
MÉMOIRES DE LA SMF 85

BOUNDARY COHOMOLOGY
OF SHIMURA VARIETIES, III:

COHERENT COHOMOLOGY ON
HIGHER-RANK BOUNDARY STRATA

AND APPLICATIONS
TO HODGE THEORY

Michael Harris

Steven Zucker
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BOUNDARY COHOMOLOGY

OF SHIMURA VARIETIES, III:

COHERENT COHOMOLOGY ON HIGHER-RANK

BOUNDARY STRATA AND APPLICATIONS

TO HODGE THEORY

Michael Harris, Steven Zucker

Abstract. — In this article, third of a series, we complete the veri�cation of the

following fact. The nerve spectral sequence for the cohomology of the Borel-Serre

boundary of a Shimura variety Sh is a spectral sequence of mixed Hodge�de Rham

structures over the �eld of de�nition of its canonical model. To achieve that, we

develop the machinery of automorphic vector bundles on mixed Shimura varieties, for

the latter enter in the boundary of the toroidal compacti�cations of Sh; and study the

nerve spectral sequence for the automorphic vector bundles and the toroidal boundary.

We also extend the technique of averting issues of base-change by taking cohomology

with growth conditions. We give and apply formulas for the Hodge gradation of the

cohomology of both Sh and its Borel-Serre boundary.

Résumé (Cohomologie au bord des variétés de Shimura, III). — Dans cet article,

troisième d'une série, nous terminons la véri�cation du fait suivant. La suite spectrale

« du nerf », qui calcule la cohomologie du bord de la compacti�cation de Borel-Serre

d'une variété de Shimura Sh, est une suite spectrale de structures de Hodge-de Rham
mixtes sur le corps de dé�nition de son modèle canonique. Pour le faire, nous dé-

veloppons la théorie de �brés automorphes sur les variétés de Shimura mixtes, car

de tels objets �gurent dans le bord d'une compacti�cation toroïdale de Sh ; et nous
étudions la suite spectrale « du nerf » pour les �brés automorphes et le bord toroïdal.

En plus, nous généralisons nos résultats antérieurs sur la cohomologie avec conditions

de croissance, qui permettent d'éviter les di�cultés associées au changement de base.

En�n, nous énonçons et appliquons des formules pour la graduation de Hodge de la

cohomologie de Sh et celle du bord de sa compacti�cation de Borel-Serre.

c© Mémoires de la Société Mathématique de France 85, SMF 2001
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INTRODUCTION

The present article continues the study of the boundary cohomology of Shimura
varieties initiated in [HZ1, HZ2]. Let G be a reductive group over Q, X the symmet-
ric space associated to G(R), and Γ a congruence subgroup of G(Q). We consider
the cohomology of Γ\X with coefficients in the local system Ṽ constructed from a
representation V of G, i.e., H•(Γ\X, Ṽ ) � H•(Γ, V ). It is standard that this coho-
mology can be decomposed as the direct sum of “interior” cohomology, defined as the
image of the cohomology with compact supports H•

c (Γ\X, Ṽ ), and a complementary
“boundary cohomology”that restricts non-trivially to the boundary of the Borel-Serre
(manifold-with-corners) compactification of Γ\X . The designation of boundary coho-
mology is generally non-canonical, and much work has been devoted to constructing
canonical decompositions using Eisenstein series.
By an elaboration on the de Rham theorem, one knows that the cohomology group

H•(Γ\X, Ṽ ) can be expressed as the relative Lie algebra cohomology of the space of V -
valued C∞ functions on Γ\G(R), or even the functions of moderate growth ([B2, §7]).
Thanks to the work of Franke [Fr1], one can replace the functions of moderate growth
by the subspace of automorphic forms, and this can provide the starting point for
an approach to the boundary cohomology. However, in this series of articles we
are concerned only tangentially with the relation between boundary cohomology and
automorphic forms. We choose to work at a more intrinsic level, concentrating instead
on the additional structures onH•(Γ\X, Ṽ ) whenX is a hermitian symmetric domain.
In that case, Γ\X is an algebraic variety, and Ṽ underlies a natural variation of
Hodge structure. Morihiko Saito’s theory of mixed Hodge modules [Sa3] then gives
that H•(Γ\X, Ṽ ) has a corresponding mixed Hodge structure (MHS). The nature
of this MHS at the boundary—more accurately, the associated MHS on the deleted
neighborhood cohomology of the boundary—was the subject of [HZ2].
The “adelic version” of Γ\X is the Shimura variety Sh(G,X), whose connected

components are of the form Γ\X . This has a canonical model over a number field
E. The de Rham isomorphism identifies H•(Sh(G,X), Ṽ ) with the hypercohomology
of of an E-rational complex of coherent sheaves on Sh(G,X); thus H•(Sh(G,X), Ṽ )
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acquires an E-rational structure distinct from the topological rational structure com-
ing from the coefficients Ṽ . In particular, H•(Sh(G,X), Ṽ ) has a Hodge filtration
whose graded pieces are given by the coherent cohomology with coefficients in certain
automorphic vector bundles [H1, Mi2]; the latter have natural E-rational structure.
(This E-rationality can be asserted for de Rham cohomology, without grading for the
Hodge filtration, and that is conjecturally equivalent in this context.) Study of the
boundary cohomology of such automorphic vector bundles was begun in [HZ1].
Both [HZ1] and [HZ2] made essential use of toroidal compactifications of Shimura

varieties (which has its origin in [AMRT]), following [H3] and [H4]. The toroidal
boundary of Sh(G,X) (a divisor with normal crossings), like the Borel-Serre bound-
ary, is stratified according to conjugacy classes of parabolic subgroups of G. The
cohomology of the boundary, both in the topological setting (as above) and in the
coherent setting (i.e., for canonically extended automorphic vector bundles), can be
computed as the abutment of the spectral sequence for the closed covering given by
this stratification; this is called the nerve spectral sequence. In [HZ1] we analyzed
the contribution to the nerve spectral sequence from the strata associated to maximal
parabolics in the coherent setting. The first task of the present article is to extend
this analysis to general parabolics, thereby fulfilling our promise from [HZ1], and
this is carried out in the first three Chapters. This necessitated a generalization in
Chapter 1 of much of the machinery of automorphic vector bundles to the toroidal
compactifications of mixed Shimura varieties (constructed by Pink [P]).
Most of the calculations from [HZ1, §3] go over without change, but there are a

few delicate points, notably the issue of basechange in (3.4). For the latter, we must
recall the role of conditions of growth and decay. These entered in the coherent setting
when we established the existence and degeneration of Leray spectral sequences for
morphisms of toroidally compactified varieties and the corresponding morphisms of
canonical (or subcanonical) extensions of automorphic vector bundles. In effect, it
enabled us to circumvent the complications related to basechange at infinity. As
suggested above, this last point recurs here. We are obliged to prove (in (2.3)) a
generalization to mixed conditions of growth and decay, enabling us, in effect, to
isolate a single boundary stratum.
Our main result in Chapter 3 is that the differentials in the E1-term of the nerve

spectral sequence for coherent cohomology decompose naturally into pieces that ei-
ther are given in terms of restriction maps on pure Shimura varieties or are “purely
topological” (see (3.5.4)). Via Franke’s interpretation of cohomology in terms of auto-
morphic forms, this implies (see (3.6)) that the constant term maps for cohomology,
expressed as integration of an automorphic form along the unipotent radical of ap-
propriate parabolic subgroups, are rational with respect to the de Rham rational
structure; for maximal parabolics, this was already obtained in [HZ1, 4.8].
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INTRODUCTION 3

The nerve spectral sequence for the topological cohomology H•(Γ\X, Ṽ ) was stud-
ied in detail in [HZ2]. Hodge-theoretic considerations require (algebraic) compacti-
fications, and the toroidal compactifications were convenient to use for this purpose
as well. It was a subtle matter to compare the deleted neighborhoods of the Borel-
Serre and toroidal boundary strata associated to a given parabolic subgroup (see
[HZ2, §2]). We constructed isomorphisms between them that are compatible with re-
striction maps, allowing for transport of structure from the latter to the former. From
this, it follows that the differentials in the topological nerve spectral sequence are mor-
phisms of mixed Hodge structures. In particular, they induce maps after grading for
the Hodge filtration F . Since a morphism of mixed Hodge structures is determined
by its gradation for F , it follows, for instance, that ghost classes exist in H•(Γ\X, Ṽ )
if and only if they exist in GrFH•(Γ\X, Ṽ ) (see (4.6.7)). (Recall that a ghost class
in H•(Γ\X, Ṽ ) is a cohomology class whose restriction to the Borel-Serre boundary
is non-zero, yet whose restriction to each face (stratum) thereof is zero.) In (4.1),
we compare the graded differentials to the results obtained for the differentials in the
case of the coherent cohomology. To that end, we derive a formula for the deleted
neighborhood cohomology of a boundary stratum as de Rham cohomology on a suit-
able toroidal compactification of the associated (Baily-Borel) boundary component
(see (4.1.9)).
Of course, the above can be repeated for the weight filtration. For an example of

the use of weights to rule out ghost classes (cf. (4.6.14)), see [Z5,App.A].(1) We are
still seeking a satisfactory way of dealing with the entire mixed Hodge structure. It
is therefore strongly to be feared that this article is not the last of the series . . . The
content of the first three chapters of this article completes the verification of results
announced in [HZ1, §5] and in [H5]. They can be summarized by saying that the
(topological) nerve spectral sequence is a spectral sequence of mixed Hodge-de Rham
structures over the field of definition of the canonical model.
In Chapter 4, we continue to develop the Hodge theoretic material from [HZ2, §5].

In (4.2), we reformulate the results in (4.1) by using the “minimal model” of the
holomorphic de Rham complex, viz., the dual Bernstein-Gelfand-Gelfand complex,
and deduce the E-rational version of (4.1.9).
A big surprise in this work was the discovery of another interesting filtration on

the boundary complex, whose spectral sequence is, like the nerve spectral sequence, a
spectral sequence of mixed Hodge structures. In a way, there is nothing new about this
filtration, which we call the filtration by holomorphic rank; it is given by the pullback
to the Borel-Serre boundary of the filtration of the Baily-Borel Satake boundary by

(1)The correct outcome of the calculation presented in the latter is that there are no ghosts for

GSp(4) when the representation V is generic, i.e., where the highest weight for Sp(4) has positive

inner product with both simple roots. When V is trivial, on the other hand, the calculation does

allow for a weight-two ghost class in H2(Γ\X,Q), and such a class is determined in [KR, 14.1.3].
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4 INTRODUCTION

(unions of) boundary strata of increasing dimension (see also (4.4.15)). In a sense
that can be made precise, its E1-term is closer to the abutment than that of the nerve
spectral sequence, though further from the question of ghost classes. We treat the
holomorphic rank filtration in (4.4), though the same considerations already show
up in (3.5) in the coherent setting. Cases of the latter give the Hodge components
for the E1-term of the topological holomorphic rank spectral sequence, and this gets
examined in (4.5).
Several fundamental questions remain open. The analysis of cohomology of Shimu-

ra varieties should be extended to the intersection cohomology of their minimal (Baily-
Borel) compactifications. The Zucker conjecture, proved by Looijenga [L] and Saper-
Stern [SS], asserts that this cohomology is isomorphic to the L2-cohomology, or again
to the Lie algebra cohomology of square-integrable C∞ functions, or by [Fr1], of
square-integrable automorphic forms. However, it is not known whether this isomor-
phism identifies Morihiko Saito’s Hodge structure with the analytic Hodge structure
on L2-cohomology (the one given a priori by the L2 harmonic forms). In Chapter 5 we
obtain a partial result in this direction: we show that the map from L2-cohomology
of the open Shimura variety to ordinary cohomology is a morphism of (mixed) Hodge
structures (this is a small improvement over what was asserted in [H5, 3.3.9]). We
do not address the question of whether intersection cohomology carries a de Rham
rational structure.
It is also true that not all questions are treated in maximum generality. For in-

stance, we have not studied the cohomology of a general automorphic vector bundle or
variation of mixed Hodge structure on a mixed Shimura variety, but have rather been
content to work out the cases directly relevant to the cohomology of pure Shimura
varieties. Experience suggests these omissions will return to haunt us (providing even
more impetus for article IV?). Another thing absent is the exploration of relations
between our constructions and the general polylogarithms constructed by Wildeshaus
[W1, W2].
Much of this work was begun at the time of writing of [H5], where some of our

results were announced. The actual writing of the present article did not get under
way until the second-named author visited Université Paris 7 in May, 1997. We
both wish to thank that institution for the hospitality extended on that occasion.
Likewise, a large amount of the work and writing of this article was carried out
while the second-named author was spending Academic Year 1998–99 on sabbatical
at the Institute for Advanced Study in Princeton. We also wish to thank P. Polo for
helpful discussions of the generalized Bernstein–Bernstein–Gelfand resolution, and
Z. Mebkhout for help with the proof of Proposition (4.2.21). We thank J. Wildeshaus
for numerous thoughtful comments on both the content and the exposition of the
article. Finally, we are grateful to the referee for his careful reading of the first
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INTRODUCTION 5

version of the present article and for his numerous suggestions, which we believe have
led to a substantial improvement of the first section, in particular.

Conventions and notation

0.1. We let S = RC/RGm,C be the torus whose real representations parametrize R-
Hodge structures. To any real representation h : S → GL(V ) is associated a Hodge
structure on V such that V p,q is the subspace of VC on which z ∈ S(R) ∼−→ C× acts as
z−pz−q. The Hodge structure thus obtained is canonically the direct sum of its weight
graded components. We let µ : Gm,C → SC be the cocharacter such that h ◦µ(z) acts
as z−p on V p,q, for any h and V as above. We let w : Gm,R → S be the natural map.
Then with (h, V ) as above, the associated Hodge structure is pure of weight w(V ) if
and only if h ◦ w defines a character of Gm,R, and in that case h ◦ w(t) = t−w(V ).

0.2. Let G be a connected reductive group over C, P ⊂ G a parabolic subgroup,
L ⊂ P a Levi subgroup, H ⊂ L a maximal torus, RuP ⊂ P the unipotent radical.
Let B ⊂ P be a Borel subgroup of G containing H . We use the lower case Gothic
letters g, p, h, l, b to denote the corresponding Lie algebras, and let Φ = Φ(g, h)
be the set of roots, Φ+ the positive roots corresponding to b, ΦL = Φ(l, h) and Φ+L
respectively the roots and positive roots of h in l. Let W = W (g, h) be the Weyl
group, WL = W (l, h). The subset WP ⊂ W of Kostant representatives of WL\W is
the set

{w ∈ W | w−1(α) > 0, ∀α ∈ Φ+L}.
Then WP is the set of representatives of shortest length for the right cosets WL\W .
The same terminology is used for the shortest representatives of WL in W when G

is quasi-split over a field of characteristic zero.

0.3. Starting in §3 we will concentrate on the case of pure Shimura varieties. Nota-
tion is as in [HZ1] and [HZ2] (see, however, (0.5)). In particular, (G,X) is a Shimura
datum, Kp ⊂ GR is the (algebraic) identity component of the stabilizer of a point
p ∈ X , H ⊂ Kp is a maximal torus, h its Lie algebra. We assume a set of positive
roots Φ+ chosen as above, with decomposition Φ+ = Φ+c ∪ Φ+n into compact and
non-compact roots, as in [HZ1, 3.6] (where we used the letter R instead of Φ). All
references to highest weights will be with respect to these choices. Let P+ ⊂ g (resp.
P−) be the maximal parabolic subalgebra with Levi component kp and unipotent
radical p+ (resp. p−).

0.4. We wish to recall the combinatorics of the intersection of boundary strata in
the Borel-Serre and toroidal compactifications of the locally symmetric variety Γ\X .
This goes the same for both, so we will treat only the former.
The Borel-Serre compactification is Γ\X, where X is a certain manifold-with-

corners with G(Q)-action, with X as interior. Its closed (or open) boundary faces are
in natural one-to-one correspondence with the rational parabolic subgroups P of G,
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6 INTRODUCTION

and are denoted e(P ). Then e(P ) ∩ e(Q) �= ∅ if and only if P ∩Q is parabolic, and
then the intersection is simply e(P ∩Q).
In Γ\X, one has boundary faces indexed by Γ-conjugacy classes of rational

parabolic subgroups. It is customary to take representatives of these conjugacy
classes, so one must understand the notational complication that ensues. The
boundary face e′(P ) of Γ\X is an arithmetic quotient of e(P ), so likewise for any
Γ-conjugate of P . Thus, it is wrong to expect that e′(P ) ∩ e′(Q) = e′(P ∩Q) when
P ∩ Q is parabolic. Indeed, e′(P ∩Q) is only one connected component of the
intersection. Suppose that P ∩Q is the parabolic subgroup R. Then e′(P )∩e′(Q) is a
finite disjoint union of faces of the form e′(gRg−1), for g running over representatives
of the fiber over the identity double coset in the right-hand side of

(Γ ∩ P )\P (Q)/R(Q) −→ Γ\G(Q)/Q(Q).

This understanding underlies all treatment of intersections of boundary strata in this
work. (For more on this, see the appendix to [HZ2, (3.5)].)

0.5. We wish to remind the reader that it was necessary in [HZ2, (1.4)] to make
a change of notation for the sequel, in particular this paper. In [HZ1], we used
the symbol F to denote a boundary component, and associated objects such as its
normalizing parabolic subgroup PF , the Cayley transform cF , the associated cone
complex ΣF , etc. carried the subscript F . Given that P = PF and F are equivalent
data, we decided it was more convenient to switch to writing P , cP , ΣP , etc. As
such, one must take this change into account when tracking down notions from [HZ1].
For example, the Shimura datum denoted (Gh,F , X(F )) in [HZ1,1.7] is here denoted
(Gh,P , X(P ))
The notation ZΣ(R) (for the closed R-stratum of the toroidal boundary) was intro-

duced in [HZ2, (1.5.2)]. It derives from [HZ2, (1.4.11)]; there, the F -stratum should
have been denoted <ZF,Σ (as in 1.5.2 of [HZ1]), not 0ZF,Σ. Fortunately, this causes
no trouble in the sequel.

0.6. There is a notational inconsistency in [HZ1] (cf. (0.5)). Along with the P -
stratum we defined the F -stratum of K1

f
Sh(G,W\X)Σ1 in [HZ1, 1.7], where F denotes

the rational boundary component fixed by P , also denoted PF . However, in §5.3 of
[HZ1] the F -stratum was denoted the P -stratum. In the latter setting we had also
defined R-strata for general parabolic subgroups R of G (i.e., not only for maximal
parabolics) by the formula

(0.6.1) K1
f
Sh(G,W\X)RΣ1

=
⋂
P⊃R

P maximal

K1
f
Sh(G,W\X)PΣ1

.
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INTRODUCTION 7

Here the final P should have been an F . However, we will retain the notation (0.6.1)
and rename the F -stratum the P (∗)-stratum, denoted K1

f
Sh(G,W\X)P (∗)Σ1

. We re-
call that this is the union of the G(Af )-translates of the Pα-strata for all maximal
parabolics Pα conjugate to P . Similarly, if R is any standard parabolic subgroup of
G, we let

(0.6.2) K1
f
Sh(G,W\X)R(∗)Σ1

=
⋂
P⊃R

P maximal

K1
f
Sh(G,W\X)P (∗)Σ1

.

In what follows, we will also use the less cumbersome notation of [HZ2, (1.5.2)] for
closed boundary strata. Thus the Zariski closure of the R-stratum will be denoted
ZΣ(R) and the Zariski closure of the P (∗)-stratum will be denoted ZΣ(P (∗)), where
appropriate.

0.7. Let (G,X) be a (pure) Shimura datum. As in [HZ2] we let P(G) denote the
set of rational Q-parabolic subgroups of G, Pmax(G) ⊂ P(G) the subset of maximal
proper parabolics; the analogous notation is used for other reductive groups. To any
P ∈ Pmax(G) we associate its Levi quotient LP and subgroups Gh,P and G�,P of LP ,
as in [HZ1, §1.2], where the “P” was sometimes dropped; see also (0.5). As in [HZ1],
we choose liftings of LP to a subgroup of P , also denoted LP . Sometimes we will
restrict attention to standard parabolic subgroups, relative to a choice of minimal
parabolic P0 and then the Levi subgroups LP will all be assumed to contain LP0 .
Assume Gad is Q-simple. Then the set of standard maximal Q-parabolics of G

Pmax(G) is totally ordered, as follows. Fix a connected component X+ ⊂ X . For
each P ∈ Pmax(G) let F (P ) denote the rational boundary component of X+ fixed by
the identity component P (R)0 of P (R). Then P ′ � P if and only if F (P ′) is contained
in the closure of F (P ).
As in [HZ2, (2.2)], for P ∈ Pmax(G) we define an injection εP : P(G�,P ) → P(G),

with image denoted PP (G), such that

P(G)− {G} =
∐

P∈Pmax(G)

PP (G).

If R ∈ PP (G), then R is said to be subordinate to P , and we write Π(R) = P ; this is
the case if Gh,P is maximal among the Gh,Q contained in the Levi quotient of R, as
Q runs through Pmax(G) (this was stated differently in [HZ2]). For brevity, we write
Gh,R = Gh,P if R is subordinate to P . Let R�,P = R∩G�,P (in [HZ2,(2.2.3)], this was
called ιP (R)). It is a Q-parabolic subgroup of G�,P , and every Q-parabolic of G�,P
is of the form R�,P for some R subordinate to P . We also let G�,R denote the Levi
subgroup LR ∩G�,P of R�,P .

0.8. A single object (sheaf, group, etc.) can be regarded as a complex with [at most]
one non-zero term in degree 0. A sheaf S, or other such object, even if it “looks like it
belongs in degree q”, is placed in degree q only by specifying the standard shift to the
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8 INTRODUCTION

right: S[−q]. In general, S•[−q] has in degree i what S• has in degree i− q, whence
the notation.
The cone C• of a morphism of complexes φ : S• → T • has, by definition, as

underlying sheaf S•[1] ⊕ T •. Often it is more natural to work with C•[−1]; in that
case, this shift will be specified.
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CHAPTER 1

AUTOMORPHIC VECTOR BUNDLES

ON MIXED SHIMURA VARIETIES

In §4 of [HZ1], although we did not draw attention to this fact, we tacitly developed
the basic theory of automorphic vector bundles on the mixed Shimura varieties, in the
sense of Pink’s thesis [P], that arise as boundary strata of toroidal compactifications
of pure Shimura varieties. The present discussion recapitulates the constructions of
[HZ1] in more orderly fashion and in the full generality of [P]. The general setting in-
cludes the special case of Kuga’s families of abelian varieties with additional structure,
as well as their toroidal compactifications. These will not be discussed in the sequel
but the results proved here appear to have interesting applications to the construction
of mixed motives.
Most of the proofs are simple adaptations of the constructions in [H1, H2, H4], as

well as [HZ1, HZ2, 5.1]. Where this is the case, we keep the details to a minimum,
referring to the analogous proofs in the earlier papers and thereby avoiding tedious
repetition. We follow the strategy of [HZ1] by reducing purely geometric theorems
about (mixed) Shimura varieties to local assertions, which we then prove on connected
models of the form Γ\D.

1.1. Mixed Shimura varieties

We refer to [P] for notation and precise definitions concerning mixed Shimura
varieties. As in [HZ1, 1.6], a mixed Shimura variety is defined by a pair (Q,X),
where Q is a connected algebraic group over Q with a three step-filtration by normal
subgroups

(1.1.1) {1} ⊂W−2Q ⊂W−1Q = RuQ ⊂W0Q = Q

and X is a homogeneous space for Q(R) ·W−2Q(C) with a finite-to-one map

(1.1.2) h : X −→ Hom(SC, QC).

We write hx for h(x). It is assumed thatW−2Q is commutative, and for any arithmetic
subgroup Γ ⊂ Q the quotient TΓ(Q,X) = Γ ∩W−2Q(Q)\W−2Q(C) is viewed as the
set of complex points of the split torus with character group Hom(Γ∩W−2Q,Z). The
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additional conditions satisfied by the pair (Q,X) are listed in [P,Definition 2.1] and
will be recalled as needed. The mixed Shimura variety is denoted Sh(Q,X).
We write UQ = W−2Q, WQ = W−1Q, VQ = WQ/UQ, and drop the subscript Q

when it is understood, as it will be for most of the remainder of this section. Then
U and V are commutative unipotent algebraic groups. In particular the exponential
maps Lie(U) → U and Lie(V ) → V are isomorphisms of vector groups. We let
G = Q/W be the maximal reductive quotient of Q.
Let

α1 : Q −→ Q/U, α2 : Q/U −→ G, α = α2 ◦ α1 : Q −→ G

be the natural maps. Conditions (i) and (ii) of [P,Definition 2.1] are that
(i) For any x ∈ X, α1 ◦ hx is defined over R;
(ii) For any x ∈ X, α ◦ hx ◦ w is a cocharacter of the center of G.

Pink’s remaining conditions imply that the pair (G, {α◦hx|x ∈ X}) is a datum defining
a pure Shimura variety. Let ρ : Q→ GL(Λ) be a Q-rational representation. Assume
the weight morphism is defined over Q (see (1.1.7), below). Then for any x ∈ X, the
map ρ ◦ hx defines a rational mixed Hodge structure on Λ [P, Proposition 1.4], and,
as x varies, the family of ρ ◦ hx defines a variation of mixed Hodge structures over X.
In particular, the family satisfies Griffiths transversality. Taking ρ to be the adjoint
representation, we obtain a family of mixed Hodge structures on Lie(Q). For x ∈ X,
let Q0

x ⊂ QC denote the connected subgroup with Lie algebra F 0
x (Lie(Q)); then Q0

x

is the subgroup stabilizing the Hodge filtration F •
x(Λ) for any representation (ρ,Λ).

Let X̌ denote the quotient QC/Q
0
x.

Let HX = Im(h) ⊂ Hom(SC, QC). The space HX has a Q(R) · U(C)-equivariant
complex structure determined by the following property: Suppose (ρ,Λ) is a faithful
representation of Q. Let F(ρ) denote the variety of flags in Λ containing the Hodge
filtration Fy attached to ρ ◦ y for any, and hence all, y ∈ HX . Then the map

β′ : HX −→ F(ρ); y �−→ Fy

is a complex analytic embedding [P, 1.18(a)] that naturally factors through the homo-
geneous space X̌(C). Since h is a local diffeomorphism, this also determines a unique
Q(R) · U(C)-equivariant complex structure on H. The map β = β′ ◦ h : X → X̌ is
called the Borel morphism.
The reflex field E(Q,X) of the pair (Q,X) is the field of definition of the conjugacy

class of hx ◦ µ : Gm → Q, with µ as in (0.1), for any x ∈ X [P,Definition 11.1].
Just as in the case of pure Shimura varieties, the homogeneous algebraic variety X̌ is
canonically a quotient of this conjugacy class, and for the same reasons has a natural
rational structure over E(Q,X) (cf. [H1, §3]).
Let Kf ⊂ Q(Af ) be a compact open subgroup. Then the mixed Shimura variety

Kf
Sh(Q,X) is defined as a complex analytic variety, just as in the pure case, by

(1.1.3) Kf
Sh(Q,X)(C) = Q(Q)\(X× (Q(Af )/Kf)).
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As Kf varies, the Kf
Sh(Q,X)(C) form a projective system, and one can define

Sh(Q,X)(C) to be the inverse limit of the Kf
Sh(Q,X)(C). Alternatively, we can

view Sh(Q,X)(C) as shorthand for the projective system. In either case, we obtain
an action of the group Q(Af ) on Sh(Q,X)(C) as “Hecke correspondences”. However,
we will mainly be concerned with the objects at finite level.
A morphism (Q,X)→ (Q′,X′) of mixed Shimura data is a pair consisting of a group

homomorphism Q→ Q′, defined over Q, and a holomorphic map X → X′, compatible
with the group actions on the two sides. To a morphism φ : (Q,X) → (Q′,X′) of
mixed Shimura data we can associate holomorphic maps of mixed Shimura varieties:
if Kf ⊂ Q(Af ) and K ′

f ⊂ Q′(Af ) are such that φ(Kf ) ⊂ K ′
f , then there is a natural

map

(1.1.4) [φ] : Kf
Sh(Q,X)(C) −→ K′

f
Sh(Q′,X′)(C)

([P, 3.4]). As in the pure case, to a morphism of mixed Shimura data we obtain a map
of reflex fields in the opposite direction: E(Q′,X′) ⊂ E(Q,X).
In particular, we can take Q′ = Q/U or Q′ = G = Q/W in the above construction,

and Q→ Q′ to be the natural projection. If we define X′ to be the quotient of X by
U(C), resp. by U(C) ·W (R), we thus obtain morphisms of Shimura data (Q,X) →
(Q′,X′). Writing U\X in place of U(C)\X and W\X in place of U(C) ·W (R)\X, we
thus obtain a short sequence of morphisms of mixed Shimura varieties:

(1.1.5) Sh(Q,X)(C) π2−−−−→ Sh(Q/U,U\X)(C) π1−−−−→ Sh(G,W\X)(C).
We have already noted that (G,W\X) is a pure Shimura datum.
Among the main theorems of [P] are the existence of natural algebraic structures on

the mixed Shimura varieties Sh(Q,X)(C), the existence of smooth projective toroidal
compactifications of the mixed Shimura varieties Kf

Sh(Q,X)(C) (provided the level
subgroup Kf is neat, in the sense of [P, 0.6]), and the existence of canonical mod-
els of Sh(Q,X)(C) and its toroidal compactifications over the reflex field E(G,X)
[P,Theorems 9.21, 11.18, and 12.4].(1) We mention for the sake of completeness that
any Kf contains a neat subgroup of finite index, and that if Kf is neat then any
subgroup of finite index in Kf is also neat. The algebraic structures are “natural”
in that they are compatible with the morphisms introduced above, including the
Hecke correspondences Q(Af ) and the morphisms [φ] of (1.1.4) associated to mor-
phisms φ : (Q,X) → (Q′,X′) of mixed Shimura data. The algebraization of the
mixed Shimura varieties is actually accomplished by constructing ample line bundles
on certain toroidal compactifications.
The canonical model, denoted Sh(Q,X), is defined, as in the pure case, by functo-

riality with respect to morphisms of mixed Shimura data (T, Y ) → (Q,X). Here T

(1)Of course, Pink’s theorems presuppose the existence of canonical models in the pure case; see

[M2] for references, as well as the recent articles of Moonen and Milne [Mo,M3], filling an apparent

oversight in the literature.
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12 CHAPTER 1. AUTOMORPHIC VECTOR BUNDLES ON MIXED SHIMURA VARIETIES

is a torus, the “symmetric space” Y is a finite set of points, and the canonical model
of Sh(T, Y ) is defined by the analogue of the Shimura-Taniyama reciprocity law for
complex multiplication. The points contained in the image of a morphism of the form
Sh(T, Y ) → Sh(Q,X), or the corresponding points at finite level, are called special
points. Thus the canonical models constructed by Pink, like those of Shimura, are
characterized by the reciprocity law at the special points. Details can be found in
[P, 11.5].

1.1.6. The (partial) toroidal compactifications of Kf
Sh(Q,X)(C) are associated to

combinatorial data, just as in the pure case [cf. HZ1, 1.4, 1.7]. Following the con-
ventions introduced in [HZ1], the set of combinatorial data will be denoted Σ and
will be called a Kf -admissible family of fans for (Q,X) (Pink denotes the set of data
S and calls it a Kf -admissible partial cone decomposition; see [P, 6.4]). This aspect
of Pink’s theory was discussed in [HZ1, 1.6 and 4.1] in connection with the mixed
Shimura varieties that arise as boundary strata of pure Shimura varieties, and the
general case is identical. The (partial) toroidal compactification of Kf

Sh(Q,X)(C) as-
sociated to theKf -admissible family of fans Σ is denoted Kf

Sh(Q,X)Σ(C). We assume
Σ satisfies the hypotheses of [P,Theorem 12.4]. Then by [loc. cit.], Kf

Sh(Q,X)Σ(C)
exists as a complex algebraic variety, and descends to a scheme Kf

Sh(Q,X)Σ over
the reflex field E(Q,X). Under supplementary hypotheses on Σ, we may assume
Kf
Sh(Q,X)Σ to be quasi-projective; in this case we call Σ quasi-projective. Just as

in the pure case, the set of all Kf -admissible families of fans is an inverse system
under the relation of refinement. If Σ1 is a refinement of Σ2 then there is a natural
morphism Kf

Sh(Q,X)Σ1 →Kf
Sh(Q,X)Σ2 [P, 6.7(b)]; moreover this morphism is pro-

jective [KKMS], and the set of quasi-projective Σ is cofinal in the set of all families
of fans [P,Theorem 9.21].
If Kf is neat, then we may also choose Σ such that Kf

Sh(Q,X)Σ is smooth and
the complement ∂Kf

Sh(Q,X)Σ =Kf
Sh(Q,X)Σ−Kf

Sh(Q,X) is a divisor with normal
crossings. In this case, Kf

Sh(Q,X)Σ is said to be SNC.

1.1.7. On the morphism h of (1.1.2). — Say a pure Shimura datum (G1, X1)
is standard if the associated map h : X1→Hom(SC, QC) of (1.1.2) is one-to-one.
It follows from Proposition 2.11 of [P] that there is a standard Shimura datum
(G1, X1) = (G, h(X)) and a Shimura datum (T,Y), with T a torus, such that (G,X)
admits an embedding

(1.1.7.1) (G,X) ↪−→ (G1, X1)× (T,Y).

In other words the map h associated to (G,X) is concentrated on the second (toric)
factor.
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1.1. MIXED SHIMURA VARIETIES 13

Let (G,W\X) denote the pure Shimura datum attached to the mixed Shimura
datum (Q,X). Consider the following hypotheses:

For any h ∈ W\X, the weight morphism h ◦ w : Gm,R → GR(1.1.7.2)
is defined over Q.

Let ZG denote the maximal R-split torus of the center of G(1.1.7.3)
that is Q-anisotropic. Then ZG is trivial.

The Shimura datum (Q,X) will be called motivic if (1.1.7.2) holds. We assume this
to be the case. Taking (G,X) in (1.1.7.1) to be (G,W\X), it is then easy to see that
we may assume (G1, X1) and (T,Y) to be motivic as well. If G also satisfies (1.1.7.3),
then we may assume this to be the case for G1 and T as well.
We wish to determine the failure of (T,Y) to be standard. Let h : Y→HY with

H as in (1.1.3). First note that there is a unique Shimura datum (Gm,Y(±)) such
that HY(±) is the character z �→ zz of S, and such that Y(±) has two connected
components. For any integer M , the character t→tM is a morphism φM : Gm→Gm,
and there is a mixed Shimura datum (Gm,Y(M,±)) such that φM defines a morphism

(1.1.7.4) (Gm,Y(±)) −→ (Gm,Y(M,±))

of Shimura data. (Actually, φM defines two morphisms. Y(M,±) has two connected
components, interchanged by complex conjugation on cyclotomic fields. Composing
one choice of φM with exchange of the components of Y(M,±) defines a second
morphism of the form (1.1.7.4).) We let Y(M) denote the single character z �→ (zz)M .
Then every (Gm,Y) is of the form (Gm,Y(M)) or (Gm,Y(M,±)) for some M .
Suppose T satisfies (1.1.7.3). Let T0 denote the maximal Q-anisotropic subtorus of

T , T1 = T/T0. There is a Shimura datum (T1,Y1) and a morphism (T,Y)→(T1,Y1)
whose first factor is the canonical map; the datum (T1,Y1) is the quotient of (T,Y) by
T0, in the sense of [P, Proposition 2.9]. By (1.1.7.3), the map π0(T (R))→π0(T1(R))
is injective; it then follows from the proof of [P, loc. cit.] that the map Y→Y1 is also
injective. On the other hand, T1

∼−→ Gr
m for some non-negative integer r. Thus there

is an embedding of Shimura data

(1.1.7.5) (T,Y) −→ (T,HY)× (Gr
m,Y1).

By incorporating (T,HY) into the first factor on the right of (1.1.7.1), we see that,
assuming G satisfies (1.1.7.3), there is an embedding of pure Shimura data

(1.1.7.6) (G,X) ↪−→ (G1, X1)× (T,Y)

where (G1, X1) is standard and T is a Q-split torus.
Via (1.1.7.6), the general theory of pure Shimura data, in Pink’s sense, is reduced

to the theory of standard Shimura data and the additional cases (Gm,Y(M,±)). We
use this reduction in explaining the construction of automorphic vector bundles in the
following section.
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1.1.8. We will carry out certain calculations on connected components of the mixed
Shimura varieties. Thus if Γ ⊂ Q(Q) is a congruence subgroup, and if X0 ⊂ X is a
connected component, we let MΓ = MΓ(X0) = Γ\X0. The connected components of
the mixed Shimura variety Kf

Sh(Q,X)(C) are all of the form MΓ(X0) [P, 3.2]. The
notation (X0) will generally be dropped, since our assertions are independent of the
choice of a connected component.
Similarly, a toroidal compactification of MΓ will be denoted MΓ,Σ. Here it is

understood that Σ is a Γ-admissible family of fans for the pair (Q,X0), with the
obvious definition. Alternatively, if MΓ is realized as a connected component of some
Kf
Sh(Q,X)(C), then we may take Σ to be a Kf -admissible family of fans for (Q,X),

and define MΓ,Σ to be the closure of MΓ in Kf
Sh(Q,X)Σ(C). Again, this distinction

will be irrelevant in calculations involving connected components.

1.1.9. Boundary strata. — For future reference, we introduce notation for the
stratification of the toroidal boundary. For this we need to recall the classification
of rational boundary components of Sh(Q,X). Let Gad = G1 × · · · × Gr be the
decomposition into Q-simple factors. Let Pi ⊂ Gi be a Q-parabolic subgroup for
every i, and let P ⊂ Q be the inverse image of P1× · · · ×Pr. Then [P, Definition 4.5]
P is an admissible Q-parabolic subgroup of Q if every Pi is either equal to Gi or to a
maximal proper Q-parabolic subgroup of Gi. As in the pure case (see (0.7)), we let
P(Q) denote the set of admissible Q-parabolics of Q.
In particular, every admissible Q-parabolic subgroup of Q is the pullback of an

admissible Q-parabolic subgroup of G. In what follows we refer to (0.6) for notation
concerning the boundary strata in the pure case. Let P be an admissible Q-parabolic
subgroup of G, P the corresponding admissible parabolic of Q. We define the P -
stratum K1

f
Sh(G,W\X)PΣ1

of K1
f
Sh(G,W\X)Σ1 as in [HZ1, 1.7], and define the P -

stratum of Kf
Sh(Q,X)Σ to be

(1.1.10) Kf
Sh(Q,X)PΣ = (π2,Σ ◦ π1,Σ)−1(K1

f
Sh(G,W\X)PΣ1

).

We note that these strata are in general not Zariski closed.
If now P is anyQ-parabolic subgroup ofQ, we define the P -stratum of Kf

Sh(Q,X)Σ
by analogy with (1.1.10); the P (∗)-stratum Kf

Sh(Q,X)P (∗)Σ of Kf
Sh(Q,X)Σ is defined

in the same way, with P replaced by P (∗).

1.2. Construction of automorphic vector bundles

We keep the notation of §1.1. Henceforward, we make the following standard

Hypothesis 1.2.1. — The Shimura datum (Q,X) is motivic (1.1.7.2) and satisfies
condition (1.1.7.3).
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Hypothesis 1.2.1 guarantees that any algebraic representation of G gives rise to a
rational local system over Sh(Q,X)(C), in the sense of [H1, 3.14]. The hypothesis also
allows us to define the standard principal bundle I(Q,X)(C) over Sh(Q,X)(C) as the
complex analytic variety

(1.2.2) I(Q,X)(C) = lim←−Q(Q)\(Q(C)× X× (Q(Af )/Kf)).

Here as in (1.1.3), the group Q(Q) acts diagonally on the left on the product of the
three factors. That this is indeed a principal bundle follows in the usual way from
Hypothesis 1.2.1 (cf. [M2,Proposition 3.3]). Again, this can be viewed as an inverse
system of principal Q(C)-bundles

Kf
I(Q,X)(C) −→ Kf

Sh(Q,X)(C).

Remark. — One obtains slightly more generality by dropping hypothesis (1.2.1) and
restricting attention to algebraic representations of G trivial on the subgroup Z(G)
defined in (1.1.7.3). We leave it to the interested reader to carry out the necessary
modifications.

The natural projection I(Q,X)(C) → Sh(Q,X)(C) is denoted q = qQ,X. On the
other hand, there is a natural map p = pQ,X : I(Q,X)(C)→ X̌(C) defined in terms of
(1.2.2) by

(1.2.3) p(q, x, qf ) = q−1 · β(x), q ∈ Q(C), x ∈ X, qf ∈ (Q(Af )/Kf ).

The right-hand side is obviously invariant under left-translation by Q(Q) and defines
a holomorphic map.

Proposition 1.2.4. — The standard principal bundle I(Q,X)(C) can be given a
natural structure of algebraic principal bundle I(Q,X)C over Sh(Q,X)C. Moreover,
I(Q,X)C has a canonical Q(Af )-equivariant model I(Q,X) over the reflex field
E(Q,X), and the morphisms pQ,X and qQ,X descend to yield a canonical diagram

I(Q,X)
p

����
���

� q

��������

X̌ Sh(Q,X)

over E(Q,X).

Explanation-Definition 1.2.5. — The canonical model to which we refer in the
proposition is defined by combining the definitions of Pink (for canonical models
of mixed Shimura varieties) and Milne (for canonical models of standard principal
bundles over pure Shimura varieties, see [M1]). Unfortunately, a complete explanation
requires additional notation. We take as given the existence of a canonical model on
I(T,Y) when T is a torus. When Y is a point, this canonical model is defined as in
[M1] in terms of the period torsor. The discussion in (1.1.7) reduces the general case
to the case where T = Gm, which will be treated in the appendix (1.2.A), below.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



16 CHAPTER 1. AUTOMORPHIC VECTOR BUNDLES ON MIXED SHIMURA VARIETIES

If (Q′,X′) → (Q,X) is an embedding of mixed Shimura data then E(Q,X) ⊂
E(Q′,X′) [P, 11.2(b)]. Then a canonical model on I(Q,X) is a Q(Af )-equivariant
model such that, for any embedding of mixed Shimura data (T,Y)→ (Q,X), with T

a torus, the natural morphism I(T,Y) → I(Q,X) descends to E(T,Y). One verifies
as for pure Shimura varieties that the canonical model is unique, if it exists.

Proof of Proposition 1.2.4. — For any positive integer g, we let (P2g ,X2g) be the
mixed Shimura datum defined in [P, 2.25]. It is a mixed Shimura datum associated to
the genus g (maximal) boundary component of the Siegel modular Shimura variety
of genus g + 1, denoted Sh(GSp(g + 1),S±

g+1). Here GSp(g + 1) is the group of
similitudes of a 2(g + 1)-dimensional symplectic space and S

±
g+1 is the union of the

Siegel upper and lower half-spaces of genus g + 1. We can realize the parabolic
subgroup P2g ⊂ GSp(g+1) as the stabilizer of a rational genus g boundary component
of S

±
g+1. For a cofinal subset of the set of level subgroups Kf ⊂ P2g(Af ), the

associated mixed Shimura variety Kf
Sh(P2g ,X2g) can thus be realized as a union

of boundary strata of a toroidal compactification of Sh(GSp(g + 1),S±
g+1) (at an

appropriate finite level, depending on Kf ). Since the center of the unipotent radical
of P2g is one-dimensional, the realization as a (union of) boundary strata does not
depend on the choice of toroidal compactifications.
Now when (Q,X) is a pure Shimura datum and the natural map X → H is

the identity — i.e., (Q,X) is a standard Shimura datum — then the proposition
is proved in [H1] and [M1]. When Q is a torus, the proposition is tautologically true,
whether or not X is connected. On the other hand, when Kf

Sh(Q,X) is a (union
of) boundary strata of a toroidal compactification attached to a rational bound-
ary component of a pure Shimura variety, then the canonical model of I(Q,X)C is
constructed in [HZ1, Lemma 4.5.8]. The fact that this model is canonical is an im-
mediate consequence of [HZ1, Lemma 4.6.9], since, when (T,Y) is as in 1.2.5, the
morphism Sh(T,Y) → Sh(Q,X) factors through some section of the natural map
π1 ◦ π2 : Sh(Q,X)→ Sh(G,W\X).
We remark that the Q(Af )-equivariance is not stated explicitly in [HZ1], and

indeed the statement needs to be modified for boundary strata of toroidal compacti-
fications to take account of the combinatorial data defining the compactification. We
will only apply [HZ1, Lemma 4.5.8] to the case of (P2g,X2g). The fan in this case is
uniquely determined. Therefore, the P2g(Af )-equivariance follows immediately from
the GSp(g + 1)(Af )-equivariance of the canonical model of the standard principal
bundle over Sh(GSp(g + 1),S±

g+1).
It follows in the usual way that if (Q′,X′) ↪→ (Q,X) is an embedding of Shimura

data, then the existence of a canonical model for I(Q,X) implies the existence of a
canonical model for I(Q′,X′). It thus follows from what has been established up to
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this point that, if (Q,X) admits an embedding of the form

(1.2.6) (Q,X) −→ (G1, X1)× (T,Y)×
n∏
i=1

(P2g,X2g)

where (G1, X1) is a standard Shimura datum, T is a Q-split torus, and n is a non-
negative integer, then the proposition holds for (Q,X).
Lemma 2.26 of [P] asserts that, we can replace (Q,X) by a new pair (Q′,X′), where

Q′ is an extension of Q by U0 � Ga (contained in the center of the unipotent radical of
Q′) of a specific type, called a (P0,X0)→ (Gm,Q,H0)-torsor, such that (Q′,X′) admits
an embedding of the form (1.2.6); the fact that we can take T Q-split is (1.1.7.6).
Thus we have the Q′-torsor I(Q′,X′) over Sh(Q′,X′) with its canonical model over
E(Q′,X′), which is easily checked to equal E(Q,X). The quotient of I(Q′,X′) by U0
is then a Q-torsor over Sh(Q′,X′), which is in turn a Gm-torsor over Sh(Q,X). Over
C, U0\I(Q′,X′) is obviously isomorphic to the pullback of I(Q,X)C from Sh(Q,X).
Thus the Gm-action on Sh(Q′,X′) lifts canonically to an action on U0\I(Q′,X′) and
thus defines an E(Q,X)-rational model I(Q,X) of I(Q,X)C. Since any morphism
(T,Y)→ (Q,X), with T a torus, lifts to a morphism (T,Y)→ (Q′,X′), the canonicity
of I(Q,X) follows from that of I(Q′,X′).
It remains to show that the morphism p : I(Q,X) → X̌ can be descended to

E(Q,X). This follows again by reduction to the individual factors on the right-hand
side of (1.2.6). For the first factor this is in [H1] and [M1], for the second factor
it’s trivial, and for the third factor it is contained in Lemma 4.5.8 of [HZ1]. This
completes the proof.

Given the diagram in Proposition 1.2.4, automorphic vector bundles can be con-
structed on Sh(Q,X) by the procedure described in [H1] and [M1], which we now
recall. LetW be a Q-homogeneous vector bundle on X̌. Then p∗W is a Q-equivariant
vector bundle on I(Q,X), hence descends to a Q(Af )-equivariant vector bundle [W ]
on Sh(Q,X). The functor W �→ [W ] is rational over E(Q,X), by construction, and
defines canonical models, just as in [M1], on the complex points of [W ], which just as
in the classical case can be identified with a locally homogeneous vector bundle:

(1.2.7) [W ](C) ∼−→ (Q(Q)\β∗(W)× (Q(Af )/Kf)).

A Q-homogeneous vector bundle on X̌ is called locally-finite if it is the direct limit
of finite-rank homogeneous vector bundles on X̌. The functor above obviously is
defined on locally-finite homogeneous vector bundles and satisfies [lim−→Wα] = lim−→[Wα].
Defining [W ](C) by (1.2.7), we resume this discussion as follows:

Proposition 1.2.8. — The functor W �→ [W ](C), defined by (1.2.7), maps the ten-
sor category of locally finite Q-homogeneous algebraic vector bundles on X̌ to the tensor
category of Q(Af )-equivariant algebraic vector bundles on Sh(Q,X). This functor is
rational over E(Q,X) and is functorial with respect to morphisms (Q′,X′) → (Q,X)
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18 CHAPTER 1. AUTOMORPHIC VECTOR BUNDLES ON MIXED SHIMURA VARIETIES

of mixed Shimura data. When (Q,X) is a pure Shimura datum, the functor coincides
with the one defined in [H1, M1]. In particular, the bundles [W ] have canonical models
in the sense of [M1].

The final assertion in (1.2.8) is an immediate consequence of the others, since the
canonical models are defined with respect to embeddings of pure Shimura data of the
form (T,Y), with T a torus. Bundles of the form [W ] are called automorphic vector
bundles. The automorphic vector bundles form a tensor subcategory of the category
of all Q(Af )-equivariant vector bundles on Sh(Q,X).
Let (ρ, L) be an algebraic representation of Q. We say (ρ, L) is locally finite if it is

the direct limit of finite-dimensional (algebraic) representations ofQ. An automorphic
vector bundle [W ] on Sh is called flat if W is isomorphic to a Q-homogeneous vector
bundle on X̌ of the form L⊗OX̌, where (ρ, L) is a locally-finite representation of Q.
We then write [W ] = L̃. Equivalently, on any connected component MΓ ⊂ Sh(C),
[W ] is the direct limit of vector bundles associated to finite-dimensional algebraic
representations of the fundamental group Γ of MΓ (here “algebraic representation of
Γ” is shorthand for “restriction to Γ of an algebraic representation of Q”.) A flat
vector bundle always has a canonical flat connection � = �L : L̃→ L̃⊗Ω1Sh, induced
by functoriality from the constant connection 1⊗ d : L⊗OX̌ → L⊗ Ω1

X̌
.

The standard principal bundle I(Q,X) has the following functorial description.
Let (ρ, L) be a faithful Q-rational representation with contragredient (ρ∗, L∗). Let
si ∈ L⊗ni ⊗ (L∗)⊗mi (i = 1, . . . , r) be a finite set of Q-rational tensors such that
Q is the subgroup of GL(L) stabilizing all si. Let 1 denote Q, viewed as a trivial
representation of Q. For each i, the morphism of Q-representations

αi : 1 −→ L⊗ni ⊗ (L∗)⊗mi ; αi(1) = si

defines by functoriality an injective homomorphism

(1.2.9) α̃i : OSh −→ L̃⊗ni ⊗ (L̃∗)⊗mi

of automorphic vector bundles. Let s̃i = α̃i(1), i = 1, . . . , r. It is then tautological
that I(Q,X) represents the functor that, to any Sh-scheme T , associates

(1.2.10) {f : L̃T ∼−→ LT | (f⊗ni ⊗ (f∗)⊗mi)(s̃i) = si ⊗ 1}.

Here LT is the constant bundle L ⊗ OT and the remaining notation is obvious. In
fact, the construction of the canonical model of I(Q,X) in [H1,M1] in the pure case
proceeds by constructing the flat filtered automorphic vector bundle L̃ and showing
that it has an appropriate kind of canonical model; in particular, that the [si] are
rational over E(Q,X). Then I(Q,X) is defined by (1.2.10), and is shown as in [H1,
Remark 4.9(1); M2, Remark 3.3] to be independent of the choice of (ρ, L).
The morphism π2 : Sh(Q,X) → Sh(Q/U,U\X) is a locally constant pro-torus

fibration over Sh(Q/U,U\X) with fiber T = lim←−U(Q)\U(C) × U(Af )/KU,f . Here
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1.2. CONSTRUCTION OF AUTOMORPHIC VECTOR BUNDLES 19

KU,f runs over the set of open compact subgroups of U(Af ). At finite level Kf , π2
is a locally constant torus fibration. It follows just as in [HZ1, (3.2.1)] that

(1.2.11) [W ] = π∗2(π2,∗([W ])T ).

Here T acts naturally on the direct image π2,∗([W ]) (cf. [SGA3]) and the superscript
T designates the subsheaf of T -invariant sections.
This can be globalized, following [HZ1, §4.6]. The subgroup W ⊂ Q acts freely on

the principal bundle I(Q,X). We let I2(Q,X) (resp. I1(Q,X)) denote the quotient of
I(Q,X) by U (resp. by W ). Then I2(Q,X) (resp. I1(Q,X)) represents the functor
defined by analogy with (1.2.10), in which the faithful representation (ρ, L) of Q is
replaced by a representation of Q that factors through a faithful representation of
Q/U (resp. Q/W ). It follows immediately that

(1.2.12) I2(Q,X) ∼−→ π∗2(I(Q/U,U\X)), I1(Q,X) ∼−→ (π1 ◦ π2)∗(I(Q/W,W\X)),

the isomorphisms being canonical and, in particular, defined over E(Q,X).
On the other hand, there are canonical isomorphisms

(1.2.13) U\X̌ ∼−→ (U\X)∨, W\X̌ ∼−→ (W\X)∨.

The isomorphisms (1.2.13) can be defined over C tautologically, in terms of the def-
inition of X̌ as a homogeneous space under Q(C); it is then easy to see that the
isomorphisms descend to E(Q,X). Now any Q-equivariant vector bundle W on X̌ is
necessarily U -equivariant. Since U acts freely on X̌, the natural map π̌2 : X̌→ (U\X)∨
makes X̌ a U -torsor over (U\X)∨. It follows that

W = π̌∗2(WU ),

for some Q/U -homogeneous vector bundleWU on (U\X)∨. It is then easy to see that,
in the notation of (1.2.11),

(1.2.14) π2,∗([W ])T
∼−→ [WU ].

In particular, π2,∗([W ])T is an automorphic vector bundle over Sh(Q/U,U\X).
The analogue for π1 is more complicated and will be discussed in §1.4.

Remark 1.2.15. — The generalization of Langlands’ conjecture on conjugation of
Shimura varieties to the setting of mixed Shimura varieties has been carried out in
[W1, II, 5]. Wildeshaus also constructs flat automorphic vector bundles on mixed
Shimura varieties [W1, II, 6] and determines their behavior with respect to the action
of Aut(C).

1.2.16. Let x ∈ X and let Q0
x ⊂ Q be its stabilizer, as in §1. In the diagram (1.2.7),

the homogeneous vector bundle β∗(W) is determined by the isotropy representation
of Q0

x on the fiber Wx. We say W is fully decomposed if the isotropy representation
at some point x is trivial on the unipotent radical RuQ0

x of Q0
x. This condition

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



20 CHAPTER 1. AUTOMORPHIC VECTOR BUNDLES ON MIXED SHIMURA VARIETIES

is evidently independent of the choice of x, and we then say that the automorphic
vector bundle [W ] is fully decomposed.
We will need a more general condition in practice. As above, we writeW =W−1Q,

U =W−2Q.

Definition 1.2.16.1. — We say W satisfies a Kostant condition at x if there are

(i) a reductive group Kx,

(ii) a parabolic subgroup Πx ⊂ Kx,

(iii) an injective map αx : Q0
x ∩W→Πx with α(Lie(Q0

x ∩W )) = Ru Lie(Πx),

(iv) a finite-dimensional representation σx of Kx on Wx

such that the isotropy representation of Lie(Q0
x ∩W ) on Wx is equivalent to

σx|Lie(Πx) ◦ αx.

Again, this condition is independent of the choice of x, so we simply say that the
automorphic vector bundle [W ] satisfies a Kostant condition. Such a condition serves
to provide the splitting of spectral sequences at E2, as in Corollary 1.4.5 below. This
splitting is canonical, given x and items (1.2.16.1,(i)–(iv)) (x determines a canoni-
cal Levi subgroup of Q). Indeed, the derived functor RHomLie(Q0

x∩W )(C,Wx) splits
canonically as the sum of its cohomology objects, for one then gets an embedding

(1.2.16.2) H•(Lie(Q0
x ∩W ),Wx) ↪−→ C•(Lie(Q0

x ∩W ),Wx),

where C• is the standard Lie algebra cochain complex andH• has the zero differential,
inducing the identity on cohomology.

Remark 1.2.16.3. — The consequence (1.2.16.2) of the Kostant condition is really
just [K,(5.7.4)]. In its original form, it was tacitly invoked several times in the cal-
culation of boundary cohomology of the pure Shimura variety Sh(G,X) in [HZ1,§3].
(To be specific, it enters there in at least 3.5.12, 3.7.8 via 3.7.5, 3.13.4.5, and 3.14.2—
though not 3.5.8.) The mixed Shimura varieties there were of the form (P ′

F , X(DF ))
attached to a rational boundary component F of X , with P ′

F = Gh,FWF and X(DF )
an enlarged Siegel domain of the third kind containing X (see [HZ1, 1.2.3] for this
notation). We write W = WF , U = UF . If x ∈ X is viewed as a point in X(DF ),
then the natural map

Q0
x ∩W −→W/U = gr−1W

is injective and identifies Lie(Q0
x ∩W ) with the anti-holomorphic tangent space v−x

[HZ1,1.8.4] of the abelian variety corresponding to the point x. In this case, the
group Kx is the complexification of the connected stabilizer of x ∈ X in G(R); i.e.,
of the maximal compact (mod center) subgroup of G(R), the parabolic subgroup Πx
is the group denoted QF,x in [HZ1,1.8.7], and Lie(RuQF,x) = sx; and the map αx :
v−x→Lie(RuQF,x) is defined via the Cayley transform in [HZ1,3.5]. In [HZ1: 3.5.12],
the embedding (1.2.16.2) is tacitly used, though it might have been more helpful to
quote [K: 5.7.4] explicitly.
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1.2.16.4. Variant. — Let Sx ⊂ Q0
x ∩ W be a subgroup with sx = Lie(Sx). Sup-

pose that the analogues of (1.2.16.1, (i)–(iv)) hold, with Q0
x ∩W replaced by Sx and

Lie(Q0
x ∩W ) replaced by sx. We then say [W ] satisfies a Kostant condition relative to

Sx, (or sx). The analogue of (1.2.16.2) then holds for sx: there is a canonical splitting

(1.2.16.5) H•(sx,Wx) ↪−→ C•(sx,Wx).

A condition of this kind occurs in the proof of Proposition 1.5.24.

1.2.A. Appendix: Periods and rationality. — The articles [H1] and [M1] de-
fine canonical rational structures on automorphic vector bundles in terms of CM
motives. This construction is adapted in section 4.3 of [HZ1] to the mixed Shimura
varieties treated there. We briefly show how this construction extends to general
mixed Shimura varieties.
In the previous version of the present article, the construction of standard principal

bundles on mixed Shimura varieties was reduced to the case of pure Shimura varities,
by the procedure outlined in the proof of Proposition 1.2.4. We are grateful to the
referee for pointing out that the literature only considers pure Shimura varieties in
the standard definition, and not the more general definition due to Pink. The purpose
of the present appendix is to fill this gap in the literature with an exposition of Pink’s
constructions. As explained in (1.1.7), it suffices to treat the case of a pure Shimura
datum (T,Y), where T is a Q-split torus. However, it is no more difficult to treat a
general torus, and we do so now.
If (Q,X) is a general mixed Shimura datum, and if (x, qf ) ∈ X × Q(Af ), we

let [x, qf ] denote the corresponding point in Sh(Q,X)(C). We begin by recalling the
period formalism, as described in [HZ1, §4.3]. First suppose (T, h) is a Shimura datum
with T a torus and h a point. We write ȟ for the “compact dual”, as above. LetW be
a T -homogeneous vector bundle on ȟ, and let [W ] be the corresponding automorphic
vector bundle. The homogeneous vector bundle W defines a representation σ = σW
of T and a period element

p(h, σ) = p(h, σW) ∈ Aut([W ]|Sh(T,h)(C)),

well-defined modulo σW(T (Q)), that compares the de Rham and Betti rational struc-
tures of [W ]|Sh(T,h)(C). In the notation of [HZ1, (4.3.6)], we have

(1.2.A.1) HDR(M(σ)/Sh(T, h))[h,qf ] = p(h, σ) ·HB(M(σ)/Sh(T, h))[h,qf ].

Here qf is a variable point in T (Af ), as above.
We note that either side of (1.2.A.1) can be taken to be defined independently.

Over C, we just have

(1.2.A.2) HB(M(σ)/Sh(T, h))(C) = Γ(Sh(T, h)(C),W(C)),

with W(C) defined by the formula (1.2.7). There is a reflex field E(W) ⊃ E(T, h),
such that both sides of (1.2.A.1) have natural E(W)-rational structures. (In practice,
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we can take E(W) to be the composite of E(T, h) with a field of definition of the
algebraic representation σ.) Then HB(M(σ)/Sh(T, h)) can be defined, in terms of
(1.2.A.2), by

(1.2.A.3) HB(M(σ)/Sh(T, h)) = Γ(Sh(T, h)(C),W(E(W))),

where by W(E(W)) we mean the local system in E(W)-vector spaces

lim←−
Kf

T (Q)\W(E(W))× (T (Af )/Kf)).

On the other hand, the left-hand side of (1.2.A.1) is given (a posteriori) by

(1.2.A.4) HDR(M(σ)/Sh(T, h)) = Γ(Sh(T, h), [W ]),

where here the relevant structures are the E(T, h)-scheme Sh(T, h) and the (rational)
vector bundle [W ]. The content of (1.2.A.1) is that there exists a theory of period
invariants p(h, σ) that behaves naturally with respect to morphisms of Shimura data
and tensor products. These invariants, initially introduced (up to algebraic factors) by
Shimura, are provided by the theory of abelian varieties with complex multiplication,
and are described in detail in [H1].
Now let (T,Y) be a general Shimura datum, in Pink’s sense, with T a torus; as

always we assume hypothesis (1.2.1). We write h for the singleton HY ; thus there is a
morphism of Shimura data (T,Y)→(T, h), inducing a morphism of Shimura varieties
η : Sh(T,Y)→Sh(T, h) as well as a T -equivariant identification of compact duals Y̌→ȟ.
If W is a T -homogeneous vector bundle on Y̌ = ȟ, then we define the corresponding
automorphic vector bundle [W ]Y on Sh(T,Y) by

(1.2.A.5) [W ]Y = η∗[W ].

Here [W ] on the right-hand side is the automorphic vector bundle on Sh(T, h). This
is the only definition compatible with the functoriality assertion of Proposition 1.2.8.
The element p(h, σ) of (1.2.A.1) lifts to an automorphism of [W ]Y which we denote
p(h, σ)Y . We then tautologically obtain

(1.2.A.6) HDR(M(σ)/Sh(T,Y))[y,qf ] = p(h, σY) ·HB(M(σ)/Sh(T,Y))[y,qf ].

for y ∈ Y, where both sides of (1.2.A.6) are defined in terms of the corresponding
sides of (1.2.A.1) by pullback.
This apparently simplistic definition of the period invariant has a simple justifica-

tion. There is an isomorphism

(1.2.A.7) Γ(Sh(T,Y), [W ]Y) ∼−→ OSh(T,Y) ⊗O(Sh(T,h)) Γ(Sh(T, h), [W ]).

The period term is concentrated in the second factor on the right; the first factor
accounts for the reciprocity law of Sh(T,Y), as defined by Pink.
Now we consider the period invariant in general. Let (Q,X) be a mixed Shimura

datum. Let W be a Q-homogeneous vector bundle on X̌, and let [W ] be the cor-
responding automorphic vector bundle. As in the pure case, there is a canonical
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“periods” isomorphism

(1.2.A.8) Per(x,qf ) :Wβ(x)
∼−→ [W ][x,qf ]

(cf. [HZ1, (4.3.5)]). Suppose W is rational over the extension E(W) of E(Q,X), as
Q-homogeneous vector bundle. By Proposition 1.2.8, [W ] has a canonical model over
E(W). This model has the following description in terms of the period elements: For
any map (T,Y) ↪→ (Q,X), with T a torus, let E(T,Y;W) = E(T,Y) · E(W). Then
for any field L ⊃ E(T,Y;W), x ∈ Y, and any tf ∈ T (Af ), we have

(1.2.A.9) [W ](L)|[x,tf ] = p(h, σW) · Per(x,tf )(Wβ(x)(L)) ⊂ [W ]|[x,tf ](C).
This both summarizes and generalizes the discussion that follows [HZ1, (4.3.6)].

1.3. Canonical extensions of automorphic vector bundles

Let Kf
Sh(Q,X) ⊂ Kf

Sh(Q,X)Σ be a (partial) toroidal compactification as an alge-
braic variety, as in (1.1.6). We retain Hypothesis (1.2.1) and assume for the remainder
of §1 thatKf is neat, in the sense of [P, 0.6], and that Kf

Sh(Q,X)Σ is an SNC compact-
ification. We write Sh = Kf

Sh(Q,X), ShΣ = Kf
Sh(Q,X)Σ, ∂ShΣ = ∂Kf

Sh(Q,X)Σ.
After (1.3.5), and for the remainder of the paper, we also assume Kf

Sh(Q,X)Σ to
be compact, unless an explicit statement is made to the contrary.
Our hypothesis that Kf is neat implies, as in the pure case (cf. the proof of

[H2,Theorem 4.2]) that the connection �L has unipotent monodromy. Deligne’s exis-
tence theorem [De1] thus provides a unique extension of L̃ to a vector bundle L̃Σ over
ShΣ such that � extends to a connection �Σ with regular singularities and nilpotent
connection forms along ∂ShΣ.

Definition 1.3.1. — Let [W ] be an automorphic vector bundle on Sh. An ad-
missible metric on [W ] is a hermitian metric whose pullback, under the natural
map X × Q(Af ) → Sh, is a Q(R) · U(C) × Q(Af )-invariant hermitian metric on
β∗(W × X×Q(Af )).

The stabilizer Stab(x) in Q(R) · U(C) of any point x ∈ X is a compact Lie group
(Pink doesn’t state this explicitly, but it is clear from Lemma 1.17 of [P]; cf. the proof
of [P,Prop. 2.11].). Therefore, admissible metrics exist and their restrictions to inde-
composable C∞ summands of [W ] are unique up to constant multiples. Note that the
automorphic vector bundles that are indecomposable as C∞ automorphic bundles are
parametrized by irreducible representations of the compact group Stab(x), for one (or
any) x ∈ X. The indecomposable holomorphic automorphic bundles are parametrized
by locally-finite indecomposable representations of the algebraic subgroup Q0

x ⊂ Q,
defined in (1.1).
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Lemma 1.3.2

(i) Let [W ] be an automorphic vector bundle on Sh. Then [W ] has an admissible
metric.

(ii) Let h(·, ·) be an admissible metric on the flat vector bundle L̃. Let B ⊂ ShΣ be
an open polydisk with coordinates z1, . . . zn chosen so that B ∩ ∂ShΣ is the union of
the coordinate hyperplanes defined by z1, . . . , zr for some r � n. Then

(1.3.3) Γ(B, L̃Σ) = {s ∈ Γ(B ∩ Sh, L̃) | |h(s, s)| = O(P (| log |z1||, . . . , | log |zr||))
for some polynomial P}.

Proof. — Part (i) has already been explained. To prove Part (ii), we reduce to the
case of an equivariant torus embedding. Indeed, let Q′ ⊂ Q be a rational bound-
ary subgroup and let X′ be the corresponding rational boundary component of X,
in the sense of [P, §4]. We let U ′ ⊂ W ′ = RuQ

′ ⊂ Q′ be the canonical filtration
of Q′, and let π′2 : Sh(Q′,X′) → Sh(Q′/U ′, U ′\X′) be the canonical map, represent-
ing Sh(Q′,X′) as the locally constant pro-torus fibration over Sh(Q′/U ′, U ′\X′) with
structure group T ′, as in the discussion preceding (1.2.11). There is a natural em-
bedding X̌′ ⊂ X̌ (cf. [HZ1, Lemma 4.5.8]), extending the inclusion of β(X′) in X̌ as a
Siegel domain of the third kind. There is also a neighborhood Sh(Q′,X′)+ΣQ′ of the
boundary ∂Sh(Q′,X′)ΣQ′ admitting a natural map

(1.3.4) fQ′ : Sh(Q′,X′)+ΣQ′ −→ ShΣ.

The map fQ′ is a local isomorphism in a neighborhood of the part of the boundary
of ShΣ corresponding to Q′.
We assumeQ′ chosen so that the polydisk B lies in the image of fQ′ . The flat vector

bundle L̃ is defined by the representation ρ, say of Q. The restriction of ρ to Q′ defines
a flat vector bundle (L̃)′ on Sh(Q′,X′) whose restriction to Sh(Q′,X′)+ΣQ′ ∩Sh(Q′,X′)

is equivalent to f∗Q′(L̃). Then it is clear by uniqueness that the admissible metric
h(·, ·) on L̃ pulls back to the restriction to Sh(Q′,X′)+ΣQ′ of an admissible metric on

(L̃)′. Thus we may assume Q′ = Q and that B is not contained in the image of fQ′′

for any proper boundary subgroup Q′′ of Q. In other words, possibly shrinking B,
the map π2 can be written as a product

π2 : B
∼−→ B0 × TΣ(T )

where B0 is open in Sh(Q/U,U\X) and T ↪→ TΣ(T ) is an equivariant torus embedding,
with T a torus of the form U(Q)\U(C)×U(Af )/KU,f as in the discussion at the end of
§1.2. Near B the local system is thus defined by a representation of the fundamental
group of T . In this way, we may assume Q = U , Sh is a torus of the form U(C)/Λ, for
some lattice Λ in U(R), L̃ is the local system defined by a representation (ρ, L) of Λ,
and h(·, ·) is a U(C)-invariant metric. The representation ρ is the restriction to Λ of a
unipotent representation of the algebraic group U . Moreover, we may assume n = r
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and Sh ↪→ ShΣ is isomorphic to the obvious embedding C×,n → Cn, with coordinates
z1, . . . , zn. In particular, ShΣ is affine, hence L̃Σ generated by its global sections.
Let j : U(C) × U(Af ) → Sh denote the natural map. We fix a basepoint, say

o, in U(C), and a basis {e1, . . . , eN} of L, such that h(ei, ej)o is the identity ma-
trix. It follows from the U(C)-invariance of h(·, ·) that, with respect to the trivial-
ization j∗(L̃) ∼−→ U(C) × L, the matrix of h(ei, ej)u is polynomial in the variable
u ∈ U(C), hence has logarithmic growth in terms of the coordinates z1, . . . , zn. Now
let {v1, . . . , vN} denote a basis of global sections of L̃Σ, and express the vi in terms
of the horizontal sections ej over the universal cover U(C) of Sh:

vi =
∑
j

fijej,

where fij are functions on U(C). Since the monodromy of L̃ is unipotent, the fij have
logarithmic growth in terms of z1, . . . , zn. The inclusion of the left-hand side of (1.3.3)
in the right-hand side is now clear. The opposite inclusion then follows because any
section satisfying an inequality of the indicated form has removable singularities with
respect to the basis {v1, . . . , vN}.

A local section of L̃ satisfying an inequality of type (1.3.3) is said to be slowly
increasing.
In (ii) of the following Definition-Proposition, we let (Q′,X′), U ′, and so on be as

in the proof of Lemma 1.3.2.

Definition-Proposition 1.3.5. — Let [W ] be an automorphic vector bundle on Sh.
A canonical extension [W ]Σ of [W ] over ShΣ is a vector bundle over ShΣ satisfying
one of the following equivalent conditions:

(i) If h(·, ·) is an admissible metric on [W ] and if B is as in Lemma (1.3.2)(ii),
then

Γ(B, [W ]Σ) = {s ∈ Γ(B ∩ Sh, [W ]) | |h(s, s)| = O(P (| log |z1||, . . . , | log |zr||))
for some polynomial P};

the polynomial P above may depend on s.
(ii) Let (Q′,X′) be a rational boundary pair for (Q,X), as above. Write Σ =⋃
ΣP , the union taken over the rational boundary subgroups P of Q. If σ ∈ ΣQ′ , let

Sh(Q′,X′)σ ⊂ Sh(Q′,X′)ΣQ′ denote the corresponding partial compactification, and
let

π′2,σ : Sh(Q
′,X′)σ −→ Sh(Q′/U ′, U ′\X′)

denote the natural extension of π′2 (cf. [H2, 4.1] for the analogue in the pure case).
Let [W ]′ denote the automorphic vector bundle on Sh(Q′,X′) associated to the Q′-
homogeneous vector bundle W, restricted to X̌′ ⊂ X̌. Then via the natural map (1.3.4)
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we have canonical isomorphisms

φσ : f∗Q′([W ]Σ) ∼−→ (π′2,σ)
∗(π′2,∗([W ]′)T

′
),

and these isomorphisms are compatible with respect to inclusions σ ⊂ τ .
(iii) There is a flat automorphic vector bundle L̃ such that [W ] can be realized as

an automorphic subquotient of L̃, and [W ]Σ is a locally free subquotient of the Deligne
extension L̃Σ, compatibly with the given realization over Sh.

The canonical extension [W ]Σ exists and is unique.

Proof. — The existence of [W ]Σ satisfying (iii) is proved in exactly the same way
as the corresponding assertion for pure Shimura varieties [H2,Theorem 4.2]. The
equivalence of (iii) with (ii), similarly, is identical to the proof of (4.2.2) of [H2].
Let B be as in (i). It follows from Lemma (1.3.2)(ii) that, if [W ]Σ satisfies (iii),

then there is an inclusion

(1.3.6) Γ(B, [W ]Σ) ⊂ {s ∈ Γ(B ∩ Sh, [W ])|s is slowly increasing}.
But then every s ∈ Γ(B ∩ Sh, [W ]) in the right-hand side of (1.3.6) has a removable
singularity along ∂ShΣ and therefore extends to an element of Γ(B, [W ]Σ). This shows
the equivalence of (iii) with (i). Uniqueness is clear from (i).

As mentioned at the beginning of this section, unless an explicit statement is made
to the contrary, we now assume our partial compactifications ShΣ to be compact, as
well as SNC. Then ∂ShΣ is a complete divisor with normal crossings on ShΣ, defined
by the invertible sheaf of ideals I∂ShΣ . If [W ] is an automorphic vector bundle on Sh
with canonical extension [W ]Σ, we define the subcanonical extension of [W ] to be

[W ]sub = [W ]subΣ = [W ]Σ ⊗ I∂ShΣ ,

the subscript Σ will be omitted whenever possible. Similarly, we will write [W ]can in
place of [W ]Σ when Σ is understood.
The theory of coherent cohomology developed in [H3, H4] extends without change

to the case of mixed Shimura varieties. We state the main results in the present
context.

Proposition 1.3.7. — Let (Q,X) be a mixed Shimura datum, and let [W ] be an
automorphic vector bundle on Sh = Kf

Sh = Kf
Sh(Q,X), for some open compact

subgroup Kf of Q(Af ). Let ShΣ be a toroidal compactification of Sh.
(i) Let Σ1 be a refinement of Σ, and let fΣ1,Σ : ShΣ1 → ShΣ be the corresponding

morphism of compactifications. Then there are isomorphisms

f∗Σ1,Σ([W ]Σ)
∼−→ [W ]Σ1 , f∗Σ1,Σ([W ]

sub
Σ ) ∼−→ [W ]subΣ1

,

functorial in W, and the natural morphisms

Hq(ShΣ, [W ]Σ) −→ Hq(ShΣ1 , [W ]Σ1),

Hq(ShΣ, [W ]subΣ ) −→ Hq(ShΣ1 , [W ]subΣ1
)
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are isomorphisms for all q.
(ii) For each q, we define

H̃q(Sh, [W ]can) = Hq(ShΣ, [W ]Σ)

for any Σ; we can also write

H̃q(Sh, [W ]can) = lim−→
Σ

Hq(ShΣ, [W ]Σ),

the limit taken over the system of all Σ’s, all maps being isomorphisms. Similarly,
we define

H̃q(Sh, [W ]sub) = lim−→
Σ

Hq(ShΣ, [W ]subΣ ),

Let
H̃q([W ]can) = lim−→

Kf

H̃q(Kf
Sh, [W ]can),

H̃q([W ]sub) = lim−→
Kf

H̃q(Kf
Sh, [W ]sub).

Then H̃q([W ]can) and H̃q([W ]sub) are naturally admissible Q(Af )-modules.

The proof of Proposition 1.3.7 follows word for word the proofs of Propositions 2.4
and 2.6 of [H4]. The action of Q(Af ) arising in (ii) is defined as in [H4, (2.5.2)]: to any
h ∈ Q(Af ) and any fixed toroidal compactification Kf

Sh(Q,X)Σ at level Kf , there is
an analogous compactification Kh

f
Sh(Q,X)Σh of Kh

f
Sh(Q,X), where Kh

f = h−1Kfh.

Right-multiplication by h defines an isomorphism Kf
Sh(Q,X)Σ

∼−→ Kh
f
Sh(Q,X)Σh

that respects automorphic vector bundles and canonical extensions. By functoriality,
we thus obtain an operator th in the limit on H̃q([W ]can) and H̃q([W ]sub).
For any automorphic vector bundle [W ] on Sh we consider the Dolbeault complex

A0,•([W ]) on Sh. For each q, A0,q([W ]) will denote the sheaf of C∞-sections of
the bundle Ω0,q ⊗ [W ] of (0, q)-forms with values in [W ]. Letting jΣ denote the
embedding Sh ↪→ ShΣ, we have, for each q, the direct image sheaf jΣ,∗(A0,q([W ]))
on ShΣ. We let A0,q([W ]))si ⊂ jΣ,∗(A0,q([W ])) denote the subsheaf of sections s

such that s and ∂s are both slowly increasing, in the sense of (1.3.3), with respect to
admissible metrics on the bundles Ω0,q ⊗ [W ] and Ω0,q+1 ⊗ [W ]. Similarly, we define
the rapidly decreasing sections, and the sheaf A0,q([W ]))rd, as in [HZ1, 3.8.2]. We let
C0,q([W ])∗ = lim−→Kf ,Σ

Γ(ShΣ,A0,q([W ]∗), where * denotes either si or rd.

Theorem 1.3.8. — There is a natural commutative diagram of Q(Af )-modules,
where the horizontal maps are isomorphisms:

H̃•([W ]sub) ∼−−−−→ H•(C0,•([W ])rd)� �
H̃•([W ]can) ∼−−−−→ H•(C0,•([W ])si)
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The proof is identical to that of [H4,Corollary 3.4].

A purely algebraic construction of the canonical extension of an automorphic vector
bundle was given in [HZ1], in the case of pure Shimura varieties. The analogous
construction works here as well.

Proposition 1.3.9. — We retain the notation of Proposition (1.3.7).
(i) The standard principal bundle I(Q,X) extends to an E(Q,X)-rational Q(Af )-

equivariant principal Q-bundle I(Q,X)Σ over Sh(Q,X)Σ.
(ii) The morphism p : I(Q,X) → X̌ extends to a Q-equivariant morphism pΣ :

I(Q,X)Σ → X̌, rational over E(Q,X).
(iii) For any automorphic vector bundle [W ] on Sh(Q,X), there is a canonical

isomorphism of vector bundles over Sh(Q,X)Σ:

[W ]Σ ∼−→ p∗Σ(W)/Q.

This isomorphism is rational over the field of definition of W as a Q-equivariant
vector bundle over X̌. Over Sh(Q,X) this isomorphism restricts to the construction
of [W ] given in §1.2.

Proof. — The proof is identical to that of Lemma 4.4.2 of [HZ1].

Remark 1.3.10. — Just as in Remark (1.2.15), we can formulate a conjecture for
the action of Aut(C) on the canonical extensions of automorphic vector bundles. It
should again be a simple matter to reduce this conjecture to the case of pure Shimura
varieties, where it is known [BHR,Proposition 1.4.3].

1.4. Functorial properties of canonical extensions

We retain the notation of the previous sections, and let

π2 : Sh(Q,X) −→ Sh(Q/U,U\X) and π1 : Sh(Q/U,U\X) −→ Sh(G,W\X)

be the morphisms of (1.1.5). Let Kf ⊂ Q(Af ) be any neat open compact subgroup
and let

K2
f = Kf/(U(Af ) ∩Kf ) ⊂ (Q/U)(Af ), K1

f = Kf/(W (Af ) ∩Kf ) ⊂ G(Af ).

Then there are natural morphisms at level Kf , also denoted π2 and π1:

(1.4.1) Kf
Sh(Q,X) π2−−−−→ K2

f
Sh(Q/U,U\X) π1−−−−→ K1

f
Sh(G,W\X).

Now we can find families of fans Σ, Σ2, Σ1, admissible relative to Kf , K2
f , and K1

f ,
respectively, such that Kf

Sh(Q,X)Σ is compact and such that the morphisms in (1.4.1)
extend to the corresponding toroidal compactifications [P, 6.7(b)], which we assume
to be SNC and rational over E(Q,X):

(1.4.2) Kf
Sh(Q,X)Σ

π2,Σ−−−−→ K2
f
Sh(Q/U,U\X)Σ2

π1,Σ−−−−→ K1
f
Sh(G,W\X)Σ1 .
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In what follows, we let W be a Q-homogeneous vector bundle on X̌ and let [W ] be
the corresponding automorphic vector bundle on Kf

Sh(Q,X).

Proposition 1.4.3. — With the above notation, the higher direct images

Rqπ2,Σ,∗[W ]can = 0, Rqπ2,Σ,∗[W ]sub = 0

for q > 0, and we have canonical isomorphisms

(1.4.3.1) π2,Σ,∗[W ]can ∼−→ (π2,Σ,∗[W ])can ∼−→ [WU ]can

(1.4.3.2) π2,Σ,∗[W ]sub ∼−→ (π2,Σ,∗[W ])sub ∼−→ [WU ]sub,

in the notation of (1.2.14). Moreover, there is a canonical isomorphism

(1.4.3.3) [W ]can ∼−→ π∗2,Σ(π2,Σ,∗[W ])can.

Proof. — The isomorphism (1.4.3.3) is analogous to (i) of [HZ1,Proposition 3.12.2]
and is proved in the same way. The vanishing of the higher direct images of [W ]can,
together with the first isomorphism in (1.4.3.1), is a mild generalization of (ii) of
[HZ1,Proposition 3.12.2]. The proof in the present situation is identical, the basic
local ingredient being a calculation [HZ1, Lemma 1.6.8 (iii)] in the setting of proper
morphisms of torus embeddings. The second isomorphism in (1.4.3.1) is clear from
(1.2.14).
The assertions for subcanonical extensions follow as in [HZ1, (3.14.1)] from the toric

version proved in [HZ1, Lemma 1.6.8 (iii)].

The following proposition is more substantial. In what follows, we let v = Lie(V ).
Any x ∈ X determines a subalgebra F 0

x (Lie(Q)) ⊂ Lie(Q), as in (1.1), and we let
v−x = F 0

x (Lie(Q)) ∩ v, as in [HZ1, 1.8]. The (abelian) Lie algebra v−x depends only on
the image π̌1 ◦ π̌2 of x in W\X, which we denote x in the following proposition.

Proposition 1.4.4. — Let V be a Q/U -homogeneous vector bundle on U\X̌ and let
[V ] be the corresponding automorphic vector bundle on K2

f
Sh(Q/U,U\X). For any

integer q, let V(q) be the G-homogeneous vector bundle on W\X̌ � (W\X)∨ whose
fiber at the point x is the representation of F 0

x (Lie(G)) on Hq(v−x ,Vx), for any x ∈ X̌.
Then for all q, there are canonical isomorphisms

(1.4.4.1) Rqπ1,Σ,∗[V ]can ∼−→ (Rqπ1,Σ,∗[V ])can ∼−→ [V(q)]can

(1.4.4.2) Rqπ1,Σ,∗[V ]sub ∼−→ (Rqπ1,Σ,∗[V ])sub ∼−→ [V(q)]sub

of vector bundles on K1
f
Sh(G,W\X)Σ1 . The family of such isomorphisms, as V varies,

is rational over E(Q,X); in other words, the isomorphisms respect canonical models.
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Proof. — We use the characterization of the canonical extensions by growth condi-
tions in (1.3.5)(i), and the calculation of their cohomology by the Dolbeault complex
of forms of moderate growth (see (1.3.8); also cf. §2 below). The first isomorphism
in (1.4.4.1) is a slight generalization of Proposition 3.13.4(i) of [HZ1], and is proved
by the same argument. The second isomorphism, which incorporates the rationality
assertion, is proved by the argument used to prove Lemma 4.7.14 of [HZ1].
Likewise, the subcanonical extension [V ]sub is described by conditions of rapid

decrease at the boundary. The proof of Proposition 3.13.4(i) of [HZ1] works just as
well for rapidly decreasing sections, yielding the first isomorphism of (1.4.4.2). The
second isomorphism then follows from the second isomorphism of (1.4.4.1).

Corollary 1.4.5. — Write πΣ = π1,Σ ◦ π2,Σ. There are spectral sequences:

(1.4.5.1)

Ep,q2 = Hp(K1
f
Sh(G,W\X)Σ1 ,(R

qπΣ,∗[W ])can)

=⇒ Hp+q(K2
f
Sh(Q/U,U\X)Σ2, [WU ]can)

∼−→ Hp+q(Kf
Sh(Q,X)Σ, [W ]can);

(1.4.5.2)

Ep,q2 = Hp(K1
f
Sh(G,W\X)Σ1 ,(R

qπΣ,∗[W ])sub)

=⇒ Hp+q(K2
f
Sh(Q/U,U\X)Σ2, [WU ]sub)

∼−→ Hp+q(Kf
Sh(Q,X)Σ, [W ]sub).

Suppose [W ] satisfies a Kostant condition (see (1.2.16)). Then these spectral sequences
degenerate at E2 and the filtration induced by the E2 term splits canonically.

Proof. — Given Propositions 1.4.3 and 1.4.4, the first part is just the Leray spectral
sequence for πΣ. When [W ] satisfies a Kostant condition, the reason for degeneration
at E2 and the splitting are given in (1.2.16.3). To elaborate further, the prototype
of the use of the Kostant condition is given in [HZ1,Corollary 3.7.8], the version of
the present corollary for unextended automorphic vector bundles. The degeneration
of the spectral sequences for canonical and subcanonical extensions can be found
in [HZ1, 3.13–3.14]. These results were obtained by following the proof of [HZ1,
Corollary 3.7.8], paying close attention to growth and decay conditions. Proposition
1.4.4 ensures that exactly the same arguments work here. The importance of (1.2.16.2)
in proving the splitting was noted in Remark (1.2.16.3).

1.4.6. Periods and rationality. — Mimicking sections 4.7 and 4.8 of [HZ1], we
show that the isomorphisms of Propositions (1.4.3) and (1.4.4) are compatible with
the canonical rational structures described in (1.2.A). Let π : X → W\X be the
natural map. For j � 0 we define the homogeneous vector bundle W(j)

U ′ on W\X as
in the previous section; its fiber at the point π(x) ∈ W\X, for x ∈ X, is given by

(1.4.6.1) W(j)
x

def= Hj(v−x ,Wx).
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Let σjx,W denote the representation of StabW\Q(π(x)) on W(j)
x . The following lemma

is the analogue of Lemma 4.7.14 of [HZ1], and is proved in the same way:

Lemma 1.4.6.2. — Let (T, h) ↪→ (Q,X) be a CM pair, as above. Let L ⊃ E(T, h;W)
and tf ∈ T (Af ). Then we have

p(h, σjx,W) · Per(h,tf )W(j)
x (L) = Rjπ∗[W ](L)[h,tf ] ⊂ Rjπ∗[W ]|[h,tf ](C).

1.5. A boundary calculation

In the present section, we generalize Proposition 1.4.5 to a situation arising from
the study of the boundary cohomology of pure Shimura varieties. The length of the
calculation is primarily due to the complexity of the requisite notation.
Thus, let (G,X) be a pure Shimura datum, which we may as well assume to be

standard (i.e., the map h of (1.1.2) is a bijection). For simplicity, we assume Gad to
be Q-simple. Then the standard maximal Q-parabolics of G are totally ordered as in
(0.7).
Let P, P ′ be two standard maximal Q-parabolics, with P ′ < P . Let P (P ′) = P ′ ∩

Gh,P ; then P (P ′) is a maximal proper parabolic subgroup of Gh,P , hence corresponds
to a boundary stratum in the toroidal compactification of Sh(Gh,P , X(P )), where
X(P ) is as in (0.5). Let Q(P ) ⊂ P denote the canonical subgroup, in the terminology
of [P,§4]: if L(P ) = Gh,P · G�,P is viewed as a (standard) Levi subgroup of P , then
Q(P ) = RuP ·Gh,P , with associated mixed Shimura datum (Q(P ),X(P )). We define
the mixed Shimura data (Q(P ′),X(P ′)) and (Q(P (P ′)),X(P (P ′))) analogously. We
write

Q′ = Q(P ′), Q = Q(P ), Q′′ = Q(P (P ′));
X′ = X(P ′), X = X(P ), X′′ = X(P (P ′)) =W\X′,

and let
U = UQ =W−2Q, U ′ = UQ′ =W−2P

′;
W =WQ = RuQ(= RuP ), W ′ =WQ′ = (W ∩W ′) · U ′.

Note that Gh,P (P ′) = Gh,P ′ and U ⊂ U ′.
Let P1 = P (P ′) ·W denote the admissible parabolic of Q corresponding to the

parabolic subgroup P (P ′) ⊂ Gh,P . ThenQ′ ⊂ P1; indeed, Q′ is precisely the canonical
subgroup of P1 (cf. [P], Lemma 4.19; note that our P ’s are Pink’s Q’s and vice versa).
In particular, W ∩ U ′ ⊂W ′, U ⊂ U ′ ∩W , Q′′ = Q′/(W ∩W ′). Let

W ′′ =WQ′′ =W ′/(W ∩W ′), U ′′ = UQ′′ = U ′/(U ′ ∩W ).

Let V = W/U, V ′ = W ′/U ′, and define v−x = F 0
x (LieQ) ∩ v, v′,−x = F 0

x (LieQ) ∩ v′

as in the paragraph preceding Proposition 1.4.4. Let V −
x ⊂ V and V ′,−

x ⊂ V ′ be the
corresponding subgroups. Let QP,x (resp. QP ′,x) be the maximal parabolic subgroup
of Kx (denoted QF,x in [HZ1, Lemma 1.8.6]) with unipotent radical V −

x (resp. V ′,−
x ).

Let Kh = Kx ∩Gh,P , K ′
h = Kx ∩Gh,P ′ (cf. [HZ1, 1.8]).
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The adjoint representation of Gh,P on v endows the latter with a variation of
Hodge structure of weight −1 over X(P ), corresponding to the homology in degree
one of the abelian scheme Sh(Q/U,U\X) over Sh(Gh,P , X(P )). (This is the abelian
scheme denoted AP in [HZ2]; cf. (2.5), below). The maximal parabolic subgroup
P (P ′) ⊂ Gh,P corresponds to a degeneration to a mixed Hodge structure, with weight
filtration denoted W

P (P ′)
• v, (denoted WF

• v in [HZ1, 1.2.2]). We write GrP (P
′)

i v =
W
P (P ′)
i V/W

P (P ′)
i−1 V . Let v′′,−x = F 0

x (LieQ) ∩Gr
P (P ′)
−1 v.

Let [W ] denote a fully decomposed automorphic vector bundle on the original pure
Shimura variety Sh(G,X). Thus for any point x ∈ X , with stabilizer Kx ⊂ G, [W ] is
the locally homogenous holomorphic vector bundle associated to some algebraic rep-
resentation λx : Kx→GL(Wx). In the calculation in [HZ1] of the part of the boundary
cohomology of [W ] corresponding to P , we associated to [W ] an automorphic vector
bundle [W(P )] (which would be [W(F )] in the notation of [HZ1,4.7]) on Sh(Q,X).
Concretely, [W(P )] is the locally homogenous holomorphic vector bundle associated
to λx |Kh,P ·V −

x
. Note that QP,x maps isomorphically to its image in Q/U , and the

representation λx defines the bundle [W(P )U ] (cf. (1.2.14)) on the abelian scheme
Sh(Q/U,U\X).
Let Sh(Q,X) ↪→ Sh(Q,X)Σ be a (SNC) toroidal compactification. We will be study-

ing the coherent cohomology of the pullback of the canonical extension [W(P )]can to
the part of the boundary of Sh(Q,X)Σ corresponding to the admissible parabolic P1.
Let D�,Q′ denote the quotient P1/Q′. This is the group that plays the role of G�,P ′ in
Pink’s theory of the toroidal compactification of Sh(Q,X) (and if Q were reductive, it
would reduce to G�,P ′); we call it the D�-group in what follows. Its unipotent radical
RuD�,Q′ equals W/(W ∩W ′), with Lie algebra GrP (P

′)
0 v.

Let (P ∩ P ′)�,P ′ = P ∩ G�,P ′ , a maximal parabolic subgroup of G�,P ′ (this is
consistent with the notation to be used in §3). Then it is easy to check that
(1.5.1) RuD�,Q′ = Ru(P ∩ P ′)�,P ′ .

Moreover, the standard Levi subgroup of (P ∩ P ′)�,P ′ is naturally identified with
G�,P · G�,P (P ′). Let P1,� = G�,P (P ′) · Ru(P ∩ P ′)�,P ′ . Then P1 is the subgroup
P1,� ·Gh,P ′ ·W ′ ⊂ P , and there are natural isomorphisms

(1.5.2) D�,Q′
∼−→ P1,�/(Gh,P ′∩P1,�) ∼−→ G�,P (P ′)/(G�,P (P ′)∩Gh,P ′)·Ru(P ∩P ′)�,P ′ .

Note that

(1.5.3) Lie(QP,x ∩Q′) = Lie(K ′
h)⊕ v

′′,−
x ; Lie(QP ′,x ∩Q′) = Lie(K ′

h)⊕ v
′,−
x .

In particular, QP ′,x ∩Q′ contains the unipotent radical of QP ′,x. On the other hand,
it follows easily from (1.5.1) that Cayley transform defines an isomorphism

(1.5.4) v
−
x = LieRuQP,x

∼−→ LieRuD�,Q′ ⊕ v
′′,−
x .

The choice of a base point x is made only for convenience in characterizing auto-
morphic vector bundles, and plays no essential role in the theory. In what follows,
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the subscript x will be used uniformly to designate a point of any of the homoge-
neous spaces X, X′, X′′, etc., the sole condition being that the various x’s be chosen
compatibly with respect to morphisms of mixed Shimura data.
In addition to (Q/U,U\X), and (Gh,P , X(P )), we will be working with the

intermediate Shimura data (Q′/U, U\X′) and (Q′/W,W\X′) = (Q′′,X′′). There
are three more relevant Shimura data: (Q′/U ′, U ′\X′), (Q′′/U ′′, U ′′\X′′), and
(Q′/W ′,W ′\X′) = (Gh,P ′ , X(P ′)). We write • where the level subgroups would
be indicated. We find three sequences of morphisms

•Sh(Q′,X′)
π′
2−−−−→ •Sh(Q′/U ′, U ′\X′)

π′
1−−−−→ •Sh(Gh,P ′ , X(P ′))(1.5.5)

•Sh(Q′′,X′′)
π′′
2−−−−→ •Sh(Q′′/U ′′, U ′′\X′′)

π′′
1−−−−→ •Sh(Gh,P ′ , X(P ′))(1.5.6)

•Sh(Q′,X′)
π(P ′)2−−−−→ •Sh(Q′/U, U\X′)

π(P ′)1−−−−→ •Sh(Q′′,X′′)(1.5.7)

The first two are instances of boundary diagram (1.1.5), whereas (1.5.7) is the bound-
ary diagram for the mixed Shimura variety Sh(Q,X) corresponding to the admissible
parabolic subgroup P1 ⊂ Q.
We choose compatible families of fans Σ′, Σ′

2, Σ
′
1 (resp. Σ

′′, Σ′′
2 , Σ

′′
1 = Σ′

1, resp.
Σ′, Σ2, Σ1) so that the morphisms in diagram (1.5.5) (resp. (1.5.6), resp. (1.5.7))
extend to morphisms of toroidal compactifications. By definition we have Σ = ∪{ΣPα}
where Pα runs through the standard admissible parabolic subgroups ofQ, and likewise
for the other data. However, to avoid irrelevant notation we designate the toroidal
compactification of any of the Shimura varieties ? simply by ?Σ. Again, note that
the data for (1.5.7) represent part of the data for the toroidal compactification of
Sh(Q,X). In the end, we obtain a large commutative diagram

(1.5.8)

•Sh(Q′,X′)Σ

π(P ′)2,Σ

�
•Sh(Q′/U, U\X′)Σ

ψ1

�
•Sh(Q′/U ′ ∩W, (U ′ ∩W )\X′)Σ

ψ2−−−−→ •Sh(Q′/U ′, U ′\X′)Σ

ψ3

� ψ4

�
•Sh(Q′′,X′′)Σ

π′′
2,Σ−−−−→ •Sh(Q′′/U ′′, U ′′\X′′)Σ

π′′
1,Σ

�
•Sh(Gh,P ′ , X(P ′))Σ

Here the arrows ψi, i = 1, . . . , 4, have been introduced to make the diagrams
commute. We then have

(1.5.9) ψ2 ◦ ψ1 ◦ π(P ′)2,Σ = π′2,Σ; π′′1,Σ ◦ ψ4 = π′1,Σ;ψ3 ◦ ψ1 = π(P ′)1,Σ
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One checks that ψ1 and ψ2 are compactifications of toric fibrations, whereas ψ3 and
ψ4 are generically abelian schemes. The left-hand column in (1.5.8), a refinement of
(1.5.7), will be analyzed below in connection with the Q′-part of the boundary in the
compactification of the diagram (1.1.5):

(1.5.10) •Sh(Q,X)Σ
π2−−−−→ •Sh(Q/U,U\X)Σ

π1−−−−→ •Sh(Gh,P ,W\X)Σ.
At no point in our calculation of boundary coherent cohomology have we seriously

used the fact that W is the full unipotent radical of Q. The only real restriction is
the Kostant condition, used to prove splitting in Proposition 1.4.5. We now apply
the analysis of [HZ1,§3] to study the boundary cohomology of [W(P )]. We begin by
choosing a connected component D ⊂ X and replacing the disconnected (finite-level)
Shimura varieties •Sh(Q,X) by a connected component of the form MΓ = Γ\D. As
above, we use the subscript Σ uniformly for all (compatible) toroidal compactifica-
tions. Recall that MΓ has a Baily-Borel compactification M∗

Γ [P, 6.2], defined set-
theoretically as the disjoint union of boundary strataMΓ(Pα) for Γ-conjugacy classes
of rational parabolic subgroups Pα of Q. There is a surjective map φΣ : MΓ,Σ→M∗

Γ.
We let ZQ′ ⊂ MΓ,Σ denote the closure of the subset φ−1Σ MΓ(P1) (see [HZ1,(1.5.1)]
for the analogue in the pure setting). Under our hypotheses, it is a divisor with nor-
mal crossings, each of whose components is smooth. We denote by iQ′ the closed
immersion ZQ′ ↪→MΓ,Σ.
As in the pure case (cf. [HZ1,1.3]), the fan ΣP1 is a polyhedral decomposition

of a certain subset of the closure of a cone C(Q′) ⊂ U ′(R)(−1) (the Tate twist
is as in [P]), homogeneous with respect to P1(R)0 and invariant under translation
by (U ′ ∩ W )(R)(−1). Pink proves that the quotient C(Q′)/(U ′ ∩ W )(R)(−1) is a
non-degenerate homogeneous cone for G�,P (P ′)(R)0 in UP (P ′)(R)(−1) (for all this,
see [P], Proposition 4.15). The fan ΣP1 is equivariant with respect to an appropriate
congruence subgroup ∆�,Q′ ⊂ D�,Q′(Q) (denoted ∆1 by Pink in its adelic incarnation).
Our running hypothesis that Γ be neat (cf. (1.3)) implies that ∆�,Q′ acts freely on
ΣP1 . We may assume without loss of generality that ∆�,Q′ admits a factorization as
semi-direct product

(1.5.11) ∆�,Q′
∼−→ Γ�,P (P ′) × Γu,

where Γ�,P (P ′) is the image in G�,P (P ′)/(G�,P (P ′)∩Gh,P ′)(Q) of a congruence subgroup
Γ1 of G�,P (P ′)(Q) and Γu is a lattice in the vector group RuD�,Q′ . (The hypothesis
that Γ be neat implies that the map Γ1 → Γ�,P (P ′) is an isomorphism.)
We define ΣcP1

and Σ̂cP1
as in [HZ1, (1.3.2)] and [HZ1,(2.2.2)], respectively. The

irreducible components of ZQ′ are indexed by the one-dimensional faces in ΣP1 modulo
the action of ∆�,Q′ . Then it is easy to verify that the analogue of Lemma 3.7.2 of
[HZ1] remains true in the present setting:

Lemma 1.5.12. — The nerve N(ZQ′) of the closed covering of ZQ′ by its irreducible
components is isomorphic to ∆�,Q′\Σ̂cP1

.
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As before, we write • where the level subgroups belong, to avoid proliferation of
notation. We now consider the restriction of (1.5.10) to the connected component
M•,Σ

(1.5.13) M•,Σ
π2−−−−→ AQ/U,•,Σ

π1−−−−→ MP,•,Σ;

here, AQ/U,•,Σ (resp. MP,•,Σ) is a connected component of a toroidal compactification
of •Sh(Q/U,U\X) (resp. •Sh(Gh,P ,X′′)). It follows from Pink’s theory that AQ′/U,•,Σ
is a toroidal compactification of a semi-abelian scheme over MQ′′,•,Σ. There is a
commutative diagram:

(1.5.14)

ZQ′
iQ′

−−−−→ M•,Σ

π(P ′)2

� π2

�
ZQ′/U

iQ′/U−−−−→ AQ/U,•,Σ
π(P ′)1

� π1

�
ZQ′′

iQ′′
−−−−→ MP,•,Σ

As in the discussion of ΣP1 above, the second and third lines of (1.5.14) correspond
to fans

ΣP1/U ⊂ C(Q′/U) ⊂ U ′/U(R)(−1) and ΣP1/W ⊂ C(Q′′) ⊂ (U ′/U ′ ∩W )(R)(−1),
respectively, with the obvious notation. The corresponding D�-groups are denoted
D�,Q′/U and D�,Q′′ . It is easy to see that there are maps

ΣP1 −→ ΣP1/U −→ ΣP1/W ,

where the first map is a bijection, and that

(1.5.15) D�,Q′
∼−→ D�,Q′/U ; D�,Q′′

∼−→ D�,Q′/U/RuD�,Q′/U
∼−→ G�,P (P ′),

C(Q′/U) ∼−→ C(Q′)/U(R)(−1); C(Q′′) ∼−→ C(Q′)/(U ′ ∩W )(R)(−1).
The two lines of (1.5.15) are compatible. As an immediate consequence, we have the
following elaboration on Lemma (1.5.12):

Lemma 1.5.16. — Define N(ZQ′/U ) and N(ZQ′′ ) to be the nerves of the closed cov-
erings of ZQ′/U and ZQ′′ , respectively, by their irreducible components. Then there is
a diagram

N(ZQ′ )
N(π(P ′)2)−−−−−−−→ N(ZQ′/U )

N(π(P ′)1)−−−−−−−→ N(ZQ′′ )
where the first arrow is an isomorphism and the second is homotopy equivalent to a
fibration with fiber Γu\[(U ′ ∩W/U)(R)(−1)].

To each σ ∈ ΣP1 corresponds an irreducible closed stratum Zσ ⊂ ZQ′ , a
toroidal compactification of a connected component of the mixed Shimura vari-
ety •Sh(Q′/U(σ),X′), where U(σ) ⊂ U ′ is the rational subgroup whose group of real
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points is generated by σ. The left-hand column of (1.5.14), restricted to Zσ, is a
diagram of connected components for the analogue of (1.5.7) where Q′ is replaced
by Q′/U(σ). Fix any such Zσ. Then the left hand column of (1.5.8) gives rise to a
diagram of connected components:

(1.5.17) Zσ
π(P ′)2−−−−→ AQ′/(U+U(σ)),•,Σ

ψ1−−−−→ AQ′/(U ′∩W+U(σ)),•,Σ
ψ3−−−−→ Zσ′′ .

Here σ′′ denotes the image of σ in C(Q′′), and Zσ′′ = MQ′′/U(σ′′),•,Σ is the corre-
sponding closed stratum in ZQ′′ . As σ′′ varies, the diagrams (1.5.17) fit together to a
refinement of the left-hand column of (1.5.14):

(1.5.18) ZQ′
π(P ′)2−−−−→ ZQ′/U

ψ1−−−−→ AQ′/U ′∩W
ψ3−−−−→ ZQ′′ .

This can be continued with a map π′′ : ZQ′′→MP ′,•,Σ, where MP ′,•,Σ is a connected
component of Sh(Gh,P ′ , X(P ′))Σ, that is the toroidal compactification of (1.5.6).
Fix σ′′ ⊂ C(Q′′), and let ZQ′(σ′′) ⊂ ZQ′ denote the union of the strata Zσ that

map to Zσ′′ under π(P ′) := π(P ′)1 ◦ π(P ′)2. Lemma 1.5.16 and the discussion below
diagram (1.5.8) imply that

(1.5.19) The nerve N(ZQ′(σ′′)) of the closed covering of ZQ′(σ′′) by its ir-
reducible components is homotopy equivalent to the compact torus
Γu\[(U ′ ∩W/U)(R)(−1)] (more precisely, it is isomorphic to a triangu-
lation of the latter).

(1.5.20) Over π′′,−1(MP ′,•) (i.e., over the open stratum), ψ3 is an abelian scheme
whose typical anti-holomorphic tangent space is v′′,−x ; in particular, it is a
bijection on sets of irreducible components.

(1.5.21) π(P ′)2 is a bijection on sets of irreducible components.

By Proposition (1.4.3), we have canonical isomorphisms

(1.5.22)
π(P ′)2,∗([W(P )]can) ∼−→ i∗Q′/U [W(P )U ]can;
Riπ(P ′)2,∗([W(P )]can) = 0, i > 0.

Similarly, there is an automorphic vector bundle that we might denote [W(P ′)U ′∩W ]
on Sh(Q′/(U ′ ∩ W ), (U ′ ∩ W )\X′′) such that, for any diagram of closed strata as
in (1.5.17), the pullback to AQ′/(U+U(σ)),•,Σ of i∗Q′/U [W(P )U ]can is isomorphic to
ψ∗
1 [W(P ′)U ′∩W ].
It then follows from (1.5.19) and (1.5.20), as in [HZ1, (3.12.6)], that

(1.5.23) Rqπ(P ′)∗(i∗Q′ [W(P )]can) � Hq(RΓuψ3,∗[W(P )U ′∩W ]can);

here recall (cf. (1.5.9)) that π(P ′) is the composite of the three arrows in (1.5.18). The
notation RΓuψ3,∗ for equivariant higher direct images is as in [HZ1], e.g. [HZ1,3.12.4].
Proposition 1.5.24. — The Leray spectral sequence

Ep,q2 = Hp(ZQ′′ , Rqπ(P ′)∗(i∗Q′ [W(P )]can)) =⇒ Hp+q(ZQ′ , i∗Q′ [W(P )]can)

degenerates at E2 and the gradation induced by the E2 term splits canonically.
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Proof. — As in the proof of Corollary 1.4.5, the point is to apply an appropriate
Kostant condition, in this case to the mixed Shimura datum (Q′/U, U\X′). The
group Kx ⊂ G stabilizing x ∈ X is the Kx of (1.2.16.1); for Πx we take QP,x. Instead
of the full subgroup Q0

x ∩ (W ′/U) for the mixed Shimura datum (Q′/U, U\X′), we
take the subgroup Q0

x ∩ (W/U) = Q0
x ∩ V , whose Lie algebra is just v−x . The map

αx : v−x
∼−→ Lie(RuQP,x)

is defined, as in [HZ1,1.8.6], in terms of the Cayley transform for the boundary sub-
group P of G. Thus we are in the situation of (1.2.16.4). and we use the canonical
splitting (1.2.16.5). Note that all choices are canonical with respect to our choice of
the point x, the standard parabolics P, P ′, and the standard Levi components. In
this sense, the splitting we will obtain on the E2 term is also canonical.
We next set up the Leray spectral sequence, so that we may apply the above.

The automorphic vector bundle [W(P )U ′∩W ] is the locally homogeneous holomorphic
vector bundle associated to the restriction to

QP,x ∩Q′ � (QP,x ∩Q′)/(QP,x ∩Q′ ∩ U ′ ∩W )

of the representation λx : Kx→GL(Wx) introduced near the beginning of (1.5). In
particular, its fiber at x is Wx. Just as in Proposition 1.4.4,

(1.5.24.1) Rqψ3,∗[W(P )U ′∩W ]can
∼−→ [W(P )(q),′′]can

where [W(P )(q),′′] is the automorphic vector bundle whose fiber at x is

(1.5.24.2) Hq(LieRu(QP,x ∩Q′),Wx) = Hq(v′′,−x ,Wx);

the equality follows from (1.5.3).
Next, Γu acts trivially on AQ′/U ′∩W , hence the Γu-equivariant cohomology on the

right-hand side of (1.5.23) is computed fiber by fiber. ThusHq(RΓuψ3,∗[W(P )U ′∩W ]can)
is the automorphic vector bundle whose fiber at x is

(1.5.24.3) Hq(R(Γu) ◦R(v′′,−x )(Wx)).

Here R(Γu) and R(v′′,−x ) are abbreviations for the right-derived functors of H0(Γu, •)
and H0(v′′,−x , •), respectively. We use the analogous notation for Lie algebra coho-
mology below. Now by Nomizu’s theorem (cf. [HZ2, (5.4.7)]), there is a canonical
isomorphism of functors

(1.5.24.4) R(Γu, •)
∼−→ R(LieRuD�,Q′ , •).

It follows from (1.5.4) that the group in (1.5.24.3) is canonically isomorphic to
Hq(v−x ,Wx). Let [W(Q′′)(q)]can be the canonically extended automorphic vector
bundle on ZQ′′ associated to the representation of QP (P ′),x on Hq(v−x ,Wx). We have
thus constructed a canonical isomorphism

(1.5.24.5) Hq(RΓuψ3,∗[W(P )U ′∩W ]can)
∼−→ [W(Q′′)(q)]can;
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(this is obvious without the canonical extensions, and that it holds with them follows
from using growth conditions, as in the proof of Proposition (1.4.4).)
By (1.5.23), the Leray spectral sequence can thus be rewritten

(1.5.24.6) Ep,q2 = Hp((ZQ′′ , [W(Q′′)(q)]can)) =⇒ Hp+q(ZQ′ , i∗Q′ [W(P )]can).

Since v−x is the unipotent radical of a parabolic subalgebra of Kx, the Kostant con-
dition is satisfied, and the degeneration and splitting follow (as described at the
beginning of the proof).

One verifies from the explicit descriptions in terms of λx that, for each q,
[W(Q′′)(q)]can is the pullback via iQ′′ of the canonically extended fully decom-
posed automorphic vector bundle [W(P )(q)]can on the (connected) pure Shimura
variety MP,•,Σ; notation is as in Proposition (1.4.4). Applying Kostant’s theorem,
Proposition (1.5.24) yields an isomorphism:

(1.5.25) Hn(ZQ′ , i∗Q′ [W(P )]can) ∼−→
⊕

b∈WP,x

Hn−�(b)(ZQ′′ , i∗Q′′ [Vλ(h,b)]can ⊗ Vλ(�,b))

as in [HZ1,(3.7.4)]. Thus we let

[W(Q′′)λ(h,b)]can = i∗Q′′ [Vλ(h,b)]can.

Then we can apply the analysis of §3 of [HZ1] to the cohomology of [W(Q′′)λ(h,b)] to
obtain

(1.5.26) Hs(ZQ′′ , [W(Q′′)λ(h,b)]can)
∼−→⊕

a∈WP(P ′),x

⊕
r
Hs−r−�(a)(MP (P ′),•,Σ, [W(Q′′)λ(h,b);λ(h,a)]can)⊗Hr(Γ�,P (P ′), Vλ(h,b);λ(�,a)).

Here the first term λ(h, b) in the subscript corresponds to the decomposition (1.5.25),
whereas the second term corresponds to the decomposition relative to the parabolic
QP (P ′),x ⊂ Kh,P . Note that MP (P ′),•,Σ coincides with MP ′,•,Σ, (compare the final
terms in (1.5.5) and (1.5.6)).
Let R = P ∩ P ′; the standard Levi factor of R is G�,R × Gh,P ′ , where G�,R is

the standard Levi factor of R ∩ G�,P ′ . Let QR = QP,x ∩ QP ′,x. This is a parabolic
subgroup of Kx with Levi factor isomorphic via Cayley transform to G�,R × Kh,P ′ .
Let WR(= WR,x) be the corresponding set of Kostant representatives in the Weyl
group of Kx. Then (see Lemma 3.1.6 below), we can combine the decompositions
(1.5.25) and (1.5.26) to write:

(1.5.27) Hn(ZQ′ , i∗Q′ [W(P )]can) ∼−→⊕
w∈WR

⊕
r
Hn−�(w)−r(MP ′,•,Σ, [Vλ(h,w)]can)⊗Hr(Γ�,P (P ′), Vλ(�,w)).

More general results are obtained in section 3.3. The decomposition (1.5.27) can be
compared with (3.3.1), below. Note, however, that the second factor on the right
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here is the cohomology of Γ�,P (P ′) and not that of a congruence subgroup of G�,R(Q).
Indeed, as in (3.3.4), below, we have G�,R = G�,P ·G�,P (P ′).
This is the “long way” to calculate the left-hand side of (1.5.27). The short way is

to apply Corollary (1.4.5) to the different strata Zσ of ZQ′ , and to use the analogue
of diagram (1.5.5) for the mixed Shimura varieties •Sh(Q′/U(σ),X′) (cf. (1.5.17)) as
σ varies:

(1.5.28) •Sh(Q′/U(σ),X′)
π′
2−−−−→ •Sh(Q′/U ′, U ′\X′)

π′
1−−−−→ •Sh(Gh,P ′ , X(P ′)).

Note that the last two terms of (1.5.28) are independent of σ. Applying Lemma 1.5.12
directly to the configuration of the Zσ, we find the following equivariant version of
(1.4.5.1):

Lemma 1.5.29. — There is a spectral sequence

Ep,q2 = Hp
∆
,Q′ (MP ′,•,Σ, R

qπ′∗i
∗
Q′ [W(P )]can) =⇒ Hp+q(ZQ′ , i∗Q′ [W(P )]can).

This spectral sequence degenerates at E2 and the filtration induced on the abutment
splits canonically.

We are using the fact that i∗Q′ [W(P )]can is, on each Zσ, isomorphic to the re-
striction to Zσ of [W(P ′)]can. This is because •Sh(Q,X)Σ, can be realized as a part
of a toroidal compactification of •Sh(G,X), and then ZQ′ is part of the P ′-stratum
of the latter. Then the lemma follows from the characterization [HZ1, (3.2.2)] of
the canonical extension on Sh(G,X)Σ. The last assertions are a consequence of the
Kostant condition, applied essentially as in (1.5.24) (cf. [HZ1, (3.13.6)]). In this case
Πx = QP ′,x ⊂ Kx, and Lie(Q0

x) = v′,−x , with the isomorphism αx being given by
Cayley transform as in [HZ1,(1.8.6)].
We can write the splitting in (1.5.29) in terms of Kostant representatives in WP ′

,
as above. Since ∆�,Q′ ⊂ G�,P ′ , we obtain an isomorphism

(1.5.30) Hn(ZQ′ , i∗Q′ [W(P )]can)
∼−→

⊕
t∈WP ′,x

Hn−r−�(t)(MP ′,•,Σ, [Vλ(h,t)]can)⊗Hr(∆�,Q′ , Vλ(�,t)).

The last factor on the right can be computed by a Hochschild-Serre spectral sequence
via (1.5.11). Recalling that Γu is a lattice in the unipotent radical ofR�,P ′ := R∩G�,P ′ ,
(see (1.5.1)) and applying Nomizu’s theorem and Kostant’s theorem again, we have

(1.5.31) Hr(∆�,Q′ , Vλ(�,t))
∼−→

⊕
s∈WR


,P ′
Hr−�(s)(Γ�,Q′ , Vλ(�,t);λ(�,s)).

Applying Lemma 3.1.6 (below) again, we can combine the last two formulas. As a
special case of the formulas in Section 3.3 below, we find that, if w ∈ WR equals st,
with s ∈WR
,P ′ and t ∈ WP ′,x then

[Vλ(h,t)] � [Vλ(h,w)];
Vλ(�,t);λ(�,s) � Vλ(�,w),

(1.5.32)
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where the right-hand sides are as in (1.5.27). Thus (1.5.29) gives another isomorphism

(1.5.33) Hn(ZQ′ , i∗Q′ [W(P )]can) ∼−→⊕
w∈WR

⊕
r
Hn−�(w)−r(MP ′,•,Σ, [Vλ(h,w)]can)⊗Hr(Γ�,P (P ′), Vλ(�,w)).

Proposition 1.5.34. — The isomorphisms (1.5.27) and (1.5.33) are the same.

Proof. — This comes down to the commutativity of the diagram (1.5.8). The short
calculation goes by way of the maps ψ4 and ψ2, whereas the long one involves π′′2,Σ
and ψ3 (use (1.5.9) in both cases).

Remarks 1.5.35

(i) Proposition 1.5.34 is the point of this section. It is applied at the end of section
3.4. The key step is the proof of Proposition 1.5.24, where the Kostant condition is
obtained only thanks to the intervention of the discrete group Γu.
(ii) Throughout this section, the Shimura datum (Q,X) can be replaced by

(Q/U0, U0\X) for any rational subgroup U0 ⊂ U . In this way, the simplicial ar-
guments of [HZ1,3.7] can be applied to extend the results of this section to the closed
stratum ZP of a toroidal compactification of (a connected component of) •Sh(G,X).
This amounts to replacing Γ�,P (P ′) by Γ�,P × Γ�,P (P ′) on the right-hand of formulas
(1.5.27) and (1.5.33). As noted after (1.5.27), Γ�,P×Γ�,P (P ′) is a congruence subgroup
of G�,R(Q), and the results of this section come down to showing that two ways of
calculating the coherent cohomology of ZP give the same result.
(iii) The adelic formulations of Propositions 1.5.24 and 1.5.34 and Lemma 1.5.29

are left to the reader. These are intermediate results; the principal applications (in
§3) will be stated in adelic form. In particular, the “long” calculation satisfies the
analogue of Lemma 1.4.6.2.
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CHAPTER 2

MIXED GROWTH CONDITIONS

AND COHERENT COHOMOLOGY

In this Chapter, we treat the conditions of moderate growth and rapid decrease
on differential forms—and also combinations of the two—along divisors with normal
crossings and discuss their implications on Dolbeault cohomology. In the case of the
boundary divisor of a toroidal compactification of the mixed Shimura variety associ-
ated to the pair (Q,X), we convert these conditions to growth and decay conditions
on the corresponding vector-valued functions on the groupQ on various Siegel sets for
its admissible parabolic subgroups. This enables us to deduce the useful isomorphism
(2.7.1) on cohomology that seems inaccessible by geometric methods.

2.1. ∂ with logarithmic growth in one variable (cf. [HP],[H4, § 3], [HZ1, 3.8])

Let f be a C∞ function on the punctured disc ∆∗
a = {z ∈ C : 0 < |z| � a}, with

a < 1. Given an integer N , we say that f has logarithmic growth of degree �N when

(2.1.1) |f(z)| |log |z||−N

is bounded from above on ∆∗
a. The set of all such functions is denoted A0

N . It is
obvious that A0

N ⊂ A0
N ′ for all N ′ � N .

One says that f is slowly increasing if it has logarithmic growth of degree � N

for some N , and rapidly decreasing if it has logarithmic growth of degree �N for all
N .(1) It is wise to restrict one’s attention to functions f such that the derivatives of
f of all orders are slowly increasing (resp. rapidly decreasing). The space of all such
functions is denoted A0

sia (resp. A
0
rda).

If ω is a differential form of bidegree (0,1), one can write ω = g(z)dz/z. We say
that ω has logarithmic growth of degree �N whenever g does; in effect, we declare
that dz/z is slowly increasing. We can then define the notion of (0,1)-forms that are

(1)Clearly, one can assume without loss of generality that N is taken from any set of numbers that

is unbounded from both above and below.
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slowly increasing or rapidly decreasing to all orders, and denote them by A
(0,1)
sia and

A
(0,1)
rda respectively. We obtain Dolbeault complexes A•

sia:

A0
sia

∂−→ A
(0,1)
sia ,

and the analogously defined A•
rda, which is a subcomplex of A

•
sia.

Proposition 2.1.2 (Dolbeault lemma with logarithmic growth)
(i) H0(A•

sia) is the space of holomorphic functions on the disc ∆a of radius a.
(ii) H0(A•

rda) is the space of holomorphic functions on ∆a that vanish at the origin.
(iii) H1(A•

rda) = H1(A•
sia) = 0.

As the first two assertions of the Proposition are obvious, we concentrate on (iii).
This is seen to come down to verifying:

Proposition 2.1.3 ([HP]). — Let N be an integer different from −1. If g ∈ A0
N ,

there exists f ∈ A0
N+1 such that ∂f(z) = g(z)dz/z.

For completeness, we give:

Outline of the proof of (2.1.3). — There is a standard solution of the ∂-equation in a
disc ∆, which gets written here as ∂f/∂z = g(z)/z, viz. f = I(g) where

(2.1.4) I(g)(z) = (2πi)−1
∫
w∈∆

g(w)dw ∧ dw/w

w − z
.

This is an absolutely convergent integral if g has logarithmic growth; note that I(g)
is independent of N . One then shows that logarithmic growth for g implies the
corresponding growth for f . By decomposing (2.1.4) into pieces, as in [HP], one
reduces the verification to the following elementary calculations:

Lemma 2.1.5. — Let N be an integer different from −1. Then there is a constant
CN > 0 such that whenever r � a:

r−1
∫ r

0

|log ρ|N dρ � CN |log r|N ,(i) ∫ r

0

ρ−1 |log ρ|N dρ � CN |log r|N+1 , if N � 0(ii+) ∫ a

r

ρ−1 |log ρ|N dρ � CN |log r|N+1 if N < 0.(ii−)

Moreover, when g ∈ A0
sia (resp. g ∈ A0

rda), the formula

∂I(g)
∂z

= I(
∂g

∂z
)

implies that I(g) ∈ A0
sia (resp. I(g) ∈ A0

rda) likewise.
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2.2. Logarithmic growth in several variables

In the our setting, the natural notions of logarithmic growth and decay are the
following. Given an integer N , a function f of (z,w) ∈ (∆∗

a)
m× (∆a)n is said to have

logarithmic growth of degree �N when

(2.2.1) |f(z,w)|
( m∑
j=1

|log |zj||
)−N

is bounded from above. The set of all such functions is again denoted A0
N . We can

then define A0
sia and A0

rda as in (2.1). Also as in (2.1), we regard dzj/zj as logarithmic
(after all, it has logarithmic growth in the sense of (1.3.5)). It is not hard to see that
these growth conditions allow one to define, on any complex manifold M , sheaves of
forms having slow increase or rapid decrease along the divisor with normal crossingsD,
for the notion of logarithmic growth is independent of local coordinates, and likewise
for all derivatives. We denote these by A•

sia(M,D) and A•
rda(M,D).

An alternate simpler notion of logarithmic growth of degree N is provided by the
boundedness of

(2.2.2) |f(z,w)|
m∏
j=1

|log |zj ||−N ,

which is asymptotically different from (2.2.1). However, (2.2.2) yields the same notions
of slow increase or rapid decrease in view of the following:

Lemma 2.2.3. — If λj � 1 for 1 � j � m, then( m∏
j=1

λj

)1/m
� 1

m

m∑
j=1

λj �
m∏
j=1

λj .

This allow us to replace the growth condition of (2.2.1) by that of (2.2.2), for which
we have, in effect, separation of variables (cf. [GH, p. 25]). One obtains from (2.2.3):

Proposition 2.2.4. — Let D be a divisor with normal crossings on a complex man-
ifold M . Then A•

sia(M,D) is a fine resolution of OM , and A•
rda(M,D) is a fine

resolution of OM (−D).

Corollary 2.2.5. — Let F be a locally-free sheaf of OM -modules. Then the com-
plex A•

sia(M,D)⊗OM F is a fine resolution of F , and A•
rda(M,D) ⊗OM F is a fine

resolution of F(−D).

Remark 2.2.6. — The issues involved in the proof of (2.2.4) were misrepresented in
[HP], as was pointed out to us by J. I. Burgos, who also provided a correct argument
along the lines outlined here.
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2.3. Forms with mixed growth conditions

We continue to let D denote a divisor with normal crossings on the complex mani-
foldM . Consider any 2-partition of the set of irreducible components of D, and write
D correspondingly as the union D1 ∪D2. We define the middle term in

(2.3.1) A•
rda(M,D) ⊆ A•

mxa(M ;D,D2) ⊆ A•
sia(M,D)

by the condition that a differential form should be slowly increasing along D1, and
rapidly decreasing along D2, and likewise for all derivatives. Our purpose is to obtain
the following variants of (2.2.4) and (2.2.5):

Proposition 2.3.2. — A•
mxa(M ;D,D2) is a fine resolution of OM (−D2).

Corollary 2.3.3. — For any locally-free sheaf F of OM -modules, the complex
A•
mxa(M ;D,D2)⊗OM F is a fine resolution of F(−D2).

One is led to define:

Definition 2.3.4. — A function f of (z,u,w) ∈ (∆∗
a)
m1 × (∆∗

a)
m2 × (∆a)n is said

to have logarithmic growth of bidegree (N1, N2) when

|f(z,u,w)|
( m1∑
j=1

∣∣ log |zj |∣∣)−N1( m2∑
j=1

∣∣ log |uj |∣∣)−N2

is bounded from above. Differential (0, k)-forms of logarithmic growth of bidegree
(N1, N2) are defined just as before, and the space of such is denoted Ak(N1,N2)

.

Then Proposition (2.3.2) and indeed Proposition (2.2.4) are deduced from the fol-
lowing multivariate version of (2.1.3), which is proved by iteration on the latter.

Proposition 2.3.5. — Let N1 and N2 be integers different from −1. If k > 0 and
ω ∈ Ak(N1,N2)

, there exists φ ∈ Ak−1(N1+1,N2+1)
such that ∂φ = ω.

2.4. Siegel sets in mixed Shimura varieties

We will retain the notation from (1.1) as far as possible. Thus, let (Q,X) be
a mixed Shimura datum. By convention (as before) we also allow X to denote a
connected component of this homogeneous space. Let (G,W\X) be the corresponding
pure Shimura datum for G = Q/W and π : Q → G the natural map. For any
connected component MΓ of Kf

Sh(Q,X)(C) and corresponding component M̂Γ of

bKf
Sh(G,W\X)(C), where K̂f = π(Kf ), we have the commutative diagram of complex

manifolds

(2.4.1)
X −→ MΓ

↓ ↓
X̂ = W\X −→ M̂Γ
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in which the spaces X and X̂ are contractible.
The notion of going to infinity in MΓ or M̂Γ is expressible in terms of Siegel sets,

equivalently in the group or on the homogeneous space, associated to parabolic sub-
groups. For the present purposes, it is the admissible parabolic subgroups that enter.
Recall from (1.1.9) that the mapping P(G) → P(Q) that assigns P̃ = π−1(P ) to
P ∈ P(G) is bijective. Since the notion of admissibility is determined on G, the
admissible parabolic subgroups of G and Q are thus in canonical one-to-one corre-
spondence.
We work with the pair (G, X̂), though the story for (Q,X) is parallel. Let P ∈ P(G);

then P (R) acts transitively on X̂. Select a basepoint x̂0 ∈ X̂. Let AP denote the
associated lift to P (R) of the connected component of the center of P/WP . Then
P 0 � (0P )0 ×AP , where 0P denotes, as in [BS, 1.1], the intersection of the kernels of
the squares of the rational characters of P ; we make this identification routinely. A
Siegel set for P in G(R) is a subset of P (R) of the form S = Sκ,t = κ×AP,t, where
κ is a compact subset of 0P (R), and

(2.4.2) AP,t = {a ∈ AP : aβ � t for all simple roots β occurring in WP }.

It is also standard usage to call S · x̂0 a Siegel set for P in X̂.

In what follows, UP is the center of the unipotent radicalWP of P , VP =WP /UP .
The associated Siegel domain coordinates are deduced from embedding X̂ as an open
subset of the total space X̂P of a mixed Shimura variety,

(2.4.3) X̂ ⊂ X̂P −→ UP (C)\X̂P −→ F̂P ,

where F̂P is the boundary component of X̂ corresponding to P , and trivializing the
fibration analytically:

(2.4.4) X̂P � F̂P × VP (R)× UP (C).

This yields

(2.4.5) X̂ � {(y, v, u) ∈ F̂P × VP (R)× UP (C) : Imu−Ψ(y, v) ∈ CP },

where CP is a homogeneous cone in UP (R), in which the action of AP on X̂ is given
by the dilations of CP . In the above, Ψ : F̂P × VP (R) → UP (R) has well-known
properties; aside from continuity, these will not concern us here.

Remark 2.4.6. — When G is Q-simple and P is maximal, one places a point at
infinity in VP (R)×UP (C) in (2.4.2) to attach (topologically) the Baily-Borel boundary
component corresponding to P . It is reached by letting aβ → ∞ (see (2.4.2)), while
keeping the simple roots of Gh,P bounded.

Next, let T be any compact cone in CP ; by“compact”, we mean that T̂ = (T − 0)/R+

is compact in ĈP := (CP − 0)/R+. A complex Siegel set for P in X̂, built from T ,
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will be a set S of the form

(2.4.7) {(y, v, u) ∈ F̂P × VP × UP (C) : y ∈ κh, v ∈ κV ,Reu ∈ κU , Imu ∈ (t0 + T )},

for κh, κV , κU compact and t0 ∈ T . It is easy to verify that the two notions of Siegel
set are commensurate: every Siegel set for P is contained in a complex Siegel set for
P , and conversely. (For the same reason, one sees that in defining a Siegel set, one
could take the κ to be a compact subset of P (R) or even of G(R).)

We turn now briefly to the pair (Q,X). As our current concern is over mixed
Shimura varieties for which π2 in (1.1.5) is an isomorphism (that is to say, abelian
fibrations), we assume that W−2Q = {1}. Let P̃ ∈ P(Q) correspond to P ∈ P(G).
There are objects for P̃ analogous to those for P given above, as defined in [P, §4].
This yields a diagram:

(2.4.8)

X ⊂ X
eP −→ U

eP (C)\X eP −→ F
eP� � � �

X̂ ⊂ X̂P −→ UP (C)\X̂P −→ F̂P

in which the vertical arrows are surjections, and a surjection of cones C
eP � CP .

(Note, however, that the homomorphism U
eP → UP need not be injective.) Moreover,

if we select a basepoint x0 ∈ X with π(x0) = x̂0, the projection of A eP in Q(R) to
AP ⊂ G(R) is an isomorphism. Thus Siegel sets for P̃ in X, defined in the same way
as those for P , map onto Siegel sets for P in X̂. In actuality, though, it will suffice
for our purposes to consider the Siegel sets for P and P̃ independently.
The following is well-known (see [B3]):

Proposition 2.4.9. — Let κ be a compact subset of 0P (R), Sκ,t the Siegel set
κ×AP,t and (Sκ,t)Γ the image of Sκ,t in M̂Γ ⊂ bKf

Sh(G, X̂ )(C). Then for t suf-
ficiently large,

(Sκ,t)Γ � κΓ ×AP,t,

where κΓ is the image of κ in M̂Γ, such that the projection Sκ,t → (Sκ,t)Γ decomposes
as (κ→ κΓ)× 1AP,t .

Corollary 2.4.10. — Let (Sκ,t)Γ be as in (2.4.9). Then for t sufficiently large,
there is a canonical projection a : (Sκ,t)Γ → AP (AP -coordinate).

2.5. Toroidal compactifications and Siegel sets

For simplifying notation only, we assume henceforth that G is Q-simple. We leave
it to the reader to formulate the general case.
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We start by taking a slight variation of the basic diagram (induced by (2.4.3)) in
[HZ2, 1.4.4]:

(2.5.1)

M̃ ′
P = ΓUP \XP −→ M ′

P� �π2
UP (C)\XP −→ AP� �π1

X̂P −→ MP

(In [HZ1] AP was denoted AF or AP , but here AP has a different meaning.) We
have made the upper square cartesian: M̃ ′

P is the pullback of M
′
P to the universal

cover UP (C)\XP of AP , replacing XP . The coordinates in (2.4.4) induce an analytic
isomorphism

(2.5.2) M̃ ′
P � X̂P × VP (R)× TP ,

where TP denotes UP (Z)\UP (C), viewed as the complex points of the torus with
cocharacter group UP (Z).
We next review some pertinent features of the structure of the boundary of

toroidal compactifications MΓ,Σ of connected components of Sh(G,X)(C), following
[HZ1, (1.5)]. Let P ∈ P(G). The data in ΣP are used to construct π : (M ′

P )ΣP →MP ,
with boundary divisor written as

(2.5.3) <Z̃Σ(,P ) def=
⋃

P ′�P

<Z̃Σ(P ′).

The quotient of (2.5.3) by Γ�,P will be denoted <ZΣ(,P ); in the notation of [HZ1]
it is the union of all <ZΣ(P ′) for P ′ , P . Recall that a neighborhood of the latter is
a building block in the construction of MΓ,Σ. It will be useful to keep in mind that
<ZΣ(,P ) is more than the P -stratum of the boundary unless P is maximal with
respect to -, yet contains all of ZΣ(P ) (the closure of the P -stratum) only when P

is minimal with respect to -. We also observe that TP acts on (2.5.3).
The toroidal constructions with TP lift to ones on M̃ ′

P . In particular, we have

(2.5.4) (M̃ ′
P )ΣP � X̂P × V × (TP )ΣP .

Let < ˜̃
ZΣ(P ) and <

˜̃
ZΣ(, P ) denote the respective pullbacks of <Z̃Σ(P ) and <Z̃Σ(,P );

we can write, for instance,

(2.5.5) < ˜̃
ZΣ(,P ) � X̂P × V × ∂(TP )ΣP .

In [HZ2, 1.4(d)], we introduced a topological compactification of MΓ, the real
boundary quotient MΓ,Σ,∂R of MΓ,Σ, which was designed for the present discussion
(also, cf. [HZ1, 2.3]), with structure map

p :MΓ,Σ −→MΓ,Σ,∂R .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



48 CHAPTER 2. MIXED GROWTH CONDITIONS AND COHERENT COHOMOLOGY

By construction, p(<ZΣ(,P )) is given naturally as Γ�,P \
(
<Z̃Σ(,P )/T cP

)
, where T cP

is the maximal compact real torus in TP . Likewise, we can define the real boundary
quotient

(2.5.6) (M̃ ′
P )ΣP ,∂R � X̂P × V × ∂(TP )ΣP ,∂R ,

for which ∂(M̃ ′
P )ΣP ,∂R � X̂P × V × (TP )ΣP ,∂R . In terms of the product structures in

(2.5.4) and (2.5.6), the quotient map (M̃ ′
P )ΣP → (M̃ ′

P )ΣP ,∂R is induced by the natural
projection (TP )ΣP → (TP )ΣP ,∂R .
For any character χ of TP , there is a morphism of commutative diagrams(2), which

we also denote by χ:

(2.5.7)


UP (C)

Im−−−−→ UP (C)/UP (R) � UP (R)

exp

� exp

��

UP (C)/UP (Z) � TP −−−−→
Mod

TP/T
c
P

�χ
C

Im−−−−→ C/R � R

exp

� exp

��

C/Z � C∗ −−−−→
Mod

C∗/S1 � R+


In other words, up to a constant multiple, the logarithm of the modulus of a toroidal
variable is induced by the imaginary part of a linear function on UP (C). In this
way, approaching the boundary of X̃Σ,∂R corresponds to going to infinity in the radial
direction of the cone CP . Specifically, ∂(TP )ΣP ,∂R can be viewed as a copy of Σ̂P
attached at infinity to the cone, with Σ̂(1),cP giving p(<ZΣ(P )) (see the illustration
[HZ1, (2.3.10)]), while T cP -orbits are getting collapsed to a point.
We make the following:

Observations 2.5.8. — Let P be a maximal Q-parabolic subgroup of G, T a com-
pact cone in CP , and S a complex Siegel set for P built from T , as in (2.4.7). Then:
(i) the closure of the image of S in (M̃ ′

P )ΣP ,∂R meets the boundary in κh×κV ×T ,
(ii) Take T to be any union of finitely many top-dimensional simplicial cones in

Σ(1),cP that maps onto Γ�,P\Σ(1),cP , and assume that κV and κU are sufficiently large.
Then the closure of the image of S in MΓ,Σ meets the boundary in π−1(κ̂h) ∩ <ZP ,
where κ̂h denotes the image of κh in MP .
(iii) For any P ′ - P , there is a dense open subset (determined by YP (P ′) below)

of ZΣ(P ′) of which each point is in the closure of some Siegel set for P .

(2)In the literature (see [HZ1, (2.3.2)]), the induced map TP → UP (R) is called “ord”.
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In practice, the above asserts that every point of ZΣ(P ) (the union of components of
the toroidal divisor generated by ΣcP ) is a limit point of some Siegel set; however, one
must consider Siegel sets for all parabolic subgroups dominated by (i.e., ≺) P , as well
as those for P itself.
To be more specific, if we let V (L) stand for the set of vertices of a simplicial

complex L, then

(2.5.9) V (Σ̂P ) =
∐
{V (Σ̂cP ′) : P ′,P}

is a Γ�,P -equivariant partition (cf. [HZ2, (2.4.2)]). By taking the real projection of the
toroidal divisors corresponding to each Σ̂cP ′ , one induces a decomposition of ĈP (which
is an open subset of |Σ̂P |) into sets ŶP (P ′) that intersect only at their boundaries,
and which are the closure of their interiors; of these, only ŶP (P ) is compact modulo
Γ�,P . In [HZ2, (2.2)], ŶP (P ′) gets called the open thick P ′-stratum of Σ̂(1)P , and the
decomposition (2.5.9) plays an important role. When T ⊂ CP as before, we will
say that T abuts on Z̃Σ(P ′) whenever T̂ ⊂ ŶP (P ′). Letting YP (P ′) denote the
corresponding cone in CP , we conclude:

Proposition 2.5.10. — Let P be a maximal Q-parabolic subgroup of G. Then:

(i) The set of all complex Siegel sets for admissible parabolics that abut on Z̃Σ(P )
consists precisely of those complex Siegel sets, for some Q / P , built from compact
cones contained in the subcone YQ(P ) of CQ.

(ii) Let Z̃QΣ (P ) denote the union of the limit points of such Siegel sets for a fixed
Q. Then this set is open and dense in Z̃Σ(P ).

(iii) Let ZQΣ (P ) ⊆ ZΣ(P ) denote the image of Z̃QΣ (P ) in MΓ,Σ. Then

ZΣ(P ) =
⋃
{ZQΣ (P ) : Q ∈ M(Γ)},

where M(Γ) is a set of Γ-conjugacy classes of admissible parabolic subgroups Q with
Q / P .

(iv)
⋂
{ZQΣ (P ) : Q ∈ M(Γ)} is an open and dense subset of ZΣ(P ). It is open in

the Zariski topology only when P is minimal with respect to /, i.e., when M(Γ) has
only one element (representable by {P}).

2.6. Growth conditions at the toroidal boundary

Given P ∈ P(G), let β denote the positive simple root occurring in WP . We now
prove:

Proposition 2.6.1. — Let (z,w) ∈ (∆∗
r)
n ×∆mr , with r < 1, give local coordinates

on a deleted neighborhood of <ZΣ(,P ) associated to an n-fold intersection of com-
ponents of this divisor. Then on the intersection of this coordinate neighborhood with
(Sκ,t)Γ, the functions aβ (determined by (2.4.10)) and

∑n
j=1 | log |zj|| grow at the

same rate along <ZΣ(,P ).
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An argument proving this is given for pure Shimura varieties in [Mu, p. 264], though
it seems a bit unfocused. The proof is geometric, and goes the same in the mixed
case; we present it here:

Proof. — We appeal to (2.5.7). Write λj for | log |zj ||; these are linear functions on
the cone that are positive in the region under consideration. We may assume without
loss of generality that the Siegel set (Sκ,t)Γ involves, as a factor, a compact subset
of the “standard” cross-section of CP − {0} → ĈP determined by G�,P (R)der. Then,
the value of aβ at any point is given by the amount of dilation in CP required to get
to the point from this cross-section. By compactness, this differs from the amount of
dilation required to get from any other cross-section over the same compact set by
an amount that is bounded from above and away from zero. In other words, the rate
of growth of the AP -coordinate is independent of cross-section. Then, just take the
cross-section to be the one defined by

∑
j λj = 1.

Next, let x̂0 be the basepoint of X̂, which was used in definition of Siegel sets in
(2.4). Let K̂0 denote the stabilizer in G(R)der of x̂0. It is well-known (see [B1]) that
there are norms || · || on G(R)der that satisfy:

(i) ||gk|| = ||g|| whenever k ∈ K̂0;

(ii) ||gg′|| � ||g||||g′||.
The following is easy to verify:

Proposition 2.6.2. — Let P be a maximal parabolic subgroup of G. Then:
(i) On AP , ||a|| grows like (aβ)� for some J > 0;
(ii) For g in the Siegel set Sκ,t, ||g|| and ||a(g)|| have the same rate of growth.

We recall that a C∞ (0, q)-form ω on MΓ with values in W is determined by a
unique smooth Γ-invariant function fω on G(R) with values in

∧q(p−)∗ ⊗W . When
we combine the preceding with (2.5.10), we get:

Proposition 2.6.3

(i) An element ω of the Dolbeault complex for W on (an open subset of) MΓ has
moderate growth along ZΣ(P ) in the sense of (2.2.4) if and only if fω has moderate
growth on all complex Siegel sets for Q that are built from subcones of YQ(P ) ⊂ CQ,
for all Q / P .

(ii) ω lies in A•
mxa(MΓ,Σ;ZΣ, ZΣ(P ))⊗Wcan (of (2.3)) if and only if fω has mod-

erate growth and has rapid decrease on all complex Siegel sets for Q that are built
from subcones of YQ(P ) ⊂ CQ, for all Q / P .

2.7. Mixed growth conditions and basechange

We now take in (2.4.1) the lower part of the tower for the mixed Shimura variety
for the admissible parabolic subgroup P of G (this is denoted π1 : AP → MP in
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(2.5.1)). According to [P], there exist compatible toroidal compactifications for π1.
Let π̃1 : ÃP,Ξ → M̃P,Ξ (as in [HZ1, 1.6]) be one of them. We let ZAΞ (P

′) and ZΞ(P ′)
resp. denote the P ′-strata of the respective toroidal boundaries. The main goal of
this section is to deduce the following variant and extension of [HZ1, 3.14]:

Proposition 2.7.1. — In the above situation, there is a commutative diagram of
quasi-isomorphisms of sheaves on M̃P,Ξ:

Rπ̃1,∗{[VA]can(−π̃∗1ZΞ(P
′))} ≈ ��

��

Rπ̃1,∗{[VA]can}(−ZΞ(P ′))

≈
��

Rπ̃1,∗{[VA]can(−ZAΞ (P
′))} ≈ �� H•(sP , V )can(−ZΞ(P ′))��

⊕
i

Hi(sP , V )can(−ZΞ(P ′))[−i]

This implies at once:

Corollary 2.7.2. — In the above situation,

H•(ÃP,Ξ, [VA]can(−ZAΞ (P
′))) � H•(M̃P,Ξ,H•(sP , V )can(−ZΞ(P ′))).

Remark 2.7.3. — There would be nothing to prove in (2.7.1) if one knew that
ZAΞ (P

′) were equal to π̃∗1ZΞ(P
′) in the sense of divisors, i.e., that the fibers of π̃1

over ZP ′ are reduced. One might hope that this can be arranged by choosing Ξ
suitably, but that is not apparent from [P].

Proof of (2.7.1). — We show first that in the derived category of M̃P,Ξ, both sides of
the isomorphism in the bottom row of (2.7.1), are computable by means of complexes
of C∞ differential forms, onMP and AP respectively, with moderate growth and that
decrease rapidly in the direction of the P ′-strata.
We use the mechanism from [HZ1, 3.5.12]. Consider the Dolbeault complexes:

(2.7.4) A0,•MP
(H•(sP , V ))

ι1
↪−→ A0,•MP

(
∧

s
∗
P ⊗ V)

ι2
↪−→ π1∗A0,•AP

(VA);

up to quasi-isomorphism, this is

(2.7.5) H•(sP , V ) −→
∧

s
∗
P ⊗ V −→ Rπ1,∗VA.

The complexes in (2.7.4) can be written as sheaves of relative Lie algebra cochains:

(2.7.6) C•
1 ↪−→ C•

2 ↪−→ C•
3,

where, for O open in MP ,

C•
1(O) = {C∞(Oh,P )⊗

∧
(p−h )

∗ ⊗H•(sP , V )}Kh,P ,(2.7.6.1)

C•
2(O) = {C∞(Oh,P )⊗

∧
(p−h )

∗⊗
∧
(sP )∗ ⊗ V }Kh,P ,(2.7.6.2)
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where Oh,P is the inverse image of O under Γh,P \Gh,P →MP ; also for O′ the inverse
image of O in AP

(2.7.6.3) C•
3(O) = {C∞(O′

1)⊗
∧
(p−h ⊕ sP )∗ ⊗ V }Kh,P ,

with O′
1 the inverse image of Oh,P in ΓAP \(P ′/UP )(R). For (2.7.6.3), we are using

the fact that VA is a homogeneous vector bundle (recall (1.2.14)), determined by the
representation of Kh,P on H0(TP ,V ′P )TP , which is isomorphic (via evaluation at the
basepoint) to V as a Kh,P -module.

There are homotopy inverses to the maps in (2.7.6) via projections

(2.7.7) C•
1

ψ1←−− C•
2

ψ2←−− C•
3 ,

with ψ1 given by the semi-simplicity of representations of a compact group—note that
we are invoking here the assumption that p− acts trivially on V—and ψ2 given by
taking the constant term along the fibers of AP .
Here and again, one makes use of the following homological lemma:

Lemma 2.7.8. — Let C1 and C2 be cochain complexes [of sheaves], and assume given
morphisms i : C1 → C2 and ψ : C2 → C1 such that

(i) ψ ◦ i = 1,
(ii) i ◦ ψ = 1 + dB +Bd.

for some mapping B : C2 → C1 of degree −1. Let C′2 = Kerψ. If i′ : C′2 → C2 denotes
the inclusion, the morphism

C1 ⊕ C′2
i⊕i′−−−→ C2.

is an isomorphism. Moreover, C′2 ≈ 0, and i and ψ are quasi-isomorphisms inducing
mutually inverse isomorphisms on cohomology [sheaves]. Furthermore, the above is
functorial with respect to the triple (i, ψ,B).

This yields that the maps in (2.7.4), and therefore also (2.7.5), are quasi-isomorphisms.
This was extended to the toroidal boundary for the canonical extension in [HZ1, 3.13]
and the subcanonical extension in [HZ1, 3.14]. These were obtained by observing that
ψ1 and ψ2 respect the growth conditions on (2.7.7) given as in (2.6.1), as do their
homotopy operators, and then appealing to (2.7.8). Said another way, imposing the
growth conditions preserved the homological situation, and we could again invoke
(2.7.8).

We apply (2.3.3) to both sides of bottom row in (2.7.1), writing them as Dolbeault
complexes with mixed growth conditions on ÃP,Ξ and M̃P,Ξ resp., taking D2 to be
the respective P ′-stratum of the toroidal boundary, for some Q-parabolic subgroup Q
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of P . This reduces us to verifying that

(2.7.9) A•
mxa(M̃P,Ξ;ZΞ, ZΞ(P ′))⊗H•(sP , V )can

−→ π̃1,∗{A•
mxa(ÃP,Ξ;ZAΞ , ZAΞ (P

′))⊗ [VA]can}.

is a quasi-isomorphism, extending that of (2.7.4) to the toroidal boundary. For use
in conjunction with the Lie algebra cochains of (2.7.6), we appeal to (2.6.3)(ii): the
mixed growth conditions are equivalent to moderate growth, together with decay
conditions on a specific class of Siegel sets. That these are preserved by ψ1 and ψ2 in
(2.7.7) follows as before. This gives that (2.7.9) is a quasi-isomorphism, and (2.7.1)
follows.
To complete the proof of (2.7.1), we must show that the square commutes. First,

we make the following observation, which follows from (2.2.5) and (2.3.3):

Lemma 2.7.10. — The inclusions

(2.7.10.1) A•
sia(ÃP,Ξ, ZAΞ )⊗ [VA]can ⊗ π̃∗IZΞ(P ′)

↪−→ A•
mxa(ÃP,Ξ;ZAΞ , ZAΞ (P

′))⊗ [VA]can

↪−→ A•
sia(ÃP,Ξ, ZAΞ )⊗ [VA]can

are compatible fine resolutions of

(2.7.10.2) [VA]can ⊗ π̃∗IZΞ(P ′) ↪−→ [VA]can ⊗ IZA
Ξ (P

′) ↪−→ [VA]can.

Applying the functor Rπ̃∗ to (2.7.10.1) gives

π̃∗{A•
sia(ÃP,Ξ, ZAΞ )⊗ [VA]can} ⊗ IZΞ(P ′)

↪−→ {π̃∗A•
mxa(ÃP,Ξ;ZAΞ , ZAΞ (P

′))⊗ [VA]can}

↪−→ {π̃∗A•
sia(ÃP,Ξ, ZAΞ )⊗ [VA]can}.

The above are taken as C2’s in (2.7.8); for C1’s, we take

A•
sia(M̃P,Ξ, ZΞ)⊗H•(sP , V )can ⊗ IZΞ(P ′) ↪−→ A•

mxa(M̃P,Ξ, ZΞ)⊗H•(sP , V )can

↪−→ A•
sia(M̃P,Ξ, ZΞ)⊗H•(sP , V )can.

From here, it is obvious that the square in (2.7.1) commutes.
The above implies a useful fact:

Proposition 2.7.11. — The morphism

H•(ÃP,Ξ, [VA]can) −→ H•(ÃP,Ξ, [VA]can ⊗OZA
Ξ (P

′))

is given by the direct sum of mappings

H•(M̃P,Ξ,Hi(sP , V )can) −→ H•(M̃P,Ξ,Hi(sP , V )can ⊗OZΞ(P ′)).
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Proof. — The sheaf [VA]can ⊗OZA
Ξ (P

′) is quasi-isomorphic to the complex

(2.7.11.1) {[VA]can ⊗ IZA
Ξ (P

′) −→ [VA]can}[1]
Then

Rπ̃∗{[VA]can ⊗ IZA
Ξ (P

′) −→ [VA]can}[1]
is quasi-isomorphic to

(2.7.11.2)
⊕
i

{Hi(sP , V )can ⊗ IZΞ(P ′) −→ Hi(sP , V )can}[1],

which is in turn quasi-isomorphic to H•(sP , V )can ⊗OZΞ(P ′). Restriction to ZAΞ (P
′)

and ZΞ(P ′) is induced by inclusion into (2.7.11.1) and (2.7.11.2). Our assertion fol-
lows.
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CHAPTER 3

THE NERVE SPECTRAL SEQUENCE

FOR COHERENT COHOMOLOGY

For the remainder of the article, we fix a pure (standard) Shimura datum (G,X).
Thus G is a reductive group over Q; for simplicity we assume Gad to be Q-simple. All
mixed Shimura varieties will be realized as boundary strata of toroidal compactifica-
tions of Kf

Sh(G,X)Σ. Here and in what follows the notation Kf and Σ are used as
in §1, relative to (G,X), and will be used without comment. Moreover, all toroidal
data Σ will be assumed to be full, in the sense of [HZ1, 2.2.6].

3.1. Cohomology on boundary strata of toroidal compactifications

We refer to (0.5)–(0.7) and (1.1.9) for notation and conventions concerning rational
parabolics and boundary strata. For R ∈ P(G), R subordinate to P , we define
the R-stratum ZΣ(R) of Kf

Sh(G,X)Σ as in (0.6.1) and [HZ2, (1.5.2)]. We revert
momentarily to the classical (non-adelic) language of [HZ1, §§1–3]. When R = P

is maximal, ZΣ(R) is itself the union of irreducible divisors with normal crossings
corresponding to 1-dimensional cones in ΣcP modulo conjugation by Γ�,P (notation
as in [HZ1], esp. §1.5). The nerve NΣ(R) of the closed covering of ZΣ(R) by its
irreducible components (denoted N(ZΣP ) in [HZ1]) is a simplicial complex canonically
isomorphic to Γ�,P \Σ̂cP [HZ1, Lemma 3.7.2]. More generally, if r is the parabolic rank
of R, then ZΣ(R) has a closed covering by irreducible components of codimension r

in Kf
Sh(G,X)Σ. However, the nerve NΣ(R) of this closed covering does not have

a transparent description in terms of ΣF . This is because, for instance, if P ≺ P1,
R = P ∩ P1, and σ (resp. σ′) ∈ ΣP is a two-dimensional (resp. three-dimensional)
cone with one (resp. two) edge(s) in ΣP1 and one in ΣcP , then the corresponding closed
toroidal stratum Zσ (resp. Zσ′) is of codimension 0 (resp. 1) in ZΣ(R) but the facets
of σ and σ′ in ΣP have the same dimension. The constructions in [HZ2, §2] were
designed to deal with this problem.
Let iR : ZΣ(R) ↪→ Kf

Sh(G,X)Σ denote the canonical closed immersion. For
R = P maximal, the geometric description of NΣ(P ) in [HZ1, §3] yields a simple
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expression for the coherent cohomology H•(ZΣ(P ), i∗P [W ]can), when [W ] is an au-
tomorphic vector bundle on Sh(G,X) [HZ1, 3.7.8, 3.13.6]. The main step is the cal-
culation [HZ1, 3.6.4] in terms of the pure Shimura variety attached to Gh,P of the
cohomology H•(Zσ, i∗σ[W ]can) where Zσ is an individual closed stratum as above and
iσ : Zσ ↪→ Kf

Sh(G,X)Σ is the inclusion. More precisely, the argument in [HZ1, 3.6.4]
only concerns the open stratum Zσ, and expresses its cohomology in terms of that of a
family of automorphic vector bundles Vλ(h,w) on the base MP . For Zσ we obtain the
analogous expression in terms of the canonical extensions [Vλ(h,w)]can on the toroidal
compactification MP,Σ(P ), using Proposition 1.4.4 and Corollary 1.4.5; see (3.1.2),
below. In particular, the calculation works in exactly the same way when NΣ(P ) is
replaced by NΣ(R) for general R.

Remark. — Careful readers of the proofs in [HZ1] may note an apparent depen-
dence on analytic considerations not discussed here. Specifically, the reduction of the
cohomology of a boundary stratum to cohomology of reductive groups is carried out
in Corollary 3.7.8 of [HZ1]. An intermediate step in the proof of this corollary is
provided by Lemma 3.7.5 of [op. cit.], which (in the present setting) calculates the
coherent cohomology of ZΣ(P ) in terms of the Γ�,P -equivariant coherent cohomology
of an abelian scheme, the analogue of Sh(Q/U,U\X)Σ2. In turn, the proof of Lemma
3.7.5 makes forward reference to [HZ, 3.9.4], whose proof is analytic and homotopy-
theoretic. However, that argument was not needed; Lemma 3.7.5 is actually a simple
consequence of (3.7.3), (3.7.4), and (3.7.6).

We first state the result (for general R) in the classical setting. Thus D is a
connected component of X and Γ ⊂ G is a neat arithmetic subgroup of G(R) that
fixes X . We retain the notation Γ�,R = Γ ∩ G�,P (Q) ∩ R(Q), when R is subordinate
to P , from [HZ2]. We fix a point p ∈ D as in [HZ1, §3.5], let Kp ⊂ G(R) denote its
stabilizer. We can and do always choose p so that Kp ∩ P (R) contains a maximal
connected compact subgroup of P (R) for every standard parabolic P . As in [HZ1],
we restrict attention to fully decomposed automorphic vector bundles; i.e., those
associated to representations of Kp ([HZ1,Definition 3.1.2]).
We letMP denote the (connected) pure Shimura variety associated to P . Similarly,

we let WP,p denote the subset of the Weyl group of Kp from [HZ1, §3.6] (see (0.5)).
Recall that this is the set of Kostant representatives for the maximal parabolic denoted
QP,p ⊂ Kp with Levi subgroup K

(2)
p and unipotent radical Sp. The Lie algebras are

denoted by lower case Gothic characters, as usual. Recall further [HZ1, (1.8.3), (1.8.6)]
that the Cayley transform induces isomorphisms

(3.1.0) KP,(2)
p

∼−→ Kh,P ×G�,P ; sp,P
∼−→ v

−
p .

Here Kh,P ⊂ Gh,P is the maximal compact subgroup associated to p. More generally,
if R is subordinate to the maximal parabolic P , we let QR,p ⊂ QP,p be the parabolic
with Levi factor isomorphic via Cayley transform toKh,P×G�,R and unipotent radical
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Sp,R ⊃ Sp,P and let WR,p be the corresponding set of Kostant representatives in the
Weyl group of Kp.

Proposition 3.1.1. — Let [W ] be an irreducible automorphic vector bundle on
Sh(G,X) and let R be a proper Q-parabolic subgroup of G, subordinate to the maxi-
mal parabolic P . Then

(i) For each b � 0, the assignment

(3.1.1.1) σ �−→ Hb(Zσ, i∗σ[W ]can)

defines a locally constant sheaf Lb(·,W) on the simplicial complex NΣ(R), and an
associated spectral sequence

(3.1.1.2) Ea,b1 = Ha(NΣ(R),Lb(·,W)) =⇒ Ha+b(ZΣ(R), i∗R[W ]can).

(ii) Over the universal cover of NΣ(R), Lb(•,W) is isomorphic to

(3.1.1.3)
⊕

w∈WP,p

Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗ Vλ(�,w).

Here MP,Σ(P ) is any admissible toroidal compactification of MP , J(w) is the length of
w and Vλ(h,w) and Vλ(�,w) are defined (relative to [W ]) as in [HZ1, (3.6.1)].

(iii) The spectral sequence in (i) degenerates at E1, and is naturally split.

Remarks 3.1.2

(i) The hypothesis that [W ] be irreducible is made in order to obtain the simple de-
composition (3.1.1.3). This hypothesis was inadvertently omitted from the discussion
in [HZ1, §3].
(ii) For R = P maximal, the above is a strengthening of (3.7.3), (3.7.4) and (3.7.7)

of [HZ1], which pertain to the (open) P -stratum. (Note the misprint in [loc. cit],
where the spectral sequence was labelled E2 rather than E1.) Here, we extend those
results in two ways: we are working with the closed R-stratum ZΣ(R), and this is
for arbitrary R. Correspondingly, the above formulas involve canonical extension to
some toroidal compactification MP,Σ(P ).

Proof of (3.1.1). — We adapt the line of reasoning in [HZ1,§3]. By [P,Corollary
7.17], every closed stratum Zσ ⊂ ZΣ(R) (whose interior was constructed from a cone
in ΣP ) can be realized as a toroidal compactification of a (connected) mixed Shimura
variety of the form Kf

Sh(Q,X)Σ, of the sort considered in (1.4). For appropriately
chosen Σ, we get a morphism

πσ = π2,σ ◦ π1,σ : Zσ −→MP,Σ(P )

as in (1.4.2). To obtain the formulas in (3.1.1), we incorporate growth conditions
at the toroidal boundary, replacing Corollary 3.6.3 of [loc. cit.] by Proposition 1.4.4
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here. Then, Corollary 1.4.5 (the generalization of the Leray spectral sequences of
[HZ1, 3.5.10]) reads:

Ep,q2 = Hp(MP,Σ(P ), (RqΦσi∗σ[W ])can) =⇒ Hp+q(Zσ, i∗σ[W ]can) = Lp+q(σ,W).
Moreover, as noted in Remark (1.2.16.3), i∗σ[W ]can satisfies a Kostant condition

in this case. Hence this Leray spectral sequence degenerates at E2 and the grading
induced by the E2-term splits canonically:

Lb(σ,W) =
⊕
q
Hb−q(MP,Σ(P ), (RqΦσi∗σ[W ])can)

=
⊕

w∈WP,p

Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗ Vλ(�,w).

The second equality, the decomposition of the higher direct image as a sum over
Kostant representatives, is (the version with growth conditions of) [HZ1,Corollary
3.6.4].
Note that the final expression is independent of σ. As in [HZ1, §3.6], this expression

is compatible with all restriction maps for the simplicial complex NΣ(R) [loc. cit.,
3.6.4] and with the action of the fundamental group of NΣ(R) ([loc. cit, 3.6.3]; see
below). This proves (i) and (ii), and implies that the E1-term in (3.1.1.2) is canonically
isomorphic to⊕

w∈WP,p

Ha(π1(NΣ(R)), Vλ(�,w))⊗Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can).

(The fundamental group of NΣ(R) is identified with Γ�,R in Proposition 3.1.3, below.)
Let Ṽ λ(�,w) denote the local system on NΣ(R) associated to the representation of the
fundamental group on Vλ(�,w). Thus (iii) follows from the Künneth formula, or more
precisely from the universal coefficient theorem, applied to the sum over w ∈ WP,p of
the local systems

Ṽ λ(�,w) ⊗Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)
on NΣ(R), as in the last part of the proof of Proposition 3.7.7 of [HZ1].

In §2 of [HZ2] the nerves NΣ(R) are identified for general R, up to homotopy type.
Let X(Γ�,P ) be the locally symmetric space associated to the arithmetic subgroup
Γ�,P (denoted X(Γ�) in [HZ1, 2.2.10]). Let X(Γ�,P ) ↪→ X(Γ�,P ) denote the Borel-
Serre compactification. The result is the following:

Proposition 3.1.3. — Let R be a proper Q-parabolic subgroup of G, subordinate to
the maximal parabolic P . As above, let R�,P denote the corresponding Q-parabolic
subgroup of G�,P . Then

(i) The nerve NΣ(R) is homotopy equivalent to the R�,P -stratum e′(R�,P ) ⊂
X(Γ�,P ).

(ii) Let R ⊂ R′ be two Q-parabolic subgroups of G subordinate to P . Under the
homotopy equivalences in (i), the natural inclusion NΣ(R) ⊂ NΣ(R′) corresponds to
the natural inclusion e′(R�,P ) ⊂ e′(R′

�,P ).
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This is essentially contained in Proposition 2.6.4 of [HZ2]; the translation into the
present language is provided by Corollaries 2.5.9 and 2.5.10 of [loc. cit.].
The fundamental group of e′(R�,P ) is just Γ�,R. Let Ṽ λ(�,w) denote the local

system on X(Γ�,P ) associated to the representation λ(J, w), as in the proof of (3.1.1)
(cf. the statement of Corollary 3.7.8 of [HZ1]). Just as in the case of maximal strata
(cf. [HZ1,Corollary 3.7.8]), Proposition 3.1.3 and (3.1.2) allow us to identify

Ha(NΣ(R),Lb(•,W)) � ⊕w∈WP,p Ha(Γ�,R, Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗ Vλ(�,w))

� ⊕w∈WP,p Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗Ha(Γ�,R, Vλ(�,w))

� ⊕w∈WP,p Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗Ha(e′(R�,P ), i∗R
,P
Ṽ λ(�,w))(3.1.4)

where the second isomorphism expresses the fact that Γ�,R acts trivially on the first
factor, and in the third isomorphism iR
,P

: e′(R�,P ) ↪→ X(Γ�,P ) is the natural inclu-
sion.
On the other hand, the calculation of H•(e′(R�,P ), i∗R
,P

Ṽ λ(�,w)) is standard. Let
W�,P denote the relative Weyl group (over Q) of G�,P , and letWR

� ⊂W�,P denote the
subset of Kostant representatives relative to R�,P (cf. Notation). Identify G�,R with
a Levi quotient of R�,P and let Γred�,R denote the image of Γ�,R in G�,R(Q); let X(Γred�,R)
be the corresponding locally symmetric space, the quotient by Γred�,R of the symmetric
space attached to G�,R. Let µ(J, w) denote the highest weight of λ(J, w) relative to
the choice of positive roots for G�,P made in [HZ1, 3.6]. Then [Ha]

(3.1.5) Ha(e′(R�,P ), i∗R
,P
Ṽ λ(�,w))

∼−→
⊕

ω∈WR



Ha−�(ω)(X(Γred�,R), Ṽ λ(�,w;ω))

Here Ṽ λ(�,w;ω) is the local system on X(Γred�,R) associated to the representation
λ(J, w;ω) of G�,R, and this in turn is the representation with highest weight
ω(µ(J, w) + ρ�)− ρ�, where ρ� is the half-sum of positive roots of G�,P .
The following easy lemma has already been used several times in Chapter 1, and

will be used repeatedly in what follows. Presumably it is well known but we did not
find a reference.

Lemma 3.1.6. — Let H be a quasisplit reductive group over the field k, with Borel
subgroup B, and let P1 ⊃ P2 be a pair of standard k-parabolic subgroups of G, with
Levi decompositions P1 = L1 · U1, P2 = L2 · U2, L1 ⊃ L2. Let Q = P2 ∩ L1. Let
T ⊂ B be a maximal k-split torus and let W = W (H,T ) and W1 = W (L1, T ) be
the relative Weyl groups. Let W i ⊂ W be the sets of Kostant representatives for Pi,
i = 1, 2; let WQ ⊂W1 be the set of Kostant representatives for Q. (In both cases the
Kostant representatives are defined relative to the ordering determined by B.) Under
the natural identification of W1 with a subgroup of W , we then have

W 2 = {ω · w | ω ∈ WQ, w ∈W 1}.
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Moreover, with the above notation, JW (ω · w) = JW (w) + JW1(ω), where JW and JW1

are the length functions on W and W1, respectively.

Proof. — The map

WQ ×W 1 −→W ; ω × w �−→ ω · w

is injective, since W 1 is a set of right coset representatives mod W1. If the image is
contained in W 2 then it must equal W 2, since the two sets have the same cardinality.
Let w′ = ω · w as above, and suppose α is a positive root in L2. Then ω−1(α) is a
positive root in L1, by definition of WQ, hence

w′,−1(α) = w−1ω−1(α)

is a positive root in H , by definition of W 1. Since J(w′) = J(w′,−1), the assertion
about the lengths follows from the definitions by counting the positive roots made
negative by w′,−1 = w−1ω−1, bearing in mind that W1 ⊂ L1 fixes the set of positive
roots of the unipotent radical of P1.

Applying Lemma 3.1.6, with P1 = QP,p, P2 = QR,p, and thus Q � R�,P , to (3.1.4)
and (3.1.5), we thus find for (3.1.1)(i)

Ea,b2 �
⊕

w=w1·w2∈WR,p

Hb−�(w2)(MP,Σ(P ), [Vλ(h,w)]can)⊗Ha−�(w1)(X(Γred�,R), Ṽ λ(�,w)).

Here w ∈ WR,p is factored as in Lemma 3.1.6 as w1 ·w2 with w1 ∈WR
� and w2 ∈ WP,p;

J(wi) is given by the appropriate length function; and λ(J, w) = λ(J, w2;w1) in the
previous notation. Moreover, we have used Kostant’s theorem to write

(3.1.7) Hi(sp,R, Vλ) =
⊕

w∈WR,p;�(w)=i

Vλ(h,w) ⊗ Vλ(�,w)

where Vλ(h,w) = Vλ(h,w2) is a representation of Kh,P and Vλ(�,w) is a representation of
G�,R.
Combining this with (3.1.1)(iii), we obtain the following formula:

Proposition 3.1.8. — Let [W ] be an irreducible automorphic vector bundle on
Sh(G,X), and let R be a proper Q-parabolic subgroup of G, subordinate to the maxi-
mal parabolic P . Then

Hk(ZΣ(R), i∗R[W ]can)

�
⊕

a+b=k

⊕
w∈WR,p

Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗Ha(X(Γred�,R), Ṽ λ(�,w)).

Remark 3.1.9

(i) In the setting of Lemma 3.1.6, let ui denote the Lie algebra of Ui for i = 1, 2
and uQ the Lie algebra of the unipotent radical of Q. Then u2 = u1 ⊕ uQ. If follows
from Lemma (3.1.6) that the spectral sequence

Ep,q2 = Hq(uQ, Hp(u1, V )) =⇒ Hp+q(u2, V ).
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degenerates at E2.
(ii) Here and in what follows, the passage from the sum over WP,p to a sum over

WR,p should be regarded as a purely topological operation. All the arithmetic infor-
mation is carried by the Gh,P -factor, and is independent of the parabolic subgroup R

subordinate to P . In particular:

(a) The isomorphism (3.1.5) is rational over the field of coefficients of the automorphic
vector bundle [W ]. This is because the spectral sequence in (i) above, with Q = R�,P ,
is purely algebraic and uQ is a Q-rational nilpotent Lie subalgebra of g. In particular,
the adelic reformulation (3.2.9) of the calculations of this section is compatible with
the canonical models of Sh(G,X) and Sh(Gh,P , X(P )).

(b) Similarly, for the Hodge-theoretic applications in §4, it makes no difference
whether the cohomology of the R-stratum is written as a sum indexed by WP,p or
by WR,p. (Compare (4.2.27) and (4.2.29)). Again, this is because the contribution of
the G�,R-factor is purely topological.

3.2. The nerve spectral sequence for boundary cohomology

The spectral sequence in question is the one associated to the closed covering
{ZΣ(P ) : P maximal} of ZΣ. In classical language, the E1-term is

(3.2.1) Er,s1 =
⊕

r(R)=r+1

Er,s1 (R) =⇒ Hr+s(ZΣ, i∗[W ]can), where

(3.2.2) Er,s1 (R) = Hs(ZΣ(R), i∗R[W ]can).

Using the description of the right-hand side of (3.2.2) given in (3.1.8), we can write
the above as
(3.2.3)

Er,s1 (R) =
⊕

a+b=s

⊕
w∈WR,p

Hb−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗Ha(X(Γred�,R), Ṽ λ(�,w)).

For R of parabolic rank r + 1 and R′ ⊂ R of parabolic corank 1, we will see that the
nature of the contribution to d1,

d1(R,R′) : Er,s1 (R) −→ Er+1,s1 (R′),

depends on whether or not Π(R′) = Π(R) (in the notation of (0.7)).
We set up the adelic version of the above. We drop the level subgroup Kf from the

notation and write ShΣ for Sh(G,X)Σ, ∂ShΣ for its (toroidal) boundary, Sh
R(∗)
Σ for its

R(∗)-stratum, and ShR(∗)Σ for the Zariski closure of ShR(∗)Σ in ∂ShΣ. As in [HZ1, 5.3],

the Sh
P (∗)
Σ , as P runs through the maximal admissible parabolics, form a closed cover

of ∂ShΣ. Taking the nerve of this closed cover thus yields a spectral sequence for the
cohomology of ∂ShΣ with coefficients in a canonically extended automorphic vector
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bundle. For simplicity we describe this spectral sequence when Gad is assumed Q-
simple. Let iR : Sh

R(∗)
Σ ↪→ ShΣ denote the corresponding closed embedding, and

let r(R) denote the parabolic rank of R. Taking the limit over neat open compact
subgroups and families of fans, we obtain the nerve spectral sequence in the following
form:

(3.2.4) Er,s1 =
⊕

r(R)=r+1

lim−→
Kf ,Σ

Hs(Sh
R(∗)
Σ , i∗R([W ]can)) =⇒ Hr+s([W ](∞)).

Here H•([W ](∞)) denotes lim−→Kf ,Σ
H•(∂ShΣ, [W ]can ⊗O∂ShΣ), as in [HZ1].

The individual summands on the left-hand side of (3.2.4) can be written as induced
representations, just as in [HZ1]. It is most convenient to express each term as a tensor
product of the coherent cohomology of a (pure) Shimura variety by the cohomology
of a locally symmetric space. Let R be any rational parabolic, subordinate to the
maximal rational parabolic P , and define G�,R as before. We define the adelic locally
symmetric space

(3.2.5) X(G�,R) = lim←−G�,R(Q)\G�,R(A)/(K�,R · Z�,R)(R) ·K�,R,f ,

where Z�,R is the center of G�,R, K�,R = Kp ∩ G�,R(R), and K�,R,f runs through
compact open subgroups of G�,R(Af ). Let LR be a (standard) Levi subgroup of R.
We also let Sh(Gh,P , X(P )) denote the Shimura variety attached to Gh,P . For brevity
we write Sh(R) = Sh(Gh,P , X(P )) when R is subordinate to P . For each w ∈ WR,p

we have the automorphic vector bundle [Vλ(h,w)] over Sh(R), as above, and therefore
we can define the cohomology of its canonical extensions in the adelic limit

H̃•([Vλ(h,w)])
(notation as in [H4] and [HZ1, §4]). We define

(3.2.6) H•(w) = H̃•([Vλ(h,w)])⊗H•(X(G�,R), Ṽ λ(�,w))[−J(w)].

by analogy with [HZ1, (4.1.10)]
Parametrization of connected components introduces annoying complications, as

in [HZ1, 4.1.12]. We let

∆1,R = Ker : Gh(Af )×G�,R(Af ) −→ Gh(Af ) ·G�,R(Af )

(the product viewed as a subgroup of R(Af )) and let

(3.2.7) ∆0,R = LR(Q)+/(Gh(Q)+ ·G�,R(Q)+); ∆R = ∆0,R ×∆1,R.

(For the relation between (3.2.7) and connected components of the R stratum when
R is maximal, see [HZ1, (4.1.10,4.1.11)]. The analogous relation holds for general R.)
Then Gh(Af ) × G�,R(Af ) acts on H•(w), and therefore so does its subgroup ∆1,R.
Moreover ∆0,R acts on Sh(R)×X(G�,R) by the analogue of [HZ1, (4.1.11)]. We define

(3.2.8) IR{H•(w)} = IndLR(Af )

Gh(Af )·G
,R(Af )�∆0,R
{H•(w)∆1,R},

just as in [HZ1, (4.1.13)]. Then we have
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Corollary 3.2.9

(i) In the spectral sequence (3.2.4), there is a natural decomposition Er,s1 =⊕
r(R)=r+1E

r,s
1 (R), where

Er,s1 (R) = IndG(Af )

R(Af )

⊕
i

⊕
w∈WR,p

IR{H̃s−i−�(w)([Vλ(h,w)])⊗Hi(X(G�,R), Ṽ λ(�,w))}.

(ii) Moreover, suppose R′ ⊂ R are two Q-parabolic subgroups of G, both subordinate
to P , with r(R′) = r + 2, r(R) = r + 1. Let Q′ = R′

�,P , Q(R′) = Q′ ∩ G�,R.
Let dR′,R denote the restriction Er,s1 (R) of the nerve spectral sequence differential
d1 : E

r,s
1 → Er+1,s1 , followed by projection to Er+1,s1 (R′). Then, with respect to the

above formula, dR′,R is induced by the identity on the holomorphic component tensored
with the boundary map induced by the inclusion of the boundary stratum e′(Q(R′)) in
the Borel-Serre compactification of X(G�,R).

Proof. — The first statement generalizes Corollary 4.1.14 of [HZ1], and is proved in
the same way. The second statement follows immediately from (ii) of Proposition
3.1.3 (as such, it is deduced from the same for (3.2.3)).

3.3. Differentials in the nerve spectral sequence

Corollary 3.2.9 completes the verification of [HZ1, (5.3.12.4)], and computes half
of the differentials d1 in the nerve spectral sequence in terms of the cohomology of
locally symmetric spaces attached to reductive groups. The present section will begin
the computation of the remaining half: the dR′,R for r(R′) = r(R) + 1 with R and R′

subordinate to distinct maximal parabolics, say P and P ′, respectively. Let P (P ′) =
P ′ ∩Gh,P , as in (1.4.6). In terms of the expression for E

r,s
1 in Corollary 3.2.9, dR′,R

will be expressed in terms of the restriction map from the first (holomorphic) tensor
factor to the boundary stratum corresponding to P (P ′). In other words, dR′,R, which
is given a priori by a restriction map on the coherent cohomology of mixed Shimura
varieties – more precisely, the cohomology of simplicial schemes whose components
are all toroidal compactifications of mixed Shimura varieties – can be expressed as a
restriction map whose source is the coherent cohomology of a toroidally compactified
pure Shimura variety. This is the opposite of the story in (ii) in Corollary 3.2.9, and
will be proved in (3.4) below.
As usual, we will verify this at the level of connected Shimura varieties at finite

level, the extension to the adelic setting being routine. Thus we have isomorphisms

(3.3.1) Er,s1 (R) ∼−→⊕
w∈WR,p

⊕
i

Hs−i−�(w)(MP,Σ(P ), [Vλ(h,w)]can)⊗Hi(X(Γred�,R), Ṽ λ(�,w))
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and

(3.3.2) Er+1,s1 (R′) ∼−→⊕
w′∈WR′,p

⊕
j

Hs−j−�(w′)(MP ′,Σ(P ′), [Vλ(h,w′)]can)⊗Hj(X(Γred�,R′), Ṽ λ(�,w′))

On the other hand, letting [B] denote any automorphic vector bundle on MP,Σ(P ),
we have by (3.1.8) applied to Gh,P

(3.3.3) Ht(ShP (P
′)(∗)

Σ , i∗P (P ′)[B]can)
∼−→⊕

ω∈WP (P ′),p′
Ht−k−�(ω)(MP ′,Σ(P ′), [Bλ(h,ω)]can)⊗Hk(X(Γ�,P (P ′)), B̃λ(�,ω))

Here [Bλ(h,ω)] and B̃λ(�,ω) bear the same relation to [B] (for the boundary component
MP ′,Σ(P ′) of MP,Σ(P )) as [Vλ(h,ω)] and Vλ(�,ω) bear to [W ] (for the boundary compo-
nent MP,Σ(P ) of Sh(G,X)). Finally, p′ is the fixed point of the subgroup Kp ∩Gh,P .
Bear in mind that

(3.3.4) G�,R′ = G�,R ·G�,P (P ′),

where G�,P (P ′) ⊂ Gh,P is the G�-factor of the maximal parabolic P (P ′) ⊂ Gh,P . Then
for sufficiently small Γ, we have

Γ�,R′ = Γ�,R × Γ�,P (P ′); Γred�,R′ = Γred�,R × Γ�,P (P ′).

Moreover, Lemma 3.1.6 allows us to write

WR′,p =WP (P ′),p′ ·WR,p.

Say w′ ∈ WR′,p is the product ω · w, with ω ∈ WP (P ′),p′ and w ∈ WR,p. We then
have canonical isomorphisms

(3.3.5) Vλ(�,w′)
∼−→ Vλ(h,w)(�,ω) ⊗ Vλ(�,w);

(3.3.6) Hj(X(Γred�,R′), Ṽ λ(�,w′))
∼−→⊕

i+k=j

Hk(X(Γ�,P (P ′)), Ṽ λ(h,w)(�,ω))⊗Hi(X(Γred�,R), Ṽ λ(�,w)).

Here Vλ(h,w)(�,ω) is the representation of G�,P (P ′) associated to the highest weight
λ(h,w) of Kh,P and the Kostant representative ω.
We consider the toroidally compactified (connected) Shimura variety MP,Σ(P ); let

iP (P ′) : ZΣ(P )(P (P ′)) ↪−→MP,Σ(P )

denote the inclusion of the closed P (P ′) stratum of its boundary. If in (3.3.3) we now
let [B] vary over the [Vλ(h,w)] from (3.3.1), we conclude that the right-hand side of
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(3.3.2) is the sum over w of the right-hand sides of (3.3.3), tensored with the sum
over i of Hi(Γ�,R, Vλ(�,w)):

(3.3.7) Er+1,s1 (R′) ∼−→⊕
w∈WR,p

⊕
i

E
0,s−i−�(w)
1 (P (P ′); [Vλ(h,w)]can)⊗Hi(X(Γred�,R, Ṽ λ(�,w))).

Here we have written E0,s
1 (P (P ′); [B]) for the P (P ′) piece of the E0,s

1 -term of the
nerve spectral sequence calculating the boundary cohomology of [B]can on MP,Σ(P );
it is the cohomology of the pullback of [Vλ(h,w)] to ZΣ(P )(P (P ′)).
For use in the next section, we note that the above factorization of WR′,p can be

continued. As in (3.1), we have Levi subgroups K
P ′,(2)
p ⊂ Kp, K

P (P ′),(2)
p′ , etc., and

the corresponding sets of Kostant representatives. Now we have the factorizations:

(3.3.8)
WR′,p =WP (P ′),p′ ·WR,p =WP (P ′),p′ ·WP,p ·WR

� =WP∩P ′,p ·WR
�

=WQ
 ·WP ′,p ·WR
� .

HereWR
� is a set of Kostant representatives for R∩G�,P in G�,P and the factorization

WR,p = WP,p ·WR
� is the application of Lemma 3.1.6, via Cayley transform, to the

Levi subgroup Kh,P × G�,R ⊂ Kh,P · G�,P . Similarly, WP∩P ′,p is a set of Kostant
representatives in Kp obtained by identifying K

P,(2)
p

∼−→ Kh,P ×G�,P and then taking
the parabolic subgroup associated to P (P ′) in Kh,P ; the last equality on the first line
is the application of Lemma 3.1.6 to the pair of inclusions

K
P (P ′),(2)
p′ ×G� ⊂ Kh,P ×G�.

Finally, we can identify K
P (P ′),(2)
p′

∼−→ Kh,P (P ′) × G�,P (P ′) via Cayley transform on
Gh,P , and Kh,P (P ′) is just Kh,P ′ . Applying Lemma 3.1.6 to the standard parabolic
R′
� of G�,P ′ with Levi factor G�,R′ = G�,R × G�,P (P ′), we obtain the factorization

WP∩P ′,p =WR′

 ·WP ′,p, whence the second line.

3.4. Differentials in the nerve spectral sequence, concluded

For any automorphic vector bundle [B] on MP , let

dP (P ′) : H•(MP,Σ(P ), [B]can) −→ H•(ZΣ(P )(P (P ′)), i∗P (P ′)[B]can)

denote the natural restriction. We use the same notation to designate the homomor-
phism

H•(MP,Σ(P ), [B]can) −→ E0,•
1 (P (P ′),B)

obtained by composing the restriction map with the decomposition (3.2.3), and anal-
ogously in the adelic setting.
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Proposition 3.4.1. — Let [W ] be an automorphic vector bundle on Sh(G,X), as
above, and let R and R′ be a pair of proper parabolic subgroups of G, with R′ ⊂ R,
r(R′) = r(R)+1. Suppose that R and R′ are subordinate to the maximal parabolics P

and P ′ respectively (P ′ ≺ P ). In terms of the (adelic versions of the) isomorphisms
(3.3.1) and (3.3.7), the map dR,R′ of Corollary (3.2.9) is given by⊕

w∈WR,p

⊕
i

dP (P ′) ⊗ 1i,λ(�,w),

where 1i,λ(�,w) is the identity map of Hi(X(G�,R), Ṽ λ(�,w)).

Proof. — The proposition is stated in the adelic framework, but for the proof it
suffices to work with connected Shimura varieties. Let Zσ ⊂ ZΣ(R) be an irreducible
stratum and let Zσ(R′) = Zσ ∩ ZΣ(R′) = Zσ ∩ ZΣ(P ′). Let iσ and iσ(R′) be the
inclusions of Zσ and Zσ(R′), respectively, in Kf

Sh(G,X)Σ.
We will show that the following diagram commutes:

(3.4.2)
H•(Zσ, i∗σ([W ]can)) −−−−→ H•(Zσ(R′), i

∗
σ(R′)([W ]can))

f

� g′
�⊕

w∈WP

H•(MP,Σ(P ), [Vλ(h,w)]can)
dP(P ′)−−−−→

⊕
w∈WP

H•(ZΣ(P )(P (P ′)), i∗P (P ′)[Vλ(h,w)]can)

Here the top arrow is the natural restriction map, the left-hand vertical arrow is given
by Corollary 1.4.5, and the right-hand vertical arrow is to be constructed. There is
difficulty caused by the fact that Zσ(R′), by which we mean the reduced divisor on
Zσ, need not be the pullback of ZΣ(P )(P (P ′)).
We abstract the situation and study the restriction map dR′,R in the context of

base change. Consider the following diagram of morphisms of schemes of finite type
over C:

(3.4.3)

Z ′′ = Z ′
red

i0−−−−→ Z ′ i′−−−−→ A

g

� π

�
Z

i−−−−→ M

We assume that the square is cartesian. The notation Z ′
red refers to the underlying

reduced scheme of Z ′. The schemes A and M are assumed smooth, and Z is a
(reduced) divisor on M . The morphism π is proper. More generally, we will be later
considering situations in which

(3.4.4) (i) A is a finite union of irreducible components, each of which is a smooth
scheme;

(ii) any intersection of irreducible components of A is smooth and the restric-
tion of π to it is proper.
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In effect, we will take A to be a simplicial scheme, each of whose components is as in
(3.4.3).
Let F be a locally-free sheaf on A. Consider the following diagram:

(3.4.5)

0 −−−−→ F ⊗ IZ′ −−−−→ F −−−−→ F ⊗OZ′ −−−−→ 0� =

� �
0 −−−−→ F ⊗ IZ′′ −−−−→ F −−−−→ F ⊗OZ′′ −−−−→ 0

The rows are exact because F is locally-free. Applying the (exact) functor Rπ∗ to
the first row, we get

(3.4.6) 0 −−−−→ Rπ∗(F ⊗ IZ′) −−−−→ Rπ∗F −−−−→ Rπ∗(i′∗F) −−−−→ 0.

Since IZ′ = π∗IZ and IZ is locally-free, we can rewrite (3.4.6) by “adjunction” as

(3.4.7) 0 −−−−→ (Rπ∗F)⊗ IZ −−−−→ Rπ∗F −−−−→ Rπ∗(i′∗F) −−−−→ 0.

This yields the isomorphism

(3.4.8) Rπ∗(i′∗F) ≈ i∗Rπ∗F .

We get from (3.4.5):

(3.4.9)

0 −−−−→ S ⊗ IZ −−−−→ S −−−−→ Rπ∗(i′∗F) −−−−→ 0� =

� �
0 −−−−→ Rπ∗(F ⊗ IZ′′) −−−−→ S −−−−→ Rπ∗(i′′∗F) −−−−→ 0

where we have written S for Rπ∗F , and i′′ = i′ ◦ i0.
We consider the diagram (3.4.3), where π : A→M is a morphism of toroidally com-

pactified mixed Shimura varieties •Sh(Q,X)Σ −→ •Sh(Q′,X′)Σ1 , with Q′ = Q/RuQ

(so M is pure), and Z is the (reduced) boundary divisor associated to a maximal
parabolic subgroup of Q′. Take F to be a canonically extended automorphic vec-
tor bundle [VA]can on A satisfying a Kostant condition, and S = Rπ∗F again.
We want to compare the restriction map H•(A,F) −→ H•(Z ′′, i′′,∗F) to the map
H•(M,S) −→ H•(Z, i∗S).
We are actually interested in the case in (3.4.2): A = Zσ, M = MP,Σ(P ), Z =

ZΣ(P )(P (P ′)), and F = i∗σ([W ]can). However, we see by Proposition 1.4.3 that in
general we may replace Q by Q/W−2Q, thereby reducing the issue to the case where
W−2Q = (0). Then π : A → M above is generically an abelian scheme, and that
puts us into the situation of Proposition 2.7.1 (with P ′ replaced here by P (P ′) and
Z ′′ = ZAP ′).
In the present situation, it follows from Proposition 2.7.1 that the left vertical

arrow in (3.4.9) is a quasi-isomorphism. This provides the top half of the following
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commutative diagram, where the vertical arrows are just the Leray spectral sequence:

(3.4.10)

H•(A,F) −−−−→ H•(A, i′,∗F) �−−−−→ H•(A, i′′,∗F)

�
� �

� �
�

H•(M,Rπ∗F) −−−−→ H•(M,Rπ∗(i′,∗F)) �−−−−→ H•(M,Rπ∗(i′′,∗F))�� �� ��
H•(M,⊕Sw) −−−−→ H•(M,⊕ i∗Sw) =−−−−→ H•(M,⊕ i∗Sw)

As for the bottom half of (3.4.10), the pairs of opposing vertical maps (all isomor-
phisms) are given by the splitting in the derived category provided by (2.7.6) and
(2.7.7) for all three instances. More precisely, from Lemma (2.7.10) and the subse-
quent discussion we obtain the left half of the following commutative diagram:

(3.4.11)

H•(A,F ⊗ IZ′) −−−−→ H•(A,F) −−−−→ H•(A, i′,∗F)

�
� �

� �
�

H•(M,Rπ∗F ⊗ IZ)) −−−−→ H•(M,Rπ∗F) −−−−→ H•(M,Rπ∗(i′,∗F))�� �� ��
H•(M,⊕Sw ⊗ IZ) −−−−→ H•(M,⊕Sw) −−−−→ H•(M,⊕ i∗Sw)

The top of (3.4.11) is obtained from (3.4.7). Using (3.4.8), we can replace Rπ∗(i′,∗F)
by i∗Rπ∗F in the second row of (3.4.11). That the last pair of opposing vertical maps
are isomorphisms then follows by the five lemma. It follows that restriction in (3.4.10)
respects the splittings. This completes the verification of (3.4.2).
Now the natural projection ZΣ(P )(P (P ′))→MP ′,Σ(P ′) —we are assuming our

toroidal compactifications have been chosen compatibly—defines isomorphisms

g′′ : H•(ZΣ(P )(P (P ′)), i∗P (P ′)[Vλ(h,w)]can)
∼−→ E0,•

1 (P (P ′), [Vλ(h,w)]).
We claim that the composite

g′′ ◦ (g′)−1 : H•(Zσ(R′), i
∗
σ(R′)([W ]can))

∼−→ ⊕w∈WP E0,•
1 (P (P ′), [Vλ(h,w)])

equals the isomorphism given by applying Proposition 1.4.5 simplicially to the indi-
vidual closed strata of Zσ(R′).
More precisely, if Zσ′ is an irreducible stratum of Zσ(R′), then (1.4.5), combined

with (3.1.2), asserts an isomorphism between H•(Zσ′ , i∗σ′([W ]can)) and a sum over
terms indexed byWP ′,p. Similarly, (3.3.3) writes each E0,•

1 (P (P ′), [Vλ(h,w)]) as a sum
of terms indexed by WP (P ′),p′ . As in (3.3.8), we have

WP (P ′),p′ ·WP,p =WP∩P ′,p =WR′

 ·WP ′,p.

Thus this sum can be regrouped as a sum over terms indexed by WP ′,p. The claim,
from which the proposition will follow, is that the composite g′′ ◦ (g′)−1 can be iden-
tified with the isomorphism of (1.4.5) after regrouping in this way. But this follows
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formally by applying Proposition 1.5.34 simplicially to the individual closed strata
(cf. Remark 1.5.35 (ii)).

We conclude as in [HZ1, §4.8]:

Theorem 3.4.12. — Let [W ] be an automorphic vector bundle on Sh(G,X), with
canonical model over the field E(W). Suppose R′ ⊂ R are two Q-parabolics of G

with r(R′) = r + 2 = r(R) + 1. Write Er,s1 (R) and Er+1,s1 (R′) as in Corollary
3.2.9. Then the differential dR,R′ : Er,s1 (R)→Er+1,s1 (R′) is rational with respect to the
E(W)-structures on the two sides for all s.

Proof. — If R′ and R are subordinate to two distinct maximal parabolics, this follows
from Theorem 4.8.1 of [HZ1] and Proposition 3.4.1, above. If R′ andR are subordinate
to the same maximal parabolic, the theorem is a simple consequence of Corollary
3.2.9.

3.5. Towards the determination of E2

It is a good idea at this point to recall how the nerve spectral sequence (3.2.1)
arises as the spectral sequence of a filtered complex. Writing C•(·) for any functorial
cochain complex representing RΓ(·), one has that C•(i∗[W ]can) is quasi-isomorphic
to the double complex K•, with terms

(3.5.1) Kr,s =
⊕

r(R)= r+1

Cs(i∗R[W ]can),

in which the differential d is the sum of the differential of C• (which increases s by
one), and restriction (which increases r by one). We denote the latter by dpar. The
filtration R according to the value of r is a decreasing filtration of K•, for which

(3.5.2) GrtRK• =
⊕

r(R)= t+1

C•(i∗R[W ]can)[−t],

in which dpar vanishes. This is the source of the nerve spectral sequence, with E1-term
E1(K•,R), and d1 induced by dpar.
For comparison later, it is convenient to replace parabolic rank by actual rank. Let

ρ denote the rank of G (over Q). A Q-parabolic subgroup R of G has Q-rank ρR,
with ρR + r(R) = ρ. Thus, r(R) = t+ 1 if and only if ρR = ρ− 1− t. The increasing
filtration by Q-rank determines the same spectral sequence (up to a translation) that
R does; we allow R to refer to that from now on.
Our calculations in this Section suggest the following notion. Let R be a parabolic

subgroup of G that is subordinate to the maximal parabolic P . Then R has a Levi
subgroup Gh,P ·G�,R.

Definition 3.5.3. — The holomorphic rank of R is the Q-rank of Gh,P , and is
denoted ρh(R).
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Thus, all parabolic subgroups subordinate to a given P have the same holomorphic
rank. We use this notion now to combine (3.2.9) and (3.4.1) into a single statement:

Theorem 3.5.4. — The differential dpar of K• decomposes as dpar = d�+ dh, where
d� preserves holomorphic rank and dh lowers holomorphic rank. This induces the
same for the differential d1 of the E1-term E1(K•,R) of the nerve (rank) spectral
sequence: d1 = d�1 + dh1 . The determination of d�1 is given in (3.2.9); that of dh1 is
given in (3.4.1).

It seems right at this point to shift gears and look instead at the spectral sequence
for the filtration Rh of K• by holomorphic rank: RhjK• is the direct sum of those
terms in (3.5.1) with R of holomorphic rank � j. This is clearly closed under d. We
have

(3.5.5) GrR
h

t K• =
⊕

ρh(R)= t

C•(i∗R[W ]can)[1 − r(R)],

on which dh vanishes (compare (3.5.2)).
Though we were preoccupied with cohomology calculations in (3.1), we point out

that the discussion in (3.1.1) and (3.1.4) actually give assertions in the derived cate-
gory, viz.,

Proposition 3.5.6. — Let P be a maximal parabolic subgroup of G, and R a
parabolic subordinate to P . Let πP : ZΣ(R) → MP,Σ(P ) be the boundary projection.
Then there is a canonical isomorphism in the derived category of MP,Σ(P ):

R(πP )∗(i∗R[W ]can) ≈
⊕

w∈WP,p

[Vλ(h,w)]can ⊗ C•(Γ�,R, Vλ(�,w))[−J(w)]

≈
⊕

w∈WR,p

[Vλ(h,w)]can ⊗ C•(Γred�,R, Vλ(�,w))[−J(w)]
.

Note that the first factor of the tensor product above is independent of R (for R
subordinate to P ). If we combine (3.5.6) with (3.5.5), we obtain something “familiar”:

Corollary 3.5.7. — There is an isomorphism in the derived category of MP,Σ(P ):

GrR
h

t R(πP )∗K• ≈
⊕

ρh(P )=t, w∈WP,p

[Vλ(h,w)]can ⊗K•
c (X(Γ�,P ), Vλ(�,w))[−J(w)],

where
K•
c (X(Γ�,P ), Vλ(�,w)) =

⊕
Π(R)=P

C•(Γ�,R, Vλ(�,w))

is a cochain complex for the cohomology of the pair (X(Γ�,P ), ∂X(Γ�,P )).

As suggested by the notation, one can identify H•(X(Γ�,P ), ∂X(Γ�,P );Vλ(�,w))) �
H•
c (X(Γ�,P ), Vλ(�,w))). Numbering the standard maximal parabolics by omitted sim-

ple root, so that Pi - Pi+1, we can now assert:
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Corollary 3.5.8. — In the spectral sequence for Rh, the E1-term is

Ep,q1 (K•,Rh) = Hp+q(GrR
h

−pK
•)

=
⊕

a,w;P∼Pρ+p

Ha(MP,Σ(P ), [Vλ(h,w)]can)⊗Hp+q−a−l(w)
c (X(Γ�,P ), Ṽλ(�,w)).

NB—The non-trivial terms in the above are for p � 0.
Next, we note that the differential d1 in (3.5.8) is induced by dh. We can deduce

the effect of d1 by observing that R is the composite, or convolution, of Rh and an
evident analogously defined filtration R�, written

(3.5.9) R = Rh ∗ R�.

This implies that

(3.5.10) GrRj K• �
⊕

t+u=j

GrR
h

t GrR



u K•

(see [Z3, §1(6)]). We can see, from the calculations that produced (3.5.4), that d1 does
“nothing”on the second factor of the tensor product in (3.5.7). In actuality, that means
we are looking at the inclusions of X(Γ�,P ) in ∂X(Γ�,P ′), with ρh(P ′) = ρh(P ) − 1.
Also, note that there is a cohomology equivalence by excision⊔

P

(X(Γ�,P ), ∂X(Γ�,P )) ≈ (∂X(Γ�,P ′), ∂X(Γ�,P ′)−
⊔
P

X(Γ�,P )).

Thus:

Proposition 3.5.11. — In the spectral sequence for Rh, the differential

d1 : E
p,q
1 (K•,Rh) −→ Ep+1,q1 (K•,Rh)

is given by

⊕
a,w;P ∼Pρ+p

{Ha(MP,Σ(P ), [Vλ(h,w)]can)⊗Hp+q−a−l(w)
c (X(Γ�,P ), Ṽλ(�,w))}

dh
1⊗δ−−−→⊕

a,w;P ′ ∼Pρ+p+1

{Ha(MP ′,Σ(P ′), i
∗
P (P ′)[Vλ(h,w)]can)⊗Hp+q+1−a−l(w)

c (X(Γ�,P ′), Ṽλ(�,w))};

in the above, dh1 is induced by dh and acts between consecutive boundary components
(P - P ′), and δ is the connecting homomorphism in the exact sequence of the triple

(X(Γ�,P ′), ∂X(Γ�,P ′), ∂X(Γ�,P ′)−
⊔
P

X(Γ�,P )),

where P runs over a finite set of conjugates of Pρ+p (see [HZ2,App. to (3.5)]).

The E2-term of the holomorphic rank spectral sequence, E2(K•,Rh), is, of course,
isomorphic to the cohomology of (E1(K•,Rh), d1). This can be determined as in the
appendix below.
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Appendix: Zipper products. — Let C• be a cochain complex with differential
d, and V • a chain of vector spaces:

V 0 T0−−−−→ V 1 T1−−−−→ V 2 T2−−−−→ · · · .
For the next definition, one really need assume only that C• is a chain of vector spaces.

Definition 3.A.1. — The zipper product Zip(C•, V •) of C• and V • is the chain of
vector spaces

V 0 ⊗ C0 T0⊗d−−−−→ V 1 ⊗ C1 T1⊗d−−−−→ V 2 ⊗ C2 T2⊗d−−−−→ · · · .
The following is easy to verify:

Proposition 3.A.2

(i) If C• is a complex, then Zip(C•, V •) is actually a complex.
(ii) Hi(Zip(C•, V •)) � {(V i ⊗Ker di) + (KerTi)⊗ Ci}

/
(Im Ti−1)⊗ (Im di−1).

Our goal is to express the above in terms of the cohomology of C•. We point out
that (3.5.8) is the direct sum of zipper products. The calculation is based on the
unremarkable:

Lemma 3.A.3. — Let A and B be subspaces of a vectorspace, and let E be a subspace
of both. Then there is a short exact sequence

0 −→ A/E −→ (A+B)/E −→ (A+B)/A � B/(A ∩B) −→ 0.

In our case (3.A.2)(ii), we compute

A/E = (V i ⊗Ker di)/(ImTi−1)⊗ (Im di−1) � (ImTi−1)⊗Hi(C•)⊕ (Ṽ i ⊗Ker di),

where Ṽ i is a complement to ImTi−1 in V i. On the other hand,

B/(A∩B) = {(KerTi)⊗Ci}/{[(KerTi)⊗Ci]∩[V i⊗(Kerdi)]} = (KerTi)⊗(Ci/Kerdi).

Putting these together, we obtain:

Proposition 3.A.4

Hi(Zip(C•, V •))

� {(ImTi−1)⊗Hi(C•)} ⊕ {(CokerTi−1)⊗ (Ker di)} ⊕ {(KerTi)⊗ (Ci/Kerdi)}.

3.6. Differentials and automorphic forms

It remains to express the E1 terms and the differentials d1 in terms of automorphic
forms. The terms E1,s

1 have already been treated in [HZ1, §4.2]. The general case is
completely analogous, and we will simply state the result. However, Franke’s theorem
[Fr1] justifies replacing slowly increasing smooth functions by automorphic forms in
the Lie algebra cohomology groups, and we will do so. We warn the reader that
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[Fr1] only treats (topological) cohomology with local coefficients. The extension to
coherent cohomology is contained in an unpublished early version of [Fr1].
Suppose H is a reductive algebraic group over Q, P ⊂ H a parabolic subgroup,

N ⊂ P its unipotent radical, L = P/N the Levi quotient. The constant term map
cH,P : A(H)→ A(L) is defined as usual:

(3.6.1) cH,P (f)(g) =
∫
N(Q)\N(A)

f(ng) dn,

where dn is the right-invariant measure on N(Q)\N(A) with total mass 1. If now
R′ ⊂ R is a pair of parabolic subgroups of G, with Levi quotients LR′ and LR,
respectively, we write cR,R′ for cLR,LR′ .
As in [HZ1, §4], we write IGR = IndG(Af )

R(Af )
, when R is a parabolic subgroup of G.

Given R subordinate to the maximal parabolic P , we write p
−
h,R = p

−
h,P . Let

(3.6.2) g�,R = k�,R ⊕ p̃�,R

be the (complex) Cartan decomposition. As in [HZ1, §4.2], we write

p̃�,R = aR ⊕ p�,R,

where aR is the Lie algebra of a split component AR of G� containing the center ZG
of G. Finally, write sR instead of sp,R, and let uP (R) denote the Lie algebra of the
unipotent radical of R�,P . Then we can decompose

(3.6.3) sR
∼−→ sP ⊕ uP (R)

Recall from [HZ1, (3.10.3.2),(4.2.6)] that we can use the Cayley transform to iden-
tify

p
− ∼−→ p

−
h,P ⊕ uP,C ⊕ v

−
P .

It is better for our purposes to use the further identification

(3.6.4) p
− ∼−→ p

−
h,P ⊕ p̃�,P ⊕ sP

derived from [HZ1, (1.8.6)]. Now projection of Lie(R�,P ) = g�,R⊕uP (R) onto p̃�,P via
the Cartan decomposition for g�,P defines an isomorphism of K�,R-modules

(3.6.5) p̃�,R ⊕ uP (R)
∼−→ p̃�,P .

Combining (3.6.3–3.6.5), we obtain an isomorphism of Kh,R ·K�,R ·AR(R)-modules

(3.6.6) p
− ∼−→ p

−
h,P ⊕ p̃�,R ⊕ sR.

Now
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Theorem 3.6.7

(i) For each r, s, there is an isomorphism

Er,s1
∼−→

⊕
r(R)=r+1

IGR

{ ⊕
w∈WR,p

[∧•(p−h,R ⊕ p̃�,R)∗ ⊗A(LR)⊗H•(sR, Vλ)]Kh·K
,R·AR(R)]

}s

(on the right-hand side: terms of total degree s).
(ii) For each r, s, there is a commutative diagram

Er,s1
∼−−−−→ A

d

� �c
Er+1,s1

∼−−−−→ B

with A
c−−→ B given by⊕

r(R)=r+1

IGR

{ ⊕
w∈WR,p

[∧•(p−h,R ⊕ p̃�,R)∗ ⊗A(LR)⊗H•(sR, Vλ)]Kh·K
,R·AR(R)]

}s
� ⊕

R′�R,r(R′)=r(R)+1=r+2

cR,R′

⊕
r(R′)=r+2

IGR′

{ ⊕
w∈WR′,p

[∧•(p−h,R′ ⊕ p̃�,R′)∗ ⊗A(LR′)⊗H•(sR′ , Vλ)]Kh·K
,R′ ·AR′ (R)]

}s

.

Here the constant term maps are applied to functions, and the map on coefficients:

[∧•(p−h,R ⊕ p̃�,R)∗ ⊗H•(sR, Vλ)] −→ [∧•(p−h,R′ ⊕ p̃�,R′)∗ ⊗H•(sR′ , Vλ)]

is obtained by applying (3.6.6) to identify

∧•(p−h,R ⊕ p̃�,R ⊕ sR)∗
∼−→ ∧•(p−)∗,

and likewise for R′.

Proof. — That this holds for the dR,R′ with R and R′ subordinate to the same max-
imal parabolic follows from Corollary 3.2.9 and [Sch,1.10]. For R and R′ subordinate
to distinct maximal parabolics, this follows from Proposition 3.4.1 and diagram (4.2.4)
of [HZ1].
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CHAPTER 4

HODGE THEORETIC APPLICATIONS

In this Section, we will tie together the results and methods of [HZ1] (as generalized
here in §3) with the Hodge theoretic considerations from [HZ2].

4.1. The Hodge filtration for boundary cohomology

Let (G,X) be a pair defining a (pure) Shimura variety, E a finite-dimensional
vector space over Q, and ρ : G→ GL(E) a homomorphism of algebraic groups. This
determines a compatible family of local systems Ẽ on the associated complex varieties
Sh(G,X)(C). Moreover, the space X , by its nature (see (1.1)), defines a family of
variations of Hodge structure on Sh(G,X)(C), with underlying local system Ẽ.
Let M = MΓ denote a connected component of Sh(G,X)(C). Let j : M → MΣ

be the inclusion of M in a smooth toroidal compactification, and let ZΣ denote the
corresponding boundary divisor ∂MΣ, a divisor with normal crossings in MΣ. This
implies that the holomorphic logarithmic complex,

(4.1.1) Ω•
MΣ
(logZΣ)⊗ Ẽcan

is quasi-isomorphic to Rj∗Ẽ. In the above, Ẽcan denotes the canonical extension of
the flat vector bundle E determined by E, as in [HZ1, 4.4]. The complex (4.1.1) is
equipped with the decreasingHodge filtration F , and the increasing weight filtration W

induced from one on Rj∗Ẽ. These complete the data of a cohomological mixed Hodge
complex that induces, upon taking hypercohomology, the mixed Hodge structure on
H•(M, Ẽ)(1).
Though the description of W on (4.1.1) is rather complicated, it is easy to specify

F , and we will study the latter. Let {F pΩ•
M (logZΣ)} be the usual Hodge filtration,

given simply by truncation from below, and let {Fs} be the filtration of E that gives

(1)It may be useful to keep in mind that this remains true for admissible variations of mixed Hodge

structure [Sa2].
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the variation of Hodge structure. Then the filtration F of (4.1.1) is given by the
tensor product of these two:

(4.1.2) F p(Ω•
MΣ
(logZΣ)⊗ Ẽcan) =

∑
r+s=p

F rΩ•
MΣ
(logZΣ)⊗ (Fs)can.

For this, there is a general definition of (Fs)can for a variation of Hodge structure,
given by j∗Fs

⋂
Ẽcan. In the present case, each Fs is an automorphic vector bundle

and (Fs)can coincides with the canonical extension in the sense of automorphic vector
bundles (see [HZ1, 3.2]). Because (ΩpM )

can is ΩpMΣ
(logZΣ), we can rewrite (4.1.2) as:

(4.1.3) F p(Ω•
MΣ
(logZΣ)⊗ Ẽcan) =

∑
r+s=p

(F rΩ•
M ⊗Fs)can.

By Hodge theory [De2, (8.1.9)], the spectral sequence for F degenerates at E1.
There are parallel assertions for deleted neighborhood cohomology. For each ad-

missible parabolic subgroup R of G, let iR : ZΣ(R)→MΣ denote the inclusion of the
R-stratum of ∂MΣ. The complex

(4.1.4) C•
dn(ZΣ(R), Ẽ) = i∗RRj∗Ẽ

is called the deleted neighborhood complex for ZΣ(R) in MΣ, for its hypercohomology
is naturally isomorphic to

(4.1.5) H•
dn(ZΣ(R), Ẽ) = H•(N(R)− ZΣ(R), Ẽ),

where N(R) is a regular neighborhood of ZΣ(R) in MΣ. For R′ parabolic in R, let

iR′,R : ZΣ(R′) −→ ZΣ(R)

denote the inclusion; note that the evident relation iR′ = iR′,R ◦ iR yields:

(4.1.6) C•
dn(ZΣ(R

′), Ẽ) ≈ i∗R′,RC•
dn(ZΣ(R), Ẽ).

It is not hard to see that the following complex is quasi-isomorphic to C•
dn(ZΣ(R), Ẽ):

(4.1.7) i∗R(Ω
•
MΣ
(logZ)⊗ Ẽcan),

the complex of locally-free sheaves on ZΣ(R) given by restricting (4.1.1). This complex
inherits a filtration F from (4.1.2). Again, for general reasons, the filtration F induces
the Hodge filtration of the natural mixed Hodge structure on H•

dn(ZΣ(R), Ẽ) [Sa3];
and the spectral sequence for F degenerates at E1.
We now introduce the notation

(4.1.8) DR(M, Ẽ) = Ω•
M ⊗ Ẽ � C•(p+, E),

so that, for instance, (4.1.1) becomes DR(M, Ẽ)can (cf. (4.1.3)). This is a complex of
automorphic vector bundles that are fully decomposed only when the representation ρ

is trivial. We need to determine the direct images of deleted neighborhood complexes,
first in the unfiltered category (the filtered version will be deduced later, in (4.3)):
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Proposition 4.1.9. — Let P be a maximal Q-parabolic subgroup of G, and R a
parabolic subordinate to P . Let πP : ZΣ(R) → (MP )Ξ be the boundary projection.
Then there is a canonical isomorphism in the derived category of (MP )Ξ:

R(πP )∗(i∗R){DR(M, Ẽ)}can ≈ {DR(MP , C̃
•
(Γ�,R, H•(wP , E)))}can.

Proof. — Using the composite πP = π1 ◦ π2, as per (1.4.2), we calculate that:

R(πP )∗(i∗R{DR(M, Ẽ)}can) ≈ Rπ1,∗(π2,∗i∗RC•(p+, E)can) (by (4.1.8))

≈ C•(Γ�,R, C•(s′P , (C
•(p+, E))))can (by (2.7.5) and (3.5.6))

≈ C•(Γ�,R, C•(s′P ⊕ p
+, E))can (by Remark 3.1.9),

where s′P denotes the complex conjugate of sP . The Cayley transform switches us
from G to Gh,P as follows:

R(πP )∗(i∗R){DR(M, Ẽ)}can) ≈ C•(Γ�,R, C•(s′P ⊕ p
+, E))can (repeated from above)

≈ C•(Γ�,R, C•(p+h,P ⊕wP , E))can (induced by cP )

≈ C•(Γ�,R, C•(p+h,P , C
•(wP , E)))can ((3.1.9) again)

≈ C•(p+h,P , C
•(Γ�,R, C•(wP , E)))can (as Gh,P and G�,R commute)

≈ {DR(MP , C̃
•
(Γ�,R, C•(wP , E)))}can (equivalent formula)

≈ {DR(MP , C̃
•
(Γ�,R, H•(wP , E)))}can (follows by Kostant; cf. (2.7.5)).

Remarks 4.1.10

(i) Recall (cf. [HZ1, 1.8.3]) that conjugation by c−1P takes a subgroup Kt of Kp

onto G�, and transforms the adjoint action of Kt on sP ⊕ p− to the action of G� on
p
−
h,P ⊕ wP . Thus the action of Γ�,R on C•(sP ⊕ p+, E) in the first line above comes
from the identification of Γ�,R, via cP = c−1P , with a subgroup of Kp, or equivalently,
the identification

C•(s′P ⊕ p
+, E) � C•(p+h,P ⊕wP , E).

The above is the basis of the calculations in [HZ1] that underlie this isomorphism
(see [HZ1, Lemma 3.5.11]). The action on the second line of the above series of quasi-
isomorphisms, by contrast, is via the usual (adjoint) action of G�,R on wP ; G�,R and
cP both act as the identity on p

+
h,P .

Moreover, for P ′ ≺ P , one has cP ′ = cP ◦ cP ′,P , where cP ′,P denotes the Cayley
transform for X̂P ′ as a boundary component of X̂P .
(ii) Note that we have elected not to make use of the Kostant decomposition of

H•(sP , V ) (thus also its complex conjugate), utilized in [HZI, 3.6] and Section 3 here.
The conclusion of the above result can be viewed as the extension of (3.5.6) to special
complexes that are not fully decomposed. Also, the final answer is, as one expects
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after [HZ1], independent of the choice of toroidal compactification. Introducing the
Kostant decomposition,

(4.1.10.1) H•(wP , E) =
⊕

w∈WP

Eµ(h,w) ⊗ Eµ(�,w)[−l(w)],

we can rewrite the formula of (4.1.9) as:

R(πP )∗i∗RRj∗Ẽ ≈
⊕

w∈WP

R(jP )∗Ẽµ(h,w) ⊗H•(Γ�,R, Eµ(�,w))[−l(w)],

≈ {DR(MP , L̃R)}can(4.1.10.2)

where jP :MP ↪→ (MP )Ξ is the inclusion, and LR = H•(Γ�,R, H•(wP , E))).
(iii) Throughout, we can express the Γ�,R-cohomology as Γred�,R-cohomology, using

the maneuver that produced (3.1.8). We would then write

LR = H•(Γred�,R, H
•(wR, E)).

Next, let R′ = R ∩ P ′, with P ′ maximal. We consider the restriction mappings
from ZR to ZR′ in conjunction with Proposition (4.1.9). If P ′ - P , then R′ is also
subordinate to P . In that case,

(4.1.11.1) R(πP )∗((i∗R){DR(M, Ẽ)}can) −→ R(πP )∗(i∗R′{DR(M, Ẽ)}can)

is given tautologically:

(4.1.11.2) {DR(MP , C̃
•
(Γ�,R, H•(wP , E)))}can −→

{DR(MP , C̃
•
(Γ�,R′ , H•(wP , E)))}can,

which is induced by the morphism of local systems coming by restriction on the Γ�’s.
After grading for F , the above is essentially equivalent to what we discussed in (3.2).
On the other hand, if P ′ ≺ P , then R′ is subordinate to P ′. In that case, one reverts
to the determination in (3.4).
The treatment of dh has the same problem and the same remedy as before. Consider

the diagram:

(4.1.12)

ZΣ(R)
iR′,R←−−−− ZΣ(R′)

πP

� �τ
MP,Σ(P )

iP (P ′)←−−−− ZΣ(P )(P (P ′))�πP,P ′

MP ′,Σ(P ′)
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Let L•
R = C•(Γ�,R, H•(wP , E)). Then the calculation:

R(πP ′)∗(i∗R′{DR(M, Ẽ)}can) = R(πP,P ′)∗Rτ∗(i∗R′,R i∗R){DR(M, Ẽ)}can

≈ R(πP,P ′)∗i∗P (P ′)R(πP )∗i
∗
R{DR(M, Ẽ)}can (from (2.7.11))

≈ R(πP,P ′)∗i∗P (P ′){DR(MP , L̃R)}can (by (4.1.9))

≈ {DR(MP ′ , C̃
•
(Γ�,P (P ′), H

•(uP (P ′), LR)))}can(4.1.13)

= {DR(MP ′ , C̃
•
(Γ�,P (P ′), H

•(uP (P ′), H
•(Γ�,R, H•(wP , E)))}can

� {DR(MP ′ , C̃
•
(Γ�,R′ , H•(wP ′ , E)))}can (as in (3.1.6))

recovers the direct computation of R(πP ′)∗i∗R′{DR(M, Ẽ)}can, because of (4.1.10)
and the way in which the Cayley transforms entered. We now see that dh is induced
by restriction on the MP ’s.
When one grades (4.1.2) for F , the differentials become linearized, and each

GrpF (Ω
•
MΣ
(logZΣ) ⊗ Ẽcan) becomes a complex of canonically-extended, fully decom-

posed automorphic vector bundles, placing us in the context of (3.2). For (4.1.7),

(4.1.14) i∗R(Gr
p
F (Ω

•
MΣ
(logZΣ)⊗ Ẽcan))

becomes the restriction of the same to ZΣ(R).
We briefly recall the topological nerve spectral sequence that is of fundamental in-

terest, which we treated in [HZ2, (3.5.4)]; it is the one associated to the local system Ẽ

and the covering of the Borel-Serre boundary by its closed faces, {e′(P ) : P maximal}:

(4.1.15) Er,s1 =
⊕

r(R)=r+1

Hs(e′(R), Ẽ) =⇒ Hr+s(∂M, Ẽ).

By [HZ2, (3.5.5)], the above coincides with the corresponding spectral sequence for
deleted neighborhood cohomology on MΣ, viz.,

(4.1.16) Er,s1 =
⊕

r(R)=r+1

Hs
dn(ZΣ(R), Ẽ) =⇒ Hr+s

dn (ZΣ, Ẽ).

We can use (4.1.7) and (4.1.8) to rewrite (4.1.16) in the form
(4.1.17)

Er,s1 =
⊕

r(R)=r+1

Hs(ZΣ(R), i∗RDR(M, Ẽ)can) =⇒ Hr+s(ZΣ, i∗DR(M, Ẽ)can),

where H indicates hypercohomology. This is a spectral sequence of mixed Hodge
structures (see [HZ2, (5.5.2)]; cf. (4.5.2) here). A morphism of mixed Hodge structures
is completely determined by its gradation for the Hodge filtration F , so we can grade
for F without losing information about kernels and images; this reduces such questions
about the spectral sequence (4.1.12) to analogous considerations for spectral sequences
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of the form (3.2.1). Thus,

(4.1.18) Gr•FE
r,s
1 =

⊕
r(R)=r+1

Gr•FHs(ZΣ(R), i∗RDR(M, Ẽ)can)

=⇒ Gr•FHr+s(ZΣ, i∗DR(M, Ẽ)can).

By basic Hodge theory, we can write (4.1.18) as

(4.1.19) Gr•FE
r,s
1 =

⊕
r(R)=r+1

Hs(ZΣ(R),Gr•F {i∗RDR(M, Ẽ)can})

=⇒ Hr+s(ZΣ,Gr•F {i∗DR(M, Ẽ)can}).

Using (4.1.14) and (4.1.16), we obtain:

(4.1.20) Gr•FE
r,s
1 =

⊕
r(R)=r+1

Hs(ZΣ(R), i∗R{Gr•FH•(p+, E)}can)

=⇒ Hr+s(ZΣ, i∗{Gr•FH•(p+, E)}can).

4.2. The dual Bernstein-Gelfand-Gelfand complex

Following Faltings [F], we can replace the de Rham complex DR(M, Ẽ) by a quasi-
isomorphic filtered subcomplex, the dual BGG complex BGG(M, Ẽ), which is minimal
in the sense that each degree is given by a sum of irreducible automorphic vector
bundles. After taking cohomology, the quasi-isomorphism between BGG(M, Ẽ) and
DR(M, Ẽ) recovers the results of [Z1]. Because its terms are irreducible automorphic
vector bundles, the dual BGG complex has particularly nice rationality and integrality
properties. Moreover, its cohomology is directly expressible in terms of automorphic
forms.
We use the formalism introduced in [H5, §2], but with slightly different notation.

We assume first that E is an absolutely irreducible representation of G, with highest
weight Λ ∈ h∗ (see (0.3)); the irreducibility hypothesis will be removed at the end
of the section. Let W 1 denote the set of Kostant representatives for the parabolic
subalgebra P+ (see (0.3)). For any t ∈ W 1, we let Λ(t) = t(Λ + ρ) − ρ, where ρ

is the half-sum of positive roots. Then Λ(t) is the highest weight of an irreducible
representation of Kp, hence defines an irreducible automorphic vector bundle which
we denote BGGt(M, Ẽ). For 0 � i � dimC(M), let

BGGi(M, Ẽ) =
⊕
�(t)=i

BGGt(M, Ẽ).

The BGGi(M, Ẽ) form a complex BGG(M, Ẽ) in which the differentials are algebraic
differential operators, and there is a canonical inclusion [F]

(4.2.1) BGG(M, Ẽ) ↪−→ DR(M, Ẽ).
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In (4.2.1), one places the Hodge filtration F on the left-hand side in the usual way
for homogeneous vector bundles (see [H5,(2.2.3)]), and we have likewise the Hodge
filtration from (4.1) on the right-hand side.

Theorem 4.2.2 ([F]). — The inclusion (4.2.1) is a filtered quasi-isomorphism that
extends to a filtered quasi-isomorphism of complexes of canonical extensions.

Remark. — It is implicit in the second part of the above theorem that the complex
BGG(M, Ẽ)can is functorial with respect to change of toroidal compactification. This
follows easily from Proposition 1.3.7, or alternatively from the functoriality of the
canonical extension of the de Rham complex.

Theorem (4.2.2) yields immediately:

Corollary 4.2.3. — There is a spectral sequence

Ep,q1 = Hp+q(GrpFBGG(M, Ẽ)can) =⇒ Hp+q(M, Ẽ)

that degenerates at E1. The filtration induced by F on the abutment is the Hodge
filtration in its mixed Hodge structure.

Using (4.2.2) on both sides of (4.1.9), we obtain the following reformulation of the
latter:

Corollary 4.2.4. — In the situation of (4.1.9), there is a canonical isomorphism
in the derived category of (MP )Ξ:

R(πP )∗(i∗R){BGG(M, Ẽ)}can ≈ {BGG(MP , C̃
•
(Γ�,R, H•(wP , E)))}can.

We present below a more concrete way to see this quasi-isomorphism.
We begin with some general considerations involving Weyl group combinatorics.

Let G be a reductive group as in (0.2), with chosen set Φ+ of positive roots, and let
P,Q ⊂ G denote two standard parabolics; let R = P ∩ Q. Let wP , wQ, wR denote
the Lie algebras of the unipotent radicals of P , Q, and R, respectively; similarly, let
L?, for ? = P,Q,R, be a compatible set of Levi factors. Then we can decompose

(4.2.5) wR = wPQ ⊕w
Q
P ⊕w

P
Q

in such a way that
wP = wPQ ⊕w

Q
P , wQ = wPQ ⊕w

P
Q

(so wPQ = wP ∩ wQ) and ΦR = ΦPQ 7 ΦQP 7 ΦPQ; here ΦR, ΦPQ, Φ
Q
P , Φ

P
Q denote

the sets of positive roots in wR, etc. Let W ? ⊂ W , for ? = P,Q,R, denote the
corresponding sets of Kostant representatives, and let W? ⊂ W be the Weyl group
of L?. Finally, LP ∩ R = LP ∩ Q is parabolic in LP and we let WR

P = WQ
P denote

the Kostant representatives in WLP = WP relative to WLP∩R; define WR
Q = WP

Q

similarly. As in Lemma 3.1.6, we have canonical decompositions

(4.2.6) WR =WR
P ·WP =WR

Q ·WQ.
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We denote the elements of WR by ω, and those of WQ
P , W

P , WP
Q , W

Q by a, b, s,
and t, respectively. For any ω ∈ WR we write

ΦPQ(ω) = ω(Φ+) ∩−ΦPQ; ΦQP (ω) = ω(Φ+) ∩ −ΦQP ; ΦPQ(ω) = ω(Φ+) ∩−ΦPQ.
Then

(4.2.7) J(ω) = |ΦPQ(ω)|+ |ΦQP (ω)|+ |ΦPQ(ω)|.
If ω = ab = st by the factorizations of (4.2.6), we then have

(4.2.8) J(ω) = J(a) + J(b) = J(s) + J(t),

J(a) = |ΦQP (ω)|, J(b) = |ΦPQ(ω)|+ |ΦPQ(ω)|;

J(s) = |ΦPQ(ω)|, J(t) = |ΦPQ(ω)|+ |ΦQP (ω)|.
(4.2.9)

Finally, if ω, ω′ ∈ W , we write ω→ω′ if there exists γ ∈ Φ+ such that ω = rγω
′

and J(ω) = J(ω′) + 1; here rγ is the reflection attached to γ.

Lemma 4.2.10. — Let ω, ω′ ∈ WR, with factorizations ω = ab = st, ω′ = a′b′ = s′t′

as above. Suppose ω→ω′. Suppose further that b = b′. Then s = s′ and t→t′.

Proof. — It follows from (4.2.8) and (4.2.9) that J(t) = J(t′) + 1. Indeed, ΦPQ(ω) =
ΦPQ(b) = ΦPQ(ω′). Suppose we know that s = s′. Writing st = rγst

′, we see that
t = rs−1γt

′, hence t→t′. So it remains to prove s = s′. For this it suffices to show
that ΦQP (s) = Φ

Q
P (s

′), since both s and s′ preserve wQ. But

ΦQP (s) = Φ
Q
P (ω) = Φ

Q
P (b), ΦQP (s

′) = ΦQP (ω
′) = ΦQP (b

′),

where the first equalities follow from the definition of WQ and the second from the
fact that WQ

P preserves wP . The assertion is now clear.

Let g, p, q, r denote the Lie algebras of G, P , Q, and R respectively. Letting E and
Λ be as above, we consider the generalized Bernstein-Gelfand-Gelfand resolutions of
E with respect to the parabolic subalgebras we have introduced. Thus for ω ∈ WR

let

(4.2.11) MR(Λ(ω)) = U(g)⊗U(r) E(Λ(ω)),

with Λ(ω) defined as above and E(Λ(ω)) the finite-dimensional LR module with high-
est weight Λ(ω), extended as usual to an irreducible U(r) module. The generalized
BGG complex BGGR(E) of E, relative to r, is the complex

(4.2.12) · · · −→
⊕

ω∈WR,�(w)=i+1

MR(Λ(ω))
dR

i−→
⊕

ω∈WR,�(ω)=i

MR(Λ(w)) −→

· · · −→ MR(Λ) −→ 0.

Here dRi is the differential constructed in [Le, §4]. It can be written as a sum

(4.2.13) dRi =
∑

ω,ω′∈WR,ω−→ω′,�(ω′)=i

dRω,ω′ ,
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where dRω,ω′ : MR(Λ(ω)) → MR(Λ(ω′)). These differentials can be defined uniquely
up to sign ([RC, Lemma 10.5]), and the natural surjection MR(Λ)→E (defined up
to scalar multiples) defines a quasi-isomorphism BGGR(E) ≈ E in the category of
U(g)-modules. It follows from the results of [RC, §§10-11] that changing the sign of
one differential changes all signs simultaneously, and that the different choices of sign
yield isomorphic complexes.
Let P = LPNP be the parabolic opposite to P , with Lie algebra p = l ⊕ wP .

As U(p)-module we have MR(Λ(ω)) = U(p) ⊗U(lP∩r) E(Λ(ω)). For any irreducible
finite-dimensional LP -module V , we let BGGLP∩R(V ) denote the generalized BGG
resolution of V relative to LP ∩ R, and define the maps dLP∩R

a,a′ by analogy with
(4.2.13).
Now, BGGR(E) is nP -acyclic, hence the complex H0(wP , BGGR(E)) computes

H•(wP , E), via the quasi-isomorphism BGGR(E) ≈ E. For any ω we have natural
isomorphisms

(4.2.14) H0(wP ,MR(Λ(ω)))
∼−→ U(lP )⊗U(lP∩r) E(Λ(ω)).

We let M(Λ(ω);LP ) denote the right-hand side of (4.2.14). Then

Proposition 4.2.15

(i) There is a canonical isomorphism of complexes

H0(nP , BGGR(E)) ∼−→
⊕

b∈WP

BGGR(P )(E(Λ(b))[J(b)].

Here E(Λ(b)) is the irreducible representation of LP with highest weight Λ(b).
(ii) More precisely, for any pair a, a′ ∈ WQ

P = WR(P ), with a→a′, and for any
b ∈ WP , there is a pair t, t′ ∈ WQ and s ∈ WP

Q such that the differential d
R(P )
a,a′ in

BGGR(P )(E(Λ(b)))[J(b)] is obtained by applying H0(nP , •) to dRω,ω′ , with ω = ab = st,
ω′ = a′b = st′.

(iii) For any pair ω, ω′ ∈ WR not obtained as in (ii), the morphism H0(nP , dRω,ω′)
vanishes.

Proof. — We first verify (ii) and (iii). Assertion (ii) is a consequence of Lemma 4.2.10.
Suppose ω→ω′ in WR, and write ω = ab, ω′ = a′b′. Now it follows from the theory of
Verma modules for LP that the infinitesimal character separates M(Λ(ω);LP ) from
M(Λ(ω′);LP ) if b �= b′. Thus H0(nP , dRω,ω′) = 0 unless b = b′, and (iii) follows from
(ii).
The assertion (i) follows easily from (ii) and (iii) by checking degrees. Indeed, by

writing ω = ab as above, we see that the assertion is true in each degree separately, and
it remains only to check that the differentials correspond (up to sign). But this follows
from the explicit construction of the generalized BGG resolutions in [Le,RC].

We fix a toroidal compactification Sh(G,X)Σ (omitting the left subscript for the
level subgroup), with Σ assumed to be sufficiently fine for the following arguments.
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Fix a maximal parabolic subgroup P ⊂ G. Let P ′ ⊂ P denote Gh,P · WP , as in
[HZ1, 1.2.3]. Thus there is a mixed Shimura datum (P ′,X) and a partially com-
pactified mixed Shimura variety Sh(P ′,X)Σ′ corresponding to the P -stratum of the
boundary of Sh(G,X)Σ. We refer to (1.4) for the morphisms π1,Σ′ , π2,Σ′ , and let
πΣ′ = π1,Σ′ ◦ π2,Σ′ denote the composite morphism from Sh(P ′,X)Σ′ to MP,Σ(P ),
where MP,Σ(P ) is a toroidal compactification of the pure Shimura variety associated
to (Gh,P ,W\X). We let ioP denote the inclusion of the open P -stratum in the bound-
ary, and let π : Sh(P ′,X)→MP be the corresponding map of uncompactified (mixed)
Shimura varieties. The differentials in the complex io,∗P BGG(M, Ẽ) (with M a con-
nected component of Sh(G,X)) are differential operators of positive degree, hence
not O-linear. But they are morphisms of abelian sheaves, hence give rise to functorial
morphisms under Riπ∗, for each i, and these are also differential operators. Our goal
is to calculate these directly at the level of BGG(MP , C̃

•
(Γ�,R, H•(wP , E))), using

Proposition 4.2.4.
We apologize that the standard maximal parabolic P here will play the role of

P in the applications of Proposition 4.2.15 in what follows; this is because we are
ultimately interested in homology and cohomology of wP , not wP . Thus, our nota-
tion is correspondingly contorted. First, let Q1 be the complex parabolic with Lie
algebra k ⊕P−, and Q = Ad(c−1P )(Q1). Then, let Q ⊂ G denote the standard com-
plex parabolic conjugate to Q1 = k ⊕ P−; and Q the parabolic opposite to Q, viz.,
Ad(cP )(k⊕P−). Let R = P ∩Q, and R1 = Ad(cP )R ⊂ Q1.
Via Ad(cP ) we may identify WQ = WQ1 , WR = WR1 . We use the same letters

a, b, s, t as above to denote corresponding Kostant representatives. In particular, we
denote the components of the BGG complex by BGGt(Ẽ), dropping the“M”in (4.2.1).
Similarly, for each q and t, we have

(4.2.16) Rqπ∗BGGt(Ẽ) ∼−→
⊕

s∈WP
Q ,�(s)=q

[BGGt(Ẽ)]s.

Here if BGGt(Ẽ) is the automorphic vector bundle associated to the representa-
tion E(t) of Kp, [BGGt(Ẽ)]s is the automorphic vector bundle on MP associated
to C•(Γ�,P , Hs(s′P , E(t))), where H

s denotes the Kostant constituent of the cohomol-
ogy associated to s ∈ WP

Q . We are abusing notation (in a harmless way) by writing
in the discrete group Γ�,P in this adelic situation. If now ω = st = ab as in (4.2.6),
then we can identify

(4.2.17) [BGGt(Ẽ)]s = C•(Γ�,P ,BGGa(H̃
b
(wP , E))).

It then follows from (4.2.6) that

Lemma 4.2.18. — The identifications (4.2.16) and (4.2.17) define an isomorphism
between the constituents of the two quasi-isomorphic complexes in (4.2.4).
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It remains to show that these isomorphisms are compatible with the differentials
on the two sides of (4.2.4). Recall that, if E and F are vector bundles on a smooth
complex variety Z, a C-linear map ∆ : E→F is a differential operator of order n if it
can be factored as

E jn

−→ Jetn(E) −→ F ,

where Jetn(E) is the bundle of n-jets of sections of E , jn is the canonical differential
operator, and the right-hand arrow is OZ-linear. (Here the notation for jets is as in
[H1].) Classification of differential operators ∆ : E→F thus comes down to classifi-
cation of OZ -linear maps Jet∞(E)→ Jet∞(F), where Jet∞ denotes the inverse limit
over the jet bundles of finite order.
For our purposes, it is more useful to look at the dual picture. Let DZ denote

the sheaf of differential operators on Z; we write D instead of DZ when the base Z

is understood. For G a vector bundle on Z, let D(G) = DZ(G) denote the locally
free D-module D ⊗OZ G∨. Then to ∆ as above we associate a homomorphism of
D-modules

(4.2.19) ∆∨ : D(F∨) −→ D(E∨).

More precisely, Jet∞(E) is naturally isomorphic to the OZ-linear dual of DZ(E∨) and
the dual of ∆∨ is the map of infinite jet bundles mentioned above. We call ∆∨ the
linearization of ∆.
We fix a point p ∈ X compatible with our system of standard rational parabolic

subgroups. If [W ] is the automorphic vector bundle corresponding to the irreducible
representation (ρ,Wρ) of the stabilizerKp of p, then D([W ]) is the automorphic vector
bundle corresponding to the natural representation of P−

p on the generalized Verma
module

D(W ∗
ρ ) = U(g)⊗

U(P−
p )

W ∗
ρ .

We point out that D([W ]can) �= D([W ])can. However, we will only be concerned with
the latter, to which logarithmic differential operators naturally extend.
We now fix a maximal standard rational parabolic P and the subgroup P ′ ⊂

P to which the corresponding boundary mixed Shimura datum (P ′,X) is attached.
The constructions in (1.2) associate automorphic vector bundles on the associated
mixed Shimura varieties to representations of the stabilizer in P ′ of the fixed point
p ∈ X. This stabilizer will be denoted F 0P ′, since its Lie algebra is F 0 Lie(P ′) for
the Hodge filtration associated to p; in particular, we drop the base point p from
the notation. In what follows, we will identify automorphic vector bundles with the
locally homogeneous vector bundles attached to representations of

F 0 Lie(P ′) = kh,P ⊕ p
−
h,P ⊕ v

−,

and we will also drop the subscript P from the above.
Without loss of generality we may assume that, for fixed x in the P -stratum,

there is an étale analytic morphism from Sh(P ′,X)Σ′ to a neighborhood of x. The
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pullback of D([W ]) to Sh(P ′,X) via this morphism is the D(•) of the pullback of
[W ]. This can be determined just as above, and we find that it is the automorphic
vector bundle corresponding to the natural representation of F 0 Lie(P ′) on the tensor
product module

(4.2.20) DP (W ∗
ρ ) = U(Lie(P ′))⊗U(F 0 Lie(P ′))W

∗
ρ

∼−→ U(Lie(P ))⊗U(F 0 Lie(P ′)⊕g
)W
∗
ρ ,

where the second isomorphism just serves to indicate that arithmetic subgroups of
G� = G�,P act on the coefficients and commute with all homogeneous differential
operators.
Now we concentrate on the map, again denoted π : Z = Sh(P ′,X)Σ′ → MP ,

where the subscript Σ′ corresponds to a compactification in the vertical direction. In
particular the map π is smooth and proper. Henceforward, we let

E = BGGt
′
(Ẽ), F = BGGt(Ẽ),

with t→t′ in WQ as above. Let Λ be the highest weight of the contragredient of E.
Then the fibers at p of F∨ and E∨ are DP (Ht(p+, E)∨) and DP (Ht′(p+, E)∨), respec-
tively. In turn, these can be identified respectively with MQ1(Λ(t)) and MQ1 (Λ(t′)).
The differential dQ1

t,t′ : MQ1 (Λ(t))→MQ1 (Λ(t
′)) in the generalized BGG complex gives

rise to the differential operator ∆t,t′ : E→F , corresponding to a component of the
differential in BGG(Ẽ).
To determine the image of ∆t,t′ under Riπ∗, we pass to linearizations. The map

∆∨
t,t′ of (4.2.19) is a morphism of DZ-modules, hence it is natural to consider its image

under the direct image in the category of DZ -modules. Following [B4], we denote this
derived functor Rπ+.

Proposition 4.2.21

(i) Let G = E or F , and d = dimZ − dimM . For each q � 0, there is a natural
isomorphism

R•π+DZ(G∨) ∼−→ DMP (R
d−•π∗(G∨)).

(ii) Under this isomorphism, the image of ∆∨
t,t′ is the linearization of the image of

∆t,t′ via Rd−•π∗.

Proof. — The first assertion is a simple consequence of the definitions. Recall that π
is smooth and proper. By definition, for any DZ-module N ,

Rπ+N = Rπ∗(D{MP ←Z}
L

⊗
DZ

N ).

Here D{MP←Z} = π∗(DMP ) ⊗ ωZ/MP
, where π∗ is inverse image in the category

of O-modules and ωZ/MP
= ΩdZ/MP

is the relative dualizing sheaf. In our case,
N = DZ ⊗OZ G∨ is a free DZ -module, hence we can replace ⊗L by ⊗ above, and we
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have

(4.2.22)

R•π+DZ(G∨) = R•π∗[π∗(DMP )⊗ ωZ/MP
⊗ G∨]

∼−→ DMP ⊗R•π∗(ωZ/MP
⊗ G∨)

∼−→ DMP ⊗ (R•π∗G)∨ = DMP (R
d−•π∗(G∨))

where the first isomorphism is the projection formula and the second is Serre duality.
The second assertion is well-known (see [Sa1, Lemme 2.3.6]).

We rewrite the formulas (4.2.22) in terms of representation theory. Recall that

(4.2.23) wP,C = uC ⊕ v
+ ⊕ v

−

as modules over kh; here u = Lie(U) with U the center ofWP , as usual. We writew+ =
uC⊕v+p . Then the bundle ωZ/MP

is the automorphic vector bundle onMP associated
to the adjoint representation of kh on the highest exterior power of the holomorphic
cotangent space at the image of p in MP , i.e. on ∧d(w+)∗. Next, π∗(DMP ) is the
bundle associated to the adjoint representation of F 0 Lie(P ′) (or F 0 Lie(P ), if we
want to keep track of the G�-action) on H0(w+,U(Lie(P ′))) (or H0(w+,U(Lie(P ))),
but the addition of g� at this point changes nothing in the final calculation). Finally,
the functor Rπ∗ corresponds to the standard bar complex C•(v−, •) for Lie algebra
cohomology. Thus the first line of (4.2.22) expresses Rπ+DZ(G∨) as the automorphic
vector bundle attached to

C•(v−, H0(w+,U(Lie(P ))⊗U(F 0 Lie(P )) ∧d(w+)∗ ⊗W )),

where G∨ is the automorphic vector bundle attached to the representation of k on W .
Since v− ⊂ F 0 Lie(P ′) the action passes across the tensor product to yield

H0(w+,U(Lie(P ))⊗U(F 0 Lie(P )) C
•(v−,∧d(w+)∗ ⊗W )).

Koszul duality [Kn, Theorem 6.10 (6.30)] provides a canonical identification

C•(v−, ?) ∼−→ Cd−−•(v−,∧dim v
−
(v−)∗⊗?),

where C•(v−, ?) is the standard complex for Lie algebra homology and d− = dim v−.
Thus we can replace the last complex by

(4.2.24) H0(w+,U(Lie(P ′ ·W2P
′
C)⊗U(F 0 Lie(P ′)) Cd−−•(v−,∧dP (wP )∗ ⊗W ))

= H0(w+,U(Lie(P ′ ·W2P
′
C)⊗U(F 0 Lie(P ′)) ∧dP (wP )∗ ⊗ Cd−−•(v−,W ))

Here dP = dimwP and we have used (4.2.23) and the fact that v−, being unipotent,
has trivial determinant on wP .
Remember that v− acts on W via an identification with s ⊂ k, the unipotent

radical of a parabolic subalgebra we will denote r(Q). Similarly, we identify g� with
Ad(cP )(g�) ⊂ k. Then there is a Levi decomposition

r(Q) = kh ⊕ g� ⊕ s
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and we let r(Q) ⊂ k denote the opposite parabolic, R(Q) the corresponding parabolic
subgroup. We can replace W as U(k)-module by the quasi-isomorphic complex
BGGR(Q)(W ). Then there is a canonical quasi-isomorphism

(4.2.25)
C•(s,W ) ∼= H0(s, BGG

R(Q)
• (W ))

∼−→ H0(s,
⊕

�(s)=•
U(k)⊗U(r(Q)) E(Λ(W )(s))).

Here s runs through the set of Kostant representatives relative to R(Q), as in the first
part of this section, and we use Λ(W ) to designate a highest weight of W .
We now return to the notation E ,F , associated to the pair t→t′ ∈WQ; i.e., associ-

ated respectively to the representations E(t′) and E(t) of k. We extend U(k)⊗U(r(Q))

E(t)∗(s) trivially to a module over U(k ⊕ p−) and then restrict to U(kh ⊕ p
−
h ) ⊂

U(F 0 Lie(P ′)). We extend from F 0 Lie(P ′) to F 0 Lie(P ) by letting G� act via the
Levi decomposition above. Then as U(F 0 Lie(P ))-module the right-hand side of the
last formula in (4.2.25) is

U(F 0 Lie(P ))⊗U(r(Q)) E(t)∗(s).

So substituting (4.2.25) into (4.2.24), we obtain

H0(w+,U(Lie(P ))⊗U(F 0 Lie(P ))∧dP (nP )∗⊗H0(s,
⊕

�(s)=•
U(F 0 Lie(P ))⊗U(r(Q))E(t)∗(s))

which simplifies as

(4.2.26) H0(wP ,U(Lie(P ))⊗U(r(Q)) E(t)∗(s)) = H0(wP ,M(Λ(t)(s))).

The same calculation, with t replaced by t′, shows that R•π+DZ(F∨) is the automor-
phic vector bundle associated to⊕

�(s)=•
H0(wP ,M(Λ(t′)(s)))

We recognize (4.2.26) as the left-hand side of (4.2.14), where (unfortunately) P

and P have been interchanged. From here we apply Prop. 4.2.15 (b) to obtain that
the correspondence in Lemma 4.2.18 is compatible with the differentials on the two
sides of (4.2.4), i.e. that for any s ∈WP

Q the linearization of the direct image

Rqπ
(s)
∗ ∆(t, t′) : Rqπ∗(E)s −→ Rqπ∗(F)s

is the homomorphism

DM (RdP−qπ∗(F)∨)s −→ DM (RdP−qπ∗(E∨))s

associated to the homomorphism M(Λ(t)(s)) → M(Λ(t′)(s)) of generalized Verma
modules. We conclude:
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Theorem 4.2.27. — In the situation of (4.1.9), there is a canonical isomorphism of
complexes:

(4.2.28) R(πP )∗(i∗R){BGG(M, Ẽ)}can ∼−→⊕
w∈WP

{BGG(MP , Ẽµ(h,w))can ⊗C•(Γ�,R, H•(Eµ(�,w))[−J(w)]}.

Here the notation is as in (4.1.10.1).

We adelize the above theorem using the notation ShΣ, Sh(R), etc., of (3.2). The
least awkward expression is in terms of the inverse limit over all toroidal compactifi-
cations

S̃h = S̃h(G,X) = lim←−
Kf ,Σ

ShΣ

(recall that the level subgroup Kf is implicit in the notation). Let iR : S̃h
R(∗)

↪→ S̃h
denote the inclusion of the R(∗)-stratum (inverse limit over all R(∗)-strata at finite
level). Let ∆1,R,h denote the projection of the group ∆1,R of (3.2) on Gh,P (Af ),
and let Sh(R)+ denote the quotient Sh(Gh,P , X(P ))/∆1,R,h. Then R(Af ) acts on
Sh(R)+, and the adelic version of πP is a natural morphism

(4.2.29) πR : S̃h
R(∗)

−→ IndG(Af )

R(Af )
S̃h(R)+,

where S̃h(R)+ is again the projective limit over all toroidal compactifications. For
w ∈WR, let

BGG(Sh(R), w,E)

= BGG(Sh(Gh,P , X(P )), Ẽµ(h,w))can ⊗ C•(X(G�,R), Eµ(�,w))[−J(w)].

Then the formula (3.2.8), with the space H•(w) replaced by the complex
BGG(Sh(R), w,E), defines anR(Af )-equivariant vector bundle IR(BGG(Sh(R), w,E))
on S̃h(R)+. The adelic version of Theorem (4.2.27) is

Theorem 4.2.30

(a) In the above situation, there is a canonical isomorphism of complexes:

R(πP )∗(i∗R){BGG(S̃h(G,X), Ẽ)}can ∼−→ IndG(Af )

R(Af )

⊕
w∈WR

{IR(BGG(Sh(R)), w,E)).

(b) This isomorphism is rational over the reflex field E(G,X).

Proof. — Part (a) is just the adelic version of (4.2.27), or rather of its obvious vari-
ant for the R-stratum. (Here we are using the fact that the Kostant decomposition
for the parabolic subgroup R�,P of G�,P defines a direct sum decomposition in the
derived category for the cohomology complex of the R�,P -stratum of the boundary
of X(G�,P ).) Then (b) is immediate because the identification in Lemma 4.2.18 is
rational over E(G,X), as are all subsequent constructions.
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Remark 4.2.31. — Upon taking fixed vectors for a level subgroup Kf , the above
theorem can be given a reasonable expression in terms of toroidal compactifications
at finite level.

4.3. Hodge theory at the boundary, revisited

Let M ′
P denote a connected component of the mixed Shimura variety associated

to a maximal parabolic subgroup P of G, and

(4.3.1) M ′
P

π2−−−−→ AP
π1−−−−→ MP

the associated tower of algebraic fibrations (see (1.4.1) or [HZ1, (1.2.5)]). Let, as
usual, π (or πP ) denote π1 ◦ π2. For ρ : P → GL(E) a rational representation, there
are isomorphisms of local systems on MP :

(4.3.2) Rkπ∗Ẽ � H̃
k
(wP , E).

This follows from the fact that the fibers of π have the homotopy type of the compact
nilmanifold ΓWP \WP (R). In fact, (4.3.2) is a consequence of the more basic fact at
the cochain level:

(4.3.3) Rπ∗Ẽ � π∗{C̃
•
(wP , E)|SL},

where SL is the cross-section of π given by a choice of rational Levi subgroup L ⊂ 0P

and basepoint cP (x0) (the latter is fixed by G�,P ).
In [HZ2, §5], we saw (among other things) that the above assertions remain true

in the Hodge theoretic sense. As J. Wildeshaus has pointed out to us, the arguments
in [HZ2] are really assertions about the associated mixed Hodge modules—much of it
is already there—and we wish to recast them here.
LetM ′

P,Σ denote the toroidal partial compactification ofM
′
P determined by Σ; it is

not an algebraic variety, as its boundary has infinitely many irreducible components.
It contains the boundary stratum that is called <Z̃P,Σ in [HZ1]. Taking the quotient
of the latter by Γ�,P gives rise to the P -stratum <ZP,Σ inMΣ. And ZΣ(P ) is the just
the closure of <ZP,Σ in MΣ. Of course, ZΣ(P ) contains ZΣ(R) whenever R ⊆ P , but
ZΣ(R) maps surjectively to (MP )Ξ under the projection π : ZΣ(P ) → (MP )Ξ (as in
(4.1.10.2)) if and only if R is subordinate to P .
We recall some constructions from [HZ2, (5.2)]. We denote by jΣ the inclusion of

M ′
P in M ′

P,Σ. Let MΣ (called M in [HZ2]) be the unique mixed Hodge module on
M ′
P,Σ with underlying perverse sheaf Rj∗Ẽ, such that its restriction to M ′

P is the
variation of mixed Hodge structure defined by the representation of P on E. Then
(π∗MΣ, Rπ∗Ẽ) is a mixed Hodge module on MP with action of Γ�,P .

Proposition 4.3.4 ([HZ2, (5.2.9),(5.4.19)]). — In the derived category of mixed
Hodge modules, (π∗MΣ, Rπ∗Ẽ) is Γ�,P -equivariantly isomorphic to the complex of
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variations of mixed Hodge structure π∗{C̃
•
(wP , E)|SL} with filtrations induced by the

mixed Shimura data for P . In particular, the latter is admissible.

Though unusual in general, we expected in this case that the mixed sheaf Rπ∗Ẽ

would split as the direct sum of pure sheaves (of different weights). Indeed, the
following is an immediate consequence of (4.3.4):

Theorem 4.3.5. — In the derived category of mixed Hodge modules on MP ,

Rπ∗Ẽ ≈ H̃
•
(w, E) �

⊕
w∈WP

Ẽµ(h,w) ⊗ Eµ(�,w)[−l(w)]

underlies a decomposition of mixed Hodge modules. Each Ẽµ(h,w), being determined
by an irreducible representation of Gh,P , is pure.

Corollary 4.3.6 ([HZ2, (5.4.20)]). — The mixed Hodge structure of Hi(M ′
P , Ẽ) de-

composes as the direct sum of mixed Hodge structures:⊕
w∈WP

Hi−l(w)(MP , Ẽµ(h,w))⊗ Eµ(�,w).

It is time to move on to the boundary cohomology of ZΣ = ∂MΣ. The final result
in [HZ2, §5] is the following, which should be compared to (4.3.5) and (4.3.6). It is the
Hodge theoretic version of (4.1.9), and, by iteration, it provides the Hodge theoretic
version of (4.1.19).

Theorem 4.3.7 ([HZ2, (5.6.10)]). — Let E be a representation of G, so that Ẽ un-
derlies a variation of Hodge structure on M . Let jP : MP → MP,Σ(P ) be a suitable
toroidal compactification of MP , as in (3.1.2). Suppose that Π(R) = P . Then

(i) there is a decomposition in the derived category of mixed Hodge modules on
MP,Σ(P )

Rπ∗i
∗
RẼ ≈

⊕
w∈WP

R(jP )∗Ẽµ(h,w) ⊗ C•(Γ�,R, Eµ(�,w))[−l(w)]

≈
⊕

w∈WR

R(jP )∗Ẽµ(h,w) ⊗ C•(Γred�,R, Eµ(�,w))[−l(w)]

≈ R(jP )∗C•(Γ�,R, H̃
•
(w, E));

(ii) there is a decomposition of mixed Hodge structures

Hq
dn(ZΣ(R), Ẽ) �

⊕
a;w∈WP

Ha(MP , Ẽµ(h,w))⊗Hq−a−l(w)(Γ�,R, Eµ(�,w)).

Remark. — The passage from the sum over WP to the sum over WR is an isomor-
phism of mixed Hodge modules; cf. Remark (3.1.9)(ii)(b).

There are four main ingredients in the proof of the above assertions: the simplicial
structure of the boundary (which produces the Γ�,R-cohomology in (ii) above), the
calculation on M ′

P for a single simplex, the irrelevance of the boundary of MP , and
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the inability of the boundary cohomology here to distinguish the variation of mixed
Hodge structure from M ′

P from the variation of pure Hodge structure on M .
For the second item, one reverts back to M ′

P,Σ, as the structure of both at the
P -stratum is locally the same. Let τ be any cone in ΣP , and iτ : Zτ → M ′

P,Σ the
inclusion. Then,

Proposition 4.3.8. — There is an isomorphism in the derived category of mixed
Hodge modules on MP , given by restriction of that in (4.3.4):

Rπ∗i
∗
τRj∗Ẽ ≈ π∗{C̃

•
(wP , E)|SL}.

The next proposition, tacit in [HZ2, §5], asserts that a divisor with normal crossings
behaves like the boundary of a manifold-with-corners with regard to deleted neighbor-
hood cohomology. (This is consistent with the comparison of nerves in [HZ2, (2.7.8)].)

Proposition 4.3.9. — Let D be a divisor with normal crossings, whose irreducible
components will be denoted Di, on the complex manifold Y , and let j : Y −D ↪→ Y

be the inclusion. Let DA =
⋂
i∈ADi be an intersection of components of D, and

denote by DA
◦ the set of points of DA that lie on no additional components of D, and

νA : DA◦ ↪→ DA. Finally, let iA and i◦A denote the respective inclusions of DA and DA
◦

in Y . Then for any local system L̃ on Y −D,

iA
∗Rj∗L̃

∼−→ RνA,∗(i◦A)
∗Rj∗L̃.

Proof. — The assertion is local on DA. Also, there is nothing to prove at points of
DA

◦. Thus, suppose that y /∈ DA
◦, and let DB denote the (non-empty) intersection of

the additional divisors passing through y. Then there are local coordinates centered
at y such that near y, j : Y −D ↪→ Y is (∆∗)a×(∆∗)b×∆n−b−a ⊂ ∆n, where a = #A

and b = #B. In these terms, DA◦ = {0} × (∆∗)b × ∆n−b−a, and DA = {0} × ∆b ×
∆n−b−a. Thus, we may as well assume that n = b + a. Then the stalk of iA∗Rj∗L̃

is C•((∆∗)a × (∆∗)b, L̃), while that of RνA,∗(i◦A)
∗Rj∗L̃ is C•((∆∗)b, C•(∆∗)a, L̃). In

both cases, one has a complex for computing H•((∆∗)a× (∆∗)b, L̃), and our assertion
follows.

In short, one does not have to worry about the compactification of a stratum of the
boundary in treating the deleted neighborhood cohomology. This addresses the third
item in the outline of the proof of (4.3.7) above.
The fourth and final one is worded imprecisely, and we elaborate now. As men-

tioned before, Γ�,P\<Z̃P,Σ is analytically isomorphic to <ZP,Σ; indeed, there is a
Γ�,P -invariant deleted neighborhood Õ of <Z̃P,Σ in M ′

P,Σ such that Γ�,P \Õ is analyt-
ically equivalent to an deleted neighborhood O of <ZP,Σ in MΣ.
Of course, the local system Ẽ|O underlies a variation of (pure) Hodge structure,

viz., the restriction of the one on M . On the other hand, the variation of mixed
Hodge structure determined by E as a representation of P is Γ�,P -equivariant, so its
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restriction to Õ descends to a variation of mixed Hodge structure on O, with the same
underlying local system; it is an admissible variation. To distinguish them as mixed
Hodge modules, we write Ẽ(G)|O and Ẽ(P )|O resp. The following is an elaboration
on [HZ2, (5.6.12)]:

Proposition 4.3.10. — Suppose that Π(R) = P . Then the mixed Hodge modules
i∗RẼ(G)|O and i∗RẼ(P )|O are isomorphic.

Proof. — We begin by recalling that Ẽ(G)|O and Ẽ(P )|O have the same Hodge filtra-
tion, but they differ in their weight filtrations. The latter are determined respectively
by the weight homomorphisms wG and wP (as in [HZ1, 1.2.2], where the first one is
written h ◦ w). As such, they have the same asymptotic Hodge filtrations, and we
want to show that the associated weight filtrations along ZΣ(R) coincide. Let Z◦

Σ(R)
be the locus of smooth points of ZΣ(R). By (4.3.9) and the uniqueness property
[Sa3, 2.11], it is enough to verify that the weights coincide along Z◦

Σ(R).
The local monodromy transformations of Ẽ are unipotent. Until we say other-

wise, we continue in the setting of an arbitrary admissible variation of mixed Hodge
structure (Ṽ , W̃ ,F) with unipotent local monodromy, defined in a neighborhood of
Z◦
Σ(R). Then i∗R(Ṽ , W̃ ,F), can be determined as a mixed Hodge module by iteration
on the following construction (iterated deleted neighborhood cohomology, discussed
in [HZ2, (3.1.7)]). Let y ∈ Z◦

Σ(R); because Π(R) = P , there is a component D of
ZΣ(P ) passing through y. Also, let iD ↪→ MΣ be the inclusion. Then i∗D(Ṽ , W̃ ,F)
is a one-variable degeneration with D as “parameter”.(2)

The issues that occur are at the level of a filtered local system on the punctured
disc ∆∗ (the situation transverse to D) with unipotent monodromy. Let N denote the
(nilpotent) monodromy logarithm, acting on any reference fiber V of Ṽ . The weight
filtration of i∗D(Ṽ , W̃ ,F) is given by the weight filtration of N relative to W , which
is denoted M(N ;W ). If W is trivial, then M(N ;W ) is the absolute weight filtration
M(N) of N , equal to the convolution of the kernel and image filtrations of N (see
[StZ, (2.3)]), which is characterized by the statement

(4.3.11) NMk(N) ⊆Mk−2(N), and

Nk : GrM(N)
k V −→ GrM(N)

−k V is an isomorphism.

In general, M(N ;W ) is characterized (if it exists) by

(4.3.12) NMk(N ;W ) ⊆Mk−2(N ;W ), and

Nk : GrM(N ;W )
k+i GrWi V −→ GrM(N ;W )

−k+i GrWi V is an isomorphism;

(2)The situation in one variable was a basic, pre-existing element in the foundation of Saito’s theory

of mixed Hodge modules.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



94 CHAPTER 4. HODGE THEORETIC APPLICATIONS

in other words, M(N ;W ) induces M(GrWi N)[i] on GrWi V . In total generality, there
is no reason that a filtration satisfying (4.3.12) should exist. However, it is one of the
conditions defining admissibility that the relative weight filtration exist.
At this point, one appeals to the following fact that we used in [HZ2, (5.6)]:

Proposition 4.3.13 ([StZ, (2.14)]). — Let V be a vector space with increasing fil-
tration W , and N a nilpotent endomorphism of V such that NWi ⊆ Wi−1. Then
M(N ;W ) exists if and only if NWi ⊆Wi−2, in which case M(N ;W ) =W .

We check that this is satisfied in the Shimura variety setting. Let σ be the one-
dimensional cone in ΣcP that defines D. The monodromy logarithm N around D is
given by some non-zero integral element of σ, and this is interior to CP . Thus, its
weight filtration is just the one defined by wP . This lowers weights by two, so by
(4.3.13), M(N ;W ) = W , which is also M(N). Thus, there is an isomorphism of
mixed Hodge modules:

i∗DẼ(P )|O � i∗DẼ(G)|O.

Using the fact that i◦R = iD ◦ (iDR)◦, where (iDR )◦ denotes the inclusion of Z◦
Σ(R) in D,

we get that

i∗RẼ(P )|O � i∗RẼ(G)|O,

on Z◦
Σ(R), hence on ZΣ(R), which is what we needed to show.

We conclude by formulating the nerve spectral sequence in the language of this
section:

Theorem 4.3.14 (see [HZ2, (5.5.2)])
(i) The mixed Hodge module i∗Rj∗Ẽ is canonically isomorphic in the derived cat-

egory of mixed Hodge modules to the chain complex S•, where

Sr =
⊕

r(R)=r+1

i∗RRj∗Ẽ

and the differentials are given by restriction. On hypercohomology, the spectral se-
quence associated to filtration by degree in the latter is the nerve spectral sequence,
which is thereby a spectral sequence of mixed Hodge structures.

(ii) Whenever Π(R) = P , one has, as in (4.3.7)(i),

R(πP )∗i∗RRj∗Ẽ ≈ R(jP )∗ C•(Γ�,R, H̃
•
(wP , E))

≈
⊕

w∈WP

R(jP )∗Ẽµ(h,w) ⊗ C•(Γ�,R, Eµ(�,w))[−l(w)].
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(iii) Grading for the Hodge filtration F , one has that GrpF (i
∗Rj∗Ẽ) is canonically

quasi-isomorphic to GrpFS•. The corresponding “nerve” spectral sequence is:

Er,s1 =
⊕

r(R)=r+1

Hs(ZR, i∗RGr
p
F (Rj∗Ẽ))

�
⊕

r(R)=r+1

Hs(ZR, i∗RGr
p
FBBG(M, Ẽ)can) =⇒ Hr+s(Z, i∗GrpFBBG(M, Ẽ)can).

(iv) Whenever Π(R) = P , one has:

R(πP )∗i∗RGr
p
FBBG(M, Ẽ)can ≈ C•(Γ�,R, {H•(sp,R,Gr

p
FBBG(M, Ẽ))}can).

Remarks 4.3.15

(i) Theorem (4.3.14) has an adelic version, along the lines of Theorem (4.2.29),
whose formulation we leave to the reader, noting that it is most easily effected upon
replacing the sum over WP by a sum over WR; see the remark following (4.3.7)
and the horizontal arrows in (ii), below. We also note that (4.2.29)(b) implies that
(4.3.14.)(i) defines a canonical isomorphism in the derived category of mixed Hodge
modules with E(G,X)-rational structure.
(ii) Proposition (3.4.1) also has a version in terms of mixed Hodge modules: if

R ⊃ R′ are two proper parabolics of G, with r(R′) = r(R) + 1, then the following
diagram commutes:

R(πR)∗i∗RRj∗(Ẽ)
≈−→ IndG(Af )

R(Af )

⊕
w∈WR

{IR(R(jR)∗ C•(X(G�,R), Eµ(�,w))[−J(w)])}� �
R(πR′)∗i∗R′Rj∗(Ẽ)

≈−→ IndG(Af )

R′(Af )

⊕
w∈WR′

{IR′
(R(jR′ )∗ C•(X(G�,R′), Eµ(�,w))[−J(w)])}

Here the horizontal arrows are the quasi-isomorphisms of (4.3.14.)(ii), and the left-
hand vertical arrow is defined by the natural restriction. When Π(R) = Π(R′) (resp.
Π(R) �= Π(R′)) the right-hand vertical arrow is determined as in (3.2.9)(ii) (resp. as in
(3.4.1)). We leave the precise formulation to the reader, noting only that in the BGG
realization, the quasi-isomorphisms can be replaced by isomorphisms of complexes.

4.4. The topological cohomology

As usual, let R ∈ P(G). In the “standard” way of doing things, one writes R =
LR ·WR; then by [Ha],

(4.4.1) H•(e′(R), Ẽ) � H•(e′(R), Ẽ) � H•(ΓR, E) � H•(X(ΓLR), H̃
•
(wR, E)).

In actuality, the above holds at the cochain level, which can be viewed as an instance
of (2.7.8):

(4.4.2) C•(e′(R), Ẽ) ≈ C•(X(ΓLR), H̃
•
(wR, E)) ≈ C•(ΓLR , H

•(wR, E)).
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If we have that Π(R) = P , then Gh,P is a direct factor of LR; indeed, we have, as
we noted before, that R = Gh,P · Q ·WP , for Q a parabolic subgroup of G�,P . The
group Γ∩Q has been denoted Γ�,R (see (3.1.4)). When this is taken into account, we
continue as in (3.3) to see that (4.4.2) can be written as:

(4.4.3) C•(e′(R), Ẽ) ≈ C•(Γh,P · Γ�,R, H•(wP , E)).

We observe that the only thing on the right-hand side of (4.4.3) that varies when R

is, restricted to be subordinate to P , is the “Γ�,R”.
Analogous to (3.5.1), a complex for computing the topological cohomology of the

Borel-Serre boundary ∂X is the double complex

(4.4.4) K
r,s
=

⊕
r(R)= r+1

Cs(e′(R), Ẽ),

in which the differential d̃ is the sum of the differential of C• (which increases s

by one), and restriction (which increases r by one). We denote the latter again by
dpar. The nerve spectral sequence in this setting (see [HZ2, (3.5)]) is associated to the
filtration R by rank, starting from the analogue of (3.5.2):

(4.4.5) GrtRK
•
=

⊕
r(R) = t+1

C•(e′(R), Ẽ)[−t],

in which dpar vanishes. This produces for the E1-term, as in (4.1.15):

Ep,q1 (K
•
,R) =

⊕
r(R)= p+1

Ep,q1 (R), where

Ep,q1 (R) = Hq(e′(R), Ẽ)(4.4.6)

�
⊕

a+j+k= q

Ha(MP , H̃
k
(Γ�,R, Hj(wP , E))) by (4.4.3).

When we invoke Kostant’s theorem, this time for the rational parabolic subgroup P

of G, with Levi subgroup Gh,P ×G�,P :

(4.4.7) H•(wP , E) �
⊕

w∈WP

(
Eµ(h,w) ⊗ Eµ(�,w)

)
[−l(w)],

we obtain

Ep,q1 (R) �
⊕

a;w∈WP

Ha(MP , Ẽµ(h,w))⊗Hq−a−l(w)(Γ�,R, Eµ(�,w))(4.4.8)

�
⊕

a;w∈WP

Ha(MP , Ẽµ(h,w))⊗Hq−a−l(w)(X(Γ�,R), Ẽµ(�,w)).

There is some reason to work instead with the filtration Rh by holomorphic rank,
which is the filtration determined by the decomposition of M induced by the natural
mapping of X onto the Baily-Borel compactification of M (see [Z6, (1.6)(11)]). For
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this, we have instead

RhtK
•
=

⊕
ρh(R)�t

C•(e′(R), Ẽ)[1− r(R)](4.4.9)(i)

GrR
h

t K
•
=

⊕
ρh(R)= t

C•(e′(R), Ẽ)[1− r(R)](4.4.9)(ii)

=
⊕

P∼Pρ−t

C•(Γh,P ,K•
c (X(Γ�,P ), H

•(wP , E))),

with K•
c as in (3.5.7), and the differential induced by d+ d�.

Remark. — We note that the differential dh, viewed as a summand of dpar, decom-
poses canonically as

dh =
∑
r

dh,r,

where, dh,r decreases holomorphic rank by r, and increases R� by r − 1.

From (4.4.9)(ii), we can now write down a convenient expression for the E1-term
of the holomorphic rank spectral sequence (cf. (3.5.8)):

Proposition 4.4.10. — In the spectral sequence for Rh, the E1-term is

Ep,q1 (K
•
,Rh) =

⊕
P∼Pρ+p

Ẽp,q1 (P ),

where

Ẽp,q1 (P ) =
⊕

a+j+k= p+q

Ha(MP , H̃
k

c (X(Γ�,P ), H̃
j
(wP , E)))

=
⊕

a+j+k= p+q

Ha(Γh,P , Hk
c (X(Γ�,P ), H̃

j
(wP , E)))

=
⊕

a+j+k= p+q

Hk
c (X(Γ�,P ), H̃

a
(MP , H̃

j
(wP , E))).

NB—The non-trivial terms in the above are for p � 0.

Proof. — We use Kostant’s theorem, again applied to P (4.4.7). This enables us to
use the Künneth formula to determine that

(4.4.10.1) Ẽp,q1 (P ) =
⊕

a;w∈WP

Ha(MP , Ẽµ(h,w))⊗Hp+q−a−l(w)
c (X(Γ�,P ), Ẽµ(�,w)).

We now recombine the terms:

Ẽp,q1 (P ) =
⊕

a;w∈WP

Ha(MP , Ẽµ(h,w) ⊗Hp+q−a−l(w)
c (X(Γ�,P ), Ẽµ(�,w)))

=
⊕

a;w∈WP

Ha(MP , H̃
p+q−a−l(w)
c (X(Γ�,P ), Ẽµ(�,w) ⊗ Ẽµ(h,w)))

=
⊕

a+j+k=p+q

Ha(MP , H̃
k

c (X(Γ�,P ), H̃
j
(wP , E))),
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which is the first formula for Ẽp,q1 (P ) above. The second formula is equivalent, and
the third is proved similarly.

We wish to elaborate on the relation between the filtration by holomorphic rank and
the Baily-Borel compactification M∗ of M = MΓ that was mentioned before (4.4.9).
Let f : M → M∗ be the natural map. Our first observation is that, by degeneration
of the relevant spectral sequences, one has the following and its corollary:

Proposition 4.4.11. — (Rif!Ẽ)|MP �
⊕

j+k= i

H̃
k

c (X(Γ�,P ), H̃
j
(wP , E)).

As we are using a mixture of compact and closed supports, we introduce the symbol
H•
�,c to refer to that. Then

Corollary 4.4.12. — We have the formula for Ẽp,q1 (P ) of (4.4.10):

Ẽp,q1 (P ) �
⊕

a+i= p+q

Ha(MP , R
if!Ẽ) � Hp+q

�,c (e
′(P ), Ẽ).

We consider ∂M∗ as a filtered space. Specifically, one has

∂M∗ =
⊔

P maximal

MP

(as a set), and we put for each integer t

(4.4.13) Yt =
⊔

hol rkP�t
MP .

This defines a finite increasing filtration of ∂M∗, which we also call Y∞, by closed
subspaces. Note that Rf!Ẽ is constructible with respect to the stratification of M∗

induced from (4.4.13), and we have for all P :

(4.4.14) H•(MP , Rf!Ẽ) � H•
�,c(e

′(P ), Ẽ).

We now assert:

Proposition 4.4.15. — The spectral sequence for the filtration by holomorphic rank
(see (4.4.10)) coincides with that of the filtered space ∂M∗, with filtration given in
(4.4.13), and with coefficients in F = Rf!Ẽ:

Ep,q1 = Hp+q(Y−p, Y−p−1;F) =⇒ Hp+q(Y∞;F).

Proof. — Let Y t = f−1Yt, a closed subset of ∂M that consists of a union of maximal
faces. As such, it is topologically a manifold-with-boundary. Note that the boundary
of a maximal face e′(P ) consists of faces e′(R) with R ⊂ P ; then f(e′(R)) ⊂ MP

if and only if R is subordinate to P . It follows that Y t is the union of those e′(R)
for which ρh(R) � t. From (4.4.9)(i), one sees that the cochain complex RhtK

•
is

quasi-isomorphic to

C•(Y t, ∂Y t; Ẽ) ≈ C•
c (Y t − ∂Y t; Ẽ) ≈ C•(Yt;Rf!Ẽ).

This proves our assertion.
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The following elementary fact, which is essentially (3.3.4), is fundamental in the
determination of the differential d1 in the holomorphic rank spectral sequence:

Lemma 4.4.16. — Let R be a parabolic subordinate to P , and let

LR = G�,R ·Gh,P
be the associated decomposition of its Levi subgroup. Let P ′ be a maximal parabolic
with P ′ ≺ P , and put R′ = R ∩ P ′. Then the decomposition of LR′ is

LR′ = G�,R′ ·Gh,P ′ , with G�,R′ = G�,R · (G�,P ′ ∩Gh,P ).

In particular, when P ′ and P are consecutive, G�,R′ = G�,R.

When P ′ and P are consecutive, we thus have that

(4.4.17) R′ = LR′ ·WR′ = G�,R ·Gh,P ′ · (WR ·WP ′)

is contained inR = G�,R·Gh,P ·WR. If Γ is sufficiently small, one has the corresponding
decomposition of ΓR′ . One can elect to factor out WP instead; it is just a question of
whether one is viewing R′ as a parabolic subgroup of P or of P ′.
At bottom, dh is given by R �→ R′ = R ∩ P ′ whenever Π(R) = P and P ′ ≺ P

(which entails a shift of rank by one), and the inclusions

(4.4.18) e′(P ) ⊃ e′(R)←−↩ e′(R′) ↪−→ e′(P ′),

This is the same situation that was faced in (3.5.11), so d1 is the composition of a
restriction mapping and a connecting homomorphism. In the topological setting, the
most efficient way to formulate this is without the Kostant decompositions, though
the latter may be needed for calculations. We obtain the following formula:

Proposition 4.4.19. — When P is conjugate to Pρ+p and P ′ is conjugate to Pρ+p+1
and satisfies P ′ ≺ P ,

d1 : E
p,q
1 (K

•
,Rh) −→ Ep+1,q1 (K

•
,Rh)

in the spectral sequence for Rh, is the direct sum of maps Ẽp,q1 (P )→ Ẽp+1,q1 (P ′) given
by

Hi
�,c(e

′(P ), Ẽ) r−−−−→ Hi
�,c(e

′(P ∩ P ′), Ẽ) δ−−−−→ Hi+1
�,c (e

′(P ′), Ẽ),

where r is restriction and δ a connecting homomorphism.

We quickly compare the nerve and holomorphic rank spectral sequences (see (4.4.6)
and (4.4.10) resp.) in the least complicated non-trivial situation, namely when the
Q-rank of G equals two. In that case, one has standard parabolics, maximal: P1 -
P2, and minimal P12 = P1 ∩ P2. Both spectral sequences have only one non-trivial
differential, so they both degenerate at E2. For the sake of simplicity of notation, we
will omit the symbol for summation over Γ-conjugacy classes in both cases, though it
is important not to lose sight of this; said summation is explicit only in our formula
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for the terms of the holomorphic rank spectral sequence, but it is present in the other
one as well.
The respective differentials d1 look like:

(4.4.20.N)
Hq(e′(P1), Ẽ) r−→ Hq(e′(P12), Ẽ)

⊕ ||
Hq(e′(P2), Ẽ) r−→ Hq(e′(P12), Ẽ)

(4.4.20.h) Hq
�,c(e

′(P1), Ẽ) r−−−−→ Hq
�,c(e

′(P12), Ẽ) δ−−−−→ Hq+1
�,c (e

′(P2), Ẽ).

The arithmetic quotients for G�,P1 and Gh,P2 are compact; the nilmanifolds coming
from the unipotent radicals are always compact. Thus, (4.4.20.h) simplifies to:

(4.4.21.h) Hq(e′(P1), Ẽ) r−−−−→ Hq(e′(P12), Ẽ) δ−−−−→
Hq+1
c (e′(P2), Ẽ) � Hq+1(e′(P2), ∂e′(P2); Ẽ).

Since R is finer than Rh, we have

(4.4.22) E0,q
2 (K,R) � E0,q

2 (K,Rh), E1,q
2 (K,R) ↪−→ E1,q

2 (K,Rh)

(these relations can also be deduced directly from (4.4.20.N) and (4.4.21.h)). By
reason of degree, the spectral sequence degenerates at E2 – this need not be true in
higher rank – so the total dimension of E2 in each degree is the same for both.

4.5. The mixed Hodge complex filtered by holomorphic rank

Given the isomorphism of deleted neighborhood cohomology for ∂M and ∂MΣ

provided by [HZ2, (3.5.5)], we begin by replacing K
•
from (4.4.4) by any compatible

system of cohomological mixed Hodge complexes (e.g., the de Rham complexes of the
corresponding mixed Hodge modules), and put

K̃•(R) = C•(i∗RẼ).

We will see that the double complex K̃•, with its Hodge and weight filtrations (one
can see F via (4.1) here), is a mixed Hodge complex filtered by Rh. The last notion is
a technical condition, determined by El Zein, that implies that the spectral sequence
for Rh is one of mixed Hodge structures. What the latter means is spelled out
after [HZ2, (5.5.2)], and it includes the assertion that the differentials of the spectral
sequence are morphisms of mixed Hodge structure. A useful criterion for that, which
is easy to check in practice, is that Rh be a convolutant of the weight filtration W ,
which in turn implies that Rh splits on GrW K̃• (see [Z3, (3.6)]).
We already know that R is a convolutant of W , with W = R ∗WH , where WH

is the usual Hodge weight filtration on the individual summands of the complex. We
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also have that R = Rh ∗R� by (3.5.9). However, this fact in general is not enough to
give

(4.5.1) W = Rh ∗ (R� ∗WH);

one would need to check that the three filtrationsWH , Rh and R� form a distributive
family in the sense of [Ka, 1.7]. In this case, however, it is evident that (4.5.1) holds,
and we leave it to the reader to verify this. We therefore assert:

Proposition 4.5.2. — The complex K̃• is a mixed Hodge complex filtered by Rh (as
well as by R) that determines the mixed Hodge structure of ∂M with coefficients in Ẽ.

For emphasis, we restate a consequence of (4.5.2) that was mentioned above:

Corollary 4.5.3. — The holomorphic rank spectral sequence in the topological set-
ting is a spectral sequence of mixed Hodge structures.

With (4.5.3) established, we make a Hodge theoretic comparison of the E1-terms
of the [topological] nerve and holomorphic rank spectral sequences. For that, we
examine the respective formulas, (4.4.8) and (4.4.10.1), for the E1-term. One thing
stands out: they both involve the same variations of Hodge structure on MP , viz.,
those coming from the representation of Gh,P on the Eµ(h,w)’s. Where they differ
is in the finite-dimensional vector spaces (with the trivial Hodge structure) that the
cohomology groups Ha(MP , Ẽµ(h,w)) are tensored with. As in [Z2], an “undesirable”
term in a formula can disappear because it gets tensored with 0.
Finally, we assert the conclusion towards which we have been heading:

Theorem 4.5.4. — The holomorphic rank (resp. nerve) spectral sequence for coher-
ent cohomology abutting to H•(ZΣ, i∗Gr

p
F {DR(M, Ẽ

can
}) is canonically isomorphic

to the GrpF of the topological holomorphic rank (resp. nerve) spectral sequence abutting
to H•(∂M, Ẽ) � H•

dn(ZΣ, Ẽ).

Remark 4.5.5. — The same holds for all F p/F p
′
(with p′ > p).

4.6. Ghost classes

We set up the question of the existence of ghosts in its natural settings. The reader
should expect by now that there are two parallel notions, one for the topological setting
(local systems) and one for the coherent setting (vector bundles).
Let Y be a manifold-with-corners. Topologically, it is just a manifold-with-

boundary [BS,App.], but the boundary has designated differentiable corner structure.
Let {Eα} denote the set of closed faces of codimension one in ∂Y , and let Ṽ be a local
system on Y . We mention that Y and its interior are homotopically indistinguishable.
The faces of ∂Y are themselves manifolds-with-corners. If we define the rank ρ(Y )
of Y to be the largest number of maximal (codimension-one) faces of ∂Y having
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non-empty intersection, or equivalently, the highest codimension of a boundary face,
then, a face E of codimension m in ∂Y has rank at most ρ(Y )−m, with equality if
and only if E contains a face of highest codimension in ∂Y . Note that this notion of
rank is consistent with the intrinsic rank of parabolic subgroups when Y =M .
A ghost class in Y with coefficients in Ṽ is an element in H•(Y, Ṽ ) with a non-zero

image in

Gh•(Y, Ṽ ) =
Ker{H•(Y, Ṽ )→

⊕
α

H•(Eα, Ṽ )}

Ker{H•(Y, Ṽ )→ H•(∂Y, Ṽ )}
(4.6.1)

=
Ker{H•(Y, Ṽ )→

⊕
α

H•(Eα, Ṽ )}

Im{H•(Y, ∂Y ; Ṽ )→ H•(Y, Ṽ )}

(it is denoted Spect•(Y, Ṽ ) in [Z5]). The above is isomorphic to its image under
restriction to ∂Y :

(4.6.2) Im{H•(Y, Ṽ ) −→ H•(∂Y, Ṽ )} ∩Ker{H•(∂Y, Ṽ ) −→
⊕
α

H•(Eα, Ṽ )}.

We call Gh•(Y, Ṽ ) the ghost group of (Y, Ṽ ). Note that the definition depends on the
corner structure of Y . In the case of Y =M , we have

(4.6.3) Gh•(M, Ẽ) =
Ker{H•(M, Ẽ)→

⊕
P

H•(e′(P ), Ẽ)}

Im{H•(M,∂M ; Ẽ)→ H•(M, Ẽ)}
,

where P runs over maximal parabolics.
Next, let Y be instead a complex manifold, and D an SNC divisor on Y . Let F

be a locally-free sheaf on Y . We assume given a partition of the set of irreducible
components of D, which decomposes D into a union

⋃
iDi (cf. (2.3)). Then a ghost

class in Y with coefficients in F , relative to {Di}, is an element of H•(Y,F) that has
non-zero image in

(4.6.4) Gh•(Y, {Di};F) =
Ker{H•(Y,F)→

⊕
i

H•(Di,F ⊗ODi)}

Ker{H•(Y,F)→ H•(D,F ⊗OD)}
,

or equivalently:

(4.6.5) Im{H•(Y,F) −→ H•(D,F ⊗OD)} ∩ Ker{H•(D,F ⊗OD)
−→

⊕
i

H•(Di,F ⊗ODi)}.

Of course, we are most interested in the case where Y =MΣ is a toroidal compactifica-
tion of a connected component of a Shimura variety, i stands for P , and Di = ZΣ(P );
in that case, (4.6.4) becomes:

(4.6.6) Gh•(MΣ, {ZΣ(P )};F) =
Ker{H•(MΣ,F)→

⊕
PH

•(ZΣ(P ),F ⊗OZΣ(P ))}
Ker{H•(MΣ,F)→ H•(ZΣ,F ⊗OZΣ)}

.
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The following is an immediate consequence of what we have developed in (4.1.7)
and [HZ2, (5.6)]:

Proposition 4.6.7. — There is a natural decomposition

Gr•FGh•(M, Ẽ) � Gh•(MΣ, {ZΣ(P )}; Gr•FDR(M, Ẽ)can).

Remark 4.6.8. — Contained in the above assertion is the fact that the Hodge com-
ponents of a ghost class are themselves ghost classes. It follows that the existence of
ghost classes for the topological cohomology imply the existence of the same for at
least one of the vector bundles on the right-hand side and conversely.

Though we could state the essential content of the Hodge-theoretic criterion
(4.6.14) now, we first elect to formulate (4.6.3) in terms of a single filtered mixed
Hodge complex. Let

(4.6.9) C• = Cone{C•(M, Ẽ) −→ C•(∂M, Ẽ)}[−1],
and C̃ its Hodge-theoretic quasi-isomorph:

(4.6.10) C̃
• = Cone{C•(MΣ, Rj∗Ẽ) −→ C•

dn(∂MΣ, Ẽ)}[−1].
We have

(4.6.11) H•(C̃•) � H•(C•) � H•(M,∂M ; Ẽ)).

As the cone of a morphism of mixed Hodge complexes, (4.6.10) is a mixed Hodge
complex in the standard way (see [E, p. 76]). We extend the simplicial filtration from
the boundary complex by simply setting C̃• = S1, and likewise for C•. We now assert:

Proposition 4.6.12. — In terms of the filtered mixed Hodge complex (C̃•, S), the
ghost group Gh•(M, Ẽ) equals

Im{H•((S1/S−1)C̃•)→ H•((S1/S0)C̃•)}
Im{H•(S1C̃•)→ H•((S1/S0)C̃•)}

.

Of course, we may replace C̃• in the above by C•.
The “denominator” in (4.6.12) (see (4.6.3)) is, in degree i,

(4.6.13) Im{Hi
c(M, Ẽ) −→ Hi(M, Ẽ)}.

For E an irreducible representation of G of weight e, the weights occuring in the
left-hand side are � i + e, and those occurring in the right-hand side are � i + e.
It is immediate, then, that the mixed Hodge structure of (4.6.13) is actually pure of
weight i+ e. We obtain the following criterion for the existence of ghosts.

Criterion 4.6.14. — Assume that Ẽ is pure of weight e. If

Im{Hi((S1/S−1)C̃•) −→ Hi((S1/S0)C̃•)} � Ker{H•(M, Ẽ)→
⊕
P

H•(e′(P ), Ẽ)}

is not pure of weight i+ e, then there are ghost classes in Hi(M, Ẽ).
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Remark. — Of course, (4.6.14) makes no statement about the possibility that the
weight i+ e summand of Ghi(M, Ẽ) be non-zero. The method of [KR] finds ghosts
for Ẽ = C (e = 0) that are in the image of the Borel map (i.e., among the cohomology
classes of the invariant forms). These are of weight i. Thus, the above criterion is
independent of theirs.

There are other ways to write the ghost group, and each emphasizes a different
Hodge-theoretic relation. From the point of view in (4.6.2), we have the equivalent
formulas:

(4.6.15)(i) Gh•(M, Ẽ) � Ker{H•(S0C̃•)→ H•(S1C̃•)⊕H•((S0/S−1)C̃•)}

� Ker{H•(∂M, Ẽ)→ (H•(M,∂M ; Ẽ)[1]⊕
⊕
P

H•(e′(P ), Ẽ))}

(4.6.15)(ii) Gh•(M, Ẽ)

� Ker{H•(S0C̃•)→ H•(S1C̃•)} ∩ Im{H•(S−1C̃•)→ H•(S0C̃•)}

� Ker{H•(∂M, Ẽ)→ H•(M,∂M ; Ẽ)[1]} ∩ Im{H•(S−1C̃•)→ H•(∂M, Ẽ)}.

The apparent difference between (4.6.15) and (4.6.14) is that the former has one
looking at

(4.6.16) H•(∂M, Ẽ) −→
⊕
P

H•(e′(P ), Ẽ)

�
⊕
P∼P1

H•(MP , H̃
•
(wP , E))⊕

⊕
P∼P2

H•(wP , E),

whereas (4.6.14) emphasizes

(4.6.17) H•(M, Ẽ) −→
⊕
P

H•(e′(P ), Ẽ).

Remark 4.6.18. — The cohomology Hi(S−1C̃•) is that of the codimension-two
skeleton of ∂M , viz.,

Hi−1(
⋃

r(Q)=2

e′(Q), Ẽ ).

The above union is a non-vacuous disjoint union if and only if G is of Q-rank two, in
which case it equals ⊕

r(Q)=2

Hi−1(e′(Q), Ẽ).

In effect, the method used in [Z5,App. A] to rule out ghosts for G = GSp(4)
(4× 4 matrices), was based on (4.6.15)(ii). The main step was to examine the weight
structure ofH•(S−1C̃•)/ ImH•(S0/S−1C̃•), viewingH•(S−1C̃•) as the iterated deleted
neighborhood cohomology associated to e′(Q) ⊂ e′(P ) ⊂ M for P of rank one and
containing Q. Note that when G = GSp(4), MP is a modular curve (uncompactified)
if P ∼ P1 and is a point if P ∼ P2.
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The local system Ẽ on M gets its weights from the weight homomorphism wG,
whereas the local systems on MP get theirs from wP . The two are related by the
formula wP = mP · wG (see [HZ1, (1.2.2.1)]); mP gives rise to the so-called parabolic
weights, and the latter are computed from Kostant’s theorem.

4.6.A. Appendix: The case of GSp4. — For arithmetic quotients X associated
to a reductive group G, with rkQG

ad = 2, the ghost group can be approached via
(4.6.15)(ii) and (4.6.18). It is not so difficult to see what is at stake, and we describe
it here, following and correcting [Z5,App.A].
The maximal closed faces of ∂X consist of the Borel-Serre compactifications of

arithmetic quotients of spaces associated to Q-rank one groups. These are of two
types, corresponding to the two conjugacy types, P1 and P2, of maximal parabolic
subgroups of G; the two types of closed boundary face are here denoted X1 and X2,
and their respective interiors X1 and X2. An intersection of type X1

⋂
X2 is a space

of type X12, corresponding to the minimal parabolics P12. The unipotent radicals
of the parabolics give rise to proper nilmanifold fibrations, e.g., X1 → X̂1, so the
cohomology of X1 (with coefficients) gets expressed as cohomology with coefficients
in Lie algebra cohomology; likewise for X2 → X̂2 and X12 → X̂12. The numbering
has been chosen so that when X is a connected Shimura variety, X̂1 is a connected
Shimura variety of a Q-rank one group, and X̂2 is collapsed in the map to the Baily-
Borel (cf. (4.4)).
The geometry of the boundary is well-known (see the appendix to [HZ2, (3.5)]):

Proposition 4.6.A.1. — Any two closed faces of type X1 are disjoint, as are two of
type X2 or X12. The boundary of a face of type X1 or X2 consists of a finite number
of faces of type X12, and each face of type X12 is a boundary face of exactly one face
of type X1, and of exactly one face of type X2.

Let

(4.6.A.2) PGhi(X, Ẽ)

= Coker{
⊕

Hi−1(X1, Ẽ)⊕
⊕

Hi−1(X2, Ẽ)→
⊕

Hi−1(X12, Ẽ)},

where the sums are over the set of faces of the given type, be the pre-ghost group; it
is only from here that ghost classes could arise. When we decompose the cohomology
groups in (4.6.A.2) according to Kostant (cf. (4.6.16)), we get the direct sum of
mappings of the form

Hk(X̂1, Ẽw1) −→ Hk
dn(X̂12, Ẽw1)(4.6.A.3)(i)

Hk(X̂2, Ẽw2) −→ Hk
dn(X̂12, Ẽw2),(4.6.A.3)(ii)

in which wj ∈W j is a Kostant representative. The mappings (4.6.A.3) give the means
for killing potential pre-ghosts.
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In the case of GSp(4), everything is at its easiest. The space X̂1 and X̂2 are both
modular for GL(2), and X̂12 is just a point, reducing us to k = 0, 1 in (4.6.A.3). It
turns out that k = 1 is the more interesting, and we denote by PGhi(X, Ẽ)1 the
corresponding subspace of PGhi(X, Ẽ). (We refer the reader to [Z5] to see that ghost
classes cannot come from k = 0.) Since X̂1 and X̂2 are both non-compact orientable
surfaces—call them S—the mappings in (4.6.A.3), when summed over the boundary
circles of a single S, can be interpreted as the natural mapping

(4.6.A.4) H1(S, Ẽ) −→ H0(∂S∗, R1j∗Ẽ),

where j : S ↪→ S∗ is the inclusion of S in its compactification with cusps. For simple
topological reasons, (4.6.A.4) is surjective if and only if Ẽ is a non-trivial local system.
When Ẽ � C, we have instead

(4.6.A.5) dimCoker{H1(S, Ẽ) −→ H0(∂S∗, R1j∗Ẽ)} = 1.

On the other hand, H0(S, Ẽ)→ H0(∂S∗, R0j∗Ẽ) is never surjective.
Let λ1 and λ2 be the fundamental dominant weights for the C2 root system. Let

E = Eλ, and write λ = m1λ1 +m2λ2.

Calculation 4.6.A.6 ([Z5, (A.1.16)])
(i) Ew1 is trivial as a representation of SL(2) if and only if l(w1) = 0 or 3, and

m2 = 0;
(ii) Similarly, Ew2 is trivial as a representation of SL(2) if and only if l(w2) = 0

or 3, and m1 = 0.

We rewrite the right-hand side of (4.6.A.3) as

(4.6.A.7) (i) Eτ1w1 , (ii) Eτ2w2 ,

where τj is the non-trivial element of the A1 Weyl group Wj of Pj . This enables us
to invoke (4.6.A.1) and write down a basis of PGh•(X, Ẽλ)1:

Proposition 4.6.A.8. — Let w12 be an element of the Weyl group W 12 of C2, and
Ew12 the corresponding vector space. Then: PGh•(X, Ẽλ)1 is generated by the Ew12 ,
with w12 satisfying one of: w12 = τ1w

1, l(w1) = 0, 3, and m2 = 0; or w12 = τ2w
2,

l(w2) = 0, 3, and m1 = 0.

It is useful to keep in mind that τ1W 1
⋃

τ2W
2 excludes just the identity element

of W 12. Similarly, τ1W 1
⋂

τ2W
2 is the longest element (l = 4) of W 12. We conclude:

Corollary 4.6.A.9. — The exceptions to the assertion “PGhi(X, Ẽλ)1 = 0” are
given by:

(i) i = 2: l(w1) = 0, and m2 = 0; or l(w2) = 0, and m1 = 0,

(ii) i = 5: l(w1) = 3 or l(w2) = 3, and m1 = m2 = 0.

We prove next:
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Proposition 4.6.A.10. — PGh2(X, Ẽλ)1 ∩ Gh2(X, Ẽλ) = 0 unless (m1,m2) =
(0, 0).

By means of the other calculations in [Z5:(A.1)], we conclude:

Corollary 4.6.A.11. — Gh2(X, Ẽλ) = 0 unless (m1,m2) = (0, 0).

Proof of (4.6.A.10). — Let wλ denote the (Hodge) weight of Ẽλ. It is actually defined
only up to an even integer, and the choice will be seen to be irrelevant.
We recall the tables from [Z5:(A.1.15)], in abbreviated form, in which the parabolic

weights are determined from Kostant’s theorem:

(4.6.A.10.1)

W 1 J parabolic weight highest weight for SL(2)
0 m1 +m2 m2

3 −m1 −m2 − 4 m2

(4.6.A.10.2)

W 2 J parabolic weight highest weight for SL(2)
0 m1 + 2m2 m1

3 −m1 − 2m2 − 6 m1

Again, to get a trivial local system at the boundary, we must have either m2 = 0
(for 1 ∈ W 1) or m1 = 0 (for 1 ∈ W 2). This gives, for the corresponding trivial
local systems on X̂1 and X̂2, parabolic weights m1 and 2m2 resp. It follows that
H1(X12, Ẽλ) is of Hodge theoretic weights wλ −m1 + 2 and wλ − 2m2 + 2 resp. We
must check whether this can match a weight occurring in H2(X, Ẽλ). The latter are
all � 2 + wλ, which is higher than those of H1(X12, Ẽλ) except when m1 = m2 = 0.
Our assertion is proved.

Remark

(i) The only possibility for a term Ew12 entering into PGhi(X, Ẽλ) that is not
covered by (4.6.A.9) is for w12 = 1 (when i = 1). This does not yield a non-zero
element of Ghi(X, Ẽλ), for the weights are wrong ([Z5, (A.1.18)]).

(ii) The ghost class constructed in [KR] is for i = 2 and m1 = m2 = 0.
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CHAPTER 5

ON THE COMPARISON OF HODGE STRUCTURES

It has been more than ten years since the “Zucker Conjecture” (see [Z2, §6]) was
proved. We quickly recall the statement in (5.1) below. Let M∗ be the Baily-Borel
Satake compactification of a connected component M of a Shimura variety.

Theorem 5.1 ([L], [SS]). — Let G be the group in the Shimura datum giving rise to
M , E a rational representation space for G, and Ẽ the associated local system on M .
Then there is a quasi-isomorphism

L•
(2)(M

∗, Ẽ) ≈ IC•(M∗, Ẽ),

between the sheaves of L2 Ẽ-valued differential forms and the Ẽ-valued intersection
cochains on M∗.

This has the standard consequence:

Corollary 5.2. — For all k, Hk
(2)(M, Ẽ) � IHk(M∗, Ẽ).

Upon seeing (5.2), it is natural to expect more. Recall that each side of the iso-
morphism comes with an associated Hodge structure. For the L2-cohomology (the
left-hand side), it comes from the L2 harmonic forms (see [SZ]); for the intersection
cohomology, it comes via Morihiko Saito’s Hodge modules [Sa1]. A priori, the two
Hodge structures need not correspond under the isomorphism. However, there is an
inevitable conjecture, the Hodge theoretic version of (5.2):

Conjecture 5.3. — The isomorphism in (5.2) is an isomorphism of Hodge struc-
tures.

This conjecture remains unresolved. A few cases of (5.3), in which M∗ has only
isolated singular points, are covered in [Z4]. We remind the reader that one cannot
even be sure a priori that the Hodge numbers (dim Hp,q) coincide.
In the direction of (5.3), we now make the following improvement on [H5, 3.3.9]:
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Theorem 5.4. — For all k, the mapping

rk : Hk
(2)(M, Ẽ) � IHk(M∗, Ẽ) −→ Hk(M, Ẽ)

is morphism of mixed Hodge structures.

Remarks 5.5

(i) The image of rk is the lowest non-zero weight level in the mixed Hodge structure
of Hk(M, Ẽ). This can be deduced from the decomposition theorem: IHk(M∗, Ẽ)
is seen to have the same image in Hk(M, Ẽ) as IHk(MΣ, Ẽ) has, and the latter
determines the lowest non-zero weight level. Thus, (5.4) asserts that the Hodge struc-
tures in (5.2) have a given common Hodge-theoretic quotient. By semi-simplicity, this
quotient can be embedded as a common substructure.

(ii) Let c denote the codimension of the singular locus in M∗. Included in (5.2) is
the assertion that rk is an isomorphism whenever k < c, and is injective for k = c.
Thus, from (5.4) it follows that (5.3) is true in degrees k � c.

We will be referring to the following commutative diagram:

(5.6)
M

p
���

��
��

��
� M

k��
j

��

i

��

MΣ

pΣ
����

��
��

��

M∗

As in (4.1.8), let DR(M, Ẽ) be the holomorphic de Rham complex of M with
values in Ẽ. We have the explicit formula on MΣ:

(5.7) DR(M, Ẽ)can = Ω•
MΣ
(logZΣ)⊗ Ecan,

a complex quasi-isomorphic to Rj∗Ẽ. We write A•(DR(M, Ẽ)can) to denote the
Dolbeault resolution of (5.7); this (or more precisely, its associated single complex) is
also quasi-isomorphic to Rj∗Ẽ. We also let

A• = A•(DR(M, Ẽ)can)

denote the complex of its global sections. Then H•(A•) = H•(M, Ẽ).
It is clear that A• is a subcomplex of

A•
sia = A•

sia(M, Ẽ),

the global sections of A•
sia(MΣ, ZΣ) ⊗ Ω•

MΣ
(logZΣ) ⊗ Ecan, which is equivalently (by

(2.6.1)) the global sections of the de Rham complex of forms with moderate growth
A•
sia(M, Ẽ) on M . We know that A•

sia(M, Ẽ) is quasi-isomorphic to Rk∗Ẽ [B2, 7.4].
There is a tautological extension of Ẽ to a local system on M , as the latter is a
manifold-with-corners, and Rk∗Ẽ is quasi-isomorphic to that. Thus, H•(A•

sia) is also
H•(M, Ẽ), so the inclusion of A• in A•

sia is a quasi-isomorphism.
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BothA• and A•
sia inherit a filtration F from the usual Hodge filtration onA•(M, Ẽ),

which is given in (4.1.2). Note that (A•, F ) underlies the standard mixed Hodge
complex for H•(M, Ẽ).

Proposition 5.8. — The inclusion of filtered complexes (A•, F ) ↪→ (A•
sia, F ) is a

filtered quasi-isomorphism.

Proof. — We must show that for all p,

(5.8.1) GrpFA
• −→ GrpFA

•
sia

is a quasi-isomorphism. Because of the way the filtration F is given, we can rewrite
(5.8.1) as

(5.8.2) A•{GrpF (DR(M, Ẽ)can)} −→ A•
sia{Gr

p
F (DR(M, Ẽ)can)}.

Now, as we mentioned in §4, GrpF (DR(M, Ẽ)can) is a complex of OMΣ -modules. That
(5.8.2) is a quasi-isomorphism follows by applying (2.2.5) to each term.(1)

Corollary 5.9. — The filtration F on A•
sia induces the Hodge filtration on

H•(M, Ẽ).

We can now prove (5.4). Let hk denote the space of Ẽ-valued harmonic k-forms on
M . According to [BG], hk consists of forms of moderate growth. Then, the inclusion

(5.9.1) h
• ↪−→ A•

sia(M, Ẽ),

which is for trivial reasons compatible with F , induces the morphisms rk. We may
invoke (5.5)(i) and the strictness principle for Hodge structures: a morphism of filtered
vector spaces (H,F ) → (H ′, F ′) in which F and F ′ define Hodge structures is a
morphism of Hodge structures. This completes the proof of (5.4).

(1)Alternatively, it is possible to invoke (4.1.12) at this point.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001





BIBLIOGRAPHY

[AMRT] Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S., Smooth compactification
of Locally Symmetric Varieties, Math. Sci. Press, Brookline, MA, 1975.

[BHR] Blasius, D., Harris, M., Ramakrishnan, D., Coherent cohomology, limits of
discrete series, and Galois conjugation, Duke Math. J., 73, 647–685 (1994).

[B1] Borel, A., Introduction to automorphic forms, PSPM 9, In: Algebraic Groups
and Discontinuous Subgroups, Proc. Symp. Pure Math. AMS, 9, 199–210
(1966).

[B2] Borel, A., Stable real cohomology of arithmetic groups, Ann. Scient.
Ec. Norm. Sup., 7, 235–272 (1974).

[B3] Borel, A., Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969.

[BG] Borel, A., Garland, H., Laplacian and the discrete spectrum of an arithmetic
group, Am. J. Math., 105, 309–335 (1983).

[BS] Borel, A., Serre, J.-P., Corners and arithmetic groups. Comm. Math. Helv.,
48, 436–491 (1973).
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