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ON MAPPING PROPERTIES OF THE GENERAL
RELATIVISTIC CONSTRAINTS OPERATOR

IN WEIGHTED FUNCTION SPACES,
WITH APPLICATIONS

Piotr T. Chruściel, Erwann Delay

Abstract. — Generalizing an analysis of Corvino and Schoen, we study surjectivity
properties of the constraint map in general relativity in a large class of weighted
function spaces. As a corollary we prove several perturbation, gluing, and extension
results: we show existence of non-trivial, singularity-free, vacuum space-times which
are stationary in a neighborhood of i0; for small perturbations of parity-covariant ini-
tial data sufficiently close to those for Minkowski space-time this leads to space-times
with a smooth global I ; we prove existence of initial data for many black holes which
are exactly Kerr — or exactly Schwarzschild — both near infinity and near each of the
connected components of the apparent horizon; under appropriate conditions we ob-
tain existence of vacuum extensions of vacuum initial data across compact boundaries;
we show that for generic metrics the deformations in the Isenberg-Mazzeo-Pollack glu-
ings can be localized, so that the initial data on the connected sum manifold coincide
with the original ones except for a small neighborhood of the gluing region; we prove
existence of asymptotically flat solutions which are static or stationary up to r−m

terms, for any fixed m, and with multipole moments freely prescribable within cer-
tain ranges.

c© Mémoires de la Société Mathématique de France 94, SMF 2003
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Résumé (Sur les propriétés de l’opérateur de contraintes relativistes dans des espaces à
poids, et applications)

Nous étudions les propriétés de surjectivité de l’application de contraintes en rela-
tivité générale dans une large classe d’espaces fonctionnels à poids, généralisant ainsi
une analyse de Corvino et Schoen. Comme corollaire on obtient plusieurs résultats
de perturbation, de recollement, ou d’extension. Ainsi, nous démontrons l’existence
d’espaces-temps non triviaux, sans singularités, solutions d’équations d’Einstein du
vide, qui sont stationnaires dans un voisinage de i0. Pour des données initiales proches
de celles de Minkowski ceci conduit, sous une condition de parité approximative, à
des espaces-temps avec un infini isotrope I global et lisse. Nous prouvons l’existence
de données initiales pour des trous noirs multiples qui sont exactement kerriennes,
ou exactement schwarzschildiennes, dans une région asymptotique, mais aussi près
de chaque composante connexe de l’horizon apparent. Nous montrons que pour des
métriques génériques les perturbations des données initiales introduites par les re-
collements du type Isenberg-Mazzeo-Pollack peuvent être localisées, de sorte que les
données initiales sur la variété obtenue en prenant la somme connexe coincident avec
les données initiales originelles, sauf dans un petit voisinage de la zone de recollement.
Nous prouvons l’existence de solutions asymptotiquement plates qui sont statiques ou
stationnaires modulo des termes en r−m, avec m arbitrairement prescrit, et avec des
moments multipolaires qu’on peut spécifier librement dans certains ouverts.
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CHAPTER 1

INTRODUCTION

In a recent significant paper [30] Corvino has presented a new gluing construction
of scalar flat metrics, leading to the striking result of existence of non-trivial scalar
flat metrics which are exactly Schwarzschildian at large distances; see also [33]. Ex-
tensions of the results in [30] have been announced in [31], and those results should
be available(1) in a near future [32]. A reading of the proofs in [30] reveals that the
arguments there can be simplified or streamlined using known techniques for PDE’s
in weighted Sobolev spaces (cf., e.g. [1,3,7,16,41,52]). Further, the methods intro-
duced by Corvino and Schoen can be applied in other contexts to obtain new classes
of solutions of the general relativistic constraint equations. The object of this paper is
to present an abstract version, in a large class of weighted Sobolev spaces, of the argu-
ments of Corvino and Schoen. Specific results on compact manifolds with boundary
(as considered by Corvino), or on asymptotically flat manifolds, or on asymptotically
hyperboloidal manifolds, can then be obtained by an appropriate choice of the weight
functions. More precisely, we develop a general theory of mapping properties of the
solutions of the linearized constraint operator in a class of weighted Sobolev spaces,
assuming certain inequalities. The class of weighted Sobolev spaces includes those of
Christodoulou — Choquet-Bruhat [16], appropriate in the asymptotically Euclidean
context, as well as an exponentially weighted version thereof, and distance–weighted
spaces near a boundary, or an exponentially weighted version thereof; the latter two
classes are relevant near a compact boundary, or in an asymptotically hyperboloidal
context. We establish the required inequalities in all the spaces just mentioned. An
appropriate version of the inverse function theorem allows one to produce new classes
of solutions of interest. One application is that of existence of space-times which are
Kerrian near spatial infinity; this has already been observed in [31]. We apply our
techniques to produce two further large classes of initial data sets with controlled
asymptotic behavior at spatial infinity. The first class is obtained by gluing any

(1)This paper has been written after [30, 31], but independently of [32].
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asymptotically flat initial data with data in the exterior region which are exactly sta-
tionary there. This leads to a large class of space-times which are exactly stationary
away from the domain of influence of a compact set. The second class consists of
initial data which are approximately stationary in the asymptotic region, with the
non-stationary part decaying at a prescribed (as high as desired) order in terms of
powers of r. On the other hand the stationary part is controlled by a set of multipole
moments which are freely prescribable within certain ranges. Such initial data are
relevant to the program of [37,39]. Yet another application is an extension result for
initial data near the Minkowskian ones, which leads to asymptotically simple space-
times, or to new “many black hole” space-times. Our final application here is a gluing
construction for generic CMC initial data sets, in which the perturbation of the met-
ric is localized in a small neighborhood of the points where the gluing is performed.
This makes use of, and refines, the recent gluing construction of Isenberg, Mazzeo and
Pollack [45,46]. Some further applications, involving local extensions near positively
or negatively curved space forms, or concerning the construction of initial data with
controlled Bondi functions, will be discussed elsewhere.

We note that all the results in Section 3 are valid when M is a compact manifold
without boundary by setting all the weight functions to one, ϕ = φ = ψ = 1, and by
taking the compact set K appearing in Proposition 3.1 and elsewhere equal to M .

Acknowledgements. — We thank R. Beig, J. Corvino, H. Friedrich and W. Simon for
useful comments or discussions, as well as a referee for detailed criticism.
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CHAPTER 2

THE CONSTRAINTS MAP

The aim of this section is to establish some algebraic-differential properties of
the constraints map, and some elementary properties of the associated differential
operators in a class of weighted Sobolev spaces. The reader is referred to Appendix A
for the definition of the latter.

Initial data (g, K) for the vacuum Einstein equations belong to the zero level set
of the constraints map:

(2.1)




J

ρ



 (K, g) :=




2(−∇jKij + ∇i tr K)

R(g) − |K|2 + (tr K)2



 =




0

0



 .

These are the general relativistic constraint equations whatever the space-dimension
n. As Equations (2.1) are trivial in space-dimension zero and one, in the remainder
of this paper we shall assume that n ! 2.

Let h = δg and Q = δK, the linearization of the constraints map at (K, g) reads

(2.2) P (Q, h) =





−Kpq∇ihpq + Kq
i(2∇jhqj −∇qhl

l)
−2∇jQij + 2∇i tr Q − 2(∇iKpq −∇qKp

i)hpq

−∆(trh) + div divh − 〈h, Ric (g)〉 + 2KplKq
lhpq

−2〈K, Q〉 + 2trK(−〈h, K〉+ tr Q)




.

Remark 2.1. — We note that for any real numbers a and b it holds

(2.3) P (aK, bg) =




(a − b)J(K, g)

−bR(g) + 2(b − a)[|K|2 − (tr K)2]



 .

The order of the differential operators that appear in P is
(

1 1
0 2

)
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which can be written in the Agmon-Douglis-Nirenberg form (cf., e.g. [54, p. 210])
(

s1 + t1 s1 + t2
s2 + t1 s2 + t2

)
,

with s1 = −1, s2 = 0, t1 = t2 = 2; here it is understood that an operator of order 0 is
also an operator of order 2 with vanishing coefficients in front of the first and second
derivatives. It follows that the symbol P ′ of the principal part of P in the sense of
Agmon-Douglis-Nirenberg reads

P ′(x, ξ)(Q, h) =

(
2(−ξsδt

i + ξigst) −Kpqξi + 2Kq
iξp − K l

iξlgpq

0 −|ξ|2gpq + ξpξq

)(
Qst

hpq

)
,

while the formal L2-adjoint of P takes the form
(2.4)

P ∗(Y, N) =




2(∇(iYj) −∇lYlgij − KijN + trK Ngij)

∇lYlKij − 2K l
(i∇j)Yl + Kq

l∇qY lgij − ∆Ngij + ∇i∇jN
+(∇pKlpgij −∇lKij)Y l − NRic (g)ij + 2NK l

iKjl − 2N(tr K)Kij



 .

From this we obtain the Agmon-Douglis-Nirenberg symbol P ∗′ of the principal part
of P ∗,

(2.5) P ∗′(x, ξ)(Y, N) =

(
2(ξ(iδ

l
j) − ξlgij) 0

Kijξl − 2K l
(iξj) + Kplξqgij ξiξj − |ξ|2gij

)(
Yl

N

)
.

Remark 2.2. — Recall that the formal adjoint P ∗ is defined by the requirement that
for all smooth (Q, h)’s and for all compactly supported smooth (Y, N)’s we have

〈P ∗(Y, N), (Q, h)〉L2(g)⊕L2(g) = 〈(Y, N), P (Q, h)〉L2(g)⊕L2(g).

It is easily seen by continuity and density arguments that this equation still holds
for(1) all (Q, h) ∈ H1

loc × H2
loc and for all (Y, N) ∈ H̊1

φ,ψ × H̊2
φ,ψ.

We wish to check ellipticity of PP ∗, for this we need the following:

Lemma 2.3. — Suppose that dimM ! 2, then P ∗′(x, ξ) is injective for ξ '= 0.

Proof. — We define a linear map α from the space S2 of two-covariant symmetric
tensors into itself by the formula

(2.6) α(S) = S − (tr S)g.

Let ξ '= 0, if (Y, N) is in the kernel of P ∗′(x, ξ) then

α(ξ(iYj)) = 0,

so that ξ(iYj) = 0, and Y = 0. It follows that

α(ξiξj)N = 0,

which implies N = 0.

(1)See Appendix A for the definitions of the function spaces we use.

MÉMOIRES DE LA SMF 94
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The lemma implies:

Corollary 2.4. — The operator L := PP ∗ is elliptic in the sense of Agmon-
Douglis-Nirenberg (cf., e.g. [54, Definition 6.1.1, p. 210]).

Proof. — The differential order of the various entries of L is
(

2 3
3 4

)
=

(
s1 + t1 s1 + t2
s2 + t1 s2 + t2

)
,

with s1 = −1, s2 = 0, t1 = 3, t2 = 4. Now, P ′(x, ξ) is of the form

E :=
(

A B
0 D

)
,

while P ∗′(x, ξ) can be written as
(
−tA 0
−tB tD

)
,

where tX denotes the transpose of X . Let ξ '= 0; by Lemma 2.3 tA and tD are
injective (hence A and D are surjective), which implies that tE is injective (hence
E is surjective). This shows that E tE is bijective: indeed, E tEX = 0 implies
tXE tEX = 0, which is the same as |tEX |2 = 0, hence X = 0. It is straightforward to
check that the Agmon-Douglis-Nirenberg symbol of PP ∗, defined as the symbol built
from those terms which are precisely of order si + tj , equals

P ′(x, ξ)P ∗′(x, ξ) = E tE

(
−I 0
0 1

)
,

and its bijectivity for ξ '= 0 follows. This is precisely the ellipticity condition of
Agmon, Douglis, and Nirenberg, whence the result.

We note the following simple fact:(1)

Lemma 2.5. — Let k ∈ Z, k ! −2. Suppose that (2) g ∈ W k+3,∞
loc and that

Ric (g) ∈ φ−2W k+2,∞
φ ,(2.7)

K ∈ W k+3,∞
φ ∩ φ−2W k+2,∞

φ .(2.8)

If (A.2) holds with 0 " i " k + 2, then the linear operators

P ∗ : φH̊k+3
φ,ψ × φ2H̊k+4

φ,ψ −→ H̊k+2
φ,ψ × H̊k+2

φ,ψ , k ! −2,

P : ψ2(H̊k+2
φ,ψ × H̊k+2

φ,ψ ) −→ ψ2(φ−1H̊k+1
φ,ψ × φ−2H̊k

φ,ψ), k ! 0,

are well defined, and bounded.

(2)The local differentiability conditions follow from the requirement that the k+ fourth covariant

derivatives of N and the k+ third ones of Y can be defined in a distributional sense; both of those

conditions are fulfilled by a metric g ∈ W k+3,∞
loc — the reader should note that the first covariant

derivatives of N do not involve the Christoffel symbols of g since N is a function.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003



6 CHAPTER 2. THE CONSTRAINTS MAP

Proof. — The result follows immediately from (A.4); we simply mention the inequal-
ity

|φK| " 1
2
(
φ2|K| + |K|

)
,

which shows that under (2.8) we have K ∈ φ−1W k+2,∞
φ ; this is used to control the

K2 terms in P ∗ and in P .

We define a map Φ by

(2.9) Φ(x, y) := (φx, φ2y).

As before, we have the

Lemma 2.6. — Let k ∈ Z. Suppose that g ∈ W k+3,∞
loc and that

Ric (g) ∈ φ−2W k+2,∞
φ ,(2.10)

K ∈ φ−1W k+3,∞
φ .(2.11)

If (A.2) holds with 0 " i " k + 2, then the linear operators

ΦP ∗ : H̊k+3
φ,ψ × H̊k+4

φ,ψ −→ H̊k+2
φ,ψ × H̊k+2

φ,ψ , k ! −2,

ψ−2PΦψ2 : H̊k+2
φ,ψ × H̊k+2

φ,ψ −→ H̊k+1
φ,ψ × H̊k

φ,ψ, k ! 0,

are well defined, and bounded.

Let us establish now some estimates satisfied by P ∗:

Lemma 2.7. — Suppose that g ∈ W 1,∞
loc , that (A.2) holds with 0 " i " 2, and that

Ric (g) ∈ φ−2L∞,(2.12)

K ∈ W 1,∞
φ ∩ φ−2L∞.(2.13)

Then for any C1 vector field Y and C2 function N , both compactly supported on M ,
we have
(2.14)
C

(
‖P ∗(φY, φ2N)‖L2

ψ
+ ‖Y ‖L2

ψ
+ ‖N‖H̊1

φ,ψ
+ |b(φψY )|1/2

)
! ‖Y ‖H̊1

φ,ψ
+ ‖N‖H̊2

φ,ψ
,

where
b(Y ) =

∫

∂M
(∇iYjY

i −∇iY
iYj)νj .

Proof. — Throughout this work the letter C denotes a constant which might change
from term to term and line to line. The leading order terms in P ∗ are of the form

P ∗(φY, φ2N) − sub-leading terms =:

(
P̂ ∗

1 (φY, φ2N)
P̂ ∗

2 (φY, φ2N)

)

=:
(

2α(∇(i(φYj))
β(∇i(φYj)) + α(∇i∇j(φ2N))

)
,

(2.15)

MÉMOIRES DE LA SMF 94



CHAPTER 2. THE CONSTRAINTS MAP 7

and this defines the P̂ ∗
1 , P̂ ∗

2 and β operations (recall that α has been defined in (2.6)).
Invertibility of α shows that

‖2α(∇(iYj))‖L2 ! C‖∇(iYj)‖L2 .

We have ∫

M
∇(iYj)∇(iY j) =

1
2

( ∫

M
∇iYj∇iY j +

∫

M
∇iYj∇jY i

)
,

and Stokes’ theorem gives
∫

M
∇iYj∇jY i = −

∫

M
(∇j∇iYj)Y i +

∫

∂M
(∇iYj)Y iνj ,

supposing for the moment that Y is C2. Using ∇j∇iYj = ∇i∇jYj + (Ric (Y, ·))i, and
integrating again by parts,

−
∫

M
∇i∇jYjY

i =
∫

M
∇jYj∇iY

i −
∫

∂M
∇jYjY

iνi,

one is led to
∫

M
∇(iYj)∇(iY j) =

1
2

(∫

M
|∇Y |2 + (divY )2 − Ric (Y, Y )

+
∫

∂M
[(∇iYj)Y i − (∇iY

i)Yj ]νj
)
.

We have thus showed that for C2 compactly supported vector fields we have

(2.16) |b(Y )| + ‖2α(∇(iYj))‖L2 + ‖Ric (Y, Y )‖L1 ! C‖∇Y ‖L2 ,

and it should be clear that this remains true for vector fields which are only differ-
entiable once. To continue, we use (2.16) with Y replaced with φψY ; the hypothesis
that Ric (g) ∈ φ−2L∞

φ allows us to write

|b(φψY )| + ‖2α(∇(i(φψYj)))‖L2 + ‖ψY ‖L2 ! c‖∇(φψY )‖L2 .

We have

‖2α(∇(i(φYj)))‖L2
ψ

= ‖2α(ψ∇(i(φYj)))‖L2

= ‖2α(∇(i(ψφYj))) − 2α((∇(iψ)φYj)))‖L2

! ‖2α(∇(i(φψYj)))‖L2 − C‖(∇(iψ)φYj)‖L2

! C‖(∇(φψY )‖L2 − C|b(φψY )|− C‖ψY ‖L2

− C‖(∇(iψ)φYj)‖L2(2.17)

! C‖(∇(φψ)Y + φψ∇Y ‖L2 − C|b(φψY )|− C‖ψY ‖L2

− C‖(∇(iψ)φYj)‖L2

! C‖φψ∇Y ‖L2 − C‖∇(φψ)Y ‖L2 − C|b(φψY )|− C‖ψY ‖L2

− C‖(∇(iψ)φYj)‖L2 ,

which finally gives

(2.18) |b(φψY )| + ‖Y ‖L2
ψ

+ ‖2α(∇(i(φYj)))‖L2
ψ

! C‖φψ∇Y ‖L2 .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003



8 CHAPTER 2. THE CONSTRAINTS MAP

Invertibility of α leads us to

‖α(∇∇(φ2N))‖L2
ψ

! C‖∇∇(φ2N)‖L2
ψ

! C‖φ2∇∇N‖L2
ψ
− 2C‖∇(φ2)∇N)‖L2

ψ
− C‖∇∇(φ2)N‖L2

ψ
,

so that

(2.19) ‖α(∇∇(φ2N))‖L2
ψ

+ ‖N‖H̊1
φ,ψ

! C‖φ2∇∇N‖L2
ψ
.

Using the hypothesis that K ∈ W 0,∞
φ we obtain

‖α(∇i∇j(φ2N))‖L2
ψ

= ‖P̂ ∗
2 (φY, φ2N) − β(∇i(φYj))‖L2

ψ

" ‖P̂ ∗
2 (φY, φ2N)‖L2

ψ
+ ‖β(∇i(φYj))‖L2

ψ

" ‖P̂ ∗
2 (φY, φ2N)‖L2

ψ
+ C‖∇i(φYj)‖L2

ψ

" ‖P̂ ∗
2 (φY, φ2N)‖L2

ψ
+ C‖P̂ ∗

1 (φY, φ2N)‖L2
ψ

+ C‖Y ‖L2
ψ

+ C|b(φψY )|,

and in the last step we have used (2.18). The lower order terms are controlled using
the hypotheses K ∈ W 1,∞

φ ∩φ−2W 0,∞
φ and Ric (g) ∈ φ−2W 0,∞

φ (compare the proof of
Lemma 2.5), leading to (2.14).

We have the following equivalent of Lemma 2.7 for the map considered in
Lemma 2.6:

Lemma 2.8. — Suppose that g ∈ W 1,∞
loc , that (A.2) holds with 0 " i " 2, and that

Ric (g) ∈ φ−2L∞,(2.20)

K ∈ φ−1W 1,∞
φ .(2.21)

Then for any C1 vector field Y and C2 function N , both compactly supported on M ,
we have
(2.22)

C
(
‖ΦP ∗(Y, N)‖L2

ψ
+ ‖Y ‖L2

ψ
+ ‖N‖H̊1

φ,ψ
+ |b(φψY )|1/2

)
! ‖Y ‖H̊1

φ,ψ
+ ‖N‖H̊2

φ,ψ
,

where
b(Y ) =

∫

∂M
(∇iYjY

i −∇iY
iYj)νj .

Proof. — The proof is essentially identical with that of Lemma 2.7, with the inequality
(2.17) replaced by

‖2φα(∇(iYj))‖L2
ψ

! C‖φψ∇Y ‖L2 − C‖∇(φψ)Y ‖L2 − C|b(φψY )|

− C‖ψY ‖L2 − C‖Y(i∇j)(ψφ)‖L2 ,

and inequality (2.19) replaced by

‖φ2α(∇∇N)‖L2
ψ

! C‖φ2∇∇N‖L2
ψ
.
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CHAPTER 3

ISOMORPHISM THEOREMS

In this section, we assume that we have a solution (K0, g0) to the constraint map,
with possibly a non-trivial kernel for the associated operator P ∗

0 , defined as P ∗ with
(K, g) replaced by (K0, g0). We present here a general abstract method to construct
“solutions-up-to-kernel” to the constraint equations which are close to (K0, g0); our
argument is a straightforward generalization of [30]. (In particular if the kernel is
trivial we obtain solutions.)

Proposition 3.1. — Under the hypotheses of Lemma 2.7 with (K, g) = (K0, g0), let
K0 be the kernel of

P ∗
0 Φ : H̊1

φ,ψ(g0) × H̊2
φ,ψ(g0) −→ L2

ψ(g0) × L2
ψ(g0),

and let K0
⊥g0 be its L2

ψ(g0) ⊕ L2
ψ(g0)-orthogonal. Assume there exists a compact set

K ⊂ M such that for all H̊1
φ,ψ(g0) vector fields Y and H̊2

φ,ψ(g0) functions N , both
supported in M ! K we have

(3.1) C‖P ∗
0 Φ(Y, N)‖L2

ψ(g0) ! ‖Y ‖L2
ψ(g0) + ‖N‖H̊1

φ,ψ(g0).

Then there exists a constant C′ such that
• for all (K, g) close to (K0, g0) in (W 1,∞

φ (g0) ∩ φ−2L∞(g0)) × W 2,∞
φ (g0) norm,

• and for all (Y, N) ∈ K⊥g

0 ∩ (H̊1
φ,ψ(g) × H̊2

φ,ψ(g)),
it holds that

(3.2) C′‖P ∗Φ(Y, N)‖L2
ψ(g) ! ‖Y ‖H̊1

φ,ψ(g) + ‖N‖H̊2
φ,ψ(g).

Remark 3.2. — The conclusion still holds if (3.1) is replaced by

(3.3) C
(
‖P ∗(φY, φ2N)‖L2

ψ
+ ‖(φY, φ2N)‖X

)
! ‖Y ‖L2

ψ
+ ‖N‖H̊1

φ,ψ
,

where X is a normed space such that we have a compact inclusion φH̊1
φ,ψ × φ2H̊2

φ,ψ ⊂ X;
however, (3.1) is sufficient for our purposes.
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Proof. — For (K, g) = (K0, g0), this is proved by a standard argument, compare
[1,16]: assuming that the inequality fails, there is a sequence

(Yn, Nn) ∈ (H̊1
φ,ψ(g0) × H̊2

φ,ψ(g0)) ∩K0
⊥g0

with norm 1 such that ‖P ∗
0 Φ(Yn, Nn)‖L2

ψ(g0) approaches zero as n tends to infinity.
One obtains a contradiction with injectivity on (H̊1

φ,ψ(g0)×H̊2
φ,ψ(g0))∩K0

⊥g0 by using
the Rellich-Kondrakov compactness on a conditionally compact open set O ⊃ K ,
applying (2.14) with b(φψY ) = 0, and (3.1), to Y and N multiplied by suitable cut-
off functions; we simply note that (2.14) holds without the boundary term for smooth
compactly supported fields(1), hence on K0

⊥g0 ∩ (H̊1
φ,ψ(g0) × H̊2

φ,ψ(g0)) by density.
Increasing C′ if necessary, the inequality at (K0, g0) together with straightforward
algebra shows that the inequality remains true for (K, g) close to (K0, g0).

Similarly one obtains:

Proposition 3.3. — Under the hypotheses of Lemma 2.8 with (K, g) = (K0, g0), let
K0 be kernel of

ΦP ∗
0 : H̊1

φ,ψ(g0) × H̊2
φ,ψ(g0) −→ L2

ψ(g0) × L2
ψ(g0),

and let K0
⊥g0 be its L2

ψ(g0) ⊕ L2
ψ(g0)-orthogonal. Assume there exists a compact set

K ⊂ M such that for all H̊1
φ,ψ(g0) vector fields Y and H̊2

φ,ψ(g0) functions N , both
supported in M ! K we have

(3.4) C‖ΦP ∗
0 (Y, N)‖L2

ψ(g0) ! ‖Y ‖L2
ψ(g0) + ‖N‖H̊1

φ,ψ(g0).

Then there exists a constant C′ such that for all (K, g) close to (K0, g0) in
φ−1W 1,∞

φ (g0) × W 2,∞
φ (g0) norm, and for all (Y, N) ∈ K⊥g

0 ∩ (H̊1
φ,ψ(g) × H̊2

φ,ψ(g)) it
holds that

(3.5) C′‖ΦP ∗(Y, N)‖L2
ψ(g) ! ‖Y ‖H̊1

φ,ψ(g) + ‖N‖H̊2
φ,ψ(g).

Set
Lφ,ψ := Φψ−2Pψ2P ∗Φ.

We denote by πK⊥g
0

the L2
ψ(g) projection onto K⊥g

0 . We are ready now to prove:

Theorem 3.4. — Let k ! 0, g0 ∈ W k+4,∞
loc , suppose that (A.2) holds with 0 " i "

4 + k, and that
Ric (g0) ∈ φ−2W k+2,∞

φ (g0),

K0 ∈ W k+3,∞
φ (g0) ∩ φ−2W k+2,∞

φ (g0).

(1)We use the analysts’ convention that a manifold M is always open; thus a manifold M with

non-empty boundary ∂M does not contain its boundary; instead, M := M ∪ ∂M is a manifold with

boundary in the differential geometric sense. Unless explicitly specified otherwise no conditions on

M are made — e.g. that ∂M , if non-empty, is compact — except that M is a smooth manifold;

similarly no conditions e.g. on completeness of (M, g), or on its radius of injectivity, are made.
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We further assume that the weights φ and ψ have the scaling property, cf. the
end of Appendix A and Appendix B. If there exists a compact set K ⊂ M such
that for all H̊1

φ,ψ(g0) vector fields Y and H̊2
φ,ψ(g0) functions N , both supported

in M ! K , the inequality (3.1) holds, then for all (K, g) close to (K0, g0) in
(W k+3,∞

φ (g0) ∩ φ−2W k+2,∞
φ (g0)) × W k+4,∞

φ (g0) norm, the map

(3.6) πK⊥g
0

Lφ,ψ : K⊥g

0 ∩ (H̊k+3
φ,ψ (g) × H̊k+4

φ,ψ (g)) −→ K⊥g

0 ∩ (H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g))

is an isomorphism such that the norm of its inverse is bounded independently(2) of
(K, g).

Remark 3.5. — It is easily seen (see Equation (3.8) below and Remark 2.2) that,
in our context, the image of Lφ,ψ is orthogonal to the kernel of P ∗Φ. We emphasize,
however, that the projection πK⊥g

0
in (3.6) is on the orthogonal to the kernel of P ∗

0 Φ,
and not on that of P ∗Φ.

Proof. — For (δJ, δρ) ∈ K⊥g

0 ∩ (L2
ψ(g) × L2

ψ(g)) let F be the following (continuous)
functional defined on K⊥g

0 ∩ (H̊1
φ,ψ(g) × H̊2

φ,ψ(g)):

F(Y, N) :=
∫

M
(
1
2
|P ∗Φ(Y, N)|2g − 〈(Y, N), (δJ, δρ)〉g)ψ2dµg ;

we set
µF = inf

(Y,N)∈K⊥g
0 ∩(H̊1

φ,ψ(g)×H̊2
φ,ψ(g))

F(Y, N).

We claim that F is coercive: indeed, Proposition 3.1 and the Schwarz inequality give

F(Y, N) ! C(‖Y ‖H̊1
φ,ψ(g) + ‖N‖H̊2

φ,ψ(g))
2 − ‖(Y, N)‖L2

ψ(g)‖(δJ, δρ)‖L2
ψ(g)

! C(‖Y ‖H̊1
φ,ψ(g) + ‖N‖H̊2

φ,ψ(g))
2 − (‖Y ‖H̊1

φ,ψ(g) + ‖N‖H̊2
φ,ψ(g))‖(δJ, δρ)‖L2

ψ(g).

Standard results on convex, proper, coercive, l.s.c. (cf., e.g., [36, Proposition 1.2,
p. 35]) functionals show that µF is achieved by some

(Y, N) ∈ K⊥g

0 ∩ (H̊1
φ,ψ(g) × H̊2

φ,ψ(g))

satisfying

(3.7) ∀ (δY, δN) ∈ H̊1
φ,ψ(g) × H̊2

φ,ψ(g)
∫

M
〈P ∗Φ(Y, N), P ∗Φ(δY, δN)〉g − 〈(δY, δN), (δJ, δρ)〉g)ψ2dµg = 0.

It follows that (Y, N) ∈ K⊥g

0 ∩ (H̊1
φ,ψ(g)× H̊2

φ,ψ(g)) is a weak solution of the equation

Φψ−2Pψ2P ∗Φ(Y, N) = (δJ, δρ).

The variational equation (3.7) satisfies the hypotheses of [54, Section 6.4, pp. 242–
243] with sj , tk as in Corollary 2.4, and with m1 = 1, m2 = 2, h0 = −2. By elliptic

(2)The bound on the norm might depend upon (K0, g0).
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regularity [54, Theorem 6.4.3, p. 246] and by standard scaling arguments (cf. the
discussion at the end of Appendix A) for (δJ, δρ) ∈ H̊k+1

φ,ψ (g) × H̊k
φ,ψ(g), we have

(Y, N) ∈ H̊k+3
φ,ψ (g) × H̊k+4

φ,ψ (g), and surjectivity follows. To prove bijectivity, we note
that the operator πK⊥g

0
Lφ,ψ is injective: indeed, if (Y, N) ∈ K⊥g

0 is in the kernel of
πK⊥g

0
Lφ,ψ, then (see Remark 2.2)

(3.8) 0 = 〈Lφ,ψ(Y, N), (Y, N)〉L2
ψ(g)⊕L2

ψ(g) = 〈P ∗Φ(Y, N), P ∗Φ(Y, N)〉L2
ψ(g)⊕L2

ψ(g),

so (Y, N) = 0 from inequality (3.2).

There is yet another operator which is of interest in our context,

(3.9) Lφ,ψ := ψ−2PΦψ2ΦP ∗.

Similarly to Theorem 3.4, using Proposition 3.3 instead of 3.1, we have:

Theorem 3.6. — Let k ! 0, g0 ∈ W k+4,∞
loc , suppose that (A.2) holds with 0 " i "

4 + k, that

Ric (g0) ∈ φ−2W k+2,∞
φ (g0),

K0 ∈ φ−1W k+3,∞
φ (g0),

and that the weights φ and ψ have the scaling property, cf. end of Appendix A. If
there exists a compact set K ⊂ M such that for all H̊1

φ,ψ(g0) vector fields Y and
H̊2

φ,ψ(g0) functions N , both supported in M ! K , the inequality (3.4) holds, then for
all (K, g) close to (K0, g0) in φ−1W k+3,∞

φ (g0) × W k+4,∞
φ (g0) norm, the map

πK⊥g
0

Lφ,ψ : K0
⊥g ∩ (H̊k+3

φ,ψ (g) × H̊k+4
φ,ψ (g)) −→ K⊥g

0 ∩ (H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g))

is an isomorphism such that the norm of its inverse is bounded independently of
(K, g).

Whenever the weighted Sobolev spaces are such that the constraints map is defined
and differentiable we obtain:

Theorem 3.7. — Under the hypotheses of Theorem 3.4, if the map

(3.10)
K⊥g

0 ∩ (H̊k+3
φ,ψ (g) × H̊k+4

φ,ψ (g)) −→ K⊥g

0 ∩ (H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g))

(Y, N) /−→ πK⊥g
0

ψ−2Φ
{(

J
ρ

)
[(K, g) + ψ2P ∗Φ(Y, N)] −

(
J
ρ

)
(K, g)

}

is differentiable in a neighborhood Uk of zero, then it is bijective in a (perhaps smaller)
neighborhood Vk of zero. In particular there exists ε > 0 such that for all (K, g)
close to (K0, g0) in (W k+3,∞

φ (g0) ∩ φ−2W k+2,∞
φ (g0))×W k+4,∞

φ (g0), and for all pairs
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(δJ, δρ) ∈ ψ2Φ−1
(
H̊k+1

φ,ψ (g) × H̊k
φ,ψ(g)

)
with norm less than ε, there exists a solution

(δK, δg) = ψ2P ∗Φ(Y, N) ∈ ψ2(H̊k+2
φ,ψ (g) × H̊k+2

φ,ψ (g)), close to zero, of the equation

(3.11) πK⊥g
0

ψ−2Φ
{(

J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
= πK⊥g

0
ψ−2Φ

(
δJ
δρ

)
.

Remark 3.8. — The question of differentiability of the map (3.10), or even of its
existence, will depend upon the weight functions φ and ψ, and requires a case-by-case
treatment.

Proof. — We apply Proposition G.1 with
• A a neighborhood of (K0, g0) in (W k+3,∞

φ (g0)∩φ−2W k+2,∞
φ (g0))×W k+4,∞

φ (g0),
• x = (K, g), δx = (δK, δg),
• Vx = ψ2(H̊k+2

φ,ψ (g) × H̊k+2
φ,ψ (g)), Wx = K⊥g

0 ∩ (H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g))
• and

(3.12) fx(δx) = πK⊥g
0

ψ−2Φ
{(

J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
.

We also have the following analogue of Theorem 3.7, with an identical proof, based
on Theorem 3.6:

Theorem 3.9. — Under the hypotheses of Theorem 3.6, if the map

(3.13)
K⊥g

0 ∩ (H̊k+3
φ,ψ (g) × H̊k+4

φ,ψ (g)) −→ K⊥g

0 ∩ (H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g))

(Y, N) /−→ πK⊥g
0

ψ−2

{(
J
ρ

)
[(K, g) + ψ2Φ2P ∗(Y, N)] −

(
J
ρ

)
(K, g)

}

is differentiable in a neighborhood of zero, then it is bijective in a (perhaps smaller)
neighborhood of zero. Thus, there exists ε > 0 such that for all (K, g) close to (K0, g0)
in

φ−1W k+3,∞
φ (g0) × W k+4,∞

φ (g0),

and for all pairs (δJ, δρ) ∈ ψ2
(
H̊k+1

φ,ψ (g)×H̊k
φ,ψ(g)

)
with norm less than ε, there exists

a solution

(δK, δg) = Φψ2ΦP ∗(Y, N) ∈ ψ2(φHk+2
φ,ψ (g) × φ2Hk+2

φ,ψ (g)),

close to zero, of the equation

(3.14) πK⊥g
0

ψ−2

{(
J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
= πK⊥g

0
ψ−2

(
δJ
δρ

)
.

The last results allow us to construct solutions of the nonlinear equation in weighted
Sobolev spaces. The drawback of working in such spaces is that the differentiability
of the perturbative solutions is considerably worse than that of the starting data
(K0, g0), even when solutions with zero sources are considered. In the usual analysis
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of nonlinear PDE’s with implicit-function techniques the higher regularity is obtained
by bootstrap arguments. In our set-up this does not work, because the coefficients of
the equations do not have enough regularity for the bootstrap. It has been shown by
Corvino [30] that there exists a (non-standard) way of getting a partial improvement
on the regularity of solutions. This carries over to the general weighted spaces setting
considered here provided some further properties of the weights are assumed:

(1) First, note that (A.2) can be rewritten as φ ∈ C$−1
φ,φ−1 , ψ ∈ C$−1

φ,ψ−1 , ϕ ∈ C$−1
φ,ϕ−1 .

When dealing with Hölder spaces one also needs to assume Hölder continuity of the
derivatives of the weights, so (renaming , − 1 to ,) we will assume:

(3.15) φ ∈ C$,α
φ,φ−1 , ψ ∈ C$,α

φ,ψ−1 , ϕ ∈ C$,α
φ,ϕ−1 .

(2) As discussed in Appendix B, the following conditions are useful for deriving the
scaling property: Let us denote by Bp the open ball of centre p with radius φ(p)/2.
We assume that there exist constants C1, C2, C3 > 0 such that for all p ∈ M and all
y ∈ Bp, we have

C−1
1 φ(p) " φ(y) " C1φ(p),(3.16)

C−1
2 ϕ(p) " ϕ(y) " C2ϕ(p),(3.17)

C−1
3 ψ(p) " ψ(y) " C3ψ(p).(3.18)

(3) Since the tool to handle non-linearities in this paper is the inverse function
theorem, we need to make sure that the changes in the initial data are small as
compared to the data themselves. A necessary condition for that is that the new
metric be uniformly equivalent to the original one. For example, in the setting of
Theorem 3.6, one way of ensuring this is

(3.19) ψ2φ2Ck,α
φ,ϕ(g0) ⊂ Ck,α

φ,1 (g0).

This will hold under the following condition:

Proposition 3.10. — The inequality

(3.20) ψ2φ2ϕ−1 " C.

implies (3.19).

In order to check this the reader might wish to prove first that the conditions
imposed so far imply that

Lemma 3.11. — If u ∈ Ck,α
φ,ϕ1

(g) and v ∈ Ck,α
φ,ϕ2

(g), with one of the ϕa’s satisfying
(3.17) and φ satisfying (3.15) with , ! k, then uv ∈ Ck,α

φ,ϕ1ϕ2
(g).

Lemma 3.11 can be used to show an equivalent of Lemma 2.5 in weighted Hölder
spaces.
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(4) The last condition will be the contents of Definition 3.12 that follows. We em-
phasize that all the conditions spelled out here will be satisfied in all the applications
we have in mind.

Definition 3.12. — We will say that an operator L from H̊3
φ,ψ×H̊4

φ,ψ to H̊1
φ,ψ×H̊0

φ,ψ

satisfies the weighted elliptic regularity condition if there exists a constant C such that
for all (Y, N) in H̊3

φ,ψ × H̊4
φ,ψ satisfying L(Y, N) ∈ Ck+1,α

φ,ϕ × Ck,α
φ,ϕ we have (Y, N) ∈

Ck+3,α
φ,ϕ × Ck+4,α

φ,ϕ with

(3.21) ‖(Y, N)‖Ck+3,α
φ,ϕ ×Ck+4,α

φ,ϕ
" C

(
‖L(Y, N)‖Ck+1,α

φ,ϕ ×Ck,α
φ,ϕ

+ ‖(Y, N)‖H3
φ,ψ×H4

φ,ψ

)
.

Armed with those conditions we can pass to an existence theorem in weighted
Hölder spaces:

Proposition 3.13 (Existence of solutions in weighted Hölder spaces, I)
Let k ∈ N, 0 < α < 1, assume that (3.15) with , ! k + 4 holds, and that (3.16)-

(3.18) and (3.20) hold, together with

(3.22) ψ2ϕ−1 " C.

In addition to the hypotheses of Theorem 3.7, suppose that g0 ∈ Ck+4,α, and that

Ric (g0) ∈ φ−2Ck+2,α
φ,1 (g0), K0 ∈ Ck+3,α

φ,1 (g0) ∩ φ−2Ck+2,α
φ,1 (g0).

We further assume that the weights φ, ϕ and ψ have the scaling property, cf. the end
of Appendix A and Appendix B. Suppose, next, that we have the continuous inclusion

(3.23) ψ2Ci,α
φ,ϕ2(g) ⊂ H̊i

φ,ψ(g)

for i = k, k + 1, with the inclusion norms uniformly bounded for g close to g0 in
Ck+4,α

φ,1 (g0). Assume finally that Lφ,ψ(K, g) satisfies the weighted elliptic regularity
condition, with a uniform constant C in (3.21) for (K, g) close to (K0, g0) in

(
Ck+3,α

φ,1 (g0) ∩ φ−2Ck+2,α
φ,1 (g0)

)
× Ck+4,α

φ,1 (g0).

If the source (δJ, δρ) is in

ψ2Φ−1(H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g)) ∩ ψ2Φ−1(Ck+1,α
φ,ϕ (g) × Ck,α

φ,ϕ(g)),

with sufficiently small norm, then the solution obtained in Theorem 3.7 is in

ψ2(H̊k+2
φ,ψ (g) × H̊k+2

φ,ψ (g)) ∩ ψ2(Ck+2,α
φ,ϕ (g) × Ck+2,α

φ,ϕ (g)).

Proof. — We start with a lemma, which we leave as an exercise to the reader (here
Lemma 3.11 together with Equations (3.20) and (3.22) are useful):

Lemma 3.14. — Under the conditions of Proposition 3.13, the map

(3.24)
Ck+3,α

φ,ϕ (g) × Ck+4,α
φ,ϕ (g) −→ Ck+1,α

φ,ϕ (g) × Ck,α
φ,ϕ(g)

(Y, N) /−→ ψ−2Φ
{(

J
ρ

)
[(K, g) + ψ2P ∗Φ(Y, N)] −

(
J
ρ

)
(K, g)

}

is smooth in a neighborhood Uk of zero.
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Returning to the proof of Proposition 3.13, we use the notations of the proof of
Theorem 3.7 and we apply Proposition G.2 with Ex = ψ2(Ck+2,α

φ,ϕ (g) × Ck+2,α
φ,ϕ (g)),

Fx = Ck+1,α
φ,ϕ (g) × Ck,α

φ,ϕ(g),

Gx = K⊥g

0 ∩
(
ψ2(Ck+1,α

φ,ϕ2 (g) × Ck,α
φ,ϕ2(g))

)
,

and with A — a neighborhood of (K0, g0) in

[W k+3,∞
φ (g0) ∩ φ−2W k+2,∞

φ (g0) × W k+4,∞
φ (g0)]

∩ [Ck+3,α
φ,1 (g0) ∩ φ−2Ck+2,α

φ,1 (g0) × Ck+4,α
φ,1 (g0)].

We have continuous inclusions Gx ⊂ Fx and Gx ⊂ Wx by (3.23). The condition 1.
of Proposition G.2 holds by the hypothesis that Lφ,ψ satisfies the weighted elliptic
regularity condition, and the form of the right inverse used here. Condition 2. and
3. there hold because J and ρ are twice-differentiable (actually smooth) functions of
their arguments by Lemma 3.14.

Remark 3.15. — There is an intriguing mismatch between the order of differen-
tiability of the initial data set (K, g) at which the inverse function theorem is being
applied, and the order of differentiability of the final data (K+δK, g+δg). This seems
unavoidable in our setup, and leads to several unpleasant features such as dependence
of the neighborhoods on which we can solve the equations upon the degree of differ-
entiability, or failure to produce a Banach manifold structure for the set of solutions,
etc. In a forthcoming publication we will give a partial cure to this problem [24].

We continue with Hölder continuous solutions in the setup of Theorem 3.9:

Proposition 3.16 (Existence of solutions in weighted Hölder spaces, II)
Let k ∈ N, 0 < α < 1, assume that (3.15) with , ! k + 4 holds, and that (3.16)-

(3.18) and (3.20) hold. In addition to the hypotheses of Theorem 3.9, suppose that
g0 ∈ Ck+4,α, and that

Ric (g0) ∈ φ−2Ck+2,α
φ,1 (g0), K0 ∈ φ−1Ck+3,α

φ,1 (g0).

We further assume that the weights φ, ϕ and ψ have the scaling property, cf. the end
of Appendix A and Appendix B. Suppose, next, that we have the continuous inclusions

(3.25) ψ2φ2Ci,α
φ,ϕ2(g) ⊂ H̊i

φ,ψ(g)

for i = k, k + 1, with the inclusion norms uniformly bounded for g close to g0 in
Ck+4,α

φ,1 (g0). Assume finally that Lφ,ψ(K, g) satisfies the weighted elliptic regular-
ity condition, with a uniform constant C in (3.21) for (K, g) close to (K0, g0) in
φ−1Ck+3,α

φ,1 (g0) × Ck+4,α
φ,1 (g0). If the source (δJ, δρ) is in

ψ2(H̊k+1
φ,ψ (g) × H̊k

φ,ψ(g)) ∩ ψ2(Ck+1,α
φ,ϕ (g) × Ck,α

φ,ϕ(g)),

MÉMOIRES DE LA SMF 94



CHAPTER 3. ISOMORPHISM THEOREMS 17

with sufficiently small norm, then the solution obtained in Theorem 3.9 is in

ψ2(φH̊k+2
φ,ψ (g) × φ2H̊k+2

φ,ψ (g)) ∩ ψ2(φCk+2,α
φ,ϕ (g) × φ2Ck+2,α

φ,ϕ (g)).

Propositions 3.13 and 3.16 give existence of Hölder continuous solutions. We can
apply the usual bootstrap arguments to those solutions to obtain smoothness, when
all the objects at hand are smooth (however, as already pointed out, the bootstrap
does not appear to work for solutions in Sobolev spaces):

Proposition 3.17 (Higher regularity). — Let k ∈ N, α ∈ (0, 1), assume that (3.15)
with , ! k + 4 holds, and that (3.16)-(3.18) and (3.20) hold. Suppose moreover that
the scaling property, as spelled out at the end of Appendix A, holds. Assume that
(K, g) ∈ Ck+3,α × Ck+4,α and (Y, N) ∈ C3,α

φ,ϕ(g) × C4,α
φ,ϕ(g).

(1) If (3.22) holds and if

(3.26)
(

J
ρ

)
[(K, g) + ψ2P ∗Φ(Y, N)] −

(
J
ρ

)
[(K, g)] ∈ ψ2Φ−1(Ck+1,α

φ,ϕ (g) × Ck,α
φ,ϕ(g)),

then (Y, N) ∈ Ck+3,α
φ,ϕ (g) × Ck+4,α

φ,ϕ (g), and thus

(δK, δg) := ψ2P ∗Φ(Y, N) ∈ ψ2(Ck+2,α
φ,ϕ (g) × Ck+2,α

φ,ϕ (g)).

(2) Similarly, if

(3.27)
(

J
ρ

)
[(K, g) + ψ2Φ2P ∗(Y, N)] −

(
J
ρ

)
[(K, g)] ∈ ψ2(Ck+1,α

φ,ϕ (g) × Ck,α
φ,ϕ(g)),

then (Y, N) ∈ Ck+3,α
φ,ϕ (g) × Ck+4,α

φ,ϕ (g)), thus

(δK, δg) ∈ ψ2(φCk+2,α
φ,ϕ (g) × φ2Ck+2,α

φ,ϕ (g)).

Proof. — It suffices to rewrite the rescaled non-linear elliptic equation (3.27) for
(Y, N) as a linear elliptic equation for (Y, N) and freeze coefficients (depending on
(K + δK, g + δg) hence on (Y, N)). The interior Hölder estimates [54, Theorem 6.2.5,
p. 223] on the sets Ω̂α appearing in the definition of scaling property give the local
regularity, and the scaling property gives the global weighted regularity.

In situations in which P ∗ has trivial kernel the above theorems produce solutions of
the constraint equations. As made clear by the analysis of Corvino [30], solutions can
be obtained even when a non-trivial kernel is present in the following circumstances:
Suppose that the kernel K0 of P ∗ at (K0, g0) is non-trivial, set k = dimK0. Assume
we are given a family of pairs (KQ,λ, gQ,λ), where λ ∈ [λ0,∞[ and Q ∈ U , where U is
an open in Rk, such that xQ,λ := (KQ,λ, gQ,λ) goes to (K0, g0) in A when λ goes to
infinity, uniformly in Q ∈ U . Assume, in the setup of Theorem 3.7, further that

ψ−2Φ
(

δJQ,λ

δρQ,λ

)
:= ψ−2Φ

{(
J
ρ

)
(KQ,λ, gQ,λ) −

(
J
ρ

)
(K0, g0)

}
,

goes to zero in H̊k+1
φ,ψ (gQ,λ)× H̊k

φ,ψ(gQ,λ) when λ goes to infinity, uniformly in Q ∈ U .
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If in the setup of Theorem 3.9, assume instead that the same holds for the family

ψ−2

(
δJQ,λ

δρQ,λ

)
:= ψ−2

{(
J
ρ

)
(KQ,λ, gQ,λ) −

(
J
ρ

)
(K0, g0)

}
,

Then for λ large enough,
(

δJQ,λ

δρQ,λ

)
is less than ε for all Q ∈ U . So, in the setup of

Theorem 3.7, we can solve

(3.28) fxQ,λ(δxQ,λ) = −πK⊥gQ,λ
ψ−2Φ

(
δJQ,λ

δρQ,λ

)
,

while in the setup of Theorem 3.9 we omit the Φ factor in (3.28); recall that fx has
been defined in (3.12). Let e(i), i = 1, . . . , k, be any basis of K0, we define the family
of maps

Fλ : U −→ Rk(3.29)

Q /−→
(
〈ψ−2Φ

{(
J
ρ

)
(KQ,λ + δKQ,λ, gQ,λ + δgQ,λ) −

(
J
ρ

)
(K0, g0)

}
, e(i)〉K0

)
,

assuming that we are in the context of Theorem 3.7. In the case of Theorem 3.9 the
Φ factor should be removed from (3.29). We note the following result:

Lemma 3.18. — Let U and V be open sets in Rn, suppose that G is a homeomorphism
from U to V , and consider a family {Gλ}λ∈R of continuous functions from U to Rn

which converge uniformly to G when λ goes to infinity. Then for all y in V , if λ is
large enough, there exists xλ ∈ U such that

Gλ(xλ) = y.

Proof. — Consider the family of maps uλ := Id − Gλ ◦ G−1 from V to Rn, the uλ’s
converge uniformly to 0 when λ goes to infinity. Let y in V and let r > 0 be such that
the closed ball B(y, r) is included in V . If λ is large enough, supz∈B(y,r) |uλ(z)| " r,
then the map z /→ y + uλ(z) is a continuous map from B(y, r) to B(y, r). From
the Brouwer fixed point theorem (cf., e.g. [42]) there exists yλ ∈ B(y, r) such that
yλ = y + uλ(yλ), we then set xλ = G−1(yλ).

If there exists a function h(λ) such that Gλ := h(λ)Fλ satisfies the condition of
Lemma 3.18, and assuming further that 0 is in V , then for all λ large enough we can
choose Qλ such that Fλ(Qλ) = 0, hence

(
J
ρ

)
(KQλ,λ + δKQλ,λ, gQλ,λ + δgQλ,λ) =

(
J
ρ

)
(K0, g0).
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It is important to emphasize that if (KQ,λ, gQ,λ) − (K0, g0) is not in VxQ,λ , then
(xQ,λ + δxQ,λ) '= (K0, g0), i.e., we have constructed a solution different from the
original one. Summarising, we have shown:

Theorem 3.19. — Under the hypotheses just described, the projection operators
πK⊥g

0
in (3.11) and (3.14) can be removed for all λ large enough.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003





CHAPTER 4

AN ASYMPTOTIC INEQUALITY

The isomorphism theorems of the previous section all rely on the asymptotic esti-
mate (3.1). The object of this section is to reduce the proof of that estimate to two
simpler estimates, one involving only Y and the other involving only N . It turns out
that some decay conditions are needed for that:

Definition 4.1. — We will say that (M, g, K, φ) satisfy the asymptotic condition a)
if there exists a sequence Ui ⊂ M of open relatively compact sets such that U i ⊂ Ui+1

(closure in M , not in M) with

(4.1) M = ∪∞
i=1Ui,

and

lim
i→∞

‖K‖L∞(M!Ui) = lim
i→∞

‖φ2K‖L∞(M!Ui) = lim
i→∞

‖φ∇K‖L∞(M!Ui) = 0,(4.2a)

lim
i→∞

‖φ2Ric (g)‖L∞(M!Ui) = 0.(4.2b)

We will say that (M, g, K, φ) satisfy the asymptotic condition b) if (4.1) and (4.2b)
hold and if instead of (4.2a) we have

(4.3a) lim
i→∞

‖φK‖L∞(M!Ui) = lim
i→∞

‖φ2∇K‖L∞(M!Ui) = 0,

For any vector field Y set

(4.4) S(Y )ij := ∇(iYj) =
1
2

(∇iYj + ∇jYi) .

We can now give a sufficient condition for (3.1):

Lemma 4.2. — Under the hypotheses of Lemma 2.7, assume that (M, g, K, φ) sat-
isfies the asymptotic condition a). Then (3.1) is equivalent to the requirement that
there exists a compact set and a constant C such that for all smooth (Y, N) supported
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outside this compact set we have

C‖S(φY ))‖L2
ψ
(g0) ! ‖Y ‖L2

ψ
(g0),(4.5a)

C‖∇∇(φ2N)‖L2
ψ
(g0) ! ‖N‖H̊1

φ,ψ
(g0).(4.5b)

Proof. — Setting Y = 0 or N = 0 in (3.1) one obtains (4.5) by straightforward
manipulations (replacing the compact set K of Proposition 3.1 by a larger compact
set if necessary). In order to prove the reverse implication let us start by establishing
the inequality

(4.6) ‖Y ‖H̊1
φ,ψ(g0) + ‖N‖H̊1

φ,ψ(g0) " C‖P ∗(φY, φ2N)‖L2
ψ(g0),

for all (Y, N) supported in M !U i, for i large enough. Let P ∗
a , a = 1, 2, be defined as

P ∗(Y, N) =:
(

P ∗
1 (Y, N)

P ∗
2 (Y, N)

)
;

from Equation (2.4) one finds

‖ − 2α(S(φY )) + P ∗
1 (φY, φ2N)‖L2

ψ(g0) " C‖φ2K‖L∞‖N‖L2
ψ(g0),(4.7)

where α is as in (2.15). Equation (4.5a) together with Equation (2.18) (with b = 0
there) yield

c‖Y ‖H̊1
φ,ψ(g0) " 2‖Y ‖L2

ψ(g0) + 2‖α(S(φY ))‖L2
ψ(g0)

" C‖S(φY )‖L2
ψ(g0) + 2‖α(S(φY ))‖L2

ψ(g0) " C′‖α(S(φY ))‖L2
ψ(g0)

= C′‖α(S(φY )) + P ∗
1 (φY, φ2N) − P ∗

1 (φY, φ2N)‖L2
ψ(g0)

" C′
(
‖P ∗

1 (φY, φ2N)‖L2
ψ(g0) + C‖φ2K‖L∞‖N‖L2

ψ(g0)

)
.(4.8)

Applying (4.5b) it holds that

(4.9) ‖N‖H̊1
φ,ψ(g0)

" C‖∇∇(φ2N)‖L2
ψ(g0) " C2‖α(∇∇(φ2N)‖L2

ψ(g0).

From Equation (2.4) we have

‖α(∇∇(φ2N)) − P ∗
2 (φY, φ2N)‖L2

ψ(g0)

" C

(
‖K‖L∞(M!Ui)‖∇(φY )‖L2

ψ(g0) + ‖φ∇K‖L∞(M!Ui)‖Y ‖L2
ψ(g0)

+
(
‖φ2Ric ‖L∞(M!Ui) + ‖(φK)2‖L∞(M!Ui)

)
‖N‖L2

ψ(g0)

)

" ε
(
‖Y ‖H̊1

φ,ψ(g0)
+ ‖N‖L2

ψ(g0)

)
,

(4.10)

where ε can be made as small as desired by choosing i large enough. It then follows
from Equation (4.9) that

(4.11) ‖N‖H̊1
φ,ψ(g0) " C‖P ∗

2 (φY, φ2N)‖L2
ψ(g0) + Cε

(
‖Y ‖H̊1

φ,ψ(g0) + ‖N‖L2
ψ(g0)

)
.
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Adding (4.8) and (4.11), and choosing i large enough — so that ε is small enough —
one obtains Equation (4.6). We note that from (4.6) by similar manipulations one
can further obtain

(4.12) ‖Y ‖H̊1
φ,ψ(g0) + ‖N‖H̊2

φ,ψ(g0) " C‖P ∗(φY, φ2N)‖L2
ψ(g0),

but this is irrelevant for our purposes.

An identical calculation yields:

Lemma 4.3. — Under the hypotheses of Lemma 2.8, assume that (M, g, K, φ) satis-
fies the asymptotic condition b). Then (3.4) is equivalent to the requirement that for
all smooth (Y, N) supported outside a compact set we have

C‖φS(Y ))‖L2
ψ
(g0) ! ‖Y ‖L2

ψ
(g0),

C‖φ2∇∇N‖L2
ψ
(g0) ! ‖N‖H̊1

φ,ψ
(g0).
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CHAPTER 5

COMPACT BOUNDARIES

Let us justify the inequality (4.5a) in a neighborhood of a compact boundary ∂M .
We assume that the metric is as in Appendix C, in particular Equation (C.3) holds.
We start with the following:

Proposition 5.1. — Let s '= −1/2 and suppose that

|Hess (x)| = o(x−1).

Then there exists a neighborhood Os of ∂M such that for every C1 vector field with
compact support in Os ! ∂M we have

∫
x2s|Y |2 " C

∫
x2s+2|S(Y )|2,(5.1)

for some constant C, where S is defined by Equation (4.4).

Remark 5.2. — The restriction s '= −1/2 is sharp, which can be seen by considering
the family of vector fields χn(1 − χn0)Y , n ! n0, where Y is a Killing vector which
does not vanish on ∂M , and where the cut-off functions χn are defined as χn(x) = 1
for x ! 1/n, χn(x) = ln(2nx)/ ln 2 for 1/(2n) " x " 1/n, χn(x) = 0 otherwise. The
resulting χn’s are not C1, but this is enough to invalidate (5.1); in any case, a small
smooth perturbation of χn will yield the required C1 example.

Proof. — The result is a straightforward consequence of Corollary D.4.

We shall consider metrics which can be quite singular near the boundary; this
is mainly motivated by the applications to conformally compactifiable metrics, see
Section 6 below. To control the boundary behavior of g we thus introduce the following
definition:

Definition 5.3. — Let k ∈ N and let W be a space of symmetric tensors on M . We
shall say that g has an (W , k)–behavior at ∂M if there exists a metric gM on M of
class Ck(M) such that g − gM ∈ W .
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In the remainder of this section we assume that M is a compact manifold with
boundary. We take the weight function φ as

φ := x,

where x is any defining function for ∂M . For k ∈ N and s ∈ R, we define

(5.2) H̊s
k(g) := H̊k

x,x−s−n/2(g).

The labeling of the spaces here is motivated by the following decay property (cf.,
e.g., [1])

(5.3) f ∈ H̊β
k (g), k > n/2 =⇒ f = o(xβ).

We also have
xσ ∈ H̊s

k(g) iff σ > s + (n − 1)/2.

Let us define in the same way

Cs
k,α(g) := Ck,α

x,x−s(g).

When studying boundary behavior of solutions of PDE’s near boundaries, alterna-
tive useful classes of weighted spaces are obtained as follows: in a collar neighborhood
of ∂M one introduces coordinate systems (x, vA), with ∂M being given by the equa-
tion {x = 0}. Instead of adding a weight factor x for each derivative, one adds x
factors to the ∂x derivatives only. Functions in such weighted spaces have more tan-
gential regularity, as compared with functions in the H̊ spaces or C spaces. However,
some of the simple scaling arguments which we have been using so far do not apply,
and considerably more work is required (see, e.g., [3]) to obtain a priori estimates
in such spaces. While those alternative spaces could probably be used in our con-
text here, leading to solutions with higher regularity, we have not attempted to carry
through a systematic study.

We start with the following:

Theorem 5.4. — Let M be a compact manifold with boundary, let k ! 0, and sup-
pose that g0 is a metric on M which has (W k+4,∞

x , k + 4)–behavior at ∂M , with

x2|Ric (g0)|g0 −→ x→00,(5.4a)

x|∇∇x|g0 −→ x→00,(5.4b)

K0 ∈ x−1W k+3,∞
x (g0), x|K0|g0 + x2|∇K0|g0 −→ x→00.(5.4c)

Then for all s '= (n−1)/2, (n−3)/2 and all (K, g) close to (K0, g0) in x−1W k+3,∞
x (g0)×

W k+4,∞
x (g0) norm, the map

πK⊥g
0

Lx,xs−n/2 : K⊥g

0 ∩ (H̊−s
k+3(g) × H̊−s

k+4(g)) −→ K⊥g

0 ∩ (H̊−s
k+1(g) × H̊−s

k (g))

is an isomorphism such that the norm of its inverse is bounded independently of (K, g).

Remark 5.5. — Conditions (5.4a)-(5.4b) will hold if there exists α > 0 such that g
has (xαW k+4,∞

x , k + 4)–behavior at ∂M .
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Proof. — We wish to apply Theorem 3.6, in order to do that we need to establish the
inequality (3.4) for Y ’s and N ’s supported outside of a sufficiently a large ball. For
s '= (n − 1)/2, Proposition 5.1 yields

(5.5) ‖Y ‖H̊−s
0

" C‖xS(Y )‖H̊−s
0

.

Applying Proposition C.3 twice we find that for s '= (n− 1)/2, (n− 3)/2 it holds that

(5.6) ‖N‖H̊−s
0

" C‖x∇N‖H̊−s
0

" C2‖x2∇∇N‖H̊−s
0

" C3‖x2α(∇∇N)‖H̊−s
0

,

where α is as in (2.6). Now (M, g, K, x) satisfy the asymptotic condition b) of Def-
inition 4.1 with Ui = {x > 1/i}, and Lemma 4.3 shows that we can apply Theo-
rem 3.6.

Our first main application of the abstract results of the previous sections is surjec-
tivity up to kernel of P ∗ of the constraint map. In particular surjectivity is obtained
if no kernel is present; a case with kernel will be analyzed in Section 8.1.

Theorem 5.6. — Under the hypotheses of Theorem 5.4 with s ! n − 2, s > 1 if
n = 3, k > n/2, the map

(5.7)
K⊥g

0 ∩ (H̊−s
k+3(g) × H̊−s

k+4(g)) −→ K⊥g

0 ∩ (H̊−s
k+1(g) × H̊−s

k (g))

(Y, N) /−→ πK⊥g
0

x−2s+n

{(
J
ρ

)
[(K, g) + x2s−nΦ2P ∗(Y, N)] −

(
J
ρ

)
(K, g)

}

is bijective in a neighborhood of zero. More precisely, there exists ε > 0 such that for
all (K, g) in x−1W k+3,∞

x (g0) × W k+4,∞
x (g0) for which

‖(K − K0, g − g0)‖x−1W k+3,∞
x (g0))×W k+4,∞

x (g0)
< ε

and for all pairs (δJ, δρ) ∈ H̊s−n
k+1(g) × H̊s−n

k (g) satisfying

‖(δJ, δρ)‖H̊s−n
k+1 (g)×H̊s−n

k (g) < ε

there exists a solution (δK, δg) = x2s−nΦ2P ∗(Y, N) ∈ H̊s−n+1
k+2 (g)× H̊s−n+2

k+2 (g)), close
to zero, of the equation

(5.8) πK⊥g
0

x−2s+n

{(
J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
= πK⊥g

0
x−2s+n

(
δJ
δρ

)
.

Proof. — The conditions s ! n−1 and k > n/2 ensure that the map of Equation (5.7)
is well defined and differentiable in a neighborhood of zero; a relatively straightforward
though lengthy check of that can be done using weighted Moser inequalities (see [26]
for proofs in a slightly different context; the arguments there adapt to the current
setting in a straightforward way). The result follows then from Theorem 3.9.

We also have solutions with Hölder regularity:
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Proposition 5.7. — Let M be a compact manifold with boundary, let k ! k0 :=
4n/25+ 1 (the smallest integer strictly larger than n/2), α ∈ (0, 1), and suppose that
g0 is a metric on M which has (C0

k+4,α, k + 5)–behavior at ∂M , with

x2|Ric (g0)|g0 −→ x→00,(5.9a)

x|∇∇x|g0 −→ x→00,(5.9b)

K0 ∈ C−1
k+3,α(g0), x|K0|g0 + x2|∇K0|g0 −→ x→00.(5.9c)

There exists ε > 0 such that if (K, g) in C−1
k+3,α(g0) × C0

k+4,α(g0), and if

‖(K − K0, g − g0)‖x−1W
k0+3,∞
x (g0)×W

k0+4,∞
x (g0)

< ε

‖(δJ, δρ)‖Ct
k0+1,α(g)×Ct

k0 ,α(g) + ‖(δJ, δρ)‖H̊t
k0+1(g)×H̊t

k0
(g) < ε

for some t ! −2, t > −2 if n = 3, then the solution (δK, δg) given by Theorem 5.6
(with s = t + n) is in Ct+1

k0+2,α(g) × Ct+2
k0+2,α(g). If moreover

(δJ, δρ) ∈ Ct
k+1,α(g) × Ct

k,α(g)

then the solution given by Theorem 5.6 is in Ct+1
k+2,α(g) × Ct+2

k+2,α(g).

Remark 5.8. — All the hypotheses in Proposition 5.7 will hold if g0 has (Cβ
k+4,α, k + 5)

behavior at ∂M , for some β > 0, with K0 ∈ Cβ−1
k+3,α; in particular they will hold if

(K0, g0) ∈ Ck+4(M) × Ck+5(M).

Proof. — Under the current hypotheses all the conditions of Proposition 3.16 with k
there equal to k0 are met. (The weighted elliptic regularity condition of Definition 3.12
is satisfied by the calculation (B.4), Appendix B.) The higher Hölder regularity follows
from Proposition 3.17.

A useful class of solutions is obtained by taking the weight to decay exponentially
at the boundary: the weighting functions are then chosen to be φ = x2 and ψ = es/x.
The main interest of this class of spaces stems from the inclusion

∩k∈NCk+α
x2,es/x ⊂ C∞(M),

which holds on a compact manifold with boundary M for any s > 0. Here the space
C∞(M) denotes the space of tensor fields which extend smoothly to ∂M , together with
all their derivatives; in fact all fields belonging to the left-hand-side of the inclusion
above can be smoothly extended by a zero tensor field. It is shown at the end of
Appendix B that the spaces Hk

x2,es/x satisfy the hypotheses of Lemma B.1; the latter
asserts that the scaling property holds for those spaces. This gives:

Theorem 5.9. — Let M be a compact manifold with boundary, let s > 0, k > n/2
and suppose that g0 is a metric on M which has (W k+4,∞

x2 , k + 4)–behavior at ∂M ,

MÉMOIRES DE LA SMF 94



CHAPTER 5. COMPACT BOUNDARIES 29

with

x4|Ric (g0)|g0 −→ x→00,(5.10a)

x|∇∇x|g0 −→ x→00,(5.10b)

K0 ∈ x−2W k+3,∞
x2 (g0), x2|K0|g0 + x4|∇K0|g0 −→ x→00.(5.10c)

There exists ε > 0 such that for all (K, g) in x−2W k+3,∞
x2 (g0)×W k+4,∞

x2 (g0) for which

‖(K − K0, g − g0)‖x−2W k+3,∞
x2 (g0)×W k+4,∞

x2 (g0) < ε,

and for all pairs (δJ, δρ) ∈ Hk+1
x2,es/x(g) × Hk

x2,es/x(g) satisfying

‖(δJ, δρ)‖Hk+1
x2,es/x(g)×Hk

x2,es/x (g) < ε

there exists a solution (δK, δg) = e−2s/xΦ2P ∗(Y, N) ∈ x2Hk+2
x2,es/x(g)×x4Hk+2

x2,es/x(g)),
close to zero, of the equation

(5.11) πK⊥g
0

e2s/x

{(
J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
= πK⊥g

0
e2s/x

(
δJ
δρ

)
.

Proof. — As before, we apply Theorems 3.6 and 3.9. We first show the inequality
(3.4) for Y ’s and N ’s supported in a sufficiently small neighborhood of ∂M . For
s '= 0, consider the equality in Corollary D.5. Taking absolute values of both sides,
and applying Cauchy-Schwarz to the left term in the resulting equality one obtains

(5.12) ‖Y ‖H0
x2,es/x

" C‖x2S(Y )‖H0
x2,es/x

.

Applying Proposition C.4 with u := x2∇N and with u = N , we find that for s '= 0 it
holds that

‖x4∇∇N‖H0
x2,es/x

! C1‖x2∇N‖H0
x2,es/x

=
C1

2
‖x2∇N‖H0

x2,es/x
+

C1

2
‖x2∇N‖H0

x2,es/x

! C1

2
‖x2∇N‖H0

x2,es/x
+ C2‖N‖H0

x2,es/x

! C3‖N‖H1
x2,es/x

.

The inequality (3.4) is then satisfied. Now (M, g, K, x) satisfy the asymptotic con-
dition b) of Definition 4.1 with Ui = {x > 1/i}, and Lemma 4.3 shows that we can
apply Theorem 3.6. The conditions s > 0 and k > n/2 ensure that the map of
Equation (3.13) is well defined and differentiable in a neighborhood of zero. (Here
one should use weighted Moser inequalities, which can be established by the methods
of [26] together with the scaling arguments of Appendix B.) The result follows then
from Theorem 3.9.
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It is easy to check that the spaces Hk
x2,es/x in Theorem 5.9 can be replaced by the

spaces Hk
x2,x2aes/x , for any a ∈ R, we leave the details to the reader. The need for

such a generalization arises when wishing to pass from weighted Sobolev spaces to
exponentially weighted Hölder spaces: indeed, Equation (B.4), Appendix B, gives

(5.13) ‖u‖Ck+m,α

x2,x2aes/x
(M) " C(‖Pu‖Ck,α

x2,x2aes/x
(M) + ‖u‖L2

x2(a−n/2)es/x(M)).

and leads to the following proposition, the details are left to the reader:

Proposition 5.10. — Let M be a compact manifold with boundary, let k ! k0 :=
4n/25 + 1 (the smallest integer strictly larger than n/2), and suppose that g0 is a
metric on M which has (Ck+4,α

x2,1 , k + 5)–behavior at ∂M . Assume that (5.10) holds.
Then there exists ε > 0 such that if (K, g) in x−2Ck+3,α

x2,1 (g0) × Ck+4,α
x2,1 (g0) with

‖(K − K0, g − g0)‖x−2W
k0+3,∞
x2 (g0)×W

k0+4,∞
x2 (g0)

< ε,

and if

‖(δJ, δρ)‖
C

k0+1,α

x2,et/x (g)×C
k0,α

x2,et/x (g)
+ ‖(δJ, δρ)‖

H
k0+1

x2,x−net/x (g)×H
k0
x2,x−net/x (g)

< ε

with t > 0, then the solution (δK, δg) given by Theorem 5.9 is in x2Ck0+2,α
x2,et/x (g) ×

x4Ck0+2,α
x2,et/x (g). If moreover (δJ, δρ) ∈ Ck+1,α

x2,et/x(g) × Ck,α
x2,et/x(g) then the solution given

by Theorem 5.9 is in x2Ck+2,α
x2,et/x(g) × x4Ck+2,α

x2,et/x(g).

Choose some α > 0 and define the Fréchet spaces C∞
x2,es/x(g) as the collection of

all functions or tensor fields which are in Ck,α
x2,es/x(g) whatever k ∈ N, equipped with

the family of semi-norms {‖ · ‖Ck,α

x2,es/x
(g), k ∈ N}. We then have:

Corollary 5.11. — Under the hypotheses of the preceding proposition, if (δJ, δρ) ∈
C∞

x2,es/x(g) × C∞
x2,es/x(g), and if (K, g) ∈ C∞(M) × C∞(M), then the solution given

by Theorem 5.9 is in

x2C∞
x2,es/x(g) × x4C∞

x2,es/x(g) ⊂ C∞(M) × C∞(M).

In fact (δK, δg) can be smoothly extended by zero across ∂M .
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A Riemannian manifold (M, g) will be said to be conformally compactifiable if

(1) M = M ∪ ∂M is a compact manifold with non-empty boundary;
(2) let x be any defining function for ∂M , then the tensor field x2g extends by

continuity to a continuous Riemannian metric g on M .

This definition encompasses Riemannian manifolds such as hyperbolic space. The
associated initial data occur in the context of space-times which are asymptotically
flat in lightlike directions [3, 4, 39], or in that of asymptotically anti-de Sitter space-
times [38,48].

The topological setup here is thus identical to that of the previous section, but the
metrics g differ from the ones used there by a rescaling factor x2. It turns out that
there is a simple correspondence of the functional spaces H̊α

k from the previous sec-
tion with a class of natural weighted spaces associated to conformally compactifiable
metrics: since g = x−2g on M we obviously have

L2
ψ(g) = L2

x−n/2ψ(g).

Further, assuming that (A.2) holds for 0 " i " k with φ = x and g there replaced
by g (recall that this will hold if g has (W k,∞

x , k)–behavior at ∂M in the sense of
Definition 5.3, in particular that will be the case if g is Ck(M)) it is simple to check
that

Hk
1,ψ(g) = Hk

x,x−n/2ψ(g)

for tensors; 0 " i " k − 1 in (A.2) would suffice for functions. It is therefore natural
(see (5.2)-(5.3)) to define

(6.1) H̊s
k(g) := H̊k

1,x−s(g) = H̊s
k(g).

Let us define in the same way

Cs
k,α(g) := Ck,α

x,x−s(g) = Cs
k,α(g).
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We note that
xσ ∈ H̊s

k iff σ > s + (n − 1)/2.

Similarly to (5.3) we have

(6.2) f ∈ H̊β
k (g), k > n/2 =⇒ f = o(xβ).

We will be mainly interested in conformally compactifiable metrics such that x2g
has (H̊α

k , k)– or Cs
k,α–behavior at the conformal boundary, α > 0; such metrics arise

naturally when solving the constraint equations via the conformal method [3,4].
We will need some estimates on P ∗(Y, N) extending those of Section 4, when

K = λg + L,

where λ is a uniformly bounded function on M . We will further assume that

|L|g = o(x−2) and |∇L|g = o(x−3).

If we use this particular choice of K in equation (2.4), we find

(6.3) P ∗(Y, N) =
(

P ∗
1 (Y, N)

P ∗
2 (Y, N)

)

=





2(∇(iYj) −∇lYlgij − gijλN + nλ Ngij) + o(x−2)N

2λ(∇lYlgij −∇(iYj)) − ∆Ngij + ∇i∇jN − NRic (g)ij

+2Nλ2gij − 2Nnλ2gij + o(x−2)(∇Y ) + o(x−3)(Y ) + o(x−2)N



 ,

where o(xα) denotes a tensor the g–norm of which is o(xα). We then have

(6.4) λP ∗
1 (Y, N) + P ∗

2 (Y, N) = −∆Ngij + ∇i∇jN − NRic (g)ij

+ o(x−2)(∇Y ) + o(x−3)(Y ) + o(x−2)N.

If we prove that for all (Y, N) supported in a neighborhood O of ∂M ,

‖S(Y )‖H̊s
0

! C‖Y ‖H̊s
0
,(6.5a)

‖ − ∆Ng + ∇∇N − NRic (g)‖H̊s
0

! C‖N‖H̊s
1
.(6.5b)

then we will have from (6.5a) and (2.18):
(6.6)
‖Y ‖H̊s

1
" C(‖Y ‖H̊s

0
+ ‖S(Y )‖H̊s

0
) " C′‖S(Y )‖H̊s

0
" C′′(‖P ∗

1 (Y, N)‖H̊s
0
+ ‖N‖H̊s

0
),

and from (6.5b) and (6.4),

(6.7) ‖λ‖L∞‖P ∗
1 (Y, N)‖H̊s

0
+ ‖P ∗

2 (Y, N)‖H̊s
0

! C‖N‖H̊s
1
− ε‖Y ‖H̊s

1
,

where ε is arbitrary close to zero, reducing O if necessary. Finally ε(6.6)+(6.7) gives

(‖λ‖L∞ + 1)‖P ∗
1 (Y, N)‖H̊s

0
+ ‖P ∗

2 (Y, N)‖H̊s
0

! C‖N‖H̊s
1
,

then for ε small, we obtain the asymptotic inequality (3.4) (with Φ = id) for P ∗:

(‖λ‖L∞ + 1)‖P ∗
1 (Y, N)‖H̊s

0
+ ‖P ∗

2 (Y, N)‖H̊s
0

! C‖Y ‖H̊s
0
+ C‖N‖H̊s

1
.
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Let us justify the inequality (6.5a) in a neighborhood of a compact boundary ∂M .
We have the following:

Proposition 6.1. — Let s '= (n− 1)/2, (n + 1)/2. Then there exists a neighborhood
Os of ∂M such that for every C1 vector field with compact support in Os ! ∂M we
have

∫
x2s|Y |2 dµg " C

∫
x2s|S(Y )|2 dµg,(6.8)

for some constant C, where S is defined by Equation (4.4).

Remark 6.2. — The argument given in Remark 5.2 shows that the restriction s '=
(n + 1)/2 is sharp. We suspect that the restriction s '= (n − 1)/2 can be removed.

Proof. — This is just a rewriting of Corollary D.12.

Theorem 6.3. — Let M be a compact manifold with boundary, let k ! 0, and sup-
pose that g0 is a conformally compact metric on M such that g0 = x−2g0, with g0

having (W k+4,∞
x , k + 4)–behavior at ∂M . Assume that

(6.9) K0 = λ0g0 + L0, L0, λ0 ∈ W k+3,∞
1 (g0), |L0|g0 −→ x→00, |∇L0|g0 −→ x→00.

Then for all s '= (n− 3)/2, (n− 1)/2, (n + 1)/2 and all (K, g) close to (K0, g0) in the
W k+3,∞

1 (g0) × W k+4,∞
1 (g0) norm, the map

πK⊥g
0

L1,xs : K⊥g

0 ∩ (H̊−s
k+3(g) × H̊−s

k+4(g)) −→ K⊥g

0 ∩ (H̊−s
k+1(g) × H̊−s

k (g))

is an isomorphism such that the norm of its inverse does not depend upon (K, g).

Proof. — We wish to apply Theorem 3.6. It follows from the discussion above that
we only need to establish the inequality (6.5) for Y ’s and N ’s supported outside of a
sufficiently a large compact set. For s '= (n − 1)/2, (n + 1)/2, Proposition 6.1 yields

(6.10) ‖Y ‖H̊−s
0

" C‖S(Y )‖H̊−s
0

.

Applying Proposition D.13 we find that for s '= (n−3)/2, (n−1)/2, (n+1)/2 it holds
that

(6.11) ‖N‖H̊−s
1

" C‖ − ∆Ng + ∇∇N − NRic (g)‖H̊−s
0

,

which is what had to be established.

A proof identical to that of Theorem 5.6 yields:

Theorem 6.4. — Under the hypotheses of Theorem 6.3 with

s ! 0, s '= (n − 3)/2, (n− 1)/2, (n + 1)/2, k > n/2,
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the map

(6.12)
K0

⊥g ∩ (H̊−s
k+3(g) × H̊−s

k+4(g)) −→ K0
⊥g ∩ (H̊−s

k+1(g) × H̊−s
k (g))

(Y, N) /−→ πK0
⊥g x−2s

{(
J
ρ

)
[(K, g) + x2sP ∗(Y, N)] −

(
J
ρ

)
(K, g)

}

is bijective in a neighborhood of zero. Thus, there exists ε > 0 such that for all (K, g)
close to (K0, g0) in W k+3,∞

1 (g0)×W k+4,∞
1 (g0), and for all pairs (δJ, δρ) ∈ H̊s

k+1(g)×
H̊s

k(g) with norm less than ε, there exists a solution (δK, δg) = x2sP ∗(Y, N) ∈
H̊s

k+2(g) × H̊s
k+2(g)), close to zero, of the equation

(6.13) πK0
⊥g x−2s

{(
J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
= πK0

⊥g x−2s

(
δJ
δρ

)
.

Remark 6.5. — For metrics which are sufficiently regular at the conformal boundary
it can be shown that any non-trivial solution of the equation P ∗(Y, N) = 0 satisfies
|N | + |Y |g ∼ 1/x near x = 0. This shows that if 0 " s < (n + 1)/2, then K0 = {0},
so that no projection operator is necessary in (6.13).

Proof. — The conditions s ! 0 and k > n/2 ensure that the map of Equation (6.12) is
well defined and differentiable in a neighborhood of zero; a relatively straightforward
though lengthy check of that can be done using weighted Moser inequalities (see [26]
for proofs in a slightly different context; the arguments there adapt to the current
setting in a straightforward way). The solvability of the equation (6.13) follows then
from Theorem 3.9.

A proof identical to that of Proposition 5.7 gives solutions with Hölder regularity:

Proposition 6.6. — Let M be a compact manifold with boundary, let k ! k0 :=
4n/25 + 1 (the smallest integer strictly larger than n/2), α ∈ (0, 1), and suppose
that g0 is a conformally compact metric on M such that g0 = x−2g0, with g0 having
(C0

k+4,α, k + 5)–behavior at ∂M . Assume that

(6.14) K0 = λ0g0 + L0, L0, λ0 ∈ C0
k+3,α(g0), |L0|g0 −→ x→00, |∇L0|g0 −→ x→00.

Then for all t ! 0, t '= (n − 3)/2, (n − 1)/2, (n + 1)/2 there exists ε > 0 such that if
(K, g) in C0

k+3,α(g0) × C0
k+4,α(g0), and if

‖(K − K0, g − g0)‖W
k0+3,∞
1 (g0)×W

k0+4,∞
1 (g0)

< ε

‖(δJ, δρ)‖Ct
k0+1,α(g)×Ct

k0,α(g) + ‖(δJ, δρ)‖H̊t
k0+1(g)×H̊t

k0
(g) < ε,

then the solution (δK, δg) given by Theorem 6.4 (with s = t) is in Ct
k0+2,α(g) ×

Ct
k0+2,α(g). If moreover (δJ, δρ) ∈ Ct

k+1,α(g) × Ct
k,α(g) then the solution given by

Theorem 6.4 is in Ct
k+2,α(g) × Ct

k+2,α(g).

One has very similar results in exponentially weighted Hölder and Sobolev spaces
as at the end of Section 5, the details are left to the reader.
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Definition 7.1. — Let W be a space of symmetric tensors on Rn ! B(R0), R0 !
1, where B(R0) is an open coordinate ball of radius R0 in Rn. We shall say that
(M, g) is W–asymptotically flat if there exists a set K ⊂ M and a diffeomorphism
χ−1 : M ! K → Rn ! B(R0) such that

(χ∗g)ij − δij ∈ W.

The region Mext := M ! K will be called an end of M . M will be said to have
compact interior if K is compact.

In the above definition we have assumed that M has only one end, there is an
obvious natural generalization of the above notion to any finite number of ends; the
results below generalize without any difficulties to such cases. We emphasize that in
Definition 7.1 the manifold M is allowed to have a compact boundary. We will often
use the symbol r to denote a function f on M such that f ◦ χ coincides with the
radius r on Rn ! B(R) for R large enough. The requirement R0 ! 1 has been made
for notational convenience, to guarantee that the function r, which will be used as a
weight on Mext , is strictly positive there.

The simplest choice for the W spaces above are the Cα
k Hölder spaces, defined as

the spaces of functions such that

(7.1) ‖f‖Cα
k

:= ‖(1 + r2)−α/2f‖C0
k

< ∞,

where ‖ ·‖C0
k

is the sum of sup norms of f and its derivatives up to order k, with each
derivative entering with a supplementary factor of r. If

f = f i1...ik
j1...j&∂i1 ⊗ · · ·⊗ ∂ik ⊗ dxj1 ⊗ · · ·⊗ dxj&

is a tensor field, then (7.1) should be used for each entry f i1...ik
j1...j& of f , with respect

to the natural coordinates xi on Rn, and a sum over the ip’s and jq’s of the norms
‖f i1...ik

j1...j&‖Cα
k

should be made.
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Somewhat sharper results can be obtained when working with manifolds for which
W is a weighted Sobolev space. We shall say that f ∈ rαW k,∞

r if (1 + r2)−α/2f ∈
W k,∞

r . This is equivalent to the requirement that f ∈ Cα
k−1, and that the dis-

tributional k’th derivatives of f satisfy a weighted Lipschitz condition. The met-
rics, solutions of the constraint equations which are obtained by our methods, are
(r−αW k+2,∞

r + H̊k
r,r−σ)–asymptotically flat with some α, σ > 0, k ! 2.

It is convenient to relabel the H̊k
r,rα spaces as follows: for k ∈ N and β ∈ R we set

(7.2) H̊ β
k := H̊k

r,r−n/2−β ,

so that the H̊ β
k spaces are the weighted Sobolev spaces of (A.1) with φ = r ◦ χ−1

and ψ a power of r ◦χ−1; the labeling here follows [7], and is motivated by the simple
inclusions [7]

(7.3) Cβ′

k ⊂ H̊ β
k , β′ < β ; H̊ β

k ⊂ Cβ
+k−n/2,, k > n/2.

In fact [7]

(7.4) f ∈ H̊ β
k , k > n/2 =⇒ f = o(rβ).

In order to apply Theorem 3.6 we need to establish the inequality (3.4) for tensor
fields with compact support in the asymptotic region, and we will use Lemma 4.3
for that. In addition to (C.7), we assume that the Hessian Hess r satisfies, in the
preferred coordinates on the asymptotic region,

(7.5) (Hess r)ij =
1
r
(δj

i − ninj) + o(r−1).

(Equation (7.5) will clearly hold without the error term for a flat metric; similarly
(7.5) will hold for metrics which are Cα

1 -asymptotically flat, for some α > 0; we note
that (7.5) implies (C.8).) For the convenience of the reader we restate Proposition D.9:

Proposition 7.2. — Let S be defined by Equation (4.4). Assume that g ∈ W 1,∞
loc ,

that

(7.6) |gij − δi
j | " ε on {r ! Rε},

and that (7.5) holds. Then for s ∈ R ! {0, 1} there exist constants R = R(s) and Cs

such that for all differentiable vector fields Y compactly supported outside of a ball of
radius R we have ∫

r−2s−n|Y |2 " Cs

∫
r−2s−n+2|S(Y )|2.(7.7)

Remark 7.3. — The result is sharp, compare the argument in Remark 5.2.

Proposition 7.2 gives, in essence, the inequality needed in Theorem 3.6 for s '∈
{0, 1}. This leads to the following rewording of Theorem 3.6 in the asymptotically
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flat context (there is also an equivalent of Theorem 3.4 here, we leave the transcription
to the reader):

Theorem 7.4. — Let g0 be r−αW k+4,∞
r –asymptotically flat for some α > 0 and

k ∈ N, suppose that

(7.8) K0 ∈ r−1W k+3,∞
r , K0 = o(r−1).

Then for all σ ∈ R ! {0, 1} and for all (K, g) close to (K0, g0) in r−1W k+3,∞
r (g0) ×

W k+4,∞
r (g0) norm, the map

πK⊥g
0

Lr,r−n/2−σ : K⊥g

0 ∩ (H̊ σ
k+3(g) × H̊ σ

k+4(g)) −→ K⊥g

0 ∩ (H̊ σ
k+1(g) × H̊ σ

k (g))

is an isomorphism such that the norm of its inverse does not depend upon (K, g).

Before passing to its proof, we note that Theorem 7.4 immediately implies:

Corollary 7.5. — Under the hypotheses of Theorem 7.4, the space of linearized
fields (δK, δg) ∈ H̊ −n−σ+1

k+1 × H̊ −n−σ+2
k+2 splits as a direct sum KerP ⊕ B, with the

restriction of the linearization P of the constraint map to B being an isomorphism of
B and of

K⊥g ∩
(
H̊ −n−σ

k+1 × H̊ −n−σ
k

)
.

In particular if there are no solutions (Y, N) ∈ H̊ σ
1 ×H̊ σ

2 of the equation P ∗(Y, N) =
0, then the map

H̊ −n−σ+1
k+2 × H̊ −n−σ+2

k+2 8 (δK, δg) −→ (δJ, δρ) := P (δK, δg) ∈ H̊ −n−σ
k+1 × H̊ −n−σ

k

is surjective.

Proof of Theorem 7.4. — We wish to apply Theorem 3.6, in order to do that we need
to establish the inequality (3.4) for Y ’s and N ’s supported outside of a sufficiently a
large ball. For σ '= 0, 1, Proposition 7.2 yields

(7.9) ‖Y ‖H̊ σ
0

" C‖S(Y )‖H̊ σ−1
0

.

Applying Proposition C.5 twice we find that for σ '= 0, 1 it holds that

(7.10) ‖N‖H̊ σ
1

" C‖∇N‖H̊ σ−1
0

" C2‖∇∇N‖H̊ σ−2
0

" C3‖α(∇∇N)‖H̊ σ−2
0

,

where α is as in (2.15). Now (M, g, K, r) satisfy the asymptotic condition a) of
Definition 4.1 with Ui = (χ−1)−1(B(i)! B(R0))∪U , where U is a relatively compact
open neighborhood of K (χ, R0 and K as in Definition 7.1), and Lemma 4.3 shows
that we can apply Theorem 3.6.

Elements in the kernel of P ∗ are called Killing initial data (KIDs) [9]. Existence of
non-zero KIDs implies existence of non-zero Killing vectors in the associated vacuum
space-time (see [8, 9] and references therein). We have the following corollary of
Theorem 7.4:
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Corollary 7.6. — Let g0 be r−αW k+4,∞
r –asymptotically flat for some α > 0 and

k ∈ N and suppose that Equation (7.8) holds.

(1) If σ " 0, or if
(2) σ '∈ {0, 1} and the set of nontrivial KIDs is empty,

then the conclusions of Theorem 7.4 hold without any projection.

Proof. — There are no nontrivial KIDs in H̊ σ
1 × H̊ σ

2 for σ " 0, then K0 = {0}.

Theorem 7.7. — Let g0 be r−αW k+4,∞
r –asymptotically flat for some α > 0 and

k > n/2, suppose that

(7.11) K0 ∈ r−1W k+3,∞
r , K0 = o(r−1).

Then for all σ ! 2 − n, σ '∈ {0, 1} the nonlinear map

(7.12)
K⊥g

0 ∩ (H̊ σ
k+3(g) × H̊ σ

k+4(g)) −→ K⊥g

0 ∩ (H̊ σ
k+1(g) × H̊ σ

k(g))

(Y, N) /−→ πK⊥g
0

rn+2σ

{(
J
ρ

)
[(K, g) + r−n−2σΦ2P ∗(Y, N)] −

(
J
ρ

)
(K, g)

}

is bijective in a neighborhood of zero. Thus, there exists ε > 0 such that for all (K, g)
close to (K0, g0) in r−1W k+3,∞

r (g0) × W k+4,∞
r (g0), and for all pairs

(δJ, δρ) ∈ H̊ −n−σ
k+1 (g) × H̊ −n−σ

k (g)

with norm less than ε, there exists a solution

(δK, δg) = r−n−2σΦ2P ∗(Y, N) ∈ H̊ −n−σ+1
k+2 (g) × H̊ −n−σ+2

k+2 (g)),

close to zero, of the equation

(7.13) πK⊥g
0

rn+2σ

{(
J
ρ

)
(K + δK, g + δg) −

(
J
ρ

)
(K, g)

}
= πK⊥g

0
rn+2σ

(
δJ
δρ

)

Proof. — The conditions σ ! 2 − n and k > n/2 ensure that the map of Equa-
tion (7.12) is well defined and differentiable in a neighborhood of zero. The result
follows then from Theorem 3.9.

Clearly, the projection operator in (7.13) is not needed when the hypotheses of
Corollary 7.6 are satisfied.

We also have solutions with Hölder regularity:

Proposition 7.8. — Let g0 be C−α
k+4,β–asymptotically flat for some α > 0, β ∈ (0, 1),

and k ! k0 := 4n/25+ 1 (the smallest integer strictly larger than n/2), suppose that

(7.14) K0 ∈ C−1
k+3,β , K0 = o(r−1).
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Then for all t ! 2, t '∈ {n, n+1} there exists ε > 0 such that if (K, g) in C−1
k+3,β(g0)×

C0
k+4,β(g0), and if

‖(K − K0, g − g0)‖r−1W
k0+3,∞
r (g0)×W

k0+4,∞
r (g0)

< ε

‖(δJ, δρ)‖C−t
k0+1,β(g)×C−t

k0,β(g) + ‖(δJ, δρ)‖H̊ −t
k0+1(g)×H̊ −t

k0
(g) < ε

then the solution (δK, δg) given by Theorem 7.7 (with σ = t − n) is in C−t+1
k0+2,β(g) ×

C−t+2
k0+2,β(g). If moreover (δJ, δρ) ∈ C−t

k+1,β(g) × C−t
k,β(g) then the solution given by

Theorem 7.7 is in C−t+1
k+2,β(g) × C−t+2

k+2,β(g).

Proof. — Under the current hypotheses all the conditions of Proposition 3.16 with k
there equal to k0 are met. (The weighted elliptic regularity condition of Definition 3.12
is satisfied by the calculation (B.4), Appendix B.) The higher Hölder regularity follows
from Proposition 3.17.

Remark 7.9. — One has very similar results in exponentially weighted Hölder and
Sobolev spaces as at the end of Section 5, the details are left to the reader. However,
the exponentially weighted conditions seem difficult to verify in the current case,
unless one is in a setting where the results of Section 5 can be applied. In such a case
sharper results are obtained by using the theorems of that section.
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CHAPTER 8

APPLICATIONS

In this section we will give several applications of the general results proved so
far. It should be clear that a key role in this approach is played by the kernel of P ∗.
As already mentioned in the previous section, elements of this kernel will be called
Killing Initial Data (KIDs). Thus, a KID is a pair (Y, N) such that

P ∗(Y, N) = 0.

Our first application of the techniques developed so far concerns the construction
of initial data which are exactly Kerrian outside of a compact set:

8.1. Space-times that are Kerrian near i0

(A version of) the following result has been announced in [31]; we assume that the
initial data manifold is three-dimensional:

Theorem 8.1. — Let g be r−αW k+4,∞
r –asymptotically flat for some α > 1/2 and

2 " k ∈ N, with K ∈ r−α−1W k+3,∞
r , and suppose that (K, g) satisfies the vacuum

constraint equations. We further assume that (K, g) satisfy the 3+1 equivalent of the
parity conditions (E.9),

(8.1) |g−ij | + r|∂k(g−ij)| + r|K−
ij | " C(1 + r)−α− , α− > α, α + α− > 2,

so that all Poincaré charges of (K, g) are finite and well defined, with the ADM four-
momentum being timelike. Then there exists R1 < ∞ such that for all R ! R1 there
exists an initial data set

(K̂R, ĝR) ∈ Ck+2 × Ck+2

satisfying the vacuum constraint equations everywhere such that (K̂R, ĝR) coincides
with (K, g) for r " R, and (K̂R, ĝR) coincides with initial data for some Kerr metric
for r ! 4R. If K and g are smooth, then (K̂R, ĝR) is smooth.
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Remark 8.2. — A family of (n + 1)–dimensional generalizations of the Kerr metric
has been found by Myers and Perry [55], we expect that it can be used to prove a
corresponding result in (n + 1) dimensions. The argument below carries over to any
dimension, the only element missing is an equivalent of Proposition F.1 for the family
of translated, rotated, and boosted Myers-Perry metrics.

Remark 8.3. — The factor 4 has been chosen for definiteness; an identical result
holds with (K̂R, ĝR) being Kerr for r ! λR for any constant λ > 1.

Remark 8.4. — The ADM momentum and angular momentum of (K̂R, ĝR) con-
verges to that of (K, g) as R tends to infinity.

Proof. — The required initial data will be constructed by a gluing procedure, on an
annulus, using a method due to Corvino [30, 31], together with Theorem 3.19. Let
e(i), i = 1, . . . , 10, be any basis of the space of KIDs for Minkowski space-time, let
Q(i) denote the Hamiltonian charge Q(Y(i), N(i), K, g) of (K, g) as given by (E.25)
with (Y(i), N(i)) = e(i). Let, as in Appendix F, Ki0 denote the set of initial data
for boosted, rotated, and translated Kerr metrics, and let (KQ, gQ) denote an initial
data set in Ki0 with Hamiltonian charge Q = (Q(i)) ∈ R10. For R ∈ [R0,∞) let the
scale-down map ΦR be defined as

ΦR : Γ(R, 4R) := B(0, 4R) ! B(0, R) −→ Γ(1, 4),

x /−→ x/R.
(8.2)

Let χ ∈ C∞(R3) be a spherically symmetric cut-off function such that 0 " χ " 1,
χ ≡ 1 on Γ(1, 2), and χ ≡ 0 on Γ(3, 4). On Γ(1, 4) set

gQ,R = R−2 (χΦ∗
Rg + (1 − χ)Φ∗

RgQ) ,

KQ,R = R−1 (χΦ∗
RK + (1 − χ)Φ∗

RKQ) .

Then the gQ,R’s form a family of metrics that converge, as R tends to infinity, in
weighted Sobolev topologies with arbitrary decay (at the boundary) index t > 1, to
the Euclidean metric g0 on Γ(1, 4), while the KQ,R’s converge to K0 ≡ 0:

(8.3) ‖gQ,R − g0‖H̊t
k+2

+ ‖KQ,R‖H̊t−1
k+2

" Cs,k,QR−β , β := min (α, 1)

(recall that the weighted Sobolev spaces used here have been defined in (5.2)). Further
the convergence is uniform in Q on any compact set of Q’s. We shall write x for (K, g),
xQ for (KQ, gQ), etc. We choose the index t to be larger than or equal to k + 5 —
say t = k + 6, in particular initial data in the space H̊t−1

k+2 × H̊t
k+2 vanish on ∂Γ(1, 4),

as well as their first derivatives. Further, this ensures the continuous embedding
H̊t−1

k+2 ⊂ Hk+2.
It follows from (8.3) that for R sufficiently large we have

(8.4) ‖J(xQ,R)‖H̊t−2
k+1

+ ‖ρ(xQ,R)‖H̊t−2
k

" CR−β,
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and Theorem 5.6 with s = t − 1 provides a solution δxQ,R ∈ H̊t−1
k+2 × H̊t

k+2 of Equa-
tion (5.8) satisfying

(8.5) ‖δxQ,R‖H̊t−1
k+2×H̊t

k+2
" CR−β.

Set δJ = J(xQ,R+δxQ,R), δρ = ρ(xQ,R+δxQ,R), let the parameter λ in Theorem 3.19
be equal to R, and consider the map Fλ defined in (3.29). We have

〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

=
〈
(Y(i), N(i)), ψ−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

=
∫

Γ(1,4)

(
Y j

(i)δJj + N(i)δρ
)

dµg.

Note that the weight factor ψ has vanished from the last integral. By (E.26) we have

(8.6)
〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

=
∫

{r=4}
Uαβ(xQ,R + δxQ,R)dSαβ

−
∫

{r=1}
Uαβ(xQ,R + δxQ,R)dSαβ + O(R−2β),

with the error term O(R−2β) being uniform in Q whenever Q ranges over a compact
set. Now, on S(0, 1) all the initial data considered coincide — up to a rescaling —
with (g, K) together with their first derivatives, so that by (E.19) we have

∫

{r=1}
UαβdSαβ = R−1

{
Q0

(i) + O(R−δ)
}

,

where Q0
(i) denotes the Hamiltonian charge of (K, g), for some δ > 0. Similarly,

on S(0, 4) all the initial data considered coincide (up to scale-down) with (KQ, gQ)
together with their first derivatives, so that

∫

{r=4}
UαβdSαβ = R−1

{
Q(i) + O((4R)−δ)

}
,

It follows that

(8.7)
〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

= R−1
{

Q(i) − Q0
(i) + O(R−min(δ,2β−1))

}
.

This implies that, up to an additive constant, the maps λFλ converge as λ = R tends
to infinity to the map Q of Proposition F.1; that last map is a homeomorphism, as
desired. The conclusion is obtained now from Theorem 3.19 by taking V ⊂ R10 to be
a ball around (Q0

(i)) of a radius small enough so that V is included in the image of
the map Q of Proposition F.1, with U = Q−1(V ).

Finally, if g and K are smooth, then smooth solutions can be obtained by using
the exponentially weighted spaces of Proposition 5.10, compare Corollary 5.11. In
the construction above one should choose the cut-off function χ to be constant in a
neighborhood of the boundary of the annulus Γ(1, 4).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003



44 CHAPTER 8. APPLICATIONS

8.2. Gluing asymptotically flat initial data sets

The gluing technique used in Section 8.1 does apply to much more general sit-
uations, as follows: a family of vacuum initial data {(Kω, gω)}ω∈Ω will be called a
reference family if the following holds:

(1) There exists R > 0 such that all the data sets (Kω, gω) are defined on R3 !
B(0, R).

(2) The metrics gω are r−αW k+4,∞
r –asymptotically flat for some ω-independent

constant α > 1/2 and 2 " k ∈ N, with Kω ∈ r−α−1W k+3,∞
r , and with the norms in

those spaces being bounded independently of ω ∈ Ω.
(3) The parity conditions (8.1) hold with g and K there replaced by gω and Kω,

for some ω-independent constants α− and C.
(4) The map which to (Kω, gω) assigns its Poincaré charges (pµ(ω), Jµν(ω)) is a

diffeomorphism between Ω and an open subset of R10:

(8.8) UΩ := {(pµ(ω), Jµν(ω))}ω∈Ω ⊂ R4 × R6.

There is an obvious equivalent of the definition above in the time symmetric con-
text: in this case one assumes that Kω ≡ 0, and one requires UΩ to be an open subset
of R4, with one parameter corresponding to mass, and three parameters corresponding
to the centre of mass.

It is proved in Appendix E that the collection of initial data obtained from boosted
and space-translated Kerr space-times provides an example of a reference family. More
generally, consider any one parameter family of vacuum initial data sets (Kλ, gλ) on
R3 ! B(0, R), λ ∈ (−ε, ε), which satisfies the decay and parity conditions of the
definition of a reference family. For definiteness we shall suppose that the ADM
four-momentum pµ(λ) of (Kλ, gλ) is a λ-independent timelike future pointing vector,
and that the length squared J ij(λ)Jij(λ) of the ADM angular momentum J ij(λ) of
(Kλ, gλ) varies smoothly in some open interval as λ changes. Then scaling (xi → axi,
g → a−2g for a ∈ R+), translating, and rotating the initial data, and boosting the
initial data hypersurface in the associated maximal globally hyperbolic development,
leads to a reference family such that the associated Poincaré charges form a neighbor-
hood of (pµ(0), Jµν(0)); this follows from the boost theorem [15, 17] together with
the analysis in Appendix E (here one needs to apply the boost theorem first to the
full metric, and then to its odd part).

Similarly, in the time symmetric context, an example of a reference family is pro-
vided by translated Schwarzschild initial data. More generally, if g is a scalar flat
metric on R3 ! B(0, R) which satisfies the decay and parity conditions of the defini-
tion of a reference family and which has non-vanishing ADM mass, then scaling and
translating provides a time-symmetric reference family.

A repetition of the proof of Theorem 8.1 gives:
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Theorem 8.5. — Under the hypotheses of Theorem 8.1, consider any reference fam-
ily {(Kω, gω)}ω∈Ω such that the associated set UΩ defined by (8.8) forms a neighbor-
hood of the Poincaré charge (pµ, Jµν) of (K, g). Then the conclusion of Theorem 8.1
holds with the new initial data set coinciding in the asymptotic region with one of
the members of the reference family rather than with one of the members of the Kerr
family.

The point of Theorem 8.5 is that it provides large families of initial data with well
controlled asymptotic behavior. As an example of application, let the reference family
consist of stationary metrics. Such metrics have well understood asymptotic behavior
(cf., e.g., [60]), and large families of non-trivial solutions (defined and smooth outside
of a compact set) have been constructed in [49, 57, 59]. Theorem 8.5 allows one to
modify an arbitrary initial data set in the asymptotic region so that it coincides
with exactly stationary, but not necessarily Kerrian, data there. Further, there is
a rather large freedom available. Now, a significant result of Dain, Damour and
Schmidt [34, 35] implies that the resulting vacuum space-time will have a smooth
I + complete to the past. Thus, initial data so constructed do have reasonably well
controlled maximal globally hyperbolic developments. We will see in Section 8.6 below
how to construct initial data that produce space-times with a complete smooth I ,
by using a variation of the technique above.

Another possibility is to choose as the reference family appropriate subsets of the
set of “almost stationary” metrics constructed in Section 8.3 below, see Theorem 8.9.
The metrics there are stationary (or static, in the time-symmetric case) to an order
as high as desired in an asymptotic expansion, without being exactly stationary out-
side of a compact set, which further increases the freedom available. One expects
(compare [40]) that some of those metrics will also admit complete, or past-complete,
conformal completions with a reasonably high degree of differentiability, but no rig-
orous statements of this kind are known so far.

All the constructions described so far can be repeated by specializing to the time-
symmetric case, setting

Y ≡ K ≡ 0

throughout. In this context Theorem 8.5 can be rephrased as:

Theorem 8.6. — Let g be r−αW k+4,∞
r –asymptotically flat for some α > 1/2 and

2 " k ∈ N” and suppose that
R(g) = 0.

We further assume that g satisfies the parity conditions

(8.9) |g−ij | + r|∂k(g−ij)| " C(1 + r)−α− , α− > α, α + α− > 2,

so that the mass m and the centre of mass 2c of g are finite and well defined, with
m '= 0. Consider any time-symmetric reference family {(Kω ≡ 0, gω)}ω∈Ω such that
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the associated set UΩ of masses and centres of mass forms a neighborhood of (m,2c).
Then there exists R1 < ∞ such that for all R ! R1 there exists a scalar flat metric

ĝR ∈ Ck+2

such that ĝR coincides with g for r " R, and ĝR coincides with a member of the
reference family for r ! 4R. If g is smooth, and the gω’s are smooth, then ĝR can be
chosen to be smooth.

8.3. Initial data which are stationary to high asymptotic order

The results in Section 7 can be used to construct large classes of asymptotically
flat vacuum initial data sets with controlled asymptotic behavior. As an illustration,
let (K, g) be a solution of the stationary constraint equations defined on R3 !B(0, R)
for some R. Recall that such solutions are uniquely determined [12] by an infinite
collection of Hansen multipole moments {Pm(K, g)}m∈N, as defined in [60, Equa-
tion (3.5)], see also [43]. We will assume that the reader is familiar with [60] and we
will use notation from there. In that reference it has been shown how to construct
approximate solutions of the stationary equations to any asymptotic order: given any
set Pm one can find functions Φ(m)

M , Φ(m)
S , Φ(m)

K , γ(m) which satisfy the reduced Ein-
stein equations [60, Equations (3.1)–(3.4)] to order O(r−(m+3)). We wish, first, to
show that this implies existence of initial data (K(Pm), g(Pm)) satisfying the sta-
tionary — or static — Einstein equations up to terms O(r−m−3), provided that the
NUT charge vanishes; in particular this will imply, in the notation of [60],

(8.10)
(

J
ρ

)
(K(Pm), g(Pm)) =

(
O∞(r−m−3)
O∞(r−m−3)

)
∈ H̊ −(m−ε)−3

k , ε > 0, k ∈ N.

We will say that the moments are static to order m if the associated twist function ω(m)

vanishes. In this last case the proof of (8.10) is straightforward: we set K(Pm) := 0,
and (8.10) follows immediately from the equations in [60] with σ = ω = 0 there. In
the general case some more work is required, we start with a lemma:

Lemma 8.7 (Approximate Poincaré Lemma). — Let

ν = Ady ∧ dz + Bdz ∧ dx + Cdx ∧ dy

be a two form on R3, with coefficients of order o(r−2), such that

dν = (∂xA + ∂yB + ∂zC)dx ∧ dy ∧ dz = O(r−(m+3))dx ∧ dy ∧ dz,

with m > 0. Then there exists a one form σ such that

dσ = ν + O(r−(m+2)).
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Proof. — In the proof that follows we use the notation X = (x, y, z) and r =√
x2 + y2 + z2. Let us show that the one form σ defined by the usual formula

σ = −
{[∫ ∞

1
A(tX)tdt

]
(ydz − zdy) +

[ ∫ ∞

1
B(tX)tdt

]
(zdx − xdz)

+
[ ∫ ∞

1
C(tX)tdt

]
(xdy − ydx)

}

satisfies the desired estimate. Indeed, the coefficient of the term dx ∧ dy in dσ is

−
∫ ∞

1

{
t2[x∂xC(tX) − z∂xA(tX) − z∂yB(tX) + y∂yC(tX)] + 2tC(tX)

}
dt

= −
∫ ∞

1

{
t2[x∂xC(tX) + y∂yC(tX) + z∂zC(tX) + zO((tr)−(m+3))] + 2tC(tX)

}
dt

= −t2C(tX)
∣∣∞
1

−
∫ ∞

1
zt2O((tr)−(m+3))dt = C(X) + O(r−(m+2)).

A similar calculation for the remaining terms gives the result.

Remark 8.8. — If ν̃ is another two form satisfying conditions of Lemma 8.7 such
that ν̃ − ν = O(r−(m+2)), then if we define σ̃ as in the preceding proof we will have

σ̃ − σ = O(r−(m+1)).

This shows in particular that in a stationary vacuum metric the approximate so-
lution σ(m) as defined below will differ from the exact one by O(r−(m+1)).

Returning to our construction, let Φ(m)
M , Φ(m)

S , Φ(m)
K , and γ(m) be as in [60, Theo-

rem 2], then Beig & Simon’s equations (2.8) and (2.9) are satisfied modulo O(r−(m+3)).
In particular their equation (2.8) with Φ = Φ(m)

K − Φ(m)
M gives

(8.11) ∆γ(m)(λ−1) = 2τ (m)λ−1 + O(r−(m+3)),

where λ ≡ λ(m) is obtained from Φ(m)
M , Φ(m)

S , and Φ(m)
K by inverting [60, Equa-

tion (2.6)] with ΦM there replaced with Φ(m)
M , etc.; we define ω ≡ ω(m) in a similar

way. Using again Beig and Simon’s Equation (2.8) with Φ = Φ(m)
S gives

(8.12) ∆γ(m)(λ−1ω) = 2τ (m)λ−1ω + O(r−(m+3)).

Developing (8.12), and inserting (8.11) in the result one obtains

∇i(λ−2∂iω) = O(r−(m+3)).

Here ∇ ≡ ∇(γ(m)) is the connection of the metric γ(m). Then, if we define ν ≡
ν(m) := −λ−2 ∗γ(m) dω, we have

dν = O(r−(m+3)).

Recall, now, that the coefficient of the power r−1 in the expansion of ω is proportional
to the NUT charge of the resulting space-time; usual asymptotic flatness forces the
vanishing thereof. From now on we assume that this is the case; then ω = O(r−2) thus
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ν = O(r−3) so from Lemma 8.7 there exists a one form σ(m), solution of [60, Equation
(2.4)] modulo O(r−(m+3)) at the right-hand-side. Set

(8.13) g(m) := λ(m)(dt + σ(m)
i dxi)2 − (λ(m))−1γ(m)

ij dxidxj .

It then follows e.g. from [50, Section 16.2] that the Ricci tensor of the stationary space-
time metric g(m) has coordinate components which are O(r−(m+3)). By projecting
on the initial data surface {t = 0} one obtains (8.10).

In order to continue, note that the collection Pm of multipole moments up to order
m can be viewed as an element of RN(m), for some N(m) (the exact value of which
is irrelevant for our purposes); this leads to an obvious way of measuring the norm of
Pm.

Next, it should be clear that ten multipole moments out of the whole set Pm

correspond to the global Poincaré charges of the space-time metric. For example, the
1/r coefficient in the asymptotic expansion of λ(m) is related to the ADM mass of
g(m). We denote by PQ the relevant multipole moments, and by P∗

m the remaining
ones, so that

Pm = (PQ, P∗
m).

We have the following:

Theorem 8.9. — Let m ∈ N and let (K0, g0) be a stationary solution of the vacuum
Einstein equations defined on R3 ! B(R0) with timelike ADM momentum and with
multipole moments up to order m equal to Pm := Pm(K0, g0). There exists η > 0
such that for any

|δP∗
m| < η

there exists δPQ and a smooth vacuum initial data set (K, g) (not necessarily sta-
tionary) defined on R3 ! B(R0) such that

(8.14) (K, g) − (K(Pm + δPm), g(Pm + δPm)) ∈ C−m−2+ε
∞ × C−m−1+ε

∞

for any ε > 0. In particular the first m coefficients in an asymptotic expansion of g
in terms of inverse powers of r, and m + 1 coefficients in that of K, coincide with
those of the Simon–Beig approximate solution (K(Pm + δPm), g(Pm + δPm)). An
identical result holds in the class of time-symmetric initial data sets if one restricts
oneself to moments associated to static space-times, provided that K0 ≡ 0.

Remark 8.10. — The initial data set (K, g) will coincide with (K0, g0) in a neigh-
borhood of S(0, R0).

Remark 8.11. — We emphasize that one is not free to choose the Poincaré charges
Q of the final initial data set (K, g), those charges are determined by the original
stationary initial data set and by the δP∗

m’s in a highly implicit manner. Further, we
will have Q − Q0 = O(η2), where Q0 are the Poincaré charges of (K0, g0).
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Remark 8.12. — It follows from the calculations of [60, Theorem 3], together with
the properties of the weighted spaces in (8.14), that the “orbit space manifold” (S , γ),
with γ related to g as in (8.13) with the “(m)’s” removed, admits a one-point conformal
compactification with a Cm,α conformally rescaled metric. In particular in the static
case (S , g) has such a compactification.

Remark 8.13. — Using the Schwarzschild initial data as (K0 = 0, g0) one obtains
a large family of static initial data with any arbitrarily prescribed finite set of small
static multipole moments, except for the mass which is implicitly determined by the
seed mass and the remaining multipoles. One has an obvious analogue of this result
using the Kerr initial data as the reference family. Further, using Weyl metrics as
(K0 = 0, g0) one obtains large classes of time-symmetric initial data sets where the
higher order multipoles are not necessarily small.

Proof. — The proof is essentially identical to that of Theorem 8.1. For definiteness
we choose ε = 1/2, the proof applies for any 0 < ε < 1. Let Zm−1/2

k denote a space of
functions on R3 ! B(0, R0 + 1/2) which are exponentially weighted near the interior
boundary S(0, R0 + 1/2) as in Proposition 5.10 with t there equal to one, and which
are weighted at infinity as in Theorem 7.7, with σ there equal to m − 1/2. (Thus,
functions in Zm−1/2

k behave as functions in H̊ m−1/2
k for r large.) Let χ ∈ C∞(R3) be

a spherically symmetric cut-off function such that 0 " χ " 1, χ ≡ 1 on Γ(R0, R0 +1),
and χ ≡ 0 on R3 ! B(0, R0 + 2). Choose any PQ satisfying

|PQ| " η

and on R3 ! B(0, R0) set

gδP = χg0 + (1 − χ)g(P + δP),

KδP = χK0 + (1 − χ)K(P + δP).

We shall write xδP for (KδP , gδP), x0 for (K0, g0), etc. Set ε = 1/2, choose some k
large enough so that the existence and Hölder regularity results proved in the previous
sections apply, it follows from (8.10) that we have

(8.15) ‖J(xδP)‖Z−(m−1/2+3)
k+1

+ ‖ρ(xδP)‖Z−(m−1/2+3)
k

" Cη.

The arguments given in the proofs of Theorems 5.9 and 7.7 show that the hypotheses of
Theorem 3.9 hold, and for η small enough we obtain a solution δxδP ∈ Z−(m−1/2+2)

k+2 ×
Z−(m−1/2+1)

k+2 of Equation (5.8) satisfying

(8.16) ‖δxδP‖Z−(m−1/2+2)
k+2 ×Z−(m−1/2+1)

k+2
" Cη.

Set δJ = J(xδP + δxδP), δρ = ρ(xδP + δxδP). By Corollary 5.11 δxδP extends
smoothly to R3 ! B(0, R0) when extended by zero. As in the proof of Theorem 8.1
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we have
〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

=
〈
(Y(i), N(i)), ψ−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

=
∫

R3!B(0,R0)

(
Y j

(i)δJj + N(i)δρ
)

dµg.

We use the divergence identity (E.16) with (K0, g0) as the background (instead of
(0, δ), as was the case for Theorem 8.1). The 3 + 1 form of this identity reads

(8.17)
〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

= lim
R→∞

∫

{r=R}
Uαβ(xδP + δxδP)dSαβ

−
∫

{r=R0}
Uαβ(xδP + δxδP)dSαβ + O(η2).

Now, the initial data coincide with (g0, K0) in a neighborhood of S(0, R0), so that
∫

{r=R0}
UαβdSαβ = 0.

On the other hand, the limit as R goes to infinity of the integral over S(0, R) gives
∫

{r=∞}
UαβdSαβ = δQ,

where δQ is calculated from δPQ; we emphasize that δxδP does not give a contribu-
tion to this integral because of the fast decay. It follows that

(8.18) 〈e(i), ψ
−2

(
δJ
δρ

)
〉L2

ψ⊕L2
ψ

= δQ + O(η2).

Let F (δPQ) denote the left-hand-side of (8.18). Now, the map δPQ → δQ is a linear
isomorphism. Further, it should be clear that F is a differentiable function of δPQ.
The existence of a δPQ such that F (δPQ) vanishes can thus be inferred, for η small
enough, from the inverse function theorem. Alternatively, set

Gη(δPQ) = ηF

(
δPQ

η

)
,

and the existence of the required solution follows from Lemma 3.18.

One can repeat the construction of the proof with m replaced by m + 1, varying
δP∗

m+1 while keeping δP∗
m fixed, obtaining a finite dimensional family of distinct

solutions with the same P∗
m + δP∗

m; this might require decreasing η. By induction,
one can obtain a family of arbitrarily high dimension of distinct solutions with the
same P∗

m + δP∗
m, for δP∗

m sufficiently small.
The above initial data are defined only on R3 ! B(R0); however, one can now

use Theorem 8.5 to construct initial data on R3, or on other asymptotically flat
complete manifolds, which will coincide with the data constructed in Theorem 8.9 in
the asymptotic region.
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8.4. Space-times that are Kerrian near I +

Space-times that are Kerrian in a neighborhood of a subset of I + are of course
obtained by evolution of data which are Kerrian in a neighborhood of i0. In some
situations it might, however, be convenient to be able to construct such space-times
starting directly from a hyperboloidal initial data hypersurface. It is not too difficult
to adapt the original Corvino-Schoen technique to the hyperboloidal initial data set-
ting, using the analysis above together with the relative mass identities of [25, 28];
this will be discussed elsewhere.

8.5. Bondi-type asymptotic expansions at I +.

Recall that Bondi et al. [13,58] have proposed a set of free functions parameterising
a certain asymptotic expansion of the metric at I +. It is of interest to enquire
whether one can construct hyperboloidal initial data sets which would lead to space-
times with a prescribed set of those functions. The results in Section 6 can be used to
give perturbational answers to such questions, in the spirit of Theorem 8.9; this will
be discussed elsewhere.

8.6. Local and global extensions of initial data sets

In this section(1) we address the extension problem, that is, the following question:
let us be given a vacuum initial data set (M, K, g), where M = M ∪ ∂M has a
compact boundary ∂M , with the data (K, g) extending smoothly, or in Ck(M), to
the boundary. Does there exist an extension across ∂M of (K, g) which satisfies
the constraint equations? In the case where K vanishes and ∂M is mean convex an
affirmative answer can be given by using a method(2) due to Smith and Weinstein [61],
which proceeds as follows: In a neighborhood of ∂M we can write the metric in the
form

(8.19) g = u2dr2 + e2vγAB(β̂Adr + rdθA)(β̂Bdr + rdθB),

where (θ1, θ2) are local coordinates on ∂M , γAB is a fixed (independent of r) metric
on ∂M , and β̂ = β̂A∂A is the “shift vector”. Further r is a coordinate on a M -
neighborhood of ∂M which is, say, negative and vanishes precisely on ∂M ; to obtain
(8.19) one needs further to assume that the mean extrinsic curvature H of ∂M has
no zeros. We can extend the functions v and β̂B to positive r in an arbitrary way
preserving their original differentiability. When H > 0, the requirement that the

(1)A sketchy presentation of the analysis given in this section has been given in [23].
(2)Smith and Weinstein actually assume that ∂M is a two-sphere, but this hypothesis is irrelevant

for the discussion here.
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extended metric be Ricci-scalar flat becomes then a semi-linear parabolic equation
for u on ∂M [61]:

(8.20) r∂ru = Γu2∆/u + β ·∇/u + Au − Bu3,

where the objects above are defined as follows: we set γAB := e2vγAB, we write
∆/ = r2e2v∆/γ for the respective Laplacians of γ and γ, ∇/u is the tangential component
of the gradient of u, Γ = e−2v/H, A = A/H and B = B/H, while

χ = ruχ = (1 + rvr)γ − Π/2,

H = ruH = 2 + 2rvr − e−2v divγ β,

A = r∂rH − β ·∇/H − H +
1
2
|χ|2γ +

1
2
H

2
,

B = e−2v(1 − ∆/v),

with Π = Lβ̂γ — the deformation tensor of β̂ and χ — the second fundamental form
of the level sets of r. It follows from the results in [51] that Equation (8.20), with
the obvious initial value, can always be solved for a small interval of r’s when the
initial metric and its extension are in, say, C3(M), obtaining a scalar-flat extension
of (M, 0, g). Similarly the results in [51] can be used to show that u will be of class
Ck+1 on the extended manifold if the remaining functions there are in C2k+1 (thus
smooth if the initial metric is smooth up to boundary, and if the free functions above
are smooth).

Our aim here is to prove two alternative extension results under smallness con-
ditions, without the hypothesis that K vanishes. Thus, assume we have a solution
(K, g) ∈ (Ck+3,α × Ck+4,α)(M), α ∈ (0, 1), of the vacuum constraints on a manifold
M with compact boundary. Let M0 be another manifold such that ∂M0 is diffeo-
morphic to ∂M , and let M ′ be the manifold obtained by gluing M with M0 across
∂M . Let x be any smooth function defined in a neighborhood W of ∂M on M ′, with
∂M = {x = 0}, with dx nowhere vanishing on ∂M , and with x > 0 on M0. It is
convenient to choose V := W ∩M0 to be diffeomorphic to ∂M × [0, x0], with x being
a coordinate along the [0, x0] factor

Suppose, next, that there exists on M0 a solution (K0, g0) of the vacuum constraint
equations which is in (Ck+3,α × Ck+4,α)(M0); we emphasize that we do not assume
that (K, g) and (K0, g0) match across ∂M . We first extend (K, g) to a pair (K1, g1)
defined on M0 with the requirement that (K1, g1) remains in Ck+3,α × Ck+4,α; we
do of course not assume that the extension is vacuum. For the purposes below it is
convenient to make the extension so that ‖g1 − g0‖Ck+4,α(V ) + ‖K1 −K0‖Ck+3,α(V ) is
as small as possible. While we are not aware of an optimal prescription, a possible
procedure which at least controls that norm is as follows: First, by using a partition of
unity subordinate to a finite cover of a neighborhood of ∂M0 the problem is reduced
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to that of extending functions. Given that, Corollary 3.3.2 of [2] with

fi = ∂i
xg|∂M − ∂i

xg0|∂M , i = 0, . . . , k + 4,

shows that there exists a Ck+4,α tensor field f on M0 such that ∂i
xf = fi on ∂M0.

On M0 we define g1, a Ck+4,α extension of g, by

g1 − g0 := f,

then ∂i
xg1 = ∂i

xg for all i = 0, . . . , k+4. The proof of Lemma 3.3.1 and Corollary 3.3.2
in [2] show that

(8.21) ‖g1 − g0‖Ck+4,α(V ) " C
k+4∑

i=0

‖∂i
xg|∂M − ∂i

xg0|∂M‖Ck+4−i,α(∂M).

The same procedure applies to extend K to a Ck+3,α tensor field K1 satisfying ∂i
xK1 =

∂i
xK for all i = 0, . . . , k + 3 on ∂M , and

(8.22) ‖K1 − K0‖Ck+3,α(V ) " C
k+3∑

i=0

‖∂i
xK|∂M − ∂i

xK0|∂M‖Ck+3−i,α(∂M).

Let φ be any smooth function on M ′ which equals one on M and on a small neigh-
borhood U ⊂ V ≈ ∂M × [0, x0] of ∂M in M0, and vanishes away of V . On V we
set

K ′ = φK1 + (1 − φ)K0, g′ = φg1 + (1 − φ)g0.

Since J(K, g), ρ(K, g) vanish on M , while J(K0, g0), ρ(K0, g0) vanish on M0, we will
have

|ρ(K ′, g′)| + |J(K ′, g′)|g′ " C
(
‖g1 − g0‖Ck+4,α(V ) + ‖K1 − K0‖Ck+3,α(V )

)
xk+2 ;

for points at which φ = 1 the inequality is justified by Taylor expanding in x at ∂M
and using the fact that (K1, g1) satisfies the vacuum constraints on M ; elsewhere this
is justified by Taylor expanding ρ and J in (K, g) around (K0, g0) and using the fact
that (K0, g0) satisfies the vacuum constraints. In fact, one has

|(∇′)(i)ρ(K ′, g′)|g′ + |(∇′)(i)J(K ′, g′)|g′

" C
(
‖g1 − g0‖Ck+4,α(V ) + ‖K1 − K0‖Ck+3,α(V )

)
xk+2−i+α,

for all 0 " i " k + 2, with an analogous inequality holding for the Hölder quotient.
So we have

‖ρ(K ′, g′)‖Ck+2+α
k+2,α (g′,V ) + ‖J(K ′, g′)‖Ck+2+α

k+2,α (g′,V )

" C
(
‖g1 − g0‖Ck+4,α(V ) + ‖K1 − K0‖Ck+3,α(V )

)
.

Assume, first, that there are no (Y, N)’s such that P ∗(Y, N) = 0 on V . If (K1, g1) is
sufficiently close to (K0, g0) in (Ck+3,α × Ck+4,α)(V ) norm — equivalently, if (K, g)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003



54 CHAPTER 8. APPLICATIONS

and its derivatives up to appropriate order, as in (8.21)-(8.22), are sufficiently close
to (K0, g0) and its derivatives on ∂M , then for any α′ < α the norm

‖ρ(K ′, g′)‖
H̊k+2+α′−(n−1)/2

k+2 (g′,V )
+ ‖J(K ′, g′)‖

H̊k+2+α′−(n−1)/2
k+2 (g′,V )

will also be small. If k ! [n
2 ] + 1 we can use Proposition 5.7 on V with t = k + 2 +

α′ − (n − 1)/2, to conclude that there exists a solution

(δK, δg) ∈ Ck+3+α′−(n−1)/2
k+2,α (g′, V )×Ck+4+α′−(n−1)/2

k+2,α (g′, V ) ⊂ (Ck′+2,α×Ck′+2,α)(V ),

with all derivatives up to order k′ + 2 vanishing on ∂V , close to zero, of the vacuum
constraint equations. Here k′ is any integer satisfying

k′ " k, k′ " k + 1 + α′ − α − (n − 1)/2 < k + 3/2 − n/2.

The above construction has a lot of if’s attached, but it does provide new non-trivial
extensions in the following, easy to achieve, situation:

(1) (K, g) belongs to a one-parameter family of solutions (Kλ, gλ) of the vacuum
constraint equations on M ,

(2) the vacuum initial data set (K0, g0), assumed above to be defined on M0, arises
from a vacuum initial data set defined on M ′, still denoted by (K0, g0), with

(3) (Kλ, gλ) converging to (K0|M , g0|M ) as λ tends to zero in

(Ck+3,α × Ck+4,α)(M ).

(Replacing M by a neighborhood of ∂M , it is of course sufficient for all the above
to hold in a small neighborhood of ∂M .) In such a set-up, proceeding as above one
obtains an extension for λ small enough when P ∗ has no kernel on V .

The situation is somewhat more complicated when a kernel is present, though
results can be obtained whenever the set-up of Theorem 3.19 applies. As an illustra-
tion, we consider a situation where M is a smooth compact submanifold, with smooth
boundary, of M ′ = R3. This involves no generality in the following sense: any two
dimensional manifold can be embedded into R3, and so can a tubular neighborhood
thereof (this will of course not be an isometric embedding in general). We allow M
to have more than one connected component. We will only be interested in a com-
ponent of ∂M which is two-sided, with one side thereof corresponding to M , and the
other corresponding to an unbounded component of R3 ! M (we assume that such a
component exists). A component of ∂M with this property will be called an exterior
boundary, and will be denoted by ∂ext M . We assume K0 ≡ 0, and we let g0 be the
Euclidean metric on R3. Replacing M by a tubular neighborhood (−x0, 0] × ∂ext M
we can thus identify M with a subset of R3. We note that the closure of M in R3 will
then have a boundary with two components, {−x0} × ∂ext M and {0}× ∂ext M , but
we will ignore {−x0}× ∂ext M if occurring, and consider only {0}× ∂ext M , which is
the exterior boundary of the new M . From now on we write ∂M for {0} × ∂ext M .

MÉMOIRES DE LA SMF 94



8.6. LOCAL AND GLOBAL EXTENSIONS OF INITIAL DATA SETS 55

We assume that (K, g) are close to (K0, g0):

(8.23) ‖g − g0‖Ck+4,α(M) + ‖K − K0‖Ck+3,α(M) < ε ;

such metrics can be constructed by the conformal method. We now repeat the con-
struction of the proof of Theorem 8.1 with R = 1 there, so that no rescalings of the
metrics are performed. Equation (8.6) becomes

(8.24)
〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

=
∫

{x0}×∂M
Uαβ(xQ,R + δxQ,R)dSαβ

−
∫

{0}×∂M
Uαβ(xQ,R + δxQ,R)dSαβ + O(ε2),

We set

Q0
(i) :=

∫

{0}×∂M
UαβdSαβ .

It follows from (8.23) that there exist a constant C > 0 such that |Q0| " Cε. We
restrict ourselves to Q’s such that

|Q − Q0| " ε =⇒ |Q| " (1 + C)ε.

Then ∫

{x0}×∂M
UαβdSαβ = Q(i) + O(ε2),

for ε small enough. We are thus led to

(8.25)
〈
e(i), ψ

−2

(
δJ
δρ

)〉

L2
ψ⊕L2

ψ

= Q(i) − Q0
(i) + O(ε2).

For ε small enough one would like to conclude as before. There is, however, a difficulty
which arises here because the map of Proposition F.3 degenerates at m = 0, as is
made clear by the need of dividing by m in (F.6) when one wishes to determine ai

from J0i. This leads to further conditions if one wishes the argument to go through:
roughly speaking, one needs to assume that m is of order of ε, that the ratio |2p|/m
is strictly bounded away from one, and that the ratio Jµν/m is o(ε); if that is the
case, we can use the Lemma 3.18 with U = V = B(0, 1), x = (Q − Q0)/ε, λ = 1/ε,
Gλ(x) = 1

ε (Q − Q0 + O(ε2)) = x + O(ε) and y = 0 to conclude. Rather than making
general statements along those lines, with hypotheses which appear difficult to control,
we shall assume that the antipodal map

(8.26) xi −→ −xi

preserves g and maps K to −K; clearly (K1, g1) can be constructed as to preserve
this property, and we will only consider such extensions. Such data will be referred to
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as parity-covariant.(3) Nontrivial parity covariant initial data (K, g), as close to the
Euclidean metric as one wishes, can be easily constructed by the conformal method
— we do this, for completeness, in Appendix H.

Assume, first, that K — and hence K1 — vanishes. Now, the construction of
Theorem 5.6 preserves all symmetries of initial data, so that gluing together “up to
kernel” g1 with (neither boosted nor translated) Schwarzschild metrics gm will lead
to sets (K1 +δKQ = 0, g1 +δgQ) still being covariant under the antipodal map (8.26).
One then obtains, by parity considerations,

(8.27) Jµν(K1 + δKQ, g1 + δgQ) = 0 ;

similarly, the left-hand side of (8.25) vanishes for those projections which are associ-
ated with the Jµν ’s. Then, the only possibly non-zero component of the projection
on the kernel is the one which corresponds to the mass. In that case no difficulties
with the crossing of m = 0 arise, and we can use on Mext the family of Schwarzschild
metrics gm with m ∈ (−δ, δ), with any δ " min(1, 1/R). Rather than invoking the
Brouwer fixed point theorem we note that if the reference Schwarzschild metric gm

has mass m = −min(Cε, δ) we obtain(4) a strictly negative value of the projection
(8.25) when ε is small enough. The value m = m0 + ε leads to a strictly positive
value of the projection in (8.25) (decreasing ε if necessary); since the left-hand-side
of (8.25) depends continuously upon m there exists m ∈ (−Cε, m0 + ε) such that the
left-hand side of (8.25) vanishes.

The case of non-vanishing parity-antisymmetric K’s is handled as follows: let 0 "
λ < 1 and consider the set of (K, g) satisfying

(8.28) |2p0|δ " λm0.

Equation (8.27) still holds, so that the only projections on the kernel which are non-
zero are those associated with the mass and the momentum. Since the charges in
(8.25) are smaller than ε, while the error term is one order higher, an argument along
lines similar to those of Lemma 3.18 gives existence of a solution when ε is small
enough

Summarising, we have proved:

(3)One of the purposes of the parity conditions here is to ensure vanishing of the centre of mass. This

last property also holds when both g and K are even. However, for even K and small m there arise

some difficulties with non-zero angular momentum, essentially identical to those of non-zero centre

of mass; see Section 8.9 for an analysis of one such example.
(4)At this stage one could use harmonic coordinates, and invoke the small data calculations of

Bartnik [7] to conclude that the mass m0 as defined by Q0 must be positive, so that restricting

oneself to the family of Schwarzschild metrics with m ! 0 suffices. However, this is not necessary,

and positivity of m0 is actually a consequence of the positive energy theorem and of our argument

here, regardless of the coordinate systems used, for data close enough to Minkowski ones.
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Theorem 8.14. — Let k ! [n
2 ] + 3, and let k′ be the largest integer strictly smaller

than k + (3 − n)/2. Consider parity-covariant vacuum initial data sets (K, g) ∈
Ck+2 ×Ck+3 on a compact smooth submanifold M of R3 such that (8.28) is satisfied
with some 0 " λ < 1, and let Ω be any parity invariant bounded domain with smooth
boundary containing M . If (8.23) holds with some ε > 0 small enough, then there
exists a vacuum Ck′ × Ck′

extension of (K, g) across the exterior component of ∂M ,
with the extension being a (perhaps boosted) Schwarzschild solution outside of Ω.

Identical results can be similarly obtained when the source fields ρ and J are
prescribed a priori, rather than arising from some field theoretical model which has its
own constraint equations. It is also clear that the arguments generalize to Einstein-
Maxwell electro-vacuum constraint equations, though we did not attempt to carry
through the details of such a construction.

8.7. Localized Isenberg-Mazzeo-Pollack gluings

In important recent papers, Isenberg, Mazzeo and Pollack have introduced a con-
formal gluing method for initial data sets [45, 46]; this generalizes previous work
of Joyce [47] which treats the purely Riemannian case. The problem addressed is
the following: let (M, K, g) be a vacuum initial data set on a not-necessarily con-
nected manifold M ; for simplicity we assume in this section that all the fields are
smooth, though the results below can be stated under finite differentiability condi-
tions. One also assumes that either M is compact, or (M, K, g) is asymptotically
Euclidean, or (M, K, g) is asymptotically hyperboloidal; on any compact component
a non-degeneracy condition has moreover to be imposed. Let pi ∈ M , i = 1, 2, and for
t small let M̂t be a manifold obtained by cutting from M two geodesic balls B(pi, t)
of radius t centred at pi, and gluing the left-over manifolds by adding a neck. It is
shown in [46] that when trK is constant over the B(pi, t)’s, then one can construct
a one-parameter family of new initial data sets (M̂t, K̂t, ĝt), t ∈ (0, t0) with the prop-
erty that (Kt, gt) converges uniformly, in any Ck,α norm, on any compact subset of
M ! {p1, p2}, to (K, g). In fact, (K̂t, ĝt) are conformal deformations of (K, g) on
M ! (B(p1, t1) ∪ B(p2, t1)) for t < t1. The technique will be referred to as the IMP
gluing.

Let us show that in generic situations the gluing can be performed so that the new
initial data coincide with the original ones away from a small neighborhood of the
pi’s:

Theorem 8.15. — Let t0 be small enough so that the geodesic spheres S(pi, t) are
smooth manifolds for t " 2t0. Suppose that there exists 0 < t1 " t0 such that the set
of KIDs on Γpi(t1, 2t1) := B(pi, 2t1) ! B(pi, t1) is trivial. Then there exists t2 " t1
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and a family of smooth vacuum initial data sets (M̂t, K̃t, g̃t), t " t2 such that

(K̃t, g̃t) = (K, g) on M ! (B(p1, 2t1) ∪ B(p2, 2t1)).

Moreover, (K̃t, g̃t) approaches (K, g) uniformly as t → 0 on any compact subset of
B(pi, 2t1) ! {pi}

Remark 8.16. — For generic metrics the set of KID’s on Γpi(t1, 2t1) will be trivial
for all t1.

Remark 8.17. — The initial data set (K̃t, g̃t) will coincide with the IMP data set
(K̂t, ĝt) in the neck region.

Remark 8.18. — Suppose that M has two connected components M1 and M2, with
each of the pi’s lying in a different component, say p1 ∈ M1 and p2 ∈ M2. If the set
of KIDs on Γp1(t1, 2t1) is trivial, then the construction below clearly gives (K̃t, g̃t) =
(K, g) on M1 ! B(p1, 2t1) for t " t2, regardless of whether or not there are KIDs on
annuli on the other component.

Proof. — Let χ be a positive smooth radial cut-off function equal to 1 in a neighbor-
hood of t1 and equal to zero in a neighborhood of 2t1. On Γp1(t1, 2t1) set

K̊t = χK̂t + (1 − χ)K,

g̊t = χĝt + (1 − χ)g.

Then (K̊t, g̊t) coincides with the IMP data (K̂t, ĝt) in a neighborhood of S(p1, t1), and
coincides with the original data (K, g) in a neighborhood of S(p1, 2t1). It follows that
ρ(K̊t, g̊t) and J(K̊t, g̊t) are supported away from the boundary in Γp1(t1, 2t1). Since
the IMP data converge uniformly to the original ones on Γp1(t1, 2t1) we will have

lim
t→0

ρ(K̊t, g̊t) = 0 = lim
t→0

J(K̊t, g̊t).

Theorem 5.9 and Corollary 5.11 provides 0 < t2 " t1 such that for all 0 < t " t2
there exists a solution (K̊t, g̊t) of the vacuum constraint equations which is smoothly
extended by (K̂t, ĝt) across S(p1, t1) and by (K, g) across S(p1, 2t1), as desired.

8.8. Vacuum space-times with a smooth global I

The results proved so far can be used to establish existence of a reasonably large
class of small-data, vacuum space-times with a global smooth I . While we refer the
reader to [23] for the overall details of this construction, we note the following here:
first, in [23] we did not claim that the resulting space-times will have a smooth I , as
we did not realize by then(5) that Corollary 5.11 holds. We note that the argument
of Theorem 8.14 does not seem to work with k = ∞. However, for the construction
of the space-times with a smooth I + one can proceed as follows: in the setting of

(5)We are grateful to J. Corvino for pointing out that Corollary to us.
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the proof of Theorem 8.14, choose some k large enough so that the previous existence
and regularity results apply, let g1 be an extension as in (8.21). A small smoothing
will lead to an extension which is C∞. One then continues the construction as in
Section 8.6 using an exponentially weighted Sobolev space, where the exterior region
has been slightly increased, so that its boundary has been moved from ∂M to the set
{x = −ε}, for some small positive ε. The remaining arguments remain unchanged.
Instead of obtaining a smooth extension of the initial data on M one will have a
smooth extension of the initial data on M ! {−ε " x " 0}, but this difference is
irrelevant for the purpose of constructing some examples.

In Theorem 8.14 we have used the family of boosted Schwarzschild metrics in
the exterior region. It should be clear that any parity-covariant reference family of
stationary metrics can be used there. This, together with arguments identical to those
of [23], establishes existence of asymptotically simple parity-covariant space-times
which are stationary near i0, with metrics which are not necessarily Schwarzschild
near i0.

A generic metric so constructed will have no KID’s. Whenever that occurs, we
can use the conformal method to slightly deform the initial data on B(0, R) so that
the new initial data are not parity symmetric, and then use Theorem 5.9 and Corol-
lary 5.11 to obtain perturbed initial data on B(0, R + 1) which will not satisfy any
parity conditions, and which will coincide with the starting ones on R3 ! B(0, R).
Making all perturbations small enough one will obtain a maximal globally hyperbolic
development with a global I , and with a metric which does not satisfy any parity
conditions. In particular asymptotically simple space-times which are Kerrian near
i0, with non-vanishing angular momentum, can be obtained in this way.

8.9. “Many Kerr” initial data

A noteworthy application of the techniques of Section 8.6 is the construction of
initial data containing black-hole regions with exactly Kerrian geometry both near
the apparent horizons, and in the asymptotic region. This generalizes a construction
of [23], which leads to “many Schwarzschild” black holes. More precisely, let I ∈ N,
we will construct initial data for a vacuum space-time with the following properties:

(1) There exists a compact set K such that (K, g) are initial data for a Kerr metric
with some mass parameter m and some angular momentum parameter a on each con-
nected component of M ! K (in general different (m, a)’s for different components);

(2) let S denote the usual marginally trapped sphere within the Carter extension
of the Kerr solution, then M contains I such surfaces, with the space-time metric
being exactly a Kerr metric in a neighborhood of each S.

In fact, (M, g) will be obtained by gluing together I Kerr initial data with small
masses. The resulting space-time (M, g) can be thought of as having I black holes:
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Indeed, the results in [27] show that for several configurations the intersection of the
black hole region in the associated maximal globally hyperbolic development of the
initial data with the Cauchy surface will have at least I connected components.

Let us pass to the construction: Let N be the integer part of I/2, choose two
strictly positive radii 0 < 4R1 < R2 < ∞, and for i = 1, . . . , 2N let the points

2xi ∈ Γ0(4R1, R2) := B(0, R2) ! B(0, 4R1)

(B(2a, R) — open coordinate ball centred at 2a of radius R) and the radii ri be chosen
so that the balls B(2xi, 4ri) are pairwise disjoint, all included in Γ0(4R1, R2). Set

(8.29) Ω := Γ0(R1, R2) !
(
∪iB(2xi, ri)

)
.

We shall further assume that Ω is invariant under the parity map 2x → −2x. Let

2Q = ((m, a, 2ω), (m0, a0, 2ω(0)), (m1, a1, 2ω(1)), . . . , (m2N , a2N , 2ω(2N))

be a set of numbers and unit vectors satisfying 2m < R1, 2m0 < R1, 2mi < ri. If
I = 2N we require a0 = m0 = 0. Whenever one of the a’s is zero the associated
vector 2ω is irrelevant, and then we forget it altogether. Let (K 0Q, g 0Q) be constructed
as follows:

(1) If I = 2N +1 then on Γ0(R1, 2R1) the initial data (K 0Q, g 0Q) are the initial data
for a Kerr metric with mass m0, with angular momentum a0m02ω(0), centred at 0;
here

a0m0ω(0)$ :=
1
8π

lim
R→∞

∫

S(0,R)
ε$

jkxj((tr K)gkl − Kkl)dSl

=
1
8π

∫

S(0,R1)
ε$

jkxj((tr K)gkl − Kkl)dSl

+
∫

R3!B(0,R1)
∇l(ε$

jkxj)((tr K)gkl − Kkl)

=
1
8π

∫

S(0,R1)
ε$

jkxj((tr K)gkl − Kkl)dSl

+ O(m0a0(a2
0 + m0 + a2

0m0)).

(8.30)

In the third line of (8.30) the covariant derivative ∇l(ε$
jkxj) is understood as that

of a vector field with vector index k, at , fixed. (To obtain the estimate for the error
term we are using Boyer-Lindquist coordinates as discussed in Appendix F. Recall
that K is a linear combination of space-covariant derivatives of (F.7), which leads to
K = O(a0m0). Next, (F.1) gives the estimate Γi

jk = O(a2
0 + m0 + a2

0m0) for the
space Christoffel symbols in asymptotically Euclidean coordinates, leading to (8.30).)
If I = 2N then we take (K 0Q, g 0Q) = (0, δ) on Γ0(R1, 2R1);

(2) on Γ0(3R1, R2) !
(
∪iB(2xi, 4ri)

)
the initial data (K 0Q, g 0Q) are the initial data

for a Kerr metric with mass m, with angular momentum am2ω, centred at 0. As
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in (8.30) we have

(8.31) amω$ =
1
8π

∫

S(0,R2)
ε$

jkxj((tr K)gkl − Kkl)dSl + O(ma(a2 + m + a2m)) ;

(3) on Γ0(2R1, 3R1) the tensor fields (K 0Q, g 0Q) interpolate between the two Kerr
initial data already defined above using a usual cut-off function;

(4) on the annuli Γ0xi(ri, 2ri) := B(2xi, 2ri) ! B(2xi, ri) the initial data (K 0Q, g 0Q) are
the initial data for a Kerr metric with mass m, with angular momentum aimi2ω(i),
centred at 2xi. The vanishing of the total momentum of the Kerr metric implies

aimiω(i)$ :=
1
8π

lim
R→∞

∫

S(0xi,R)
ε$

jk(xj − xj
i )((tr K)gkl − Kkl)dSl

=
1
8π

lim
R→∞

∫

S(0xi,R)
ε$

jkxj((tr K)gkl − Kkl)dSl

=
1
8π

∫

S(0xi,ri)
ε$

jkxj((tr K)gkl − Kkl)dSl

+ O(miai(a2
i + mi + a2

i mi)) ;

(8.32)

(5) on the annulus Γ0xi(2ri, 3ri) the tensor fields (K 0Q, g 0Q) interpolate between the
initial data already defined above using a usual cut-off function;

(6) all the parameters are so chosen, and the gluings are so performed, that the
resulting initial data set is symmetric under the parity map 2x → −2x; note that the
Kerr initial data are exactly parity symmetric in the Boyer-Lindquist coordinates,
compare the discussion at the end of Appendix F.

Clearly g 0Q=0 is the flat Euclidean metric on Ω, in particular it is vacuum. For | 2Q| " 1
this implies

|ρ(K 0Q, g 0Q)| " C| 2Q|.

By construction we also have

|J(K 0Q, g 0Q)| " C| 2Q|
(
|a| +

2N∑

i=0

|ai|
)
.

Similar inequalities hold for derivatives of J and ρ.
Suppose that

(8.33) | 2Q| " δ ;

Theorem 5.9 and Corollary 5.11 show that there exists 0 < δ " 1 such that for all Q
satisfying (8.33) there exists a set of C∞ tensor fields (K̂ 0Q, ĝ 0Q) defined on Ω which
agrees with (K 0Q, g 0Q) in a neighborhood of ∂Ω, and which satisfies the constraint equa-
tions except for the projection on the kernel of P ∗. (Here one should use Theorem 5.9
on a domain strictly included in the interior of Ω; a similar comment applies whenever
we are referring to that theorem below.) Uniqueness implies that the solution will be
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even. Parity shows that both the centre of mass and the total momentum vanish, so
that the obstruction is the non-vanishing of the four integrals

1
8π

∫

Ω
ρ(K̂ 0Q, ĝ 0Q) = m −

2N∑

i=0

mi + O(δ2),(8.34a)

1
8π

∫

Ω
ε$

jkxjJk(K̂ 0Q, ĝ 0Q) = amω$ −
2N∑

i=0

aimiω(i)$ + O(δ2).(8.34b)

Now, one would like to apply a fixed point theorem to conclude the existence of a
solution, but this does not seem to work directly because the error term in (8.34b) is
too large. Instead, we proceed as follows: Suppose, first, that

a = a0 = a1 = · · · = a2N = 0,

and write g 0M and ĝ 0M for the resulting g 0Q and ĝ 0Q. We then have K 0Q = K̂ 0Q = 0,
so that the left-hand-side of (8.34b) vanishes identically. Fix any set of mi’s, i =
0, . . . , 2N , satisfying

2N∑

i=0

|mi| " δ/4.

If δ is small enough the right-hand-side of (8.34a) with m = δ/2 will be strictly
positive; it will be strictly negative with m = −δ/2, by continuity there exists m such
that ĝ 0M will be Ricci scalar flat.

To continue, suppose that the 2xi’s have mi ! 0, with at least one mi > 0, and
they are not aligned. Then the vacuum initial data set (0, ĝ 0M ) on Ω has no KIDs.(6)

We can therefore use Theorem 5.9 and Corollary 5.11 around (0, ĝ 0M ) to construct an
initial data set (g, K), which coincides with (K 0Q, g 0Q) near ∂Ω, for any collection of
a’s and 2ω’s satisfying

(8.35) |a| +
2N∑

i=0

|ai| < ε,

when ε is small enough. For further purposes we impose ε " δ.
Suppose, finally, that all the 2xi’s are aligned along an axis, say the z-axis. Then

the vacuum initial data set (0, ĝ 0M ) on Ω has exactly one KID (Y, 0), where Y is the
Killing vector associated with the rotations around the z-axis. We repeat now the
previous construction, with the following difference: on Γ0(R1, R2) !

(
∪iB(2xi, ri)

)

we use the Ricci scalar flat metric ĝ 0M , and in points (3) and (5) above ĝ 0Q is taken as

(6)In the case K = 0 the KID equations decouple, so if (N, Y ) is a KID, then so are (0, N) and (Y, 0).

The existence of a KID with Y = 0 would lead to a vacuum static space-time with a non-connected

black hole with all horizons non-degenerate, which is not possible by [14]. Thus N = 0. By [10]

the only remaining possibility is a single Killing vector field Y which is a non-trivial rotation in the

region where the metric is Schwarzschild, which is clearly only possible if all the "xi’s are aligned.
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a combination with cut-off functions of the relevant Kerr metric and of ĝ 0M . Assuming
(8.35), we will have

‖ĝ 0Q − ĝ 0M‖Ck " C(k)ε, ‖K̂ 0Q‖Ck " C(k)ε

We need a somewhat more precise version of the calculation in (8.30). By hypothesis
the vector field Yk := εz

klxk = ∂/∂ϕ is a Killing vector of the metric g 0M , so that

(8.36) ∇kYl + ∇lYk = ∇̊kYl + ∇̊lYk + 2Cr
klYr = 2Cr

klYr,

where ∇̊ is the covariant derivative of g 0M , while Cr
kl is the difference of the Christoffel

symbols of g 0Q and g 0M . It follows that

∇kYl + ∇lYk = O(ε).

Applying the divergence theorem on R3 ! (∪iB(2xi, ri) ∪ B(0, R1)) as in the second
and third lines of (8.30), using the last two lines of (8.30) together with (8.31) and
(8.32) we therefore obtain

(8.37)
1
8π

∫

Ω
ε$

jkxjJk(K̂ 0Q, ĝ 0Q) = amω$ −
2N∑

i=0

aimiω(i)$ + O(ε2 + εδ2).

Here the ρ integral, as well as the integrals (8.37) with , = x and , = y are already
identically zero, so that the only remaining obstruction is the integral at the left-
hand-side of (8.37) with , = z. We choose the exterior Kerr solution so that ωz '= 0.
At this stage we might need to decrease δ to conclude, so we suppose that we are
working in a family of mass parameters (m, mi) so that δ/m is uniformly bounded
from above independently of m (in particular m is not zero). This gives

(8.38)
1

8πmωz

∫

Ω
εz

jkxjJk(K̂ 0Q, ĝ 0Q) = a −
2N∑

i=0

ai
mi

m

ω(i)z

ωz
+ O(

ε2

δ
+ εδ).

We can choose 0 < ε′ < ε/2 so that if
2N∑

i=0

|ai| < ε′

then
∣∣∣

2N∑

i=0

ai
mi

m

ω(i)z

ωz

∣∣∣ < ε/8.

We then require δ to be small enough so that

|O(εδ)| < ε/16,

and then for sufficiently small ε’s we will have

|O(ε2/δ)| < ε/16,
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for ε’s small enough. If a = −ε/2 the right-hand-side of (8.38) will be negative, it will
be positive if a = ε/2, and continuity shows existence of an a that leads to a solution
of the full constraint equations.

Equation (8.34a) shows that m will be close to
∑2N

i=0 mi, which gives the desired
control of the ratio δ/m if all the mi’s are of the same sign. It follows that the previous
construction applies in this case. Clearly the sign condition is not necessary, and there
exist several other families of m parameters which will give the desired control.

We can now repeat the whole previous construction by gluing boosted Kerr initial
data centred on the 2xi’s, with a small boost parameter, to the solution (K, g) just
obtained with the same remaining parameters. If (K, g) has no KID’s, then we will
obtain a new smooth solution from Theorem 5.9 and Corollary 5.11 provided that the
boost parameters are small enough. We note that the initial data (K, g) will have no
KID’s except when all the 2xi’s are aligned along, say, the z-axis, with all the 2ω(i)’s
pointing in the ∂z direction. One expects that a variation of the above arguments
would still give existence of solutions, but we have not investigated this point any
further.

The mass of the solutions obtained above, as seen from the end r ! R2, might be
very small. One can now make a usual rescaling m → λm, r → λr, g0m → λ−2g0m, to
obtain any value of the final mass m.

We emphasize that the mass parameters mi and m0 are only restricted in absolute
value, so solutions (0, g 0M ) with some of the mi’s negative or zero, and/or m0 negative
or zero, and m negative, can be constructed. For instance, a zero value of mi will
correspond to metrics which can be Ck matched to a flat metric on B(2xi, ri). One can
actually also obtain a = 0, or m = 0, or both: it suffices to repeat the above argument
with prescribed values am = 0 and mi, i = 1, . . . , 2N , adjusting m0 and/or a0 rather
than m and a. Arguing as before one can obtain a family of non-trivial vacuum initial
data which are Minkowskian on an exterior region R3 ! B(0, R). (Clearly m = 0
implies that at least one of the mi’s, i ! 0, is negative, unless they all vanish.)
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WEIGHTED SOBOLEV
AND WEIGHTED HÖLDER SPACES

Let φ and ψ be two smooth strictly positive functions on M . For k ∈ N let Hk
φ,ψ(g)

be the space of Hk
loc functions or tensor fields such that the norm(1)

(A.1) ‖u‖Hk
φ,ψ(g) :=

(∫

M
(

k∑

i=0

φ2i|∇(i)u|2g)ψ2dµg

)1/2

is finite, where ∇(i) stands for the tensor

∇ · · ·∇︸ ︷︷ ︸
i times

u,

with ∇ — the Levi-Civita covariant derivative of g; we assume throughout that the
metric is at least W 1,∞

loc ; higher differentiability will be usually indicated whenever
needed. For k ∈ N we denote by H̊k

φ,ψ the closure in Hk
φ,ψ of the space of Hk

functions or tensors which are compactly (up to a negligible set) supported in M ,
with the norm induced from Hk

φ,ψ. The H̊k
φ,ψ’s are Hilbert spaces with the obvious

scalar product associated to the norm (A.1). We will also use the following notation

H̊k := H̊k
1,1, L2

ψ := H̊0
1,ψ = H0

1,ψ,

so that L2 ≡ H̊0 := H̊0
1,1. We set

W k,∞
φ := {u ∈ W k,∞

loc such that φi|∇(i)u|g ∈ L∞},

with the obvious norm, and with ∇(i)u — the distributional derivatives of u.

(1)The reader is referred to [5, 6, 44] for a discussion of Sobolev spaces on Riemannian manifolds.
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For φ and ϕ — smooth strictly positive functions on M, and for k ∈ N and α ∈ [0, 1],
we define Ck,α

φ,ϕ the space of Ck,α functions or tensor fields for which the norm

‖u‖Ck,α
φ,ϕ(g) = sup

x∈M

k∑

i=0

(
‖ϕφi∇(i)u(x)‖g

+ sup
0-=dg(x,y)!φ(x)/2

ϕ(x)φi+α(x)
‖∇(i)u(x) −∇(i)u(y)‖g

dα
g (x, y)

)

is finite.
We will only consider weight functions with the property that there exists , ∈

N ∪ {∞} such that(2) for 0 " i < , we have

(A.2) |φi−1∇(i)φ|g " Ci, |φiψ−1∇(i)ψ|g " Ci,

for some constants Ci. This implies that for 0 " i < , and for all k ∈ N it holds that

(A.3) |φi−k∇(i)φk|g " Ci,k, |φiψ−k∇(i)ψk|g " Ci,k.

It follows that for m, s ∈ N and for 0 " i + k < , the maps

ψ−mφi−s∇(i)(φsψm·) : H̊k+i
φ,ψ /−→ H̊k

φ,ψ,

ψ−mφi−s∇(i)(φsψm·) : W k+i,∞
φ /−→ W k,∞

φ ,

ψ−mφ−s∇(i)(φi+sψm·) : H̊k+i
φ,ψ /−→ H̊k

φ,ψ,

ψ−mφ−s∇(i)(φi+sψm·) : W k+i,∞
φ /−→ W k,∞

φ ,

(A.4)

are continuous and bounded. If the function ϕ satisfies the same condition (A.3) as
ψ, then we can replace H̊j

φ,ψ by Cj,α
φ,ϕ in (A.4).

The following situations will be of main interest to us:
• If ∂M is compact, smooth, and non-empty (see section 5), we will use for φ = x

a function which is a defining function for the boundary, at least in a neighborhood
of the boundary; that is, any smooth non-negative function on M such that ∂M is
precisely the zero-level set of x, with dx without zeros on ∂M . Then ψ will be a power
of x on a neighborhood of ∂M . Condition (A.2) will hold if g has (W $−1,∞

x , l − 1)–
behavior at ∂M in the sense of Definition 5.3.

• If M contains an asymptotically flat region (see Section 7), φ will behave as r
and ψ will behave as a power of r in the asymptotically flat region; (A.2) will hold if
g is W $−1,∞

r –asymptotically flat.
• If M contains a conformally compactifiable region (see Section 6), then in a

neighborhood of the conformal boundary φ will be taken to be 1, while ψ will be a
power of the defining function of the conformal boundary.

• Exponentially weighted versions of the above will also be considered.

(2)Conditions (A.2) will typically impose # restrictions on the behavior of the metric and its deriva-

tives in the asymptotic regions; it is therefore essential to allow # < ∞ if one does not wish to impose

an infinite number of such conditions.
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In all those situations one can obtain elliptic estimates in weighted spaces for the
equations considered here by covering and scaling arguments together with the stan-
dard interior elliptic estimates on compact balls (cf., e.g. [1,3,7,16,41,52]). We will
refer to this as the scaling property.

More precisely, we shall say that the scaling property holds (with respect to some
weighted Sobolev spaces with weight functions ψ and φ, and/or weighted Hölder
spaces with weight functions ϕ and φ, whichever ones are being used will always be
obvious from the context) if there exists a covering of M by a family of sets Ωα, for α
in some index set I, together with scaling transformations φα : Ωα → Ω̂α on each of
the sets Ωα, such that the transformed fields (K̂α, ĝα) on Ωα are in(3) in W 3,∞(Ω̂α)×
W 4,∞(Ω̂α), and such that the usual interior elliptic estimates on the Ω̂α’s can be
pieced together to a weighted estimate, such as (3.21), for the original fields. Some
sufficient conditions for the scaling property are discussed in Appendix B. We note
that the scaling transformation of the fields on Ω̂α, (K, g) → (K̂α, ĝα), will typically
consist of a pull-back of the fields, accompanied perhaps by a constant conformal
rescaling. The “scaling property” is a condition both on the metric g, the extrinsic
curvature tensor K, and on the weight functions involved: indeed, both the metric
coefficients, the connection coefficients, as well as their derivatives, etc., which appear
in our equations must have appropriate behavior under the above transformations so
that the required estimates can be established.

(3)It is conceivable that in some situations less a priori regularity on the (K̂α, ĝα)’s can be assumed,

but this is the setup which seems to play the most important role in our paper; the reader should be

able to adapt the differentiability conditions to his needs if required.
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APPENDIX B

SUFFICIENT CONDITIONS
FOR THE SCALING PROPERTY

In this section we present some sufficient conditions on the functions φ and ϕ
which guarantee that the spaces Ck,α

φ,ϕ(g) satisfies the scaling property. We give some
examples of such spaces. We assume that the manifold M is an open subset of Rn,
and that the elliptic operator we work with is an operator on functions. The result
generalizes to tensor fields on manifolds by using coordinate patches, together with
covering arguments.

We assume that φ and ϕ verify (A.2). For all p ∈ M , we denote by Bp, the open
ball of centre p with radius φ(p)/2. We require that(1) for all p ∈ M ,

(B.1) B(p, φ(p)) ⊂ M.

For p ∈ M , we define

ϕp : B(0, 1/2) 8 z /−→ p + φ(p)z ∈ Bp.

For all functions u on M and all multi-indices γ we have

∂γ
z (u ◦ ϕp) = φ(p)|γ|(∂γu) ◦ ϕp.

Let P (p, ∂) be a strictly elliptic (e.g., in the sense of Agmon-Douglis-Nirenberg) op-
erator of order m on M and set

(Pφu)(p) := [P (·, φ∂)u](p),

note that in our context Pφ will be elliptic uniformly degenerate whenever φ(p) ap-
proaches zero in some regions. We assume that the coefficients of P are in Ck,α

φ,1 (M).
For all p ∈ M , we define the elliptic operator Qp on B(0, 1/2) by

Qp(z, ∂) := P (ϕp(z), (φ(p))−1φ ◦ ϕp(z)∂),

(1)It suffices to assume that there exists µ > 0 such that for all p ∈ M , B(p, µφ(p)) ⊂ M , as changing

φ to µφ for a positive constant µ leads to equivalent norms. This is actually the condition needed in

the asymptotically flat case, as (B.1) will typically not be satisfied there. For convenience we assume

in (B.1) that any such rescalings have already been done.
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we then have
Qp(u ◦ ϕp) = (Pφu) ◦ ϕp.

We assume that there exist a constant C1 > 0 such that for all p ∈ M and all y ∈ Bp,
we have

(B.2) C−1
1 φ(p) " φ(y) " C1φ(p).

Then the Ck,α(B(0, 1/2)) norms of the coefficients of Qp are bounded by the Ck,α
φ,1 (M)

norm of the coefficients of P . On the other hand, Qp is strictly elliptic and, by the
usual interior elliptic estimates, there exists C > 0 which does not depend on p and
v such that for all functions v ∈ L2(B(0, 1/2)), for which Qpv is in Ck,α(B(0, 1/2)),
we have v ∈ Ck+m,α(B(0, 1/4)) and

‖v‖Ck+m,α(B(0,1/4)) " C(‖Qpv‖Ck,α(B(0,1/2)) + ‖v‖L2(B(0,1/2))).

So if u is in L2
ϕφ−n/2(M) with Pu ∈ Ck,α

φ,ϕ(M), then u ∈ Ck+m,α
loc . Now, we assume

that there exists a constant C2 > 0 such that for all p ∈ M and all y ∈ Bp, we have

(B.3) C−1
2 ϕ(p) " ϕ(y) " C2ϕ(p).

For p ∈ M , we define B′
p the ball of centre p and radius (1/4)φ(p). It follows from

(B.2) that there is a p–independent number N such that each Bp is covered by N
balls B′

pi(p), i = 1, . . . , N . We then have (the second and the last inequalities come
from (B.3))

‖u‖Ck+m,α
φ,ϕ (M) " C sup

p∈M
‖u‖Ck+m,α

φ,ϕ (B′
p)

" C sup
p∈M

(ϕ(p)‖u‖Ck+m,α
φ(p),1 (B′

p))

" C sup
p∈M

(ϕ(p)‖u ◦ ϕp‖Ck+m,α(ϕ−1
p (B′

p)))

= C sup
p∈M

(ϕ(p)‖u ◦ ϕp‖Ck+m,α(B(0,1/4)))

" C sup
p∈M

[ϕ(p)(‖Pφu ◦ ϕp‖Ck,α(B(0,1/2)) + ‖u ◦ ϕp‖L2(B(0,1/2)))]

" C[ sup
p∈M

(ϕ(p)‖Pu‖Ck,α
φ(p),1(Bp)) + sup

p∈M
(‖u‖L2

ϕφ−n/2(Bp))]

" C(‖Pu‖Ck,α
φ,ϕ(M) + ‖u‖L2

ϕφ−n/2(M)).

(B.4)

In particular u ∈ Ck+m,α
φ,ϕ (M). An identical calculation gives

‖u‖Ck+m,α
φ,ϕ (M) " C(‖Pu‖Ck,α

φ,ϕ(M) + ‖u‖L∞
ϕ (M)).

A similar scaling calculation, together with a summation over a set of Bpi ’s forming
an appropriate covering of M , gives the corresponding inequality in weighted Sobolev
space. We thus obtain:

Lemma B.1. — If φ and ϕ satisfy the condition (A.2) with ψ replaced by ϕ, together
with (B.1), (B.2) and (B.3), then the spaces Ck,α

φ,ϕ verify the scaling property.
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As already mentioned, near a compact boundary a standard example of functions
satisfying the above requirement is φ = x, and ϕ — a power of x, with x — a defining
function for the boundary. Another example is ϕ = e−s/x, where s ∈ R, and φ = x2.
In fact in that context, x is equivalent to d(·, ∂M). For sufficiently regular metrics
(e.g., g ∈ C$) we have (A.2), while the choice of φ guarantees (B.1). For (B.2) we
compute for all q ∈ Bp, by the triangle inequality,

d(p, ∂M) − d(p, q) < d(q, ∂M) " d(p, ∂M) + d(p, q).

Then, since d(p, q) < x(p)2/2 for q ∈ Bp,

d(p, ∂M) − x(p)2/2 < d(q, ∂M) " d(p, ∂M) + x(p)2/2.

From (B.1) we have that x(p)2 < d(p, ∂M), giving

d(p, ∂M)/2 < d(q, ∂M) " 3d(p, ∂M)/2,

and as x is equivalent to d(., ∂M) we obtain (B.2). Now for all q ∈ Bp,

e−s/x(p)es/x(q) = e−s(x(p)−x(q))/x(p)x(q),

but |x(p)− x(q)| is bounded by some constant times x(p)2 and x(p)x(q) is equivalent
to x(p)2 so we obtain (B.3).

We note that if ϕ1 and ϕ2 satisfy (B.3), then ϕ1ϕ2 also will. It follows that
ϕ = xαes/x can also be used as a weighting function in our context with φ = x2 for
all α, s ∈ R.

In asymptotically flat regions the standard choice is ϕ = rα, for some α ∈ R, and
φ = r. Another one is φ = 1 and ϕ = esr, where s ∈ R; in that case (B.1), (B.2) and
(B.3) are evident.
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APPENDIX C

WEIGHTED POINCARÉ INEQUALITIES

We start with some general inequalities on an open manifold M , then we will apply
them to all the cases of interest to us. All the integrals are always calculated with
respect to the natural Riemannian measure dµ = dµg = dµ(g) with respect to the
metric at hand, in local coordinates dµ =

√
det gij dnx.

We start with a lemma:

Lemma C.1. — Let u be a C1 compactly supported tensor field on M , and let w be
a C2 function defined in a neighborhood of the support of u, then

(C.1)
∫

M
|∇u|2 !

∫

M
(−|∇w|2 + ∆w)|u|2.

Proof. —
∫

M
|∇u|2 + |∇w|2|u|2 + 2u∇iu∇iw =

∫

M
|∇u + (∇w)u|2 ! 0. (By an

abuse of notation, here and below we write u∇iu∇iw for h(u,∇∇wu), where h is the
metric, constructed using g, on the tensor bundle relevant to the tensor character
of u.) An integration by parts leads to

∫

M
|∇u|2 + |∇w|2|u|2 − ∆w|u|2 ! 0,

so that ∫

M
|∇u|2 !

∫

M
−|∇w|2|u|2 + ∆w|u|2.

Proposition C.2. — Let u be a C1 compactly supported tensor field on M , and let
w, v be two C2 functions defined on a neighborhood of the support of u, then

∫

M
e2v|∇u|2 !

∫

M
e2v

[
∆v + ∆w + |∇v|2 − |∇w|2

]
|u|2.
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Proof. — Returning to the proof of Lemma C.1, with u replaced by evu gives
∫

M
e2v[|∇u|2 + |∇v|2|u|2 + 2u∇iu∇iv] =

∫

M
e2v|∇u + u∇v|2

!
∫

M
e2v(−|∇w|2 + ∆w)|u|2.

(C.2)

An integration by parts transforms the left-hand-side of the first line of Equation (C.2)
into ∫

M
e2v

{
[|∇u|2 + |∇v|2|u|2] − ∆v|u|2 − 2|∇v|2|u|2

}
,

so that (C.2) can be rewritten as
∫

M
e2v|∇u|2 !

∫

M
e2v

[
∆v + ∆w + |∇v|2 − |∇w|2

]
|u|2.

C.1. Application: compact boundaries

Let x be any twice-differentiable defining function for ∂M . We shall consider
metrics g which are in W 1,∞

loc on M and continuous on M . We shall further suppose
that the Hessian Hess x := ∇∇x of x satisfies

(C.3) |Hessx| = o(x−1).

Equation (C.3) will obviously hold if g is smooth on M ; it is, however, natural to
consider metrics of lower differentiability class when ∂M corresponds to a confor-
mal boundary at infinity. (Actually, in this section it would suffice to assume that
∆x = o(x−1); however, the stronger hypothesis (C.3) will be required in our further
considerations.)

We will work in a neighborhood of ∂M small enough so that |dx| is bounded
away from zero there. The following result is well known (compare [63, Lemma 1,
Section 3.2.6]), we give a proof since we need to control the constant in Equation (C.4)
below; the calculation can be traced back to those in [52]:

Proposition C.3. — For any ε > 0 and s '= −1/2 there exists xε,s > 0 such that
for any differentiable tensor field u with compact support in {0 < x < xε,s} we have

(C.4)
∫

M
x2s+2|∇u|2dµ !

{
(s + 1/2)2 − ε

}∫

M
x2s|u|2|dx|2dµ.

Proof. — We use Proposition C.2, choosing v = (s+1) ln(x) one has dv = (s+1)dx/x
and

(C.5) ∆v = −(s + 1)|dx|2/x2 + (s + 1)∆x/x = −(s + 1 + o(1))|dx|2/x2.

It follows that
|dv|2 + ∆v = ((s + 1)2 − s − 1 + o(1))|dx|2/x2.
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Choosing w = − 1
2 ln(x) we have that

−|dw|2 + ∆w = (1/4 + o(1))|dx|2/x2.

Proposition C.4. — For any ε > 0, t, s ∈ R there exists xε,s,t > 0 such that for
any differentiable tensor field u with compact support in {0 < x < xε,s,t} we have

(C.6)
∫

M
e−2s/xx2t|∇u|2dµ !

{
s2 − ε

}∫

M
e−2s/x|u|2x2t−4|dx|2dµ.

Proof. — We again use Proposition C.2 with v = −s/x + t ln x and w = 0, one then
has dv = sdx/x2 + tdx/x and

∆v = −2s|dx|2/x3 + s∆x/x2 − t|dx|2/x2 + t(∆x)/x = o(1)|dx|2/x4.

It follows that
|dv|2 + ∆v = (s2 + o(1))|dx|2/x4.

then we obtain (C.6).

C.2. Application: asymptotically flat metrics

We shall also need a weighted Poincaré inequality for metrics g defined on
Rn ! {r ! R} for some R, satisfying the following requirement: for every ε > 0 there
exists Rε < ∞ such that

(C.7) |gij − δij | " ε on {r ! Rε}.

We shall also require that

(C.8) ∆r − (n − 1)|∇r|2/r = o(1)

(recall that the right-hand-side above is zero for a flat metric). One then has the
following [7,21]; we give a proof for completeness(1):

Proposition C.5. — Suppose that (C.7)-(C.8) hold. Then for any s ∈ R and ε > 0
there exists Rs,ε < ∞ such that for any C1 tensor field u with compact support included
in {r > Rs,ε} it holds that

(C.9)
∫

r−2s−n+2|∇u|2dµ ! (s2 − ε)
∫

r−2s−n|u|2dµ.

Proof. — We use Proposition C.2 with v = (−s+1−n/2) ln r and w = [(n−2) ln r]/2.
We just recall that when f = c ln r, we have

∇f = c∇r/r

and
∆f = c∆r/r − c|∇r|2/r2 = c(n − 2)|∇r|2/r2 + o(1/r).

(1)Actually the case n = 2 does not seem to have appeared in the published literature so far.
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So
∆v + |∇v|2 = (s2 − (n − 2)2/4)|∇r|2/r2 + o(1/r),

and
∆w − |∇w|2 = ((n − 2)2/4)|∇r|2/r2 + o(1/r).

Proposition C.6. — Suppose that (C.7)-(C.8) hold. Then for any ε > 0 there exists
Rs,ε < ∞ such that for any C1 tensor field u with compact support included in {r >
Rs,ε} it holds that

(C.10)
∫

e−2sr|∇u|2dµ ! (s2 − ε)
∫

e−2sr|∇r|2|u|2dµ.

Proof. — We use Proposition C.2 with v = −sr and w = 0. Then ∇v = −s∇r and
∆v = −s∆r = −s(n − 1)|∇r|2/r + o(1) = o(1)|∇r|2. So

∆v + |∇v|2 = (s2 + o(1))|∇r|2.

C.3. Application: conformally compact manifolds

Here, as elsewhere, n denotes the dimension of M . We recall that we have g = x−2g
then

(C.11) (Γ − Γ)k
ij = −x−1(2δk

(i∇j)x − gij∇
k
x).

In particular, we have

(C.12) ∇i∇jx = ∇i∇jx + x−1(2∇ix∇jx − gij |dx|2g).

Throughout this section we use the symbol | · | for | · |g, but we write explicitly | · |g
when the g metric is involved.

Proposition C.7. — For any ε > 0 and s ∈ R, there exists xε,s > 0 such that for
any differentiable tensor field u with compact support in {0 < x < xε,s} we have

(C.13)
∫

M
x2s|x−2∇(xu)|2dµ !

{
[s − (n + 3)/2]2 − ε

}∫

M
x2s−2|u|2|dx|2gdµ.

Proof. — We use Proposition C.2, choosing v = (s− 2) ln x one has dv = (s− 2)dx/x
and

∆v = (s − 2)[−|dx|2/x2 + ∆x/x] = (s − 2)(1 − n)|dx|2/x2 + o(1).
It follows that

|dv|2 + ∆v = [(s − 2)2 + (s − 2)(1 − n) + o(1)]|dx|2/x2.

Choosing w = [(1 − n) ln x]/2 we have that

−|dw|2 + ∆w = [−(1 − n)2/4 + (1 − n)2/2 + o(1)]|dx|2/x2.
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WEIGHTED ESTIMATES FOR VECTOR FIELDS

In this section we give some estimates for the operator S which associates to a
vector field Y one half of the Lie derivative of the metric along Y :

S(Y )ij =
1
2
(LY g)ij :=

1
2
(∇iYj + ∇jYi).

As it will be often used, we recall that

tr (S(Y )) = divY = ∇iYi.

Lemma D.1. — For all vector fields V and all vector fields Y with compact support
we have the equality

∫

M
[S(Y ) +

1
2
tr (S(Y ))g](Y, V ) = −1

2

∫

M
∇V (Y, Y ) +

1
2
div (V )|Y |2.

Proof. — We integrate by parts the two terms on the right-hand side of the equality

S(Y )ijY
iV j =

1
2
(∇iYjY

iV j + ∇jYiY
iV j).

Proposition D.2. — For all functions u, all vector fields V and all vector fields Y
with compact support we have the equality

∫

M
e2u[S(Y ) +

1
2
tr (S(Y ))g](Y, V )

= −1
2

∫

M
e2u { ∇V (Y, Y ) +

1
2
div (V )|Y |2 + 〈du, V 〉|Y |2 + 2〈du, Y 〉〈V, Y 〉 } .
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Proof. — We use Lemma D.1 with Y replaced by euY , so that
∫

M
[S(euY ) +

1
2
tr (S(euY ))g](euY, V )

=
∫

M
e2u { [S(Y ) +

1
2
tr (S(Y ))g](Y, V ) +

1
2
(∇iuYj + ∇juYi + 〈du, Y 〉gij)Y iV j }

=
∫

M
e2u { [S(Y ) +

1
2
tr (S(Y ))g](Y, V ) +

1
2
〈du, V 〉|Y |2 + 〈du, Y 〉〈V, Y 〉 } .

Proposition D.3. — For all vector fields Y with compact support and functions u
and v supported in a neighborhood of the support of Y , we have

− 2
∫

M
ve2uS(Y )(∇v,∇v)〈dv, Y 〉

=
∫

M
e2u〈dv, Y 〉

[
〈dv, Y 〉(|dv|2 + v∆v + 2v〈dv, du〉) +2v∇∇v(Y,∇v)] .

Proof. — Integrating ∇j [(〈dv, Y 〉)2ve2u∇jv] over M one has

−
∫

M
〈dv, Y 〉2|dv|2e2u =

∫

M

{
2〈dv, Y 〉 [∇∇v(Y,∇v) + ∇Y (∇v,∇v)] ve2u

+ 〈dv, Y 〉2
[
v∆ve2u + 2v〈dv, du〉e2u

]}
,

and ∇Y (∇v,∇v) = S(Y )(∇v,∇v).

D.1. Application: compact boundaries

We use here the notations of Section 5. Similarly to Section C.1 we assume that
(C.3) holds.

Corollary D.4. — For all s ∈ R and all ε > 0 there exists xs,ε > 0 such that for
all vector fields Y with compact support in {0 < x < xs,ε} we have

∫

M
x2s[S(Y ) +

1
2
tr (S(Y ))g](Y,∇x/x)

=
1
2

∫

M
x2s−2

[
(
1
2
− s)

(
|dx|2|Y |2 + 2〈Y,∇x〉2

)
+ o(1)|Y |2

]

Proof. — We apply Proposition D.2 with the vector field V = ∇x/x and the function
u = s ln(x), so that du = sdx/x and

∇∇u = −s∇x∇x/x2 + s∇∇x/x = −s∇x∇x/x2 + o(x−2).
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Corollary D.5. — For all s, t ∈ R and all ε > 0 there exists xs,t,ε > 0 such that
for all vector fields Y with compact support in {0 < x < xs,t,ε} we have

∫

M
x2te−2s/x[S(Y ) +

1
2
tr (S(Y ))g](Y,∇x/x)

= −
∫

M
x2t−4e−2s/x

[ s

2

(
|dx|2|Y |2 + 2〈Y,∇x〉2

)
+ o(1)|Y |2 )

]
.

Proof. — We apply Proposition D.2 with the vector field V = ∇x/x2 and the function
u = −s/x + t ln x, so that we have du = −sdx/x2 + tdx/x and ∇V = o(x−4).

D.2. Application: asymptotically flat metrics

In this section we assume that (C.7) holds, while (C.8) will be strengthened to

(D.1) r∇∇r = δ −∇r∇r + o(1/r).

Corollary D.6. — For all s ∈ R and all vector fields Y with compact support near
infinity we have

(D.2)
∫

M
r−2s−n+2[S(Y ) +

1
2
tr (S(Y ))g](Y,∇r/r)

=
1
2

∫

M
r−2s−n

[
(s − 1)|Y |2 + (2s + n)〈Y,∇r〉2 + o(1)|Y |2

]
.

Proof. — We apply Proposition D.2 with the vector field V = ∇r/r = ∇(ln(r)) and
the function u = (−s − n/2 + 1) ln(r), then du = (−s − n/2 + 1)∇r/r and

∇∇u = (−s − n/2 + 1)(−∇r∇r/r2 + ∇∇r/r)

= (−s − n/2 + 1)(−2∇r∇r/r2 + δ/r2) + o(r−2),

recall that limr→∞ |∇r|2 = 1.

Corollary D.7. — For all s ∈ R and all vector fields Y with compact support near
infinity we have

(D.3)
∫

M
e−2sr[S(Y ) +

1
2
tr (S(Y ))g](Y,∇r)

= −
∫

M
e−2sr

[
s(|Y |2 + 2〈Y,∇r〉2) + o(1)|Y |2

]
.

Proof. — We apply the Proposition D.2 with the vector field V = ∇r and the function
u = −sr.

Corollary D.8. — For all vector fields Y with compact support, we have
∫

M
r−2s−n+1S(Y )(∇r,∇r)〈dr, Y 〉 =

∫

M
r−2s−n(s + o(1))〈dr, Y 〉2.
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Proof. — We use Proposition D.3 with v = r and u = (−s − n/2) ln r, together with
the fact that

r∇∇r = −∇r∇r + δ + o(1),

and |dr|2 = 1 + o(1).

We obtain finally the desired inequalities:

Proposition D.9. — For all s '= 0, 1, there exist Cs > 0 and R(s) such that for all
vector fields Y with compact support in {r > R(s)}, we have

∫

M
r−2s−n+2|S(Y )|2 ! Cs

∫

M
r−2s−n|Y |2.

Proof. — From Corollary D.8, for all b > 0, we have

b

2

∫

M
r−2s−n+2|S(Y )|2 +

1
2b

∫

M
r−2s−n|∇r|2〈dr, Y 〉2 !

∫

M
r−2s−n(|s|+ o(1))〈dr, Y 〉2.

We conclude by using Corollary D.6 and the inequality

|[S(Y ) +
1
2
tr (S(Y ))g](Y,∇r/r)| " a

2
|S(Y ) +

1
2
tr (S(Y ))g|2 +

1
2a

r−2|Y |2|dr|2,

for all a > 0, together with the inequality

|S(Y )|2 ! 1
n
|trS(Y )|2.

D.3. Application: conformally compact manifolds

We recall that we have g = x−2g. Equation (C.12) gives

∇i∇j(x−1) = 2x−3∇ix∇jx − x−2∇i∇jx = x−3gij |dx|2g − x−2∇i∇jx

= x−1|dx|2ggij + l.o.
(D.4)

where “l.o.” denotes terms which are small compared to the remaining ones.

Corollary D.10. — For all s ∈ R and all vector fields Y with compact support near
the boundary we have

∫

M
x2s[S(Y ) +

1
2
tr (S(Y ))g](Y,∇x/x)

=
1
2

∫

M
x2s

(
(
1 + n

2
− s)|dx|2g)|Y |2 − (2s + 1)〈dx/x, Y 〉2|dx|2g + o(1)|Y |2

)
.

Proof. — We apply Proposition D.2 with the vector field V = ∇(x−1) = −x−2∇x
and the function u = (s + 1/2) ln(x), using (D.4) one then has

∇V = ∇∇(x−1) = x−1|dx|2gg + o(x−3).
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Corollary D.11. — For all vector fields Y with compact support, we have

2
∫

M
x2sS(Y )(∇x/x,∇x/x)〈dx/x, Y 〉 =

∫

M
x2s(n − 2s − 1 + o(1))〈dx/x, Y 〉2|dx|2g .

Proof. — We apply Proposition D.3 with v = x−1, u = (s + 2) lnx, making use of
(D.4).

Proposition D.12. — For all s '= (n + 1)/2, (n − 1)/2 there exist constants Cs >
0, x(s) > 0 such that for all differentiable vector fields Y with compact support in
{x < x(s)} we have

∫

M
x2s|S(Y )|2 dµg ! Cs

∫

M
x2s|Y |2 dµg.

Proof. — From Corollary D.11, for all b > 0, we have

b

2

∫

M
x2s|S(Y )|2 +

1
2b

∫

M
x2s|∇x/x|2〈dx/x, Y 〉2

!
∫

M
x2s(|n − 1 − 2s| + o(1))〈dx/x, Y 〉2|dx|2g .

We conclude by using Corollary D.10 and the inequality

|[S(Y ) +
1
2
tr (S(Y ))g](Y,∇x/x)| " a

2
|S(Y ) +

1
2
tr (S(Y ))g|2 +

1
2a

|Y |2|dx/x|2,

for all a > 0, together with

|S(Y )|2 ! 1
n
|trS(Y )|2.

From the last result we also get an inequality governing the Hessian operator:

Proposition D.13. — For all s '= (n+1)/2, (n−1)/2, (n−3)/2 there exist constants
Cs > 0 and x(s) such that for all differentiable functions N with compact support in
{x < x(s)}, we have

∫

M
x2s|∇∇N − ∆Ng − N Ric g|2 dµg ! Cs

∫

M
x2s(|N |2 + |∇N |2) dµg.

Proof. — We will use Proposition D.12 with

Y = x−1∇N − N∇(x−1) = x−2∇(xN).

By (D.4) we have

∇(iYj) = x−1∇i∇jN − N∇i∇j(x−1) = x−1(∇i∇jN − N |dx|2gg) + Nx−2∇i∇jx,

then

S(Y ) − divY g = x−1
[
∇∇N − ∆Ng + (n − 1)N |dx|2gg + N(x−1∇∇x − x−1∆gxg)

]
.
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On the other hand we have

Ric g = Ric g + x−1[(n − 2)∇∇x + (∆x)g] − (n − 1)|dx|2gx−2g

= −(n − 1)|dx|2gg + l.o.

Finally, we obtain

S(Y ) − divY g = x−1[∇∇N − ∆Ng − N(Ric g + l.o.)].

Now, we use the inequality

|S(Y ) − tr S(Y )g|2 = |S(Y )|2 + (n − 2)(trS(Y ))2 ! |S(Y )|2,

and Proposition D.12 with s there replaced by s + 1 yields
∫

x2s
(
|∇∇N − ∆Ng − N Ric g|2 + o(1)N2

)
! C

∫
x2s−2|∇(xN)|2.

The result follows now from the following calculation, where Proposition C.7 with s
there equal to s + 1 is used when going from the second to the third line:

‖xs−1∇(xN)‖L2 = ε‖xs−1∇(xN)‖L2 + (1 − ε)‖xs−1∇(xN)‖L2

! ε‖xs∇N‖L2 − ε‖xs−1N∇x‖L2 + (1 − ε)‖xs−1∇(xN)‖L2

! ε‖xs∇N‖L2 − ε‖xs−1N∇x‖L2 + (1 − ε)c‖xsN‖L2

! C(‖xs∇N‖L2 + ‖xsN‖L2)
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APPENDIX E

POINCARÉ CHARGES

Let S be an n-dimensional spacelike hypersurface in a n+1-dimensional Lorentzian
space-time (M , g), n ! 2. Suppose that M contains an open set U with a global
time coordinate t (with range not necessarily equal to R), as well as a global “radial”
coordinate r ∈ [R,∞), leading to local coordinate systems (t, r, vA), with (vA) — local
coordinates on some compact n−1 dimensional manifold M . We further require that
S ∩ U = {t = 0}. Assume that the metric g approaches (as r tends to infinity, in a
sense which is made precise below) a background metric b. The Hamiltonian analysis
of vacuum general relativity in [18] (see also [29, Section 5] or [28, Appendix A]) leads
to the following expression for the Hamiltonian associated to the flow of a vector field
X , assumed to be a Killing vector field of the background b:(1)

H(S , g, b, X) =
1
2

∫

∂S
UαβdSαβ ,(E.1)

Uνλ = Uνλ
βXβ +

1
8π

(√
| det gρσ| gα[ν −

√
| det bρσ| bα[ν

)
Xλ]

;α ,(E.2)

Uνλ
β =

2| det bµν |
16π

√
| det gρσ|

gβγ(e2gγ[νgλ]κ);κ,(E.3)

e =
√
| det gρσ|/

√
| det bµν | .(E.4)

(The question of convergence of the right-hand-side of (E.1) will be considered shortly.
The last term in (E.2) is actually identically zero for asymptotically Euclidean hyper-
surfaces, but does not vanish for hyperboloidal hypersurfaces and is necessary there
to ensure convergence of the integral.) The form (E.1) is most convenient when trying

(1)The integral over ∂S should be understood by a limiting process, as the limit as R tends to

infinity of integrals over the sets t = 0, r = R. dSαβ is defined as ∂
∂xα " ∂

∂xβ " dx0 ∧ · · · ∧ dxn,

with " denoting contraction; g stands for the space-time metric unless explicitly indicated otherwise.

Further, a semicolon denotes covariant differentiation with respect to the background metric b.
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to establish formulae such as (E.14) below, expressing the Poincaré–covariance of the
Hamiltonians.

E.1. Initial data asymptotically flat in spacelike directions

Consider, to start with, Lorentzian metrics which are asymptotically flat in the
following sense: there exists a coordinate system xµ covering a set which contains

S0 := {x0 = 0, r(x) :=
√∑

(xi)2 > R},

and assume that the tensors gµν := g(∂µ, ∂ν) and bµν := b(∂µ, ∂ν) satisfy along S0

bµν = ηµν := diag(−1, +1, . . . , +1),(E.5a)

|gµν − bµν | " Cr−α, |∂σgµν | " Cr−α−1, n/2 − 1 < α " n − 2.(E.5b)

If one further assumes that the energy-momentum tensor Tµν of g is in L1(S0), then
the ADM energy-momentum vector defined as

(E.6) pµ(S0) := H(S0, g, b, ∂µ)

is finite and well defined [7,19,22]. The finiteness of the Lorentz charges,

(E.7) Jµν(S0) := H(S0, g, b, xµ∂ν − xν∂µ),

where xµ := ηµνxν , requires further restrictions – there are various ways to pro-
ceed [11, 20, 56, 62], the following is convenient for our purposes: let Ω ⊂ R1,n be
invariant under the transformation

(E.8) xµ −→ −xµ,

for any f : Ω → R we set

f+(x) =
1
2

(f(x) + f(−x)) , f−(x) =
1
2

(f(x) − f(−x)) .

We shall henceforth only consider metrics defined on domains of coordinate systems
which are invariant under (E.8), and we will assume that in addition to (E.5) we have

(E.9) |g−µν | " C(1 + r)−α− , |∂σ(g−µν)| " C(1 + r)−1−α− , α− > α, α + α− > n− 1.

We note that in dimension n + 1 = 3 + 1, Equations (E.5) and (E.8) hold for the
Schwarzschild metric in the usual static coordinates, with α = 1 and α− — as large
as desired. Similarly (E.5), (E.8) hold for the Kerr metric in the Boyer-Lindquist
coordinates, discussed in Section F below, with α = 1 and α− = 2.

Recall that a boost-type domain ΩR,T,θ ⊂ R1,n is defined as

(E.10) ΩR,T,θ := {r > R, |t| < θr + T },

with θ ∈ (0,∞]. We have the following:
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Proposition E.1. — Let gµν be a Lorentzian metric satisfying (E.5) and (E.9) on
a boost-type domain ΩR,T,θ, and suppose that the coordinate components Tµν :=
T (∂µ, ∂ν) of the energy-momentum tensor density,

(E.11) Tµν :=
√
| det gαβ |

8π

(
Ric µν − 1

2
tr gRic gµν

)
,

satisfy

(E.12) |Tµν | " C(1 + r)−n−ε, |T −
µν | " C(1 + r)−n−1−ε, ε > 0.

Let S ⊂ ΩR,T,θ be the hypersurface {y0 = 0} ∩ ΩR,T,θ, where the coordinates yµ are
obtained from the xµ’s by a Poincaré transformation,

(E.13) xµ −→ yµ := Λµ
νxν + aµ,

so that Λµ
ν is a constant-coefficients Lorentz matrix, and aµ is a set of constants, set

S0 := {x0 = 0}. Then:

(1) The integrals defining the “Poincaré charges” (E.6)-(E.7) of S and S0 con-
verge.

(2) We have

(E.14) (pµ(S ), Jµν(S )) = (Λµ
αpα(S0), Λµ

αΛν
βJαβ(S0)

+ aµΛν
αpα(S0) − aνΛµ

αpα(S0)).

Here Λα
β := ηαµΛµ

νηνβ and pµ(S0) = H(S0, g, b, ∂/∂xµ), while pµ(S ) =
H(S , g, b, ∂/∂yµ), similarly for Jµν .

Proof. — We have [18]

(E.15)
∫

{x0=0,r=R}
UαβdSαβ = 2

∫

{x0=0,R0!r!R}
∇̊βUαβdSα +

∫

{x0=0,r=R0}
UαβdSαβ ,

with

(E.16) 16π∇̊βUαβ = T α
βXβ +

√
| det b|

(
Qα

βXβ + Qαβγ ∇̊βXγ
)

,

where Qα
β is a quadratic form in ∇̊σgµν , and Qαβ

γ is bilinear in ∇̊σgµν and gµν−bµν ,
both with bounded coefficients which are constants plus terms O(r−α). For pµ and
for R ! R0 one immediately obtains

∫

{x0=0,r=R}
UαβdSαβ =

∫

{x0=0,r=R0}
UαβdSαβ + O(Rn−2−2α

0 )(E.17)

+
1
8π

∫

{x0=0,R0!r!R}
T α

βXβdSα

=
∫

{x0=0,r=R0}
UαβdSαβ + O(Rn−2−2α

0 ) + O(R−ε
0 ).
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For Jµν simple parity considerations lead instead to

(E.18)
∫

{x0=0,r=R}
UαβdSαβ =

∫

{x0=0,r=R0}
UαβdSαβ + O(Rn−1−α−α−

0 ) + O(R−ε
0 ).

Passing to the limit R → ∞ one obtains convergence of pµ(S0) and of Jµν(S0). For
further reference we note the formulae

pµ(S0) =
∫

{x0=0,r=R0}
UαβdSαβ +

1
16π

∫

r"R0

T µ
νXνdSµ + O(Rn−2−2α

0 ),(E.19a)

Jµν(S0) =
∫

{x0=0,r=R0}
UαβdSαβ +

1
16π

∫

r"R0

T µ
νXνdSµ + O(Rn−1−α−α−

0 ).(E.19b)

Because Lorentz transformations commute with the antipodal map (E.8) the bound-
ary conditions (E.5) and (E.9) are preserved under them, and convergence of the
Poincaré charges of S for transformations of the form (E.13) with aµ = 0 follows.
In order to establish point (2), still for aµ = 0, we use Stokes’ theorem on a set TR

defined as

(E.20) TR = {r = R, 0 " t " −(Λ0
0)−1Λ0

ix
i} ∪ {r = R, 0 ! t ! −(Λ0

0)−1Λ0
ix

i},

so that the boundary ∂TR has two connected components, the set S0 ∩ {r = R} and
the set S ∩ {r = R}. This leads to

(E.21)
∫

S∩{r=R}
UαβdSαβ = 2

∫

TR

∇̊βUαβdSα +
∫

S0∩{r=R}
UαβdSαβ ,

The boundary conditions ensure that the integral over TR vanishes in the limit R →
∞ (for pµ this is again straightforward, while for Jµν this follows again by parity
considerations), so that

(E.22) H(S , g, b, X) = H(S0, g, b, X).

We consider finally a translation; Stokes’ theorem on the n–dimensional region

{yµ = xµ + saµ, s ∈ [0, 1], xµ ∈ S , r(xµ) = R}

leads again — in the limit R → ∞ — to (E.22), in particular H(S , g, b, X) converges.
The transformation law (E.14) follows now from (E.22) by the following calculation:

Jµν(S ) := H(S , g, b, yµ
∂

∂yν − yν
∂

∂yµ )

= H(S0, g, b, yµ
∂

∂yν − yν
∂

∂yµ )

= H(S0, g, b, (Λµ
αxα + aµ)Λν

β ∂
∂xβ − (Λν

αxα + aν)Λµ
β ∂

∂xβ ).

It is convenient to have a initial data version of (E.1), in the asymptotically flat
vacuum case this is easily implemented as follows: let (S , K, g) be an asymptotically
flat vacuum initial data set, if the data are sufficiently differentiable there exists a
vacuum development (M, n+1g) of the data so that S can be isometrically identified
with a hypersurface t = 0 in M , with K corresponding to the second fundamental
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form of S in (M, n+1g). We can introduce Gauss coordinates around S to bring
n+1g to the form

n+1g = −dt2 + gt

where gt is a family of Riemannian metrics on S with g0 = g. We then set

b = −dt2 + e,

where e is the Euclidean flat metric equal to diag(+1, . . . , +1) in asymptotically flat
coordinates on S . Let nb be the future directed b-unit normal to S and let (Y, N)
be the KID determined on S by the b-Killing vector X ; by definition,

(E.23) X = Nnb + Y, b(nb, Y ) = 0 along S .

Since the future pointing g-unit normal to S , say ng, coincides with nb, we also have

(E.24) X = Nng + Y, g(ng, Y ) = 0.

We define the Poincaré charges Q by the formula

(E.25) Q((Y, N), (K, g)) := H(S , n+1g, b, V N + Y ).

It is well known that the integrand of (E.25) can be expressed in terms of K, g, as
well as the first derivatives of g. The initial data form of (E.17) reads

(E.26)
∫

{x0=0,r=R}
UαβdSαβ =

∫

{x0=0,r=R0}
UαβdSαβ

+
1
8π

∫

{x0=0,R0!r!R}

(
Y iJi + Nρ + q

)
dµg,

where q is a quadratic form in gij − δij , ∂kgij , and Kij , with uniformly bounded
coefficients whenever gij and gij are uniformly bounded. This follows immediately
from (E.15)-(E.16), together with the n + 1 decomposition of the energy-momentum
tensor density (E.11), and of the error term in (E.16). One can also work directly
with the initial data equivalents of the boundary integrals in (E.26) — cf., e.g., [11]
— but those are somewhat cumbersome when studying behavior of the charges under
Lorentz transformations.
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APPENDIX F

THE REFERENCE FAMILY OF KERR METRICS

Let us denote by Ki0 the family of Cauchy data (g, K) obtained as follows: let 4g
be a Kerr metric with m '= 0, a ∈ R; in Boyer-Lindquist coordinates (t, r, θ, ϕ) we
have [53, p. 100] (see also http://grdb.org)

(F.1)

4gtt = −1 +
2mr

ρ2
, 4gtϕ = −2mra sin2 θ

ρ2
, 4grr =

ρ2

= , 4gθθ = ρ2,

4gϕϕ = sin2 θ

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
,

where
ρ2 = r2 + a2 cos2 θ, = = r2 − 2mr + a2.

Introduce a “quasi-Minkowskian” coordinate system (xµ) = (t, xi) by setting

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ,

which brings 4gµν to the form ηµν + O(r−1) for xµ’s in a set r ! R0 for some R0,
and apply to it a Poincaré transformation (E.13). We further assume that (Λµ

ν , aµ)
belongs to the connected component G0 of the identity of the Poincaré group. Then
(g, K) are defined on the set

(F.2)






√∑

i

(yi)2 > R






for some R = R(m, a, Λµ
ν , aµ) by extracting the gravitational initial data out of

the metric 4g on the hypersurface y0 = 0. The function R(m, a, Λµ
ν , aµ) can be

chosen to be continuous, in particular for any set (m0, a0, Λ0
µ

ν , aµ
0 ) there exists a

neighborhood O0 thereof such that R(m, a, Λµ
ν , aµ) can be chosen independently of

(m, a, Λµ
ν , aµ) ∈ O0. We equip Ki0 with the topology of uniform convergence on

relatively compact open sets; any weighted Sobolev topology on the set of initial data
will lead, by restriction, to this topology on Ki0 .
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We wish to show that the set Ki0 can be uniquely parameterized(1) by the Poincaré
charges (pµ, Jµν) defined in (E.6)-(E.7), with pµ ranging over the set of timelike vectors
I(0) in the Minkowski space-time R1,3, and Jµν ranging over all anti-symmetric two-
covariant tensors. In other words:

Proposition F.1. — The map

(F.3) Q : Ki0 8 (g, K) −→ (pµ, Jµν) ∈ I(0) × R6 ⊂ R4 × R6

is a continuous bijection.

Proof. — Let (g, K) be the Cauchy data on {x0 = 0, r ! R0} for a Kerr metric as
above with some parameters m ∈ R∗ and a ∈ R, we then have

(F.4) pµ = (m, 0, 0, 0), Jµν = 2maδ1
[µδ2

ν].

The transformation law (E.14) shows that for any vector ni ∈ R3 satisfying∑
i(n

i)2 = 1 we can obtain a pair (pµ, Jµν) of the form

(F.5) pµ = mδ0
µ, J0i = 0, Jij = ±maεijknk,

by

• either performing a rotation by an angle less than or equal to π/2 in the plane
Span(∂z, ni∂i) which brings ni∂i to ∂z , then we choose the sign +, or

• we perform a rotation by an angle less than or equal to π/2 in the plane
Span(∂z, ni∂i) which brings ni∂i to −∂z, then we choose the sign −.

In the overlapping case ni∂i ⊥ ∂z the choice does not matter because the resulting
metrics (and thus initial data) are identical “modulo gauge” — the corresponding
transformation a → −a, (t, r, ϕ, θ) → (t, r,−ϕ, π − θ) is an isometry of the Kerr
metric. Next, a space-translation ai ∈ R3 produces out of (F.5) a pair (pµ, Jµν)

(F.6) pµ = mδ0
µ, J0i = −mai, Jij = ±maεijknk.

It follows that any set (pµ = mδ0
µ, Jµν) can be obtained in a unique way by calculating

the charges (E.6)-(E.7) using initial data in Ki0 by the operations just described. Now,
for any timelike pµ there exists precisely one boost transformation Λµ

ν in the plane
Span(δ0

µ, pµ) which maps mδ0
µ to pµ, provided m is suitably chosen, and we conclude

by noting that, at fixed Λµ
ν , the map

R6 8 Jµν −→ Λµ
αΛν

βJαβ ∈ R6

is a linear isomorphism.

(1)The construction of the set Ki0 involves twelve free parameters, however two of them are redun-

dant because of the existence of the two-parameter group of isometries of the Kerr metric.
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We end this section by verifying that the initial data for the Kerr metric in Boyer-
Lindquist coordinates are parity symmetric. First, we note that gij is obviously even.
Next, we have

(F.7) 4gtidxi = 4gtϕdϕ = −2mra sin2 θ

ρ2
dϕ = −2ma

rρ2
(xdy − ydx),

so that the coordinate components of the shift vector are odd. Now, the lapse function
is symmetric under parity. Further, the derivatives of an even function are odd and
vice-versa; in particular the Christoffel symbols are odd while the partial derivatives
of the coordinate components of the shift vector are even. The usual formula for Kij

in terms of the derivatives of the shift vector yields the result.
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APPENDIX G

UNIFORM LOCAL INVERTIBILITY

Proposition G.1. — Let (Vx, ‖ · ‖Vx)x∈A and (Wx, ‖ · ‖Wx)x∈A be two families of
Banach spaces. Let r > 0 and let {fx : BVx(0, r) → Wx}x∈A be a family of differen-
tiable functions such that:

(1) Dfx(0) : Vx → Wx has a right inverse for all x ∈ A which is bounded indepen-
dently of x ∈ A.

(2) ‖fx(v + h) − fx(v) − Dfx(v)h‖Wx/‖h‖2
Vx

is bounded independently of x ∈ A,
v ∈ BVx(0, r) and h ∈ V such that v + h ∈ BVx(0, r).

(3) ‖Dfx(v + h) − Dfx(v)‖L(Vx,Wx)/‖h‖Vx is bounded independently of x ∈ A,
v ∈ BVx(0, r) and h ∈ V such that v + h ∈ BVx(0, r).
Then there exists ε > 0 and C > 0 such that for all x ∈ A and all δf ∈ Wx,
‖δf‖Wx < ε, there exists a solution δx ∈ Vx of the equation

fx(δx) − fx(0) = δf,

which satisfies ‖δx‖Vx " C‖δf‖Wx .

Proof. — From 1), there exist a constant C1 such that for all x ∈ A and all w ∈ Wx,
the equation

Dfx(0)h = w,

has a solution h ∈ Vx such that

‖h‖Vx " C1‖w‖Wx .

From 2) and 3), there exist constants C2 and C3 such that for all x ∈ A, all v ∈
BVx(0, r) and all h ∈ V ,

‖fx(v + h) − fx(v) − Dfx(v)h‖Wx " C2‖h‖2
Vx

,

‖Dfx(v + h) − Dfx(v)‖L(Vx,Wx) " C3‖h‖Vx .

Let x ∈ A and δf ∈ Wx. We will construct a Picard sequence {hn} such that
∑

hn

converges to a solution when δf is small enough. From 1), we have a solution h0 ∈ Vx
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of
Dfx(0)h0 = δf,

which satisfies ‖h0‖Vx " C1‖δf‖Wx . Let δx1 := h0 which is in BVx(0, r) if ‖δf‖Wx is
small enough. Let us now define the sequence hi+1, solution of

Dfx(0)hi+1 = fx(0) − fx(δxi+1) + δf,

where δxi+1 = δxi + hi (we assume that δxi+1 ∈ BVx(0, r), it will be justified at the
end of the proof). We have that

Dfx(0)hi+1 = fx(0) − fx(δxi) + fx(δxi) − fx(δxi+1) + δf

= Dfx(0)hi − [fx(δxi+1) − fx(δxi)]

=
i−1∑

p=0

[Dfx(δxp) − Dfx(δxp+1)]hi

+ [Dfx(δxi)hi + fx(δxi) − fx(δxi + hi)],

(G.1)

with δx0 = 0, so by hypothesis 1), 2) and 3), we have

‖hi+1‖Vx " C1

( i−1∑

p=0

C3‖hp‖Vx‖hi‖Vx + C2‖hi‖2
Vx

)
.

Let K := max(C1C2, C1C3), then we have

‖hi+1‖Vx " K‖hi‖Vx

i∑

p=0

‖hp‖Vx .

Choose any δ ∈]0, 1[, let ε be small enough so that

KC1ε < 1,
(KC1ε)1−δ

1 − (KC1ε)δ
" 1,

and such that for all t ∈ [0, ε[,
C1t

1 − (KC1t)δ
" 2C1t < r,

and let C := 2C1. If ‖δf‖Wx " ε, from Lemma G.3 with ai = ‖hi‖Vx , the sequence
δxn+1 :=

∑n
i=0 hi is convergent in Vx to a limit δx which satisfies

‖δx‖Vx " ‖h0‖Vx

1 − (K‖h0‖Vx)δ
" C1‖δf‖Wx

1 − (KC1‖δf‖Wx)δ
" C‖δf‖Wx < r.

Note that for all n ! 0, ‖δxn+1‖Vx < r. On the other hand, as hi+1 goes to zero in
Vx we have that fx(0) − fx(δxi) − δf = Dfx(0)hi+1 goes to zero in Wx.

The following result is needed to be able to obtain weighted Hölder regularity of
the solutions obtained, to start with, in weighted Sobolev spaces. In our applications
the spaces Ex will be the weighted Hölder spaces Ck+2,α

φ,ϕ × Ck+2,α
φ,ϕ , the Fx’s will be

Ck+1,α
φ,ϕ′ × Ck,α

φ,ϕ′ , the Gx’s will correspond to Ck+1,α
φ,ϕ′′ × Ck,α

φ,ϕ′′ , for appropriate weights
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ϕ, ϕ′, ϕ′′, see the proof of Proposition 3.13. Finally, A should be thought of as a
neighborhood of x0 = (K0, g0) in (Ck+3,α

φ,1 × Ck+4,α
φ,1 ) ∩ (W k+3,∞

φ × W k+4,∞
φ ).

For the following result we shall denote by

Dfx(0)−1
r

the right inverse of Dfx(0), the existence of which has been assumed in point (1) of
the preceding proposition.

Proposition G.2. — Under the hypotheses of Proposition G.1, consider three fam-
ilies of Banach spaces (Ex, ‖ · ‖Ex)x∈A, (Fx, ‖ · ‖Fx)x∈A and (Gx, ‖ · ‖Gx)x∈A such
that Gx is continuously embedded both in Fx and in Wx, with the norms of the
embeddings uniformly bounded in x ∈ A. Assume there exist a r′ > 0 such that
{fx : BEx(0, r′) → Fx}x∈A is defined, differentiable and verifies:

(1) if h is in the image of Dfx(0)−1
r and Dfx(0)h ∈ Fx then h ∈ Ex and

‖h‖Ex " C(‖h‖Vx + ‖Dfx(0)h‖Fx),

where C does not depend on x ∈ A.
(2) ‖fx(v + h) − fx(v) − Dfx(v)h‖Gx/‖h‖2

Ex
is bounded independently of x ∈ A,

v ∈ BEx(0, r′) and h ∈ Ex such that v + h ∈ BEx(0, r′).
(3) ‖Dfx(v + h) − Dfx(v)‖L(Ex,Gx)/‖h‖Ex is bounded independently of x ∈ A,

v ∈ BEx(0, r′) and h ∈ V such that v + h ∈ BEx(0, r′).

Then there exists ε > 0 and C′ > 0 such that for all x ∈ A and all δf ∈ Wx ∩ Fx

satisfying

‖δf‖Wx + ‖δf‖Fx < ε

there exists a solution δx ∈ Ex satisfying

‖δx‖Ex " C′(‖δf‖Wx + ‖δf‖Fx).

Proof. — The constant C which appears in the proof may change from term to term
and line to line. The solution is constructed by the same method as in the proof of
Proposition G.1. Let, thus, hi be the sequence defined there, by hypothesis 1. for all
i ! −1 we have hi+1 ∈ Ex and

‖hi+1‖Ex " C(‖hi+1‖Vx + ‖Dfx(0)hi+1‖Fx)

" C(‖Dfx(0)hi+1‖Wx + ‖Dfx(0)hi+1‖Fx) " C‖Dfx(0)hi+1‖Gx ,

which is clearly true regardless of whether or not the last term is finite. On the other
hand, from equation (G.1) together with the hypotheses 2. and 3. we have that

‖Dfx(0)hi+1‖Gx " C‖hi‖Ex

i∑

k=0

‖hk‖Ex .
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So from Lemma G.3 with ai = ‖hi‖Ex , if δf is sufficiently small in Fx norm, then the
sequence

∑i
k=0 hk is convergent in Ex to some element δx ∈ Ex, with

‖δx‖Ex " C‖h0‖Ex " C(‖h0‖Vx + ‖Dfx(0)h0‖Fx) = C(‖δf‖Wx + ‖δf‖Fx).

G.1. A sequence adapted to the Picard method

Lemma G.3. — Let K > 0, δ ∈]0, 1[, and let {an}n∈N be a sequence with non-
negative terms which verifies, for all n > 0,

an+1 " Kan

n∑

i=0

ai.

If a0 is small enough to verify

Ka0 < 1 and
(Ka0)1−δ

1 − (Ka0)δ
" 1,

then the sequence Sn(a0) :=
∑n

i=0 ai is convergent to a limit denoted S(a0) which
satisfies

0 " Sn(a0) " S(a0) " a0

1 − (Ka0)δ
,

in particular, S is continuous at 0.

Proof. — Let bn := Kan, we have

bn+1 " bn

n∑

i=0

bi.

We will show by induction that

bn " b1+nδ
0 .(G.2)

Equation G.2 holds for n = 0, assume it hold for all integers less than or equal to n,
we then have

bn+1 " b1+nδ
0

n∑

i=0

b1+iδ
0 " b2+nδ

0

1 − b(n+1)δ
0

1 − bδ
0

" b2+nδ
0

1
1 − bδ

0

" b1+(n+1)δ
0

b1−δ
0

1 − bδ
0

" b1+(n+1)δ
0 ,

the last inequality following from the second hypothesis on a0. To conclude, it suffices
to remark that

0 "
n∑

i=0

bi "
∞∑

i=0

bi "
∞∑

i=0

b1+iδ
0 =

b0

1 − bδ
0

.

MÉMOIRES DE LA SMF 94



APPENDIX H

SMALL INITIAL DATA
ON A BOUNDED DOMAIN IN R3

Let Ω be a bounded domain in R3 with smooth boundary, and let g̃ be any smooth
up-to-boundary Riemannian metric on Ω such that

(H.1)
1
2
e(X, X) " g̃(X, X) " 2e(X, X),

where e is the Euclidean metric. It can be seen that there are no conformal Killing
vectors which vanish on ∂Ω (cf., e.g. [3, Proposition 6.2.2]) which implies that the
operator

H̊2 8 X −→ D̃i

(
D̃iXj + D̃jX i − 2

3
D̃kXkg̃ij

)
∈ L2

has no kernel (D̃ — the Levi-Civita connection of g̃), and can thus be used to con-
struct g̃-transverse (D̃iLij = 0) traceless (g̃ijLij = 0) tensors Lij on Ω in the usual
way. When g̃ is parity-symmetric, then parity-antisymmetric Lij ’s can be obtained
by replacing Lij with (Lij(x) − Lij(−x))/2. Let, thus, any parity-antisymmetric,
transverse, traceless, Lij be given, for σ ∈ [0, 1] consider the Lichnerowicz equation:

(H.2) 8∆g̃φ − R(g̃)φ + σ2|L|2g̃φ−7 = 0,

which we rewrite as

(H.3) Lu := (∆g̃ + s)u = F (u),

where u := φ − 1, while ∆g̃ + s is the linearization of 1
8 (H.2) at φ = 1,

s := −R(g̃)
8

− 7σ2|L|2g̃.

One will obtain a solution

(Kij := σφ−2Lij , gij := φ4g̃ij)

of the vacuum constraint equations using the inverse function theorem in, e.g.,
weighted Hölder spaces, if one can show that the operator L appearing at the
left-hand-side of (H.3) has no kernel. In order to show that this is indeed the case
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for g̃ − e small enough in C2(Ω), and for σ small enough, let CP be the constant
appearing in the Poincaré inequality for Ω:

(H.4) ∀ u ∈ H̊1(Ω)
∫

Ω
u2d3x " CP

∫

Ω
|du|2ed3x,

it follows from (H.1) that we also have

(H.5) ∀ u ∈ H̊1(Ω)
∫

Ω
u2

√
det g̃ d3x " 4

√
2CP

∫

Ω
|du|2g̃

√
det g̃ d3x,

If Lu = 0, by integration by parts one obtains
∫

Ω

(
−|du2|g̃ + su2

)√
det g̃ d3x = 0,

and the Poincaré inequality gives
∫

Ω
u2

√
det g̃ d3x " 4

√
2CP

∫

Ω
|du|2g̃

√
det g̃ d3x

" 4
√

2CP sup |s|
∫

Ω
u2

√
det g̃ d3x,

(H.6)

hence u = 0 if ‖s‖L∞(Ω) is small enough, and the inverse function theorem applies.
Clearly the resulting (K, g) will be non-trivial as soon as g̃ is not conformally flat.

Let (m, 2p) be the ADM four-momentum of (K, g) obtained by integrating U given
by (E.2) (expressed in terms of g and K) over ∂Ω; here b should be taken as the
Minkowski metric, and space coordinates harmonic for g should be used — such
coordinates can be found globally on Ω if g is close enough to e. At σ = 0 we have
2p = 0, while it follows from the calculations in [7] that m > 0 (choosing g closer to e
if necessary). Continuity then shows that choosing σ small enough we will obtain

|2p|e " 1
2
m.

The initial data set (K, g) will then fulfill all the requirements set forth in Theo-
rem 8.14.
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[27] P. Chruściel & R. Mazzeo – On“many-black-hole”vacuum spacetimes, Class.
Quantum Grav. 20 (2003), p. 729–754, gr-qc/0210103.
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