asymptotic behavior. As an illustration,
let (K, g) be a solution of the stationary constraint equations defined on R® \. B(0, R)
for some R. Recall that such solutions are uniquely determined [12] by an infinite
collection of Hansen multipole moments { P (K, g)}men, as defined in [60, Equa-
tion (3.5)], see also [43]. We will assume that the reader is familiar with [60] and we
will use notation from there. In that reference it has been shown how to construct
approximate solutions of the stationary equations to any asymptotic order: given any
set &, one can find functions ‘bg&n), ‘Ing), <I>(]§n), 7™ which satisfy the reduced Ein-
stein equations [60, Equations (3.1)-(3.4)] to order O(r—("+3)). We wish, first, to
show that this implies existence of initial data (K (%), 9(Pm)) satisfying the sta-
tionary — or static — Einstein equations up to terms O(r~™73), provided that the
NUT charge vanishes; in particular this will imply, in the notation of [60],

810 (1) K@ a@w) = (02 ) e s ke

We will say that the moments are static to order m if the associated twist function w™)
vanishes. In this last case the proof of (8.10) is straightforward: we set K(%,,) := 0,
and (8.10) follows immediately from the equations in [60] with 0 = w = 0 there. In
the general case some more work is required, we start with a lemma:

LEMMA 8.7 (Approximate Poincaré Lemma). — Let
v=Ady Ndz+ Bdz N dx + Cdzx N dy
be a two form on R3, with coefficients of order o(r=2), such that
dv = (0, A+ 9,B + 8.0)dx A dy A dz = O(r~ ") da A dy A dz,
with m > 0. Then there exists a one form o such that

do = v+ O(r~(m*2),
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Proof. — In the proof that follows we use the notation X = (z,y,z) and r =
/22 + 92 + 22. Let us show that the one form o defined by the usual formula

o= - { [/100 A(tX)tdt} (ydz — zdy) + [/100 B(tX)tdt] (zdx — xdz)
+ [ /100 C’(tX)tdt} (xdy — yda:)}

satisfies the desired estimate. Indeed, the coefficient of the term dx A dy in do is
- / {[20,C(tX) — 20, A(tX) — 20, B(tX) + y9,C(tX)] + 2tC(tX)} dt
1
S / {t2 (20, C(tX) + yd,C(tX) + 20,C(tX) + zO((tr)~m+3))] + 2tC(tX)} dt
1

= —1CX)[; - / T L20((tr)" T )dt = C(X) + O (),

A similar calculation for the remaining terms gives the result. O

REMARK 8.8. — If 7 is another two form satisfying conditions of Lemma 8.7 such
that 7 — v = O(r—("+2)), then if we define & as in the preceding proof we will have

G —o=0(@mth),

This shows in particular that in a stationary vacuum metric the approximate so-
lution o(™) as defined below will differ from the exact one by O(r—(m+1)).
Returning to our construction, let @S\Zn), @gm), @(];n), and 7™ be as in (60, Theo-
rem 2], then Beig & Simon’s equations (2.8) and (2.9) are satisfied modulo O(r~(m+3)).
In particular their equation (2.8) with & = <I>(;(n) — @%) gives
(8.11) Ay (AT = 27N 4 O(r ()

where A = A" is obtained from @5\7), <I>(Sm), and @%n) by inverting [60, Equa-
tion (2.6)] with ®p; there replaced with <I>§\?), etc.; we define w = w(™) in a similar
way. Using again Beig and Simon’s Equation (2.8) with ® = <I>(Sm)

(8.12) Aoy (A w) = 270w 4 O(r~ (M),

gives

Developing (8.12), and inserting (8.11) in the result one obtains
ViA20,w) = O(r—(m*9),
Here V = V(y(™)) is the connection of the metric v(™). Then, if we define v =
p(m) .= _\—2 % (m) dw, we have
dv = O(r~(m+3)),
Recall, now, that the coefficient of the power »~! in the expansion of w is proportional

to the NUT charge of the resulting space-time; usual asymptotic flatness forces the
vanishing thereof. From now on we assume that this is the case; then w = O(r~2) thus
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v = O(r~3) so from Lemma 8.7 there exists a one form o(™, solution of [60, Equation
(2.4)] modulo O(r=(m*3)) at the right-hand-side. Set

(8.13) g™ = XM (gt 4 Ugm)dmi)2 - (/\(m))fl'yf;@)dxidxj.

It then follows e.g. from [50, Section 16.2] that the Ricci tensor of the stationary space-
time metric g™ has coordinate components which are O(r~("+3)). By projecting
on the initial data surface {t = 0} one obtains (8.10).

In order to continue, note that the collection &2, of multipole moments up to order
m can be viewed as an element of RN("™) for some N(m) (the exact value of which
is irrelevant for our purposes); this leads to an obvious way of measuring the norm of
P

Next, it should be clear that ten multipole moments out of the whole set &2,
correspond to the global Poincaré charges of the space-time metric. For example, the
1/r coefficient in the asymptotic expansion of A™) s related to the ADM mass of
g™). We denote by 29 the relevant multipole moments, and by £, the remaining
ones, so that

P = (P9, 7).
We have the following:

THEOREM 8.9. — Let m € N and let (Ko, go) be a stationary solution of the vacuum
Einstein equations defined on R3 \. B(Ry) with timelike ADM momentum and with
multipole moments up to order m equal to Py, := P (Ko, go). There exists n > 0
such that for any

0P <n

there exists 629 and a smooth vacuum initial data set (K,g) (not necessarily sta-
tionary) defined on R® \. B(Rg) such that

(8.14) (K,9) — (K(Pm +3Pn), g( P +3P)) € Cm 21 x o m—1re

for any € > 0. In particular the first m coefficients in an asymptotic expansion of g
in terms of inverse powers of v, and m + 1 coefficients in that of K, coincide with
those of the Simon—Beig approxzimate solution (K(Pm +0Pn), §(Pm +6P)). An
identical result holds in the class of time-symmetric initial data sets if one restricts
oneself to moments associated to static space-times, provided that Ko = 0.

REMARK 8.10. — The initial data set (K, g) will coincide with (Ky, go) in a neigh-
borhood of S(0, Ry).

REMARK 8.11. — We emphasize that one is not free to choose the Poincaré charges
Q@ of the final initial data set (K, g), those charges are determined by the original
stationary initial data set and by the § &7} ’s in a highly implicit manner. Further, we
will have Q — Qo = O(n?), where Qg are the Poincaré charges of (Ko, go)-
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REMARK 8.12. — It follows from the calculations of [60, Theorem 3], together with
the properties of the weighted spaces in (8.14), that the “orbit space manifold” (.7, ),
with 7 related to g as in (8.13) with the “(™)’s” removed, admits a one-point conformal
compactification with a C"™“ conformally rescaled metric. In particular in the static
case (-, g) has such a compactification.

REMARK 8.13. — Using the Schwarzschild initial data as (Ko = 0, go) one obtains
a large family of static initial data with any arbitrarily prescribed finite set of small
static multipole moments, except for the mass which is implicitly determined by the
seed mass and the remaining multipoles. One has an obvious analogue of this result
using the Kerr initial data as the reference family. Further, using Weyl metrics as
(Ko = 0,g0) one obtains large classes of time-symmetric initial data sets where the
higher order multipoles are not necessarily small.

Proof. — The proof is essentially identical to that of Theorem 8.1. For definiteness
we choose e = 1/2, the proof applies for any 0 < & < 1. Let 3?71/2 denote a space of
functions on R® . B(0, Ry + 1/2) which are exponentially weighted near the interior
boundary S(0, Rg + 1/2) as in Proposition 5.10 with ¢ there equal to one, and which
are weighted at infinity as in Theorem 7.7, with o there equal to m — 1/2. (Thus,
functions in Zg71/2 behave as functions in %?71/2 for 7 large.) Let x € C*°(R?) be
a spherically symmetric cut-off function such that 0 < x < 1, x =1 on I'(Rg, Ro + 1),

and x = 0 on R3 \ B(0, Ry + 2). Choose any 9 satisfying
|29 <n
and on R3 \ B(0, Ro) set

g5 = xg0 + (1 = x)9(Z +62),
Ks» = xKo+ (1 - X)K(Z +62).

We shall write 55 for (Ksw, gs2), xo for (Ko, go), etc. Set € = 1/2, choose some k
large enough so that the existence and Holder regularity results proved in the previous
sections apply, it follows from (8.10) that we have

(8.15) ||J($5@)||Z—(7n—1/2+3) + ||p(.235§a)||z—(m—1/2+3) < 077.
k41 k

The arguments given in the proofs of Theorems 5.9 and 7.7 show that the hypotheses of

Theorem 3.9 hold, and for 1 small enough we obtain a solution dzsg € Z,;Sg@_lﬂw) X

Z,;f;nfl/%l) of Equation (5.8) satisfying
8.16 ) —(m— —(m— < Cn.
( ) H xéﬂ||zk+(2 1/2+2)sz+(2 172+1) < On

Set 0J = J(xsw + 0x52), 0p = p(xsw» + d0x52). By Corollary 5.11 dzse extends
smoothly to R? \. B(0, Rg) when extended by zero. As in the proof of Theorem 8.1
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we have

(e v <f5i> >L3,@Li = {0, Nig). v (§Z> >Li@Li

= / (Y(Jz‘)‘Uj + N(i)5p> dpig-
R3< B(0,Ro)

We use the divergence identity (E.16) with (Ko, go) as the background (instead of
(0,9), as was the case for Theorem 8.1). The 3 + 1 form of this identity reads

0J
1 N, Y2 = li b N
(8.17) <€(z)7¢ <5p> >L51@Li R (r=R} U (252 + 6x52)dSap

— / U (259 + 0x52)dSas + O(n?).
{7"=R0}

Now, the initial data coincide with (go, Ko) in a neighborhood of S(0, Ry), so that

/ U*dS,5 = 0.
{7"=R0}

On the other hand, the limit as R goes to infinity of the integral over S(0, R) gives
/ U*dS,5 = 6Q,
{r=cc}

where 6Q is calculated from 6§ 29; we emphasize that dzs5 does not give a contribu-
tion to this integral because of the fast decay. It follows that

o [ 6J
(8.18) (e, ¥ 2 <6p)>Lfb€BLfb =0Q + 0(772).
Let F(6§ %) denote the left-hand-side of (8.18). Now, the map § 29 — §Q is a linear
isomorphism. Further, it should be clear that F' is a differentiable function of § <.

The existence of a § 2% such that F(§22?) vanishes can thus be inferred, for 1 small
enough, from the inverse function theorem. Alternatively, set

s P9
Gn(&@Q) =nF <T) ,
and the existence of the required solution follows from Lemma 3.18. O

One can repeat the construction of the proof with m replaced by m + 1, varying
02y, 1 while keeping 27, fixed, obtaining a finite dimensional family of distinct
solutions with the same &7} + 07 ; this might require decreasing 7. By induction,
one can obtain a family of arbitrarily high dimension of distinct solutions with the
same P, + 02, for 677, sufficiently small.

The above initial data are defined only on R \ B(Ry); however, one can now
use Theorem 8.5 to construct initial data on R3, or on other asymptotically flat
complete manifolds, which will coincide with the data constructed in Theorem 8.9 in
the asymptotic region.
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8.4. Space-times that are Kerrian near .+

Space-times that are Kerrian in a neighborhood of a subset of # are of course
obtained by evolution of data which are Kerrian in a neighborhood of i’. In some
situations it might, however, be convenient to be able to construct such space-times
starting directly from a hyperboloidal initial data hypersurface. It is not too difficult
to adapt the original Corvino-Schoen technique to the hyperboloidal initial data set-
ting, using the analysis above together with the relative mass identities of [25, 28];
this will be discussed elsewhere.

8.5. Bondi-type asymptotic expansions at .# .

Recall that Bondi et al. [13,58] have proposed a set of free functions parameterising
a certain asymptotic expansion of the metric at #*. It is of interest to enquire
whether one can construct hyperboloidal initial data sets which would lead to space-
times with a prescribed set of those functions. The results in Section 6 can be used to
give perturbational answers to such questions, in the spirit of Theorem 8.9; this will
be discussed elsewhere.

8.6. Local and global extensions of initial data sets

In this section®) we address the extension problem, that is, the following question:
let us be given a vacuum initial data set (M, K,g), where M = M U OM has a
compact boundary M, with the data (K, g) extending smoothly, or in C*(M), to
the boundary. Does there exist an extension across OM of (K, g) which satisfies
the constraint equations? In the case where K vanishes and OM is mean conver an
affirmative answer can be given by using a method(® due to Smith and Weinstein [61],
which proceeds as follows: In a neighborhood of M we can write the metric in the
form

(8.19) g =uldr* + eQUWAB(BAdT + rd6) (BB dr + rdf®),

where (01, 6?) are local coordinates on OM, 7,5 is a fixed (independent of r) metric
on OM, and B = 5‘48,4 is the “shift vector”. Further r is a coordinate on a M-
neighborhood of M which is, say, negative and vanishes precisely on dM; to obtain
(8.19) one needs further to assume that the mean extrinsic curvature H of OM has
no zeros. We can extend the functions v and BB to positive r in an arbitrary way
preserving their original differentiability. When H > 0, the requirement that the

(DA sketchy presentation of the analysis given in this section has been given in [23].
(2)Smith and Weinstein actually assume that &M is a two-sphere, but this hypothesis is irrelevant
for the discussion here.
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extended metric be Ricci-scalar flat becomes then a semi-linear parabolic equation
for w on OM [61]:

(8.20) rOpu = Tu? Lu + 3 - Yu + Au — Bu?,

where the objects above are defined as follows: we set yap = €2'J .5, we write
A =r2e? X, for the respectiveEaplaciaEs gf 7 and 7, Yﬁl, 5 the tangential component
of the gradient of u, I' =e~2"/H, A= A/H and B = B/H, while

X =rux = (1 +rv.)y —11/2,
F:ruH:2+2rvr—e*2”diV76,

_ — — — 1 1
A:rarH—ﬁ-WH—H+5|y|i+5H2,
B=c%"(1- Av),

with IT = L i the deformation tensor of E and y — the second fundamental form
of the level sets of r. It follows from the results in [51] that Equation (8.20), with
the obvious initial value, can always be solved for a small interval of r’s when the
initial metric and its extension are in, say, C*(M), obtaining a scalar-flat extension
of (M, 0, g). Similarly the results in [51] can be used to show that u will be of class
C**1 on the extended manifold if the remaining functions there are in C?**1 (thus
smooth if the initial metric is smooth up to boundary, and if the free functions above
are smooth).

Our aim here is to prove two alternative extension results under smallness con-
ditions, without the hypothesis that K vanishes. Thus, assume we have a solution
(K, g) € (C*3a x Ck+4e) (M), a € (0,1), of the vacuum constraints on a manifold
M with compact boundary. Let My be another manifold such that M, is diffeo-
morphic to OM, and let M’ be the manifold obtained by gluing M with My across
OM. Let z be any smooth function defined in a neighborhood # of 9M on M’, with
OM = {z = 0}, with dz nowhere vanishing on M, and with z > 0 on M. It is
convenient to choose ¥ := # N Mj to be diffeomorphic to OM x [0, o], with  being
a coordinate along the [0, x| factor

Suppose, next, that there exists on My a solution (Ko, go) of the vacuum constraint
equations which is in (C¥+3 x Ck+42)(My); we emphasize that we do not assume
that (K, g) and (Ko, go) match across OM. We first extend (K, g) to a pair (Ki,¢1)
defined on My with the requirement that (K7,g;) remains in C*+3 x Ck+4a; we
do of course not assume that the extension is vacuum. For the purposes below it is
convenient to make the extension so that ||g1 — gollck+4.e(y) + [ K1 — Kollorts.ayy is
as small as possible. While we are not aware of an optimal prescription, a possible
procedure which at least controls that norm is as follows: First, by using a partition of
unity subordinate to a finite cover of a neighborhood of dMj the problem is reduced
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to that of extending functions. Given that, Corollary 3.3.2 of [2] with
fi =0.glom — Oigolons, i=0,...,k+4,

shows that there exists a C*+%2 tensor field f on My such that 9¢ f = f; on M.
On My we define g;, a C*+%* extension of g, by

91— 9o = [,
then 92 gy = dig for alli =0,...,k+4. The proof of Lemma 3.3.1 and Corollary 3.3.2
in [2] show that

ket d
(8.21) 91 = gollcrtaayy < CZ 10z9lom — Oz.90lon || or+a—i.aanr)-
1=0

The same procedure applies to extend K to a C*+3:¢ tensor field K; satisfying 91 Ky =
OiK foralli=0,...,k+3 on M, and

k+3
(822) 1Ky = Kollgrssairy < C Y N0LK |onr — 4 Kolonr | ores—saonn)-
i=0
Let ¢ be any smooth function on M’ which equals one on M and on a small neigh-

borhood % C ¥ ~ OM x [0,x] of OM in My, and vanishes away of ¥. On ¥ we
set

K'=¢Ky + (1 - ¢)Ko, ¢ = dg1 + (1 — ¢)go.

Since J(K, g), p(K, g) vanish on M, while J(Ky, go), p(Ko, go) vanish on My, we will
have

(K", g") + 1T (K", gy < C (lgr = gollorraa vy + 1K1 = Kollorss.a(yy) a2 ;

for points at which ¢ = 1 the inequality is justified by Taylor expanding in = at oM
and using the fact that (K7, ¢g1) satisfies the vacuum constraints on M; elsewhere this
is justified by Taylor expanding p and J in (K, g) around (K, go) and using the fact
that (Ko, go) satisfies the vacuum constraints. In fact, one has

(VYD (K", g)g + (VD T(K', g) g
< C (llgr — gollcr+aairy + 1K1 — Kollgrssa(yy) 2700,

for all 0 < ¢ < k + 2, with an analogous inequality holding for the Hélder quotient.
So we have
||P(Klagl)||c’;jr§faﬁx(g/,y/) + ||J(KI;gl)||c’;igfa‘*(g/,1/)
< C(llg1 = gollorsaaiyy + 1 K1 — Kollgres.a(ry) -

Assume, first, that there are no (Y, N)’s such that P*(Y,N) =0on 7. If (K1, ¢1) is
sufficiently close to (Ko, go) in (C*+3« x CF+4@) (%) norm — equivalently, if (K, g)
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and its derivatives up to appropriate order, as in (8.21)-(8.22), are sufficiently close
to (Ko, go) and its derivatives on M, then for any o/ < « the norm

||P(K/,g/)||,:,zi§+u’—<n—1>/2(g,7n,/) + HJ(Kla9')Hg:i?a/—(vn—l)/z(g/,n,/)

will also be small. If £ > [2] 4+ 1 we can use Proposition 5.7 on ¥ with t = k + 2 +
o — (n—1)/2, to conclude that there exists a solution

(01, 89) € Cis L =02 (g )< iyt VR (g v € (R FRex o e (7),

with all derivatives up to order k' + 2 vanishing on 07, close to zero, of the vacuum
constraint equations. Here k' is any integer satisfying

K<k kK<k+1l+d —a—(n—-1)/2<k+3/2—n/2.

The above construction has a lot of if’s attached, but it does provide new non-trivial
extensions in the following, easy to achieve, situation:

(1) (K,g) belongs to a one-parameter family of solutions (K, gx) of the vacuum
constraint equations on M,

(2) the vacuum initial data set (Ko, go), assumed above to be defined on My, arises
from a vacuum initial data set defined on M’ still denoted by (K, go), with

(3) (Kx,gx) converging to (Ko|ar, go|ar) as A tends to zero in

(CH¥3:2 x O+ (AT).

(Replacing M by a neighborhood of dM, it is of course sufficient for all the above
to hold in a small neighborhood of 9M.) In such a set-up, proceeding as above one
obtains an extension for A small enough when P* has no kernel on 7.

The situation is somewhat more complicated when a kernel is present, though
results can be obtained whenever the set-up of Theorem 3.19 applies. As an illustra-
tion, we consider a situation where M is a smooth compact submanifold, with smooth
boundary, of M’ = R3. This involves no generality in the following sense: any two
dimensional manifold can be embedded into R?, and so can a tubular neighborhood
thereof (this will of course not be an isometric embedding in general). We allow M
to have more than one connected component. We will only be interested in a com-
ponent of M which is two-sided, with one side thereof corresponding to M, and the
other corresponding to an unbounded component of R® \. M (we assume that such a
component exists). A component of M with this property will be called an exterior
boundary, and will be denoted by Ooxy M. We assume Ky = 0, and we let gg be the
Euclidean metric on R®. Replacing M by a tubular neighborhood (—¢,0] X Oexs M
we can thus identify M with a subset of R3. We note that the closure of M in R? will
then have a boundary with two components, {—zg} X ext M and {0} X Jext M, but
we will ignore {—x0} X Oext M if occurring, and consider only {0} X Oext M, which is
the exterior boundary of the new M. From now on we write OM for {0} X Oext M.
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We assume that (K, g) are close to (Ko, go):

(8.23) lg = gollowaaary + 1K = Kollgrvs.aiary <€

such metrics can be constructed by the conformal method. We now repeat the con-
struction of the proof of Theorem 8.1 with R = 1 there, so that no rescalings of the
metrics are performed. Equation (8.6) becomes

oJ
8.24 n, 02 = / Ues +6 dS.
(8.24) <e( P (5/’) >Lfb€aLfb {0} xOM (70.r 1070, 7)dSap

— / Uaﬁ(l'Q,R + (51’@)3)(15(15 + 0(62),
{0}xoM

We set

Oy = / U7dS,p.
{0}xoM

It follows from (8.23) that there exist a constant C' > 0 such that |Q°| < Ce. We
restrict ourselves to Q’s such that

Q-Q° <e=1Q| < (1+C)e.
Then
/ U"BdSag = Q(i) + 0(52),
{:Co}XaM

for € small enough. We are thus led to

oJ
(8.25) <e(i)7¢ 2 <5p> >L1@Li =Qu) — QP + 0.
For ¢ small enough one would like to conclude as before. There is, however, a difficulty
which arises here because the map of Proposition F.3 degenerates at m = 0, as is
made clear by the need of dividing by m in (F.6) when one wishes to determine a;
from Jp;. This leads to further conditions if one wishes the argument to go through:
roughly speaking, one needs to assume that m is of order of ¢, that the ratio |p]/m
is strictly bounded away from one, and that the ratio J,,/m is o(e); if that is the
case, we can use the Lemma 3.18 with U =V = B(0,1), z = (Q — Q%) /e, A = 1/e,
Gr(z) = 1(Q — Q"+ O(¢?)) = 2+ O(¢) and y = 0 to conclude. Rather than making
general statements along those lines, with hypotheses which appear difficult to control,
we shall assume that the antipodal map

(8.26) zt — —xt

preserves g and maps K to —K; clearly (K7,g1) can be constructed as to preserve
this property, and we will only consider such extensions. Such data will be referred to
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as parity-covariant.(®) Nontrivial parity covariant initial data (K, g), as close to the
Euclidean metric as one wishes, can be easily constructed by the conformal method
— we do this, for completeness, in Appendix H.

Assume, first, that K — and hence K; — vanishes. Now, the construction of
Theorem 5.6 preserves all symmetries of initial data, so that gluing together “up to
kernel” gy with (neither boosted nor translated) Schwarzschild metrics g,, will lead
to sets (K1 +0K¢g = 0, g1+0g¢) still being covariant under the antipodal map (8.26).
One then obtains, by parity considerations,

(827) J;/,V(Kl + 5KQ791 + 59@) =0;

similarly, the left-hand side of (8.25) vanishes for those projections which are associ-
ated with the J,,’s. Then, the only possibly non-zero component of the projection
on the kernel is the one which corresponds to the mass. In that case no difficulties
with the crossing of m = 0 arise, and we can use on My the family of Schwarzschild
metrics g,, with m € (=4,9), with any § < min(1,1/R). Rather than invoking the
Brouwer fixed point theorem we note that if the reference Schwarzschild metric g,
has mass m = —min(Ce,§) we obtain(® a strictly negative value of the projection
(8.25) when ¢ is small enough. The value m = mg + € leads to a strictly positive
value of the projection in (8.25) (decreasing ¢ if necessary); since the left-hand-side
of (8.25) depends continuously upon m there exists m € (—Ce, mg + €) such that the
left-hand side of (8.25) vanishes.

The case of non-vanishing parity-antisymmetric K’s is handled as follows: let 0 <
A < 1 and consider the set of (K, g) satisfying

(8.28) [pols < Amo.

Equation (8.27) still holds, so that the only projections on the kernel which are non-
zero are those associated with the mass and the momentum. Since the charges in
(8.25) are smaller than e, while the error term is one order higher, an argument along
lines similar to those of Lemma 3.18 gives existence of a solution when e is small
enough

Summarising, we have proved:

(3)One of the purposes of the parity conditions here is to ensure vanishing of the centre of mass. This
last property also holds when both g and K are even. However, for even K and small m there arise
some difficulties with non-zero angular momentum, essentially identical to those of non-zero centre
of mass; see Section 8.9 for an analysis of one such example.

(M)At this stage one could use harmonic coordinates, and invoke the small data calculations of
Bartnik [7] to conclude that the mass mg as defined by QY must be positive, so that restricting
oneself to the family of Schwarzschild metrics with m > 0 suffices. However, this is not necessary,
and positivity of mg is actually a consequence of the positive energy theorem and of our argument
here, regardless of the coordinate systems used, for data close enough to Minkowski ones.
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THEOREM 8.14. — Let k > [§] + 3, and let k' be the largest integer strictly smaller
than k + (3 —n)/2. Consider parity-covariant vacuum initial data sets (K,g) €
Ck+2 % CF*3 on a compact smooth submanifold M of R® such that (8.28) is satisfied
with some 0 < A < 1, and let Q0 be any parity invariant bounded domain with smooth
boundary containing M. If (8.23) holds with some € > 0 small enough, then there
exists a vacuum C¥ x C¥ extension of (K, g) across the exterior component of OM,
with the extension being a (perhaps boosted) Schwarzschild solution outside of . O

Identical results can be similarly obtained when the source fields p and J are
prescribed a priori, rather than arising from some field theoretical model which has its
own constraint equations. It is also clear that the arguments generalize to Einstein-
Maxwell electro-vacuum constraint equations, though we did not attempt to carry
through the details of such a construction.

8.7. Localized Isenberg-Mazzeo-Pollack gluings

In important recent papers, Isenberg, Mazzeo and Pollack have introduced a con-
formal gluing method for initial data sets [45,46]; this generalizes previous work
of Joyce [47] which treats the purely Riemannian case. The problem addressed is
the following: let (M, K,g) be a vacuum initial data set on a not-necessarily con-
nected manifold M; for simplicity we assume in this section that all the fields are
smooth, though the results below can be stated under finite differentiability condi-
tions. One also assumes that either M is compact, or (M, K, g) is asymptotically
Euclidean, or (M, K, g) is asymptotically hyperboloidal; on any compact component
a non-degeneracy condition has moreover to be imposed. Let p; € M, i = 1,2, and for
t small let Z\Z be a manifold obtained by cutting from M two geodesic balls B(p;, t)
of radius ¢ centred at p;, and gluing the left-over manifolds by adding a neck. It is
shown in [46] that when tr K is constant over the B(p;,t)’s, then one can construct
a one-parameter family of new initial data sets (]\/Zt, I/(\'t, gt), t € (0,to) with the prop-
erty that (K, g¢) converges uniformly, in any C*® norm, on any compact subset of
M ~ {p1,p2}, to (K,g). In fact, (I/(\'t,ﬁt) are conformal deformations of (K,g) on
M ~ (B(p1,t1) U B(pa,t1)) for t < t;. The technique will be referred to as the IMP
gluing.

Let us show that in generic situations the gluing can be performed so that the new
initial data coincide with the original ones away from a small neighborhood of the

e
pi St

THEOREM 8.15. — Let tg be small enough so that the geodesic spheres S(p;,t) are
smooth manifolds for t < 2ty. Suppose that there exists 0 < t1 < to such that the set

of KIDs on T'p, (t1,2t1) := B(pi, 2t1) ~ B(pi, t1) is trivial. Then there exists to < t1
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and a family of smooth vacuum initial data sets (]\Z, f(t,ﬁt), t < to such that
(Ki,G0) = (K,g) on M~ (B(p1,2t1) U B(p2,2t1)).

Moreover, (I?t,'g}) approaches (K, g) uniformly as t — 0 on any compact subset of
B(pi, 2t1) ~ {p:}

REMARK 8.16. — For generic metrics the set of KID’s on Iy, (¢1, 2¢1) will be trivial
for all ¢;.

REMARK 8.17. — The initial data set (f(t,ﬁt) will coincide with the IMP data set
(K, gt) in the neck region.

REMARK 8.18. — Suppose that M has two connected components M; and Mo, with
each of the p;’s lying in a different component, say p; € My and ps € M. If the set
of KIDs on I'y, (t1,2t1) is trivial, then the construction below clearly gives (f(t, gt) =
(K,g) on My ~\ B(p1,2t1) for t < ta, regardless of whether or not there are KIDs on
annuli on the other component.

Proof. — Let x be a positive smooth radial cut-off function equal to 1 in a neighbor-
hood of ¢; and equal to zero in a neighborhood of 2¢1. On T', (¢1,2t1) set

K = xEKi + (1 - K,

gt = xgt + (1 = x)g-
Then (In(t, J¢) coincides with the IMP data (IAQ, g¢) in a neighborhood of S(p1,t1), and
coincides with the original data (K, g) in a neighborhood of S(p1, 2¢1). It follows that

p(f%t,ﬁt) and J(Iu(t,ﬁt) are supported away from the boundary in I'p, (t1,2¢1). Since
the IMP data converge uniformly to the original ones on Ty, (¢1,2t1) we will have

lim p(Ky, ge) = 0 = lim J(Ky, 90).
Theorem 5.9 and Corollary 5.11 provides 0 < to < ¢; such that for all 0 < ¢ < ¢

there exists a solution (K t, g¢) of the vacuum constraint equations which is smoothly
extended by (K, g:) across S(p1,t1) and by (K, g) across S(p1,2t1), as desired. O

8.8. Vacuum space-times with a smooth global .

The results proved so far can be used to establish existence of a reasonably large
class of small-data, vacuum space-times with a global smooth .. While we refer the
reader to [23] for the overall details of this construction, we note the following here:
first, in [23] we did not claim that the resulting space-times will have a smooth .#, as
we did not realize by then(® that Corollary 5.11 holds. We note that the argument
of Theorem 8.14 does not seem to work with k = oco. However, for the construction
of the space-times with a smooth .#* one can proceed as follows: in the setting of

(®)We are grateful to J. Corvino for pointing out that Corollary to us.
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the proof of Theorem 8.14, choose some k large enough so that the previous existence
and regularity results apply, let g1 be an extension as in (8.21). A small smoothing
will lead to an extension which is C"°°. One then continues the construction as in
Section 8.6 using an exponentially weighted Sobolev space, where the exterior region
has been slightly increased, so that its boundary has been moved from dM to the set
{zx = —&}, for some small positive . The remaining arguments remain unchanged.
Instead of obtaining a smooth extension of the initial data on M one will have a
smooth extension of the initial data on M ~\ {—e < = < 0}, but this difference is
irrelevant for the purpose of constructing some examples.

In Theorem 8.14 we have used the family of boosted Schwarzschild metrics in
the exterior region. It should be clear that any parity-covariant reference family of
stationary metrics can be used there. This, together with arguments identical to those
of [23], establishes existence of asymptotically simple parity-covariant space-times
which are stationary near i°, with metrics which are not necessarily Schwarzschild
near i°.

A generic metric so constructed will have no KID’s. Whenever that occurs, we
can use the conformal method to slightly deform the initial data on B(0, R) so that
the new initial data are not parity symmetric, and then use Theorem 5.9 and Corol-
lary 5.11 to obtain perturbed initial data on B(0, R + 1) which will not satisfy any
parity conditions, and which will coincide with the starting ones on R® \. B(0, R).
Making all perturbations small enough one will obtain a maximal globally hyperbolic
development with a global ., and with a metric which does not satisfy any parity
conditions. In particular asymptotically simple space-times which are Kerrian near
i°, with non-vanishing angular momentum, can be obtained in this way.

8.9. “Many Kerr” initial data

A noteworthy application of the techniques of Section 8.6 is the construction of
initial data containing black-hole regions with exactly Kerrian geometry both near
the apparent horizons, and in the asymptotic region. This generalizes a construction
of [23], which leads to “many Schwarzschild” black holes. More precisely, let I € N,
we will construct initial data for a vacuum space-time with the following properties:

(1) There exists a compact set % such that (K, g) are initial data for a Kerr metric
with some mass parameter m and some angular momentum parameter a on each con-
nected component of M \ . (in general different (m,a)’s for different components);

(2) let S denote the usual marginally trapped sphere within the Carter extension
of the Kerr solution, then M contains I such surfaces, with the space-time metric
being exactly a Kerr metric in a neighborhood of each S.

In fact, (M,g) will be obtained by gluing together I Kerr initial data with small
masses. The resulting space-time (M, g) can be thought of as having I black holes:
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Indeed, the results in [27] show that for several configurations the intersection of the
black hole region in the associated maximal globally hyperbolic development of the
initial data with the Cauchy surface will have at least I connected components.

Let us pass to the construction: Let N be the integer part of I/2, choose two
strictly positive radii 0 < 4R; < Ry < 00, and for i =1,...,2N let the points

fi S F0(4R1, Rg) = B(O7 Rg) N B(0,4R1)

(B(@, R) — open coordinate ball centred at @ of radius R) and the radii r; be chosen
so that the balls B(%;,4r;) are pairwise disjoint, all included in T'g(4R;, R2). Set

(829) Q= Fo(Rl, Rg) N (UiB(fi,Ti)) .
We shall further assume that € is invariant under the parity map @ — —&. Let
Q = ((mv a, "‘_j)a (m07 aOvaj(O))v (mlv alvaj(l))a R (m2N; a2N7¢3(2N))

be a set of numbers and unit vectors satisfying 2m < Ry, 2mg < Ry, 2m; < r;. If
I = 2N we require ag = mg = 0. Whenever one of the a’s is zero the associated
vector & is irrelevant, and then we forget it altogether. Let (K 5 g@) be constructed
as follows:

(1) If I = 2N +1 then on I'g(Ry, 2R1) the initial data (K5, g5) are the initial data
for a Kerr metric with mass mg, with angular momentum agmo@(0), centred at 0;

here

1 .
agmow(0)" := — lim / el jxad ((tr K)g™ — K*dS,

8T R—oo 5(0,R)
1 .

= — Eejkxj((tr K)gkl - Kkl)dSl
8 S(0,R1)

o " / Vi jra?) ((tr K)g*' — K*)
R3~.B(0,R)

1 .

= — Eéjkx]((tr K)gkl - Kkl)dSl
87 Js(0,r1)

+ O(moao(a% +mo + a%mo)).

In the third line of (8.30) the covariant derivative V;(¢%;,27) is understood as that
of a vector field with vector index k, at £ fixed. (To obtain the estimate for the error
term we are using Boyer-Lindquist coordinates as discussed in Appendix F. Recall
that K is a linear combination of space-covariant derivatives of (F.7), which leads to
K = O(apmg). Next, (F.1) gives the estimate I''j;, = O(a3 + mo + admg) for the
space Christoffel symbols in asymptotically Euclidean coordinates, leading to (8.30).)
If I =2N then we take (K3, 95) = (0,6) on I'o(R1,2R1);

(2) on T'o(3R1, R2) ~ (UiB(fi, 473)) the initial data (K 3,95) are the initial data
for a Kerr metric with mass m, with angular momentum amd, centred at 0. As
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in (8.30) we have

Z ].

(8.31) amw’ = el ina? ((tr K)g™ — K™YdS), + O(ma(a® + m + a*m)) ;

87 Js(0,Ra)
(3) on I'g(2R1,3Ry) the tensor fields (K5, g5) interpolate between the two Kerr
initial data already defined above using a usual cut-off function;
(4) on the annuli I'z, (r;, 2r;) := B(Z;, 2r;) \ B(Z;,7;) the initial data (K3, g5) are
the initial data for a Kerr metric with mass m, with angular momentum a;m;w(4),
centred at o;. The vanishing of the total momentum of the Kerr metric implies

1 o
aimiw(i)é = — lim €ij($] - xi)((tr K)gkl - Kkl)dsl
8T R— Jg(z,,R)
1 .
= — lim e jra’ ((tr K)g* — KM)dS,
(8.32) 8 R—co Js(zm)
1

=3 e ina? ((tr K)gM — K*ds,
™ S(f“’l“l)

+ O(miai(a? +m; + afmi)) ;

(5) on the annulus I'z, (2r;, 3r;) the tensor fields (K5, g5) interpolate between the
initial data already defined above using a usual cut-off function;

(6) all the parameters are so chosen, and the gluings are so performed, that the
resulting initial data set is symmetric under the parity map £ — —&; note that the
Kerr initial data are exactly parity symmetric in the Boyer-Lindquist coordinates,
compare the discussion at the end of Appendix F.

Clearly 9G=0 18 the flat Euclidean metric on €2, in particular it is vacuum. For |Q | <1
this implies
(K595 < CI).

By construction we also have

2N
7Kg 95) < 101 (lal + Y laal ).
=0

Similar inequalities hold for derivatives of J and p.
Suppose that

(8.33) [o[RE

Theorem 5.9 and Corollary 5.11 show that there exists 0 < § < 1 such that for all @
satisfying (8.33) there exists a set of C* tensor fields (IA(Q,’Q\Q) defined on Q which
agrees with (K 5 g@) in a neighborhood of 0f2, and which satisfies the constraint equa-
tions except for the projection on the kernel of P*. (Here one should use Theorem 5.9
on a domain strictly included in the interior of €2; a similar comment applies whenever

we are referring to that theorem below.) Uniqueness implies that the solution will be
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even. Parity shows that both the centre of mass and the total momentum vanish, so
that the obstruction is the non-vanishing of the four integrals

2N
1 ~
(8.34a) o | PEg.95) =m- > mi+0(6%),
Q =0
1 . ~
(8.34b) 8_/5€jkxj']k(Kc§ = amw —z:cmnz )+ 0(5?).
T Ja

Now, one would like to apply a fixed point theorem to conclude the existence of a
solution, but this does not seem to work directly because the error term in (8.34b) is
too large. Instead, we proceed as follows: Suppose, first, that

a=ap=a;=---=azy =0,

and write g; and gy; for the resulting 95 and §Q. We then have K5 =K Q =0,
so that the left-hand-side of (8.34b) vanishes identically. Fix any set of my’s, i =
0,...,2N, satisfying

2N
=0

If ¢ is small enough the right-hand-side of (8.34a) with m = /2 will be strictly
positive; it will be strictly negative with m = —¢§/2, by continuity there exists m such
that g,; will be Ricci scalar flat.

To continue, suppose that the Z;’s have m; > 0, with at least one m; > 0, and
they are not aligned. Then the vacuum initial data set (0,g,;) on € has no KIDs.(®)
We can therefore use Theorem 5.9 and Corollary 5.11 around (0, gy;) to construct an
initial data set (g, K), which coincides with (K g 9@) near 052, for any collection of
a’s and &J’s satisfying

2N
(8.35) lal + > lai| <,
=0

when ¢ is small enough. For further purposes we impose ¢ < 6.

Suppose, finally, that all the Z;’s are aligned along an axis, say the z-axis. Then
the vacuum initial data set (0,g,;) on © has exactly one KID (Y,0), where Y is the
Killing vector associated with the rotations around the z-axis. We repeat now the
previous construction, with the following difference: on T'g(R1, R2) ~ (UiB (%, ri))

we use the Ricci scalar flat metric gz, and in points (3) and (5) above g5 is taken as

(©)In the case K = 0 the KID equations decouple, so if (N, Y) is a KID, then so are (0, N) and (Y, 0).
The existence of a KID with Y = 0 would lead to a vacuum static space-time with a non-connected
black hole with all horizons non-degenerate, which is not possible by [14]. Thus N = 0. By [10]
the only remaining possibility is a single Killing vector field Y which is a non-trivial rotation in the
region where the metric is Schwarzschild, which is clearly only possible if all the Z;’s are aligned.
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a combination with cut-off functions of the relevant Kerr metric and of g;. Assuming
(8.35), we will have

19 = 9ntlle. < C(k)e,  [[Kgllon < Ck)e

We need a somewhat more precise version of the calculation in (8.30). By hypothesis
the vector field Yy, := e%j2® = 0/0¢ is a Killing vector of the metric g,;, so that

(8.36) ViYi + ViYy = VY + Vi + 205Y, = 205, Y,

where V is the covariant derivative of 957> while C7; is the difference of the Christoffel
symbols of 95 and g,;. It follows that

ViV +ViYy = O(E).

Applying the divergence theorem on R3 \ (U; B(Z;, ;) U B(0, R1)) as in the second
and third lines of (8.30), using the last two lines of (8.30) together with (8.31) and
(8.32) we therefore obtain

2N
1 N
(8.37) . / el it JF( G:95) = amw® — Z aimiw(i)’ + O(e* + £62).
@ =0

Here the p integral, as well as the integrals (8.37) with £ = z and ¢ = y are already
identically zero, so that the only remaining obstruction is the integral at the left-
hand-side of (8.37) with £ = z. We choose the exterior Kerr solution so that w® # 0.
At this stage we might need to decrease d to conclude, so we suppose that we are
working in a family of mass parameters (m,m;) so that d/m is uniformly bounded
from above independently of m (in particular m is not zero). This gives

2N . 2
2 I (R G5) = a — i w(i)” £
(8.38) 87rmwz/Q€ k@ J7(K5,95) = a ;azm - +O(5 + €0).
We can choose 0 < €’ < ¢/2 so that if
2N
D ail <€
=0
then
2N s
o g
— m w*?

We then require § to be small enough so that
|O(ed)] < /16,
and then for sufficiently small ’s we will have

|0(£2/6)| < £/16,
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for ¢’s small enough. If a = —¢/2 the right-hand-side of (8.38) will be negative, it will
be positive if a = £/2, and continuity shows existence of an a that leads to a solution
of the full constraint equations.

Equation (8.34a) shows that m will be close to Z?ivo m;, which gives the desired
control of the ratio § /m if all the m;’s are of the same sign. It follows that the previous
construction applies in this case. Clearly the sign condition is not necessary, and there
exist several other families of m parameters which will give the desired control.

We can now repeat the whole previous construction by gluing boosted Kerr initial
data centred on the #;’s, with a small boost parameter, to the solution (K, g) just
obtained with the same remaining parameters. If (K, g) has no KID’s, then we will
obtain a new smooth solution from Theorem 5.9 and Corollary 5.11 provided that the
boost parameters are small enough. We note that the initial data (K, g) will have no
KID’s except when all the Z;’s are aligned along, say, the z-axis, with all the J(i)’s
pointing in the 0, direction. One expects that a variation of the above arguments
would still give existence of solutions, but we have not investigated this point any
further.

The mass of the solutions obtained above, as seen from the end r» > Ry, might be
very small. One can now make a usual rescaling m — Am, r — Ar, gm — A" 2gm, to
obtain any value of the final mass m.

We emphasize that the mass parameters m; and mg are only restricted in absolute
value, so solutions (0, g,;) with some of the m;’s negative or zero, and/or mg negative
or zero, and m negative, can be constructed. For instance, a zero value of m; will
correspond to metrics which can be C* matched to a flat metric on B(Z;,r;). One can
actually also obtain a = 0, or m = 0, or both: it suffices to repeat the above argument
with prescribed values am = 0 and m;, i = 1,...,2N, adjusting mg and/or ag rather
than m and a. Arguing as before one can obtain a family of non-trivial vacuum initial
data which are Minkowskian on an exterior region R \ B(0, R). (Clearly m = 0
implies that at least one of the m;’s, i > 0, is negative, unless they all vanish.)
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APPENDIX A

WEIGHTED SOBOLEV
AND WEIGHTED HOLDER SPACES

Let ¢ and ¥ be two smooth strictly positive functions on M. For k € N let Héf}w(g)
be the space of Hff)c functions or tensor fields such that the norm()

k

L 1/2
(A1) Il o= ([ (0 VU

i=0
is finite, where V() stands for the tensor
V---Vu,
——
i times

with V — the Levi-Civita covariant derivative of g; we assume throughout that the
metric is at least WI})’COO; higher differentiability will be usually indicated whenever
needed. For k € N we denote by Hfgw the closure in Héj,w of the space of H*
functions or tensors which are compactly (up to a negligible set) supported in M,
with the norm induced from H éf v The H éf w’s are Hilbert spaces with the obvious

scalar product associated to the norm (A.1). We will also use the following notation
ko 7k 2 ._ {0 _ 170
H":=Hy,, Lj:=H;,=H,
so that L2 = HO := Ij[?’l. We set
W(f’oo = {u € W™ such that ¢'|VWul, € L=},

with the obvious norm, and with V(®u — the distributional derivatives of u.

(D The reader is referred to [5,6,44] for a discussion of Sobolev spaces on Riemannian manifolds.
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For ¢ and ¢ — smooth strictly positive functions on M, and for £ € N and « € [0, 1],

we define Cz’g the space of C* functions or tensor fields for which the norm

k
lelloto) = s 3= (Ieo v u@l,
=0 , (i) R0
+ sup (p(x)¢z+oz(m)”v U’(x()l V u(y)||9>
0dy (2,y)<¢(x)/2 dg(z,y)
is finite.

We will only consider weight functions with the property that there exists ¢ €
N U {oo} such that(® for 0 < i < £ we have

(A.2) 0" Vel < Ciy |6'T VY, < G
for some constants C;. This implies that for 0 < ¢ < £ and for all k£ € N it holds that
(A:3) 0"V, < Cip, 0 FVIGF|, < Cig

It follows that for m,s € N and for 0 < 7 + k& < £ the maps
W VO (@) HE s HE
YTV O (@) s W e W
WY VO (¢ L HH e H
WTmGTIV I (@) L W e WS,
are continuous and bounded. If the function ¢ satisfies the same condition (A.3) as

1, then we can replace Héw by Ci’z in (A.4).
The following situations will be of main interest to us:

(A.4)

« If M is compact, smooth, and non-empty (see section 5), we will use for ¢ = z
a function which is a defining function for the boundary, at least in a neighborhood
of the boundary; that is, any smooth non-negative function on M such that OM is
precisely the zero-level set of , with da without zeros on M. Then ¢ will be a power
of z on a neighborhood of M. Condition (A.2) will hold if g has (W11 —1)-
behavior at M in the sense of Definition 5.3.

« If M contains an asymptotically flat region (see Section 7), ¢ will behave as r
and v will behave as a power of 7 in the asymptotically flat region; (A.2) will hold if
g is W1 asymptotically flat.

« If M contains a conformally compactifiable region (see Section 6), then in a
neighborhood of the conformal boundary ¢ will be taken to be 1, while ¢ will be a
power of the defining function of the conformal boundary.

. Exponentially weighted versions of the above will also be considered.

(2) Conditions (A.2) will typically impose £ restrictions on the behavior of the metric and its deriva-
tives in the asymptotic regions; it is therefore essential to allow ¢ < co if one does not wish to impose
an infinite number of such conditions.
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In all those situations one can obtain elliptic estimates in weighted spaces for the
equations considered here by covering and scaling arguments together with the stan-
dard interior elliptic estimates on compact balls (¢f., e.g. [1,3,7,16,41,52]). We will
refer to this as the scaling property.

More precisely, we shall say that the scaling property holds (with respect to some
weighted Sobolev spaces with weight functions ¢ and ¢, and/or weighted Holder
spaces with weight functions ¢ and ¢, whichever ones are being used will always be
obvious from the context) if there exists a covering of M by a family of sets Q,, for «
in some index set I, together with scaling transformations ¢, : Q, — (AZQ on each of
the sets 0, such that the transformed fields (I?a,/g\a) on , are in® in W37°°(ﬁa) X
W4’°°((AZQ), and such that the usual interior elliptic estimates on the (AZ&’S can be
pieced together to a weighted estimate, such as (3.21), for the original fields. Some
sufficient conditions for the scaling property are discussed in Appendix B. We note
that the scaling transformation of the fields on (Ala, (K,g9) — (I?a,ﬁa), will typically
consist of a pull-back of the fields, accompanied perhaps by a constant conformal
rescaling. The “scaling property” is a condition both on the metric g, the extrinsic
curvature tensor K, and on the weight functions involved: indeed, both the metric
coeflicients, the connection coeflicients, as well as their derivatives, etc., which appear
in our equations must have appropriate behavior under the above transformations so
that the required estimates can be established.

(31t is conceivable that in some situations less a priori regularity on the (I? «,Ja)’s can be assumed,
but this is the setup which seems to play the most important role in our paper; the reader should be
able to adapt the differentiability conditions to his needs if required.
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APPENDIX B

SUFFICIENT CONDITIONS
FOR THE SCALING PROPERTY

In this section we present some sufficient conditions on the functions ¢ and ¢
which guarantee that the spaces szp‘ (g) satisfies the scaling property. We give some
examples of such spaces. We assume that the manifold M is an open subset of R",
and that the elliptic operator we work with is an operator on functions. The result
generalizes to tensor fields on manifolds by using coordinate patches, together with
covering arguments.

We assume that ¢ and ¢ verify (A.2). For all p € M, we denote by B,, the open
ball of centre p with radius ¢(p)/2. We require that®) for all p € M,

(B.1) B(p,¢(p)) C M.
For p € M, we define

¢p: B(0,1/2) 5 z— p+ ¢(p)z € By.
For all functions © on M and all multi-indices v we have
02(wo gp) = d(p)(97u) 0 .

Let P(p,d) be a strictly elliptic (e.g., in the sense of Agmon-Douglis-Nirenberg) op-
erator of order m on M and set

(Pyu)(p) := [P(-, ¢0)ul(p),
note that in our context P, will be elliptic uniformly degenerate whenever ¢(p) ap-

proaches zero in some regions. We assume that the coefficients of P are in Cg_"f(M ).
For all p € M, we define the elliptic operator @, on B(0,1/2) by

Qp(2,0) == P(pp(2), (6(p) "' 0 ¢p(2)0),

(D1t suffices to assume that there exists > 0 such that for all p € M, B(p, ué(p)) C M, as changing
¢ to ug¢ for a positive constant p leads to equivalent norms. This is actually the condition needed in
the asymptotically flat case, as (B.1) will typically not be satisfied there. For convenience we assume
in (B.1) that any such rescalings have already been done.
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we then have

Qp(uopp) = (Pyu) o pp.
We assume that there exist a constant C; > 0 such that for all p € M and all y € By,
we have

(B.2) Cro(p) < d(y) < C1o(p).

Then the C*(B(0,1/2)) norms of the coefficients of Q,, are bounded by the sz(M)
norm of the coefficients of P. On the other hand, @, is strictly elliptic and, by the
usual interior elliptic estimates, there exists C' > 0 which does not depend on p and
v such that for all functions v € L?(B(0,1/2)), for which Q,v is in C**(B(0,1/2)),
we have v € C¥*™<(B(0,1/4)) and

[vllertmao,1/4) S CUIQpulcra(B(o,1/2)) + IVllL2(B(0,1/2)))-
So if u is in Li¢,,L/2(M) with Pu € Ci:Z(M), then u € CFT™ . Now, we assume

loc

that there exists a constant C > 0 such that for all p € M and all y € B),, we have

(B.3) Cy 'olp) < o(y) < Cap(p).

For p € M, we define B, the ball of centre p and radius (1/4)é(p). It follows from
(B.2) that there is a p-independent number N such that each B, is covered by N
balls B’

pi(p)’

from (B.3))

i=1,...,N. We then have (the second and the last inequalities come

ooy < € sup lullggemaey)
<O sup(e)lulogio )
<C SUAIZ(SD(P)HU © 90p||ck+m,a(<p;1(13;)))
(B.4) =C su]pw(sﬁ(P)HU © @pllortm.a(B0,1/4)))
<C Suﬂ%[@(p)(ﬂpw o @pllcra(moa/2) + luo pllra(s0,1/2)]

<C P
[sup (PP Pull s (5,0) + sup(elze o)

sup sl

< C(HPUHcm(M) + ||u||Li¢_n/2(M))-
In particular u € C’;J;m’a(M ). An identical calculation gives
ot < C(||P o oo .
s meary < CUPll e ary + 1l zan)

A similar scaling calculation, together with a summation over a set of B),,’s forming
an appropriate covering of M, gives the corresponding inequality in weighted Sobolev
space. We thus obtain:

LEMMA B.1. — If ¢ and ¢ satisfy the condition (A.2) with ¢ replaced by ¢, together
with (B.1), (B.2) and (B.3), then the spaces ng verify the scaling property.
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As already mentioned, near a compact boundary a standard example of functions
satisfying the above requirement is ¢ = x, and ¢ — a power of x, with  — a defining
function for the boundary. Another example is ¢ = e~*/* where s € R, and ¢ = z2.
In fact in that context, = is equivalent to d(-,0M). For sufficiently regular metrics
(e.g., g € C*) we have (A.2), while the choice of ¢ guarantees (B.1). For (B.2) we
compute for all ¢ € B, by the triangle inequality,

d(p, OM) — d(p, q) < d(q,0M) < d(p,0M) + d(p, q).
Then, since d(p,q) < z(p)?/2 for q € By,
d(p,OM) — z(p)*/2 < d(g,0M) < d(p,OM) + x(p)* /2.
From (B.1) we have that z(p)? < d(p, 0M), giving
d(p,0M)/2 < d(q,0M) < 3d(p,0M)/2,

and as x is equivalent to d(.,0M) we obtain (B.2). Now for all ¢ € B,,
e 5/2)s/2(a) — o=s(z(p)=z())/z(p)z(e)

but |z(p) — z(q)| is bounded by some constant times z(p)? and z(p)z(q) is equivalent
to z(p)? so we obtain (B.3).

We note that if ¢1 and o satisfy (B.3), then @192 also will. Tt follows that
@ = x%e*/® can also be used as a weighting function in our context with ¢ = z2 for
all a,s € R.

In asymptotically flat regions the standard choice is p = r®, for some a € R, and
¢ = r. Another one is ¢ = 1 and ¢ = e*", where s € R; in that case (B.1), (B.2) and
(B.3) are evident.
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WEIGHTED POINCARE INEQUALITIES

We start with some general inequalities on an open manifold M, then we will apply
them to all the cases of interest to us. All the integrals are always calculated with
respect to the natural Riemannian measure du = dp, = dp(g) with respect to the
metric at hand, in local coordinates du = /det g;; d"x.

We start with a lemma:

LEMMA C.1. — Let u be a C' compactly supported tensor field on M, and let w be
a C? function defined in a neighborhood of the support of u, then

(1) / |vu|2>/ (= |Vul? + Aw)]ul>.
M M
Proof. — / |Vul? + |Vw|?|ul? + 2uV,;uViw = / |Vu + (Vw)u|? = 0. (By an
M M

abuse of notation, here and below we write uV,;uV'w for h(u, Vy,u), where h is the
metric, constructed using g, on the tensor bundle relevant to the tensor character
of u.) An integration by parts leads to

/ |Vu|2 + |Vw|2|u|2 — Aw|u|2 >0,
M
so that

/|Vu|22/ —|Vw[?|ul* + Aw|ul?. O
M M

PROPOSITION C.2. — Let u be a C' compactly supported tensor field on M, and let
w,v be two C? functions defined on a neighborhood of the support of u, then

/ 2| Vul? > / e [Av + Aw + |Vol* — [Vw?] |ul?.
M M
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Proof. — Returning to the proof of Lemma C.1, with u replaced by e*u gives

/ 2| Vul? 4+ |V?|u|® 4+ 2uV;uViv] = / e |Vu + uVol?

(C.2) M M

2/ e (—|Vw|® + Aw)|ul?.
M

An integration by parts transforms the left-hand-side of the first line of Equation (C.2)
into

| IVl + Vo uf?) ~ Aoluf® - 2190Puf?}
M

so that (C.2) can be rewritten as

/ e’ |Vul? > / e [Av + Aw + |Vol* — [Vwl?] |ul?. O
M M

C.1. Application: compact boundaries

Let = be any twice-differentiable defining function for OM. We shall consider
metrics g which are in VVlifo on M and continuous on M. We shall further suppose
that the Hessian Hessx := VVx of x satisfies

(C.3) |Hessz| = o(z™1).

Equation (C.3) will obviously hold if g is smooth on Mj it is, however, natural to
consider metrics of lower differentiability class when OM corresponds to a confor-
mal boundary at infinity. (Actually, in this section it would suffice to assume that
Az = o(x~1); however, the stronger hypothesis (C.3) will be required in our further
considerations.)

We will work in a neighborhood of M small enough so that |dz| is bounded
away from zero there. The following result is well known (compare [63, Lemma 1,
Section 3.2.6]), we give a proof since we need to control the constant in Equation (C.4)
below; the calculation can be traced back to those in [52]:

PROPOSITION C.3. — For any € > 0 and s # —1/2 there exists z. s > 0 such that
for any differentiable tensor field u with compact support in {0 < x < z s} we have

(C.4) /x23+2|Vu|2du>{(s+1/2)2—5}/ 22 |uf2|dz|2dp.
M M

Proof. — We use Proposition C.2, choosing v = (s+1) In(z) one has dv = (s+1)dz/x
and
(C.5) Av = —(s+1)|dz|* /2 + (s + 1)Az/z = —(s + 1 + o(1))|dx|* /2>

It follows that
|dv|? + Av = ((s +1)* — 5 — 1 + o(1))|dx|* /2>
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Choosing w = — % In(z) we have that
—|dw|? + Aw = (1/4 + o(1))|dx|? /2> O
PROPOSITION C.4. — For any € > 0, t,s € R there exists z. s+ > 0 such that for
any differentiable tensor field u with compact support in {0 < v < . 5.} we have
(C.6) / e 2522 | Vu2dy > {s* - 6}/ e~ 25/ )24 | de) 2 dp.
M M
Proof. — We again use Proposition C.2 with v = —s/x + tlnz and w = 0, one then

has dv = sdx/2? + tdz/x and
Av = —2s|dz|* /23 + sAx/2? — t|dx|?/2* + t(Az)/z = o(1)|dx|? /2*.

It follows that
|dv|* + Av = (s + o(1))|dz|? /2*.
then we obtain (C.6). O

C.2. Application: asymptotically flat metrics

We shall also need a weighted Poincaré inequality for metrics g defined on
R™ \ {r > R} for some R, satisfying the following requirement: for every ¢ > 0 there
exists R. < oo such that

(C.7) lgi; — 6ij] <e on {r> R.}.
We shall also require that
(C.8) Ar — (n—1)|Vr|?/r = o(1)

(recall that the right-hand-side above is zero for a flat metric). One then has the
following [7, 21]; we give a proof for completeness(!):

PRrROPOSITION C.5. — Suppose that (C.7)-(C.8) hold. Then for any s € R ande >0
there exists Ry . < 0o such that for any C* tensor field u with compact support included
in {r > Ry} it holds that

(C.9) / P22 02y > (s — e) / P23y 2,

Proof. — We use Proposition C.2 with v = (—=s+1—n/2)Inr and w = [(n—2) Inr]/2.
We just recall that when f = cInr, we have

Vf=cVr/r

and
Af = cAr/r —c|Vr*/r? = c(n — 2)|Vr|?/r? + o(1/7).

(1)Actually the case n = 2 does not seem to have appeared in the published literature so far.
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So
Av +|Vo|? = (52 = (n — 2)2/4)|Vr|?/r? + o(1/7),
and
Aw — |Vw|* = ((n —2)%/4)|Vr]?/r® + o(1/r). O

PROPOSITION C.6. — Suppose that (C.7)-(C.8) hold. Then for any e > 0 there exists
Ry < 0o such that for any C* tensor field u with compact support included in {r >
R, .} it holds that

(C.10) /6_23T|Vu|2du > (% = e)/e‘23T|Vr|2|u|2du.

Proof. — We use Proposition C.2 with v = —sr and w = 0. Then Vv = —sVr and
Av = —sAr = —s(n—1)|Vr|?/r + o(1) = o(1)|Vr|2. So

Av + Vol = (52 + 0o(1))|Vr|*. O

C.3. Application: conformally compact manifolds

Here, as elsewhere, n denotes the dimension of M. We recall that we have g = 227
then

(C.11) (O -T)f = 2 ' (26552 — 3,V ).

In particular, we have

(C.12) ViVjx :vivjx—i—x_l@vixvjx —§ij|dx|§).

Throughout this section we use the symbol | - | for | - |4, but we write explicitly | - |5

when the g metric is involved.

ProposITION C.7. — For any € > 0 and s € R, there exists . s > 0 such that for
any differentiable tensor field w with compact support in {0 < x < z. s} we have

(C.13) /M %272V (zu)|*dp = {[s — (n +3)/2)* — e} /M x2872|u|2|dm|%du.

Proof. — We use Proposition C.2, choosing v = (s —2)Inz one has dv = (s — 2)dz/z
and
Av = (s — 2)[—|dz|? /2 + Az/z] = (s — 2)(1 — n)|dz|?/z* + o(1).
It follows that
|dv]? 4+ Av = [(s — 2)% 4 (s — 2)(1 — n) + o(1)]|dz|?* /.
Choosing w = [(1 — n) Inx]/2 we have that
—|dw? + Aw = [-(1 —n)?/4 + (1 — n)?/2 + o(1)]|dx|? /2. O
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APPENDIX D

WEIGHTED ESTIMATES FOR VECTOR FIELDS

In this section we give some estimates for the operator S which associates to a
vector field Y one half of the Lie derivative of the metric along Y :

1
S(Y)ij = (ﬁYg)ij = E(szj + VjY;).

DN =

As it will be often used, we recall that

tr(S(Y)) =divY = V'Y,

LEMMA D.1. — For all vector fields V and all vector fields Y with compact support
we have the equality

/M[S(Y) + St (S)(Y V) =~ /M V(YY) 4 sdiv (V)Y

Proof. — We integrate by parts the two terms on the right-hand side of the equality

S(Y),;Y'VI = —(V,Y;Y'VI + V; VY 'VY). O

1
2

ProroSITION D.2. — For all functions wu, all vector fields V' and all vector fields Y
with compact support we have the equality

[ esm) + g (s glry)
M

. —%/ 2 VV(Y,Y) + %div(V)|Y|2+ (du, VY2 + 2(du, Y)(V.Y) } .
M
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Proof. — We use Lemma D.1 with Y replaced by e*Y, so that

[ 1sey) + S sy ngey.y)
M

= /M e {[S(Y) + %tr (SY))gl(Y,V) + %(Viqu + VuY; + (du,Y)g;;)Y'VI }

= /M P {IS(Y) + 5t (SO, V) + gl VIV + (du, V)V, Y) . O

PROPOSITION D.3. — For all vector fields Y with compact support and functions u
and v supported in a neighborhood of the support of Y, we have

— et v, Vo) {dv
2/M S(Y)(Vo, Vo) (dv, V)

= / e (dv,Y) [(dv, Y)(|dv|* + vAv + 2v(dv, du)) +20VVu(Y, Vv)].
M
Proof. — Integrating V;[({dv,Y))?ve?*V7v] over M one has

—/ (dv,Y)?|dv|?e*" :/ {2(dv,Y) [VVu(Y, Vo) + VY (Vo, Vv)] ve®™
M M
+ (dv,Y)? [vAve*™ + 2v(dv, du)e®"] },

and VY (Vv, Vou) = S(Y)(Vu, Vo). O

D.1. Application: compact boundaries
We use here the notations of Section 5. Similarly to Section C.1 we assume that

(C.3) holds.

COROLLARY D.4. — For all s € R and all € > 0 there exists x5 > 0 such that for
all vector fields Y with compact support in {0 < x < x5} we have

[ @ 1s) + 5 (SW)al(Y, Va/o)
M

1

=3 /M x28—2[ (% - s)( \dz2|Y |2 + 2(Y, Vx>2> +o(1)[Y]?

Proof. — We apply Proposition D.2 with the vector field V' = Vz /2 and the function
u = sln(x), so that du = sdz/x and

VVu = —sVaVaz/z® + sVVz/x = —sVaVa/z? 4+ oz~ ?). O
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COROLLARY D.5. — For all s,t € R and all ¢ > 0 there exists x5+ > 0 such that
for all vector fields Y with compact support in {0 < x < x5} we have

/ 22 2/7[S(Y) 4 %tr (S(Y)g)(Y, Va/a)
M
_ —/M el [ S JdaP Y +2(Y, V) +o()IY ) .

Proof. — We apply Proposition D.2 with the vector field V = V /22 and the function
u= —s/x +tlnz, so that we have du = —sdx/z* + tdz/xz and VV = o(z™*). O

D.2. Application: asymptotically flat metrics

In this section we assume that (C.7) holds, while (C.8) will be strengthened to
(D.1) rVVr=3§—Vrvr+o(l/r).
COROLLARY D.6. — For all s € R and all vector fields Y with compact support near
infinity we have
D2) [ rEESW) + S (S0, Vi)

= %/M P25 [(s — DY + (25 +n) (Y, Vi) + o(D|Y ]

Proof. — We apply Proposition D.2 with the vector field V = Vr/r = V(In(r)) and
the function v = (—s —n/2 + 1) In(r), then du = (—s —n/2 + 1)Vr/r and

VVu = (—s —n/2 4 1)(=VrVr/r* + VVr/r)
= (=5 —n/2+ 1)(=2VrVr/r? +§/r%) + o(r~?),
recall that lim, o [Vr[? = 1. O
COROLLARY D.7. — For all s € R and all vector fields Y with compact support near

infinity we have

(D.3) /M e 2T [S(Y) + %tr (S(Y))g](Y, Vr)
= —/ e 27 [s([Y ]2 +2(Y, Vr)?) + o(1)|Y?] .
M

Proof. — We apply the Proposition D.2 with the vector field V' = Vr and the function

U= —8r. o
COROLLARY D.8. — For all vector fields Y with compact support, we have
/ P25 L S(Y) (i, Vi) dr, YY) :/ 27 (s 4 o(1))(dr, Y)2.
M M
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Proof. — We use Proposition D.3 with v = r and u = (—s — n/2) Inr, together with
the fact that

rVVr = —=VrVr 4§+ o(1),
and |dr|? =1+ o(1). O

We obtain finally the desired inequalities:

PROPOSITION D.9. — For all s # 0,1, there exist Cs > 0 and R(s) such that for all
vector fields Y with compact support in {r > R(s)}, we have

/T_Qs_n+2|S(Y)|2>CS/ 7“_23_”|Y|2.
M M

Proof. — From Corollary D.8, for all b > 0, we have

b / P25 (Y2 4 / 2P (dr, Y / F250 (8| 4 o(1)) {dr, Y)?.
2 Jm 2b J s M

We conclude by using Corollary D.6 and the inequality

1SCV) + 5t (SOV)aI(Y, Tr/m)] < SISOV) + 5tr (SOl + 5r |V Plarf?

for all a > 0, together with the inequality

ISP > LSV 0

D.3. Application: conformally compact manifolds

We recall that we have g = 272g. Equation (C.12) gives
ViVi(x™!) =2073V,aV 2 — 272V, Vo = x*3§ij|dx|§ -2 %V,Vz
(D-4) = :c*1|dx|%gij +lo.

where “l.o.” denotes terms which are small compared to the remaining ones.

COROLLARY D.10. — For all s € R and all vector fields Y with compact support near
the boundary we have

[ 150 + 5t (S )gl(Y, Vafo)
M

=5 [ 2 (5 = ldaBIY P - s+ Dide/a. Y2 Ndol} + o)V ).

Proof. — We apply Proposition D.2 with the vector field V = V(z7!) = —272Vz
and the function u = (s 4+ 1/2) In(z), using (D.4) one then has

VV =VV(x™1) = 27 do|2g + o(z™3). O

g
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COROLLARY D.11. — For all vector fields Y with compact support, we have
2/ 22 S(Y)(Va /2, Ve o) (dz )2, Y) = / 225 (n — 25 — 1+ o(1)) (da/z, Y')2|df2.
M M

Proof. — We apply Proposition D.3 with v = 271, u = (s + 2) Inz, making use of

(D.4). O

PROPOSITION D.12. — For all s # (n+1)/2,(n — 1)/2 there exist constants Cs >
0, z(s) > 0 such that for all differentiable vector fields Y with compact support in
{z < z(s)} we have

[ ISR duy > €. [ IV du,
M M

Proof. — From Corollary D.11, for all b6 > 0, we have

1
9/ a:23|S(Y)|2+—/ 22|V 2l (de /2, Y )?
2/ % /s

> / 225(|n— 1 — 25| + o(1)){de/x, Y)?|dur 2.
M
We conclude by using Corollary D.10 and the inequality

10V) + 5t (SO )l(Y, Vo) < SIS(Y) + 5te (SO ))gl? + o |V Plde /ol

for all a > 0, together with
1
IS > ~|tr S(Y)[*. O
n
From the last result we also get an inequality governing the Hessian operator:

PROPOSITION D.13. — Forall s # (n+1)/2,(n—1)/2, (n—3)/2 there exist constants
Cs > 0 and x(s) such that for all differentiable functions N with compact support in
{z < z(s)}, we have

/ 2*|VVN — ANg — N Ricg|? du, > cs/ 2 (IN|2 + |VN?) du,.
M M

Proof. — We will use Proposition D.12 with
Y =2"'VN - NV(z~ ') =22V (aN).
By (D.4) we have
V@Y =2 'ViV;N = NV;V;(z") =2~ (ViV;N = N|dz[2g) + Nz~ *V,V;z,
then

S(Y)—divYg=2""'|VVN - ANg + (n — 1)N|dm|§g + N(z7'VVz — 2 ' Agag)|.
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On the other hand we have
Ricg = Ricg + 2 [(n — 2)VVz + (Az)g] — (n — 1)|dx|%x72§
=—(n— 1)|dx|%g + lo.
Finally, we obtain
S(Y)—divYg =2 '[VVN — ANg — N(Ricg + L.o.)].
Now, we use the inequality
IS(Y) — tr S(YV)gl? = ISV + (n — 2t S(V))? > [S(V) 2,
and Proposition D.12 with s there replaced by s + 1 yields
/x25<|VVN — ANg — NRicg]® + 0(1)N2) > C/x25’2|V(xN)|2.
The result follows now from the following calculation, where Proposition C.7 with s
there equal to s + 1 is used when going from the second to the third line:
l2* =V (@N) g2 = ella* 'V (@N)|[ L2 + (1 = &) & V(2N) | 2
> el|z°VN|| 2 — el|2* NV g2 + (1 - ¢)[|lz° 7'V (2N)| 2
> e|2*VN| 2 — e|2* I NVal| 2 + (1 = e)el|z* N 2
= C([lz*VN||> + [|[#° N .2) O
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APPENDIX E

POINCARE CHARGES

Let . be an n-dimensional spacelike hypersurface in a n+1-dimensional Lorentzian
space-time (.#,g), n > 2. Suppose that .# contains an open set % with a global
time coordinate ¢ (with range not necessarily equal to R), as well as a global “radial”
coordinate r € [R, o0), leading to local coordinate systems (¢, 7, v*), with (v4) — local
coordinates on some compact n — 1 dimensional manifold M. We further require that
S N« = {t =0}. Assume that the metric g approaches (as r tends to infinity, in a
sense which is made precise below) a background metric b. The Hamiltonian analysis
of vacuum general relativity in [18] (see also [29, Section 5] or [28, Appendix A]) leads
to the following expression for the Hamiltonian associated to the flow of a vector field
X, assumed to be a Killing vector field of the background b:(!)

1
(E.1) H(S,g9,b,X) = —/ U dS,p,
2 Jos

1
VA _ TTYA B aly alv Al
(E.2) U =U""5X —1—87T <\/|detgpg|g \/|detbys| b )X o

2| det b,
E.3 Uu)\ — i 62 v Al ,
(E.3) 0= Tom Tao |detgpg|9[37( 99 )k
(E.4) e = /| det gyol /1] det by |

(The question of convergence of the right-hand-side of (E.1) will be considered shortly.
The last term in (E.2) is actually identically zero for asymptotically Euclidean hyper-
surfaces, but does not vanish for hyperboloidal hypersurfaces and is necessary there
to ensure convergence of the integral.) The form (E.1) is most convenient when trying

(M The integral over 0. should be understood by a limiting process, as the limit as R tends to
infinity of integrals over the sets t = 0, r = R. dS,g is defined as 8%48%4(&0 Ao A da™,
with 1 denoting contraction; g stands for the space-time metric unless explicitly indicated otherwise.
Further, a semicolon denotes covariant differentiation with respect to the background metric b.
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to establish formulae such as (E.14) below, expressing the Poincaré—covariance of the
Hamiltonians.

E.1. Initial data asymptotically flat in spacelike directions

Consider, to start with, Lorentzian metrics which are asymptotically flat in the
following sense: there exists a coordinate system x* covering a set which contains

Fo:=1{2" =0,r(z) := Z(Jﬁz)z > R},
and assume that the tensors g, = ¢(9,,9,) and by, := b(9,, J,) satisfy along .7
(E.5a) buy = M = diag(—1,+1,...,+1),
(E.5b) |9 — bu| O™, |00gu| <Cr~ 71, m/2—-1<a<n-2.

If one further assumes that the energy-momentum tensor 7}, of g is in L*(.%), then
the ADM energy-momentum vector defined as

(E.6) Pu(#0) := H(F0,9,b,0,)

is finite and well defined [7,19,22]. The finiteness of the Lorentz charges,

(E.7) Ju () = H(H,9,b,2,0, — x,0,),

where x, := 72", requires further restrictions — there are various ways to pro-

ceed [11,20,56,62], the following is convenient for our purposes: let  C RY™ be
invariant under the transformation

(E.8) at — —at,

for any f:Q — R we set

@) = 5 @)+ f(2)), (@) = 3 (@)~ f(-2)).

We shall henceforth only consider metrics defined on domains of coordinate systems
which are invariant under (E.8), and we will assume that in addition to (E.5) we have

(E.9) gl < C(A+7)"%, 05(9,,) < C(1 +r)7 7 al>a, ata- >n—1.
We note that in dimension n + 1 = 3 + 1, Equations (E.5) and (E.8) hold for the

Schwarzschild metric in the usual static coordinates, with « = 1 and a— — as large
as desired. Similarly (E.5), (E.8) hold for the Kerr metric in the Boyer-Lindquist
coordinates, discussed in Section F below, with « =1 and a_ = 2.

Recall that a boost-type domain Qg 1o C RM" is defined as
(E.lO) Qrr10 = {7“ > R, |t| < Or+ T},
with 6 € (0, 00]. We have the following:
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PROPOSITION E.1. — Let g,,, be a Lorentzian metric satisfying (E.5) and (E.9) on
a boost-type domain Qg 19, and suppose that the coordinate components J,, =
T (0, 0,) of the energy-momentum tensor density,

/| det 1
(E.11) T = % (Ric,“, — itrgRicg,“,> ,
satisfy
(E.12) | T <CA+7)""7F, T <CA+r) 175 e>0.

Let ¥ C Qprryg be the hypersurface {y° = 0} N Qr 19, where the coordinates y* are
obtained from the x*’s by a Poincaré transformation,

(E.13) at — yt = AP 2 4+ d,
so that A", is a constant-coefficients Lorentz matriz, and a* is a set of constants, set
Sy = {2° = 0}. Then:

(1) The integrals defining the “Poincaré charges” (E.6)-(E.7) of % and # con-
verge.

(2) We have
(E14)  (pu(), L () = (A Pal(F0), A Ao Tas(F0)

+ ap A pa () — AN "o (H0)).

Here Ao® = nouAun”® and p, () = H(%,g,b,0/0x"), while p, () =
H(Z,g,b,0/0y"), similarly for J,,.

Proof. — We have [18]

(E.15) / UdS,5 = 2 / VU dS, + / U*%dS g,
{z°=0,r=R} {z°=0,Ro<r<R} {z°=0,r=Ro}

with
(E.16) 167‘1’%[3[[}0(5 = yagXﬁ + /| det | (QagXﬁ + Q“ﬁ'y %5)(7) ,
where Q3 is a quadratic form in @aguu, and Q7. is bilinear in ﬁgglw and g, — by,

both with bounded coefficients which are constants plus terms O(r~%). For p, and
for R > Ry one immediately obtains

(E.17) / U dSap = / U?dSqas + O(RY>72%)
{z%=0,r=R} {z0=0,r=Ro}

1

87 J{z0=0,Ro<r<R}

= / U*dS,5 + O(RE™272*) + O(Ry ©).
{z°=0,r=Ro}

T5XPdS,,
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For J,,, simple parity considerations lead instead to
(E.18) / U*dS,5 = / U*dSas + O(RL 7)) + O(R;®).
{z9=0,r=R} {z0=0,r=Ro}

Passing to the limit R — oo one obtains convergence of p, () and of J,,(-%). For
further reference we note the formulae

1
(E.19a) pu(H0) = / UPdSas + o= | THX"dS, + O(RG™7*),
{z°=0,r=Ro} T Jr=Ro
1 n—l—aoa—o_—
(E.19b) J,, (S) = / U*dSas + — |  T",X7dS, + O(R} ™" ).
{z°=0,r=Ro} 167 r>Ro

Because Lorentz transformations commute with the antipodal map (E.8) the bound-
ary conditions (E.5) and (E.9) are preserved under them, and convergence of the
Poincaré charges of . for transformations of the form (E.13) with a* = 0 follows.
In order to establish point (2), still for a* = 0, we use Stokes’ theorem on a set Jr
defined as

(EQO) Ir = {7’ =R,0<t< —(Aoo)ilAOi{Ei} @] {7“ =R 0>t> —(Aoo)ileixi},

so that the boundary 0.7 has two connected components, the set . N {r = R} and
the set . N {r = R}. This leads to

(E.21) / UdSas = 2 / VU*PdS, + / U*PdS,s,
yﬂ{T=R} IR Ygﬁ{r:R}
The boundary conditions ensure that the integral over 7z vanishes in the limit R —

oo (for p, this is again straightforward, while for J,, this follows again by parity
considerations), so that

(E.22) H(S,9,b,X)=H(%,g,b,X).
We consider finally a translation; Stokes’ theorem on the n—dimensional region
{y" = 2" + sa*,s € [0,1],2" € &, r(z") = R}
leads again — in the limit R — oo — to (E.22), in particular H(., g,b, X) converges.
The transformation law (E.14) follows now from (E.22) by the following calculation:
- o) 9
J/,U/(y) T H(yvgv b7yua_yu - yVW)
— 1ol o)
- H(ymgvb?yua_yu - yVW)
= H(A,9,b, (A “va + au)Alﬁ% — (Av%zo + aV)AN'B%). O
It is convenient to have a initial data version of (E.1), in the asymptotically flat
vacuum case this is easily implemented as follows: let (., K, g) be an asymptotically
flat vacuum initial data set, if the data are sufficiently differentiable there exists a

vacuum development (M, " 1g) of the data so that .# can be isometrically identified
with a hypersurface t = 0 in M, with K corresponding to the second fundamental

MEMOIRES DE LA SMF 94



E.1. INITIAL DATA ASYMPTOTICALLY FLAT IN SPACELIKE DIRECTIONS 87

form of . in (M,""1g). We can introduce Gauss coordinates around . to bring
"+l to the form
Mg = —dt* + g,
where g; is a family of Riemannian metrics on . with gg = g. We then set
b=—dt* +e,

where e is the Euclidean flat metric equal to diag(+1,...,+1) in asymptotically flat
coordinates on .#. Let n; be the future directed b-unit normal to . and let (Y, N)
be the KID determined on . by the b-Killing vector X; by definition,

(E.23) X=Nnp+Y, b(np,Y) =0 along ..

Since the future pointing g-unit normal to ., say ng, coincides with ny, we also have
(E.24) X =Nng+Y, g(ng,Y)=0.

We define the Poincaré charges @ by the formula

(E.25) Q((Y,N),(K,g)) := H(.Z,""g,b, VN +Y).

It is well known that the integrand of (E.25) can be expressed in terms of K, g, as
well as the first derivatives of g. The initial data form of (E.17) reads

(E.26) / U*dS,5 = / U*PdS,5
{z9=0,r=R} {z9=0,r=Ro}

1

- (Y'J; + Np+ q) dug,
8 {20=0,Ro<r<R}

where ¢ is a quadratic form in g¢;; — di5, Okgij, and K;;, with uniformly bounded
coefficients whenever g;; and g% are uniformly bounded. This follows immediately
from (E.15)-(E.16), together with the n + 1 decomposition of the energy-momentum
tensor density (E.11), and of the error term in (E.16). One can also work directly
with the initial data equivalents of the boundary integrals in (E.26) — cf., e.g., [11]
— but those are somewhat cumbersome when studying behavior of the charges under

Lorentz transformations.
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APPENDIX F

THE REFERENCE FAMILY OF KERR METRICS

Let us denote by #;o the family of Cauchy data (g, K) obtained as follows: let *g
be a Kerr metric with m # 0, a € R; in Boyer-Lindquist coordinates (¢,r,0,¢) we
have [53, p. 100] (see also http://grdb.org)

2mr 2mrasin® 0 2
fgn =1+ 25 e = tgr =020 gen = 7,
(F.1) R
4 Cin20 (12 4 a2 2mra” sin® 0
Jpp = SIN " +a” + T )
where

p? =1’ +a*cos’0, A =r?—2mr+ad’
Introduce a “quasi-Minkowskian” coordinate system (x#) = (¢, x%) by setting

z! =rsinfcosp, 22 =rsinfsing, z°=rcosb,

which brings 49,“, to the form n,, + O(r=1) for x#’s in a set r > Ry for some Ry,
and apply to it a Poincaré transformation (E.13). We further assume that (A*,, a")
belongs to the connected component Gy of the identity of the Poincaré group. Then
(g, K) are defined on the set

(F2) S Wi > R
K3

for some R = R(m,a,A*,,a") by extracting the gravitational initial data out of
the metric g on the hypersurface y° = 0. The function R(m,a,A*,,a") can be
chosen to be continuous, in particular for any set (mo, ag, Ao*,,al)) there exists a
neighborhood & thereof such that R(m,a,A",,a") can be chosen independently of
(m,a,A",,at) € Op. We equip o with the topology of uniform convergence on
relatively compact open sets; any weighted Sobolev topology on the set of initial data
will lead, by restriction, to this topology on #;o.
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We wish to show that the set %o can be uniquely parameterized(!) by the Poincaré
charges (p,, Juv) defined in (E.6)-(E.7), with p,, ranging over the set of timelike vectors
I(0) in the Minkowski space-time R'3, and .J,,, ranging over all anti-symmetric two-
covariant tensors. In other words:

ProrosiTiON F.1. — The map
(F.3) Q: Ko > (9,K) — (pu, Juw) € I(0) x R® ¢ R* x R®
i a continuous bijection.

Proof. — Let (g, K) be the Cauchy data on {2° = 0,7 > R} for a Kerr metric as
above with some parameters m € R* and a € R, we then have

(F.4) pu = (m,0,0,0), Ju, = 2mad(, 6%

The transformation law (E.14) shows that for any vector n’ € R?® satisfying
>, (n)? =1 we can obtain a pair (py, J,) of the form

(F.5) DPu = még, Joi =0, Ji; = :I:maaijknk,
by

« either performing a rotation by an angle less than or equal to 7/2 in the plane
Span(d,,n'd;) which brings n'd; to 9., then we choose the sign +, or

. we perform a rotation by an angle less than or equal to 7/2 in the plane
Span(0.,n'd;) which brings n'0; to —d,, then we choose the sign —.

In the overlapping case n‘0d; L 0. the choice does not matter because the resulting
metrics (and thus initial data) are identical “modulo gauge” — the corresponding
transformation a« — —a, (t,r,¢,0) — (t,7,—p,m — 0) is an isometry of the Kerr
metric. Next, a space-translation a’® € R3 produces out of (F.5) a pair (p,, Juw)
(Fﬁ) Pu = még, J()i = —ma;, Jij = imaeijknk.

It follows that any set (p, = még, Juw) can be obtained in a unique way by calculating
the charges (E.6)-(E.7) using initial data in .%o by the operations just described. Now,
for any timelike p,, there exists precisely one boost transformation A*, in the plane
Span(ég, p,,) which maps m(52 to p,, provided m is suitably chosen, and we conclude
by noting that, at fixed A*,, the map

RS 3 J,, — A%AP T, € RS

is a linear isomorphism. O

(D The construction of the set ;0 involves twelve free parameters, however two of them are redun-
dant because of the existence of the two-parameter group of isometries of the Kerr metric.
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We end this section by verifying that the initial data for the Kerr metric in Boyer-
Lindquist coordinates are parity symmetric. First, we note that g;; is obviously even.
Next, we have

2mrasin® 0 2ma

4 i 4 _ _
(F.7) Grida’ = “grodp = —nga = (xdy — ydx),

so that the coordinate components of the shift vector are odd. Now, the lapse function
is symmetric under parity. Further, the derivatives of an even function are odd and
vice-versa; in particular the Christoffel symbols are odd while the partial derivatives
of the coordinate components of the shift vector are even. The usual formula for K;;
in terms of the derivatives of the shift vector yields the result.
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APPENDIX G

UNIFORM LOCAL INVERTIBILITY

PROPOSITION G.1. — Let (Vy, || - [[v.)eca and (Wy, || - |lw,)zca be two families of
Banach spaces. Let v > 0 and let {f, : By, (0,7) — Wy}zea be a family of differen-
tiable functions such that:

(1) Df3(0) : Vu — W, has a right inverse for all x € A which is bounded indepen-
dently of x € A.

(2) [[fz(v 4+ h) — fo(v) — Dfz(v)h|lw, /||hl}, is bounded independently of x € A,
v € By, (0,7) and h € V such that v+ h € By, (0,r).

(3) IDfe(v + h) = Dfe()|l v, ,way/lIllv, is bounded independently of x € A,
v € By, (0,7) and h € V such that v+ h € By, (0,7).
Then there exists € > 0 and C > 0 such that for all x € A and all 0f € W,,
10 fllw, < e, there exists a solution 0z € V;, of the equation

fx((sx) - fﬁc(o) =4f,
which satisfies ||dz||v, < C||0f]lw,-
Proof. — From 1), there exist a constant Cy such that for all z € A and all w € W,
the equation
Df.(0)h = w,
has a solution h € V,, such that
[2llv, < Cullwllw, -
From 2) and 3), there exist constants Cz and C3 such that for all z € A, all v €
By, (0,7) and all h € V,
|fz(v + h) = fa(v) = D fa(w)h]lw, < Callhll5,,
[Dfe(v+h) = Dfa(v)lv,,w.) < Csllhllv,.

Let x € A and 6f € W,. We will construct a Picard sequence {h,} such that > h,
converges to a solution when 0 f is small enough. From 1), we have a solution hg € V,
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of
which satisfies ||hollv, < Ci||df]|lw,. Let dxy := ho which is in By, (0,r) if ||§f]lw, is
small enough. Let us now define the sequence h; 1, solution of

D fo(0)hit1 = f2(0) = fa(0ziv1) +0f,
where 0x;41 = dz; + h; (we assume that 0x;41 € By, (0,r), it will be justified at the
end of the proof). We have that

Dfx(o)hi-i-l = fﬁc(o) - fx(éxz) + fx(éxz) - fx((sxi-i-l) +4f
= sz(o)hi - [fx((sxiJrl) - fx(5xl)]

~
|
—

(G.1)
= [Dfx((sxp) - Dfx(‘sprrl)]hi

p=0
+ [D fa(0xi)hi + fu(6xi) — fu(bzi + i),
with dzg = 0, so by hypothesis 1), 2) and 3), we have

i—1
Ihisallv, < C1 (D Callbpllv. Ihallv + Callhill, )-
p=0

Let K := max(C1Cy, C1C3), then we have

i
[hisallv, < Kllhallv, Y llhpllv..-
p=0

Choose any 6 €]0, 1], let & be small enough so that

(KC16)175
KCie<l, ——=——<
1€ ’ 1-— (KCﬁ)‘S
and such that for all ¢ € [0, [,
Cit
L <ot <,
1— (KCht) =T

and let C := 2Cy. If |6 f|lw, < ¢, from Lemma G.3 with a; = ||h;||v,, the sequence
0Tpy1 = Z?:o h; is convergent in V, to a limit dz which satisfies

lhollv.  _ Calléfllw.
1= (Khollv,)” =~ 1= (ECi[of]w,)
Note that for all n > 0, ||0zn+1]lv, < r. On the other hand, as h;;1 goes to zero in
Ve we have that f;(0) — fo(dx;) — 6f = Dfr(0)hit1 goes to zero in W O

[6z]v, < 5 <Clofllw, <.

The following result is needed to be able to obtain weighted Holder regularity of
the solutions obtained, to start with, in weighted Sobolev spaces. In our applications
the spaces F, will be the weighted Holder spaces sz’a X sz’a, the F)’s will be

C’g:;l,’a X C’zjg,, the G,’s will correspond to C’éff;,’a X C’g:g”, for appropriate weights
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0, ¢, ¢", see the proof of Proposition 3.13. Finally, A should be thought of as a
. . k43, k+4,a k43,00 k44,00
neighborhood of zy = (Ko, go) in (Cd)j X Cqu )N (W¢Jr X W¢+ ).
For the following result we shall denote by

D f(0),"

the right inverse of D f,(0), the existence of which has been assumed in point (1) of
the preceding proposition.

ProOPOSITION G.2. — Under the hypotheses of Proposition G.1, consider three fam-
ilies of Banach spaces (Eg, | - |E,)zca, (Fx, |l - |7 )sca and (Gg, | - ||c.)sca such
that G, is continuously embedded both in F, and in W,, with the norms of the
embeddings uniformly bounded in x € A. Assume there exist a v > 0 such that
{fz: Br,(0,7") = Fy}zca is defined, differentiable and verifies:

(1) if h is in the image of Df.(0) ! and Df.(0)h € F, then h € E, and

1klle, < C(lIRllv, + 1D f2(0)R]|F,),

where C' does not depend on x € A.

(2) If2(v + h) = fo(v) = Dfe(v)h||c,/||RlIE, is bounded independently of x € A,
v € Bg,(0,7") and h € E,, such that v+ h € Béx(O,T,).

(3) IDfe(v + h) = Dfe()lln(E,,c)/|PlE, is bounded independently of v € A,
v € Bg,(0,7") and h € V such that v+ h € Bg,(0,r').

Then there exists € > 0 and C' > 0 such that for all x € A and all 5f € W, N F,
satisfying

16f[lw, + 161, <&
there exists a solution dx € E, satisfying

62z, < C'(I6flw, + I0flF,)-

Proof. — The constant C' which appears in the proof may change from term to term
and line to line. The solution is constructed by the same method as in the proof of
Proposition G.1. Let, thus, h; be the sequence defined there, by hypothesis 1. for all
1 > —1 we have h;41 € E, and

|hitille, < C(|hiv1llv, + | Df2(0)hit1l F,)
< C(IDfe(0)hisallw, + 1D fe(0)hitallr,) < CIDfz(0)hitallc.,

which is clearly true regardless of whether or not the last term is finite. On the other
hand, from equation (G.1) together with the hypotheses 2. and 3. we have that

IDf2(O)hisall, < Clhille, Y Ihnle.
k=0
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So from Lemma G.3 with a; = ||h;]| g, , if 0 f is sufficiently small in F, norm, then the
sequence ZL:O hy is convergent in F, to some element dx € E,, with

62| 5. < Cllholle. < Clllhollv, + D fz(0)hollr.) = CU6fllw. + I6f]r.). O

G.1. A sequence adapted to the Picard method

LEMMA G.3. — Let K > 0, 0 €]0,1[, and let {an}nen be a sequence with non-
negative terms which verifies, for all n > 0,

n
ant1 < Kay Z a;.
1=0

If ag is small enough to verify

(I(G,o)l_(S
Kag <1 and ~~9%9 <1,
ag <1 an = (Kag)?
then the sequence Sy(ao) = Y . a; is convergent to a limit denoted S(ag) which
satisfies
ao
0< S <S8 S T
n(a0) < S(ao) < 7= (Kag)®

in particular, S is continuous at 0.

Proof. — Let b, := Ka,, we have

We will show by induction that
(G.2) by < BYH0,

Equation G.2 holds for n = 0, assume it hold for all integers less than or equal to n,
we then have
- b(n+1)6

0

n
; 1
1 52 : 14146 2+nd
bn+1 < b0+n bOJrz < b0+n W
i=0 0

< b2+n5 1 < b1+(n+1)5 b(1)76
S0y T 15
< b1+(n+1)6
S 0g

)

the last inequality following from the second hypothesis on ag. To conclude, it suffices
to remark that

n o0 o0 b
) ) 1+i6 __ 0
Oég bzgg bzgg by =1 O
i=0 i=0 i=0 0
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APPENDIX H

SMALL INITIAL DATA
ON A BOUNDED DOMAIN IN R3

Let © be a bounded domain in R3 with smooth boundary, and let § be any smooth
up-to-boundary Riemannian metric on  such that

(H.1) 5e(X, X) < G(X, X) < 2(X, X),

where e is the Euclidean metric. It can be seen that there are no conformal Killing
vectors which vanish on 9Q (cf., e.g. [3, Proposition 6.2.2]) which implies that the
operator

. ~ [~ .~ 2~ oy
Hy,>X — D, (DZXJ +DIX' — ngng”> e L?

has no kernel (D — the Levi-Civita connection of §), and can thus be used to con-
struct g-transverse (D; L% = 0) traceless (¢ L;; = 0) tensors L;; on € in the usual
way. When g is parity-symmetric, then parity-antisymmetric L;;’s can be obtained
by replacing L;; with (L;j(z) — L;j(—x))/2. Let, thus, any parity-antisymmetric,
transverse, traceless, L;; be given, for ¢ € [0,1] consider the Lichnerowicz equation:
(H.2) 8450 — R(9)¢ + o*|Ll56™" =0,
which we rewrite as
(H.3) Lu = (Ag + s)u = F(u),
where u := ¢ — 1, while Az + s is the linearization of %(H.Z) at ¢ =1,
R(9) 20712

1= ——" = 707| L.

One will obtain a solution

(Kij =09 Lij, gij := ¢"Gij)
of the vacuum constraint equations using the inverse function theorem in, e.g.,

weighted Holder spaces, if one can show that the operator L appearing at the
left-hand-side of (H.3) has no kernel. In order to show that this is indeed the case
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for g — e small enough in C3(Q), and for o small enough, let Cp be the constant
appearing in the Poincaré inequality for :

(H.4) Vue Hy(Q) / wrddz < Cp/ |du|?>d3z,
Q Q
it follows from (H.1) that we also have

(H.5) Vue Hy(Q) /Qu2 Vdet §dPz < 4\/§CP/Q |du|§@d3m,
If Lu = 0, by integration by parts one obtains

/ (—|du?[z + su?) \/det gd*z =0,
and the Poincaré inequaligf gives

/QU,Q Vdet gdiz < 4\/5013/Q |du|§\/det gdiz
< 4V20p sup|s|/ u?y/det §dz,
Q

hence u = 0 if [|s][(q) is small enough, and the inverse function theorem applies.
Clearly the resulting (K, g) will be non-trivial as soon as g is not conformally flat.
Let (m,p) be the ADM four-momentum of (K, g) obtained by integrating U given
by (E.2) (expressed in terms of g and K) over 9€); here b should be taken as the
Minkowski metric, and space coordinates harmonic for g should be used — such
coordinates can be found globally on 2 if g is close enough to e. At o = 0 we have
P = 0, while it follows from the calculations in [7] that m > 0 (choosing g closer to e

(H.6)

if necessary). Continuity then shows that choosing o small enough we will obtain

1
ple < im

The initial data set (K,g) will then fulfill all the requirements set forth in Theo-
rem 8.14.
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