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Colloque Th. Nombres [1969, Bordeaux]
Bull. Soc. math. France,
Memoire 25, 19T1, P. 39 a U3

WELL-DISTRIBUTED SEQUENCES

by
J. CIGLER

The purpose of this talk is to give a survey of some methods and results concer-
ning veil-distributed sequences. Almost all facts will be known, but some proofs
and the chosen point of view may perhaps be interesting.

The prototype of all those results is H. Weyl^ observation that for every ir-
rational number 8 the sequence { n 9} is uniformly distributed mod. 1 .
H. Weyl^ proof - in his time a spectacular event - is now routine matter, due to
the fact that his ingenious ideas have meanwhile become standard facts of contem-
porary analysis. An optimal framework for his ideas - neither too abstract nor too
concrete - seems to be harmonic analysis on compact Abelian groups. A sequence

y from a compact Abelian group -with countable base is called uniformly distri-
buted in G if

lim t ^ f ( x ^ )=X( f )
N-^0 n^N

for all f € C ( G ) , where X denotes (normalized) Haar measure on G . It is cal-
led well-distributed in G if even

lim sup | - ;[ f<?x^J - ^ ( f ) | = 0 ,
^ k ^N n+k

holds.

Choosing G = T = R/Z , the one-dimensional torus group, which may be visualized
as the interval [0,l] (the end points being identified) and x = n9 , we get
the special case mentioned in the beginning. I shall give a rather complicated
proof of this simple fact which has the advantage that it can be generalized to
yield deeper results. Let me begin with a well-known ergodic theorem : assume X
is a compact Hansdorff space with countable base, S : X-^- X a continuous map and
u a probability measure on X such that u ( f o S ) = u ( f ) for all f € C ( X ) . As-
.sume further that p. is the only such probability measure. Then

lim sup |- i f(S11 x) -n(f) | = 0
N^co xe X n^N

holds for all f ^ C(x).

To prove this, we observe that if this relation would not hold there would exist
E Q > O , f ^ C C ( x ) and infinitely many N' € Z'1' such that
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(*) 1^,^ (s"^,)-^)!^ ^

for suitable x-,, € X . Define now Radon measures (J , by Lli.rtt^') = "~T I f(sn x,J
for all f € C(X) . n^r

By the separability of C(x) there exists a subsequence ( H , ) of the sequence
k

{ U ,} such that U , ( f ) converges for every f € C(x). Denote this limit by \ ^ ( f ) .
Then obviously ^ is a probability measure on X such that v ( f ° S ) = v ( f ) .
But by assumption t'his implies ^ =|j , which contradicts ( ^ ) .

H. Wey^s result is a special case of this ergodic theorem. It suffices- to
choose X = T , U = X , Sjc = x+Q , and to observe that every S-invariant measure
is invariant with respect to all translations and coincides therefore with Haar
measure \ .

The same method can be applied to the sequence

{(p(n),p(n+l) , . . . ,p(n+k-l) }
_k Tc

in T , where p(x) = a x +...+a^ is a polynomial such that a =9 is irrational.
0 K. 0

In this case define S : T^ ->• T^ by
k

S(x^,...,x^) = (x^,x^...., i (? (-I)13"1 ^+k!9)

and n = \ , Haar measure on T^ .

Using the mean ergodic theorem it can easily be shown (cf. [5] ) that X is
the unique S-invariant probability measure on T^ • Now we have

Sn(p(0),p(l), . . . ,p(k-l))=(p(^r),p(^+l),. . . ,p(^+k-l))

We get therefore as special case H. Weyl's result, that the sequence {p(n-» is
well-distributed mod. 1.

It is interesting to observe that the ideas underlying these proofs can be exten-
ded to yield a useful characterization of well-distributed^sequences. Let again G
be a compact Abelian group with countable base. Let Q = ] | G , G = G , be

^sT_ ^
the product space. The elements uu € 0 may be identified with infinite sequences
U) = { x } . Define now a continuous map S : 0-»0 by s{x } =; { x ) . For

UJ s t x ^ } ^ 0 let X(jy be the closure of the set [w , .Su ) , S2^) ,...5 in Q .
Then X too is a compact Hausdorff space with countable base and S is a

"o
continuous map on X . We shall suppose that w is dense in G . Define now n:

o ^
X , "> G by n (x } = X- . Then obviously n is continuous. Consider now the func-WQ n ±
lions in C(X^ ) of the form f ' (a)) = f ( T T ( u u ) ) , f€ C ( G ) . These functions form a
subalgebra A of C(X ) isomorphic to C ( G ) (via the map: f - > f o n ).
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Let ^q(X... ) "be the set of all S-invariant probability measures on X., and let

M(G) be the set of all probability measures on G • Define fr : ^/,(X ) -> M(G)
b uu o

by (f tp. )(f) =H ( f °n ) for all f ^ C ( G ) , i.e. let fru be the restriction of

|J to A . Then we have the.

THEOREM. The following conditions are equivalent :

1) fr (^ (X )) = (X)
b OlQ

2) Every a) ^ X is uniformly distributed in G .

3) For all f e C;(G)

lim sup |̂  ^ fMS11^ )) - \(f)| = 0 .
-o a) €X^ n^ N

4) U) is -well-distributed in G .

The proof may be found in [3] •

Some applications :

1) Let a > 1 be an algebraic integer of degree k ^ 1 . Then the set of all

x ^ T 9 such that {o^x} is veil-distributed, is a null-set.

Let us restate this result in a more illuminating way :

a) For almost all x the sequence { ( a x , a x ,...» aa) For almost all x the sequence {(a^x » a11 x ,..., a x)} is uni-

formly distributed in 1' .

b) If (0,0,... ,0)is a cluster point of the sequence {(a^a.- .aa x)} ,

then the sequence {a^x} cannot be veil-distributed.

a) and b) together yield our result. An unsolved problem is whether there exist

veil-distributed sequences of this form at all. In this connection it would be

interesting to know whether the uniform distribution of the sequence {a^x} implies

that (0,0,... ,0) is a cluster point of the sequence {(a^ ,..., a x)} or not

(for k ^ 2).

Because a) is a well-known result (cf. e.g. [l] ) let us only prove b) :

Let GO = (x , a x , a^x , ...) . Define cp : x^ -> f!^ by

<P({x }) = (x^,x^,..-,x^). Let a^ = h^a1'"1 + °.. + h^ , h^ € Z , and define

S : T ^ T1^ by
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0 ... 0\

1 ... 00 0

\-i

^7\ \-r
Then S^x , a x , ... , a1^"1 x) = (a^x , ... , a^^x) . Therefore every a) ^ X ,

is uniquely determined "by its k first terms and ^P defines a bijection from

X' to some compact subset of T . If oo would be veil-distributed in T , then

by 3) the same would be true of a) ={0} , a contradiction.

2) A sequence a) € nG is called completely uniformly distributed in G if

{S^} is uniformly distributed in ft . (if G = Z/,_ and
-K.Z)

is completely uniformly distributed if and only if

1 k
is normal to base k ).

{ x } , then

The individual ergodic theorem gives at once that almost all w € ft are comple-

tely uniformly distributed in G • Now we shall show that a completely uniformly

distributed sequence cannot be well-distributed. Therefore almost no sequence is

well-di sir ibut ed •

Assume (A) is completely uniformly distributed. This implies first of all that

X = ^ because {S11 a) } is then dense in ft . Let U be any probability measure

on G , then the product measure II U , ^ -n » is an S-in variant probability
n ( ^c.(X )) = M(G) ^ {\} if G ^ {0} . Thus condition l)S (A)Qmeasure on ft . Thus

of the theorem does not hold and therefore is not well-distributed.

3) Let 0 ^ 1 be a bounded sequence of integers and (D = {Q- Q- ... Q x }

sequence in T . Then a) is not well-distributed.

Assume that a) would be well-distributed, then a fortiori it would be dense in

T . Let n, be an increasing sequence such that Q- Qp ... Q x-^ 0 (mod. l).

x -^ 0 , which impliesThen also for every fixed h we have Q- '... Q • • •

(0,0,0,...) € X , a contradiction.
,+h

4) Let G = T and let a) = {f(n)} be a uniformly distributed sequence such

that lim (f(n+h) - f(n)) = 0 for every h = 1,2,3»... . Then (A) is not well-

distributed.
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Assume a) wo-uld be veil-distributed ; there would exist a subsequence such

that lim f(n,) = 0 . But then also lim f(n+h) = 0 , thus (0,0,0,...) € X ,

a contradiction.

This example can somewhat be improved : Call a sequence {f(n)} of real numbers

tempered if f is an (&+l) -times cont inuorusly di ffe rent i able real valued function

on [l,oo] such that f decreases to 0 and

lim f^d) = lim t f^^t) = °° .
t -x» t -x»

(Here i denotes some non negative integer). It is veil known, that every tempered

sequence is uniformly distributed mod. 1 . More precisely one can show that the

sequence {(ftn),!'1^) ,..., f (n) )} is uniformly distributed in T . From

this we may conclude in the same way as before, that no tempered sequence is veil-

distributed mod 1.

Further information and references to the literature on this subject can be

found in the following papers :

[l] Der individuelle Ergodensa-fcz in der Theorie der Gleichverteilung mod 1 ,
J. Reine angew. Math. 205, (i960), 91-100.

[2] Einige Fragen der Theorie der Gleichverteilung, Colloquium "Gelykverdeliiig" ,
55-TO, Math. Centrum 1969.

[3] A characterization of well-distributed sequences, Compositio Math* IT, (l96T)»
263-26T.

[4] Some remarks on the distribution mod 1 of tempered sequences, Nieuw Archief
voor Wiskunde l6 (1968), I94-I96.

[5] On a theorem of H. Weyl, Compositio Math. 21 (1969), I5I-I54.
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