E. Dobrowolski

On a question of Lehmer

<http://www.numdam.org/item?id=MSMF_1980_2_2__35_0>
Let f be a polynomial with integral coefficients. Define the measure of f by

$$M(f) = a \prod_{i=1}^{n} \max(1, |\alpha_i|)$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the zeros of f listed with proper multiplicity and a is the leading coefficient. D. H. Lehmer [5] asked whether for every $\epsilon > 0$ there exists a monic polynomial f such that $1 < M(f) < 1 + \epsilon$.

P. E. Blanksby and H. L. Montgomery [1] and the present writer [2] obtained lower bounds for $M(f)$ in terms of the degree of f. In this paper we give a lower bound for $M(f)$ in terms of the number of non-zero coefficients of the polynomial f. The existence of such a bound (but not its form) has been announced by W. Lawton [4].
Theorem 1: If \(F(z) \in \mathbb{Z}[z] \) is an irreducible non-cyclotomic polynomial, \(F(z) \neq \pm z \), then
\[
M(F) \geq 1 + \frac{\log_2 e + 1}{2e} - \frac{1}{(k+1)^k}
\]
where \(k \) is the number of non-zero coefficients of \(F \).

The argument used in the proof gives the following corollary.

Corollary 1: If \(F \) is a product of different cyclotomic polynomials and \(F \) has at most \(k \) non-zero coefficients then
\[
\ell(F) \leq k^k + 1
\]
where \(\ell(F) \) denotes the sum of absolute values of the coefficients of \(F \).

The omission of the assumption of irreducibility of the polynomial \(F \) in Theorem 1 leads to a more complicated situation. In the general case the present writer, W. Lawton and A. Schinzel [3] obtained the following result.

Theorem 2: If \(g(z) \in \mathbb{Z}[z] \) is a monic polynomial with \(g(0) \neq 0 \) that is not a product a cyclotomic polynomials then
\[
M(g) \geq 1 + \exp_{k+1} \frac{1}{2k^2}
\]
where \(k \) is the number of non-zero coefficients of \(g \).
(Here, \(\exp_{k+1} \) denotes the \((k+1) \)-th iterate of the exponential function).

In the proof we use notation of \(\ell(f) \) and \(M(f) \) as above. Further \(|f| \) denotes the degree of \(f \). For a vector \(x \), \(\ell(x) \) denotes the sum of absolute values of coordinates of \(x \).

Lemma 1: If \(\alpha \) is a non-zero algebraic integer of degree \(n \) which is not a root of unity, and if \(p \) is a prime number, then
\[
\prod_{i,j=1}^{n} (\alpha_i^p - \alpha_j) \geq p^n
\]
Proof : This is Lemma 1 of [2].

Lemma 2 : If \(f(z) \in \mathbb{Z}[z] \) is an irreducible polynomial and

\[
M(f) < 1 + \frac{\log 2e}{2e} \frac{1}{\ell(f)}
\]

then \(f \) is a cyclotomic polynomial or \(f(z) = \pm z \).

Proof : Let \(p \) be a prime number in the interval \(\ell(f) < p < 2\ell(f) \). Suppose that \(f \) is not a cyclotomic polynomial and let \(a_1, a_2, \ldots, a_{\ell(f)} \) be its zeros. Lemma 1 gives

\[
\ell(f)^{\ell(f)} |f|^{\ell(f)} P |f| > \prod_{i=1}^{\ell(f)} |f(a_i)| > p^{|f|}
\]

which is inconsistent with the inequality assumed in the Lemma. This Lemma was also proved with \(\frac{1}{6} \) in place of \(\frac{\log 2e}{2e} \) by C. L. Stewart, M. Mignotte and M. Waldschmidt, see [6].

Lemma 3 : Let \(a \in \mathbb{Z}^N \) be a vector with \(\ell(a) \geq (\text{NB})^N + 1 \) and \(B > 1 \) be a real number. Then there exist vectors \(c \in \mathbb{Z}^N \) and \(r \in \mathbb{Q}^N \) and a rational number \(q \) such that

(i) \(a = r + q c \)
(ii) \(0 \neq \ell(c) < (\text{NB})^N + B^{-1} \)
(iii) \(q > B \cdot \ell(g) \)

(Note that \(\ell(a) > \ell(c) \) so \(a \neq c \)).

Proof : Let \(Q > 1 \) be a real number. By Dirichlet's theorem there exist a rational integer \(t, 1 \leq t \leq Q^N \), such that

\[
\|t \frac{1}{\ell(a)}\| < Q^{-1} \quad \text{for} \quad i = 1, 2, \ldots, N
\]

where \(a = (a_1, a_2, \ldots, a_N) \) and \(\| \| \) denotes the distance to the nearest integer. Take \(Q = \text{NB} \) and define \(q \frac{\ell(a)}{t} \). Define the vector \(c = (c_1, c_2, \ldots, c_N) \) by the conditions

\[
\|t \frac{a_i}{\ell(a)}\| = |t \frac{1}{\ell(a)} - c_i|, \quad c_i \in \mathbb{Z} \quad \text{for} \quad i = 1, 2, \ldots, N
\]
E. DOBROWOLSKI

and the vector \(\mathbf{r} = (r_1, r_2, \ldots, r_N) \) by \(\mathbf{z} = a - q \mathbf{c} \). Then (i) holds trivially. For (ii) note the inequality

\[
|t - \sum |c_i| | = | \sum (t \frac{1}{h(a)} - |c_i|) | < \sum |t \frac{1}{h(a)} - |c_i| | < N q^{-1} < 1.
\]

Thus \(t > 1 \) implies that \(c \neq 0 \). On the other hand

\[
\ell(z) = \sum \frac{a_i}{h(a)} - \sum q |c_i| < \frac{a_i}{h(a)} + q^{-1} < (N)^N + B^{-1}.
\]

Finally

\[
\ell(z) = \sum |a_i - q c_i| = q \sum |t \frac{1}{h(a)} - c_i| < q B^{-1}
\]

which proves (iii).

Proof of Theorem 1: Let \(F(z) = \sum_{i=1}^{k} a_i z^i \in \mathbb{Z}[z] \). If the exponents \(n_1, n_2, \ldots, n_k \) are fixed, then, with each vector \(a = (a_1, a_2, \ldots, a_k) \), we can associate the polynomial \(a(z) = \sum_{i=1}^{k} a_i z^{n_i} \) and conversely. If \(\ell(F) < (k+1)^k \) then the assertion of the theorem holds by Lemma 2. Otherwise, let \(F \in \mathbb{Z}^k \) be the vector corresponding to \(F \). Then

\[
\ell(F) = \ell(F) > k B^k + 1 \quad \text{with} \quad B > 1 + \frac{\log 2 e - 1}{2 e (k+1)^k}.
\]

By Lemma 3 \(F = r + q \mathbf{c} \) with \(r \in \mathbb{Q}^k \) and \(\mathbf{c} \in \mathbb{Z}^k \). Further \(q > B \). \(\ell(z) \) and \(F \neq \mathbf{c} \). If \(F, r, c \) are the corresponding polynomials then \(F \neq c \) implies that \(r \neq 0 \) and \((F, c) = 1 \) because of the irreducibility of \(F \). Hence

\[
\mathbf{F}(a) = \mathbf{F}(a) - (q c(a))
\]

and
ON A QUESTION OF LEHMER

\[\ell(r) \mid F \mid M(F) \mid F \mid > q \mid F \mid \]

So \(M(F) > B \).

Proof of Corollary 1: Assume that \(\ell(F) > k^r + 1 \). Then \(\ell(F) > kB^k + 1 \) with some \(B > 1 \) and, by Lemma 3, \(F = r + q.c \) with \(c(z) \in \mathbb{Z}[z] \) and \(q > B \ell(r) \). Further \(\ell(c) < \ell(F) \) and \(|c| < |F| \). So \(F \) does not divide \(c \) and there exists a cyclotomic polynomial \(f \) dividing \(F \) and not dividing \(c \). Hence

\[r(\alpha) = \sum_{f(\alpha) = 0} (-q.c(\alpha)) \]

and

\[\ell(r) \mid f \mid M(f) \mid F \mid > q \mid f \mid \]

which gives the contradiction \(1 = M(f) > B > 1 \).

References

