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Bull. Soc. Math. France
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ON THE CLASSIFICATION OF QUADRATIC

FORMS OVER SEMI LOCAL RINGS

. by

Ricardo BAEZA

1 . Notations and definitions

Let A be a semi local ring. In this note we shall only consider non
singular quadratic spaces over A. Let W (A) be the Wilt-group of quadratic spa-
ces over A and W(A) be the Wilt-ring of bilinear spaces over A (see [1 ] , [2"]
for the definitions). It is well-known, that W (A) is a W(A)-algebra. We shall
use the notation q '~ 0 to express the fact that the class [q] is 0 in W (A).

.More generally, if q , q are two quadratic spaces with [q ] = [q^] in W (A),
we shall write q ~ q^. Let A(A) be the group of isomorphism classes of quadra-

. 1 ' - ' 1 C. A ^

tic separable algebras over A.» i.e. of algebras A(p (b)) = A © Az with z =z+b,
1+4b € A = groups of unities of A. The product in A(A) is defined by

A^'^a)) o ACp'^b)) == A(p~ l (a+b+4ab))

For example if z 6 A\ then A(A) ^ A^/A^2, and if 4 = 0 , then A (A) '= A /p (A) ,
where p(A) = { a - a|a € A}.
Let Br(A) be the Brauer group of A. Then we have the following usual invariants
for quadratic forms (see [1 ] , [2])

d : W (A) -> Z'/zZ' (dimension)

a : W (A) -^ A ( A ) (Art-invariant)

w : W (A) -> Br(A) (Wilt-invariant)

The Arf-and Wilt-invariants of a quadratic space ( E , q ) are defined as follows :

let C ( E ) be the Clifford algebra of ( E , q ) and D ( E ) be the centralizer of the
sub-algebra C(E) + of elements of degree 0 in C ( E ) . It is easy to see that D ( E )

is a quadratic separable algebra over A. Thus we define a(q) == [D(E)] € A ( A ) . a

is a group homomorphism on the subgroup W (A) of W ( A ) , which consist of the
elements of even dimension, i.e. W (A) = Ker (d ) . If dim E is even, then C ( E )q o
is an Azumaya algebra over A, and we define in this case w ( q ) = [C(E)1 6 Br(A).

If dim E . is odd, then C ( E ) is an Azumaya algebra over A, and we set

"w^) = [c(E) I. For example let us consider the quadratic space <d> ® [1 ,b3 with
•x- -x-

d € A , 1 - 4b € A . Here <d> is the one dimensional bilinear space defined by d
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and [1,b1 is the quadratic space (Ae C Af, q) with q(e) = 1, q(f ) = b,

b ( e , f ) = 1. Then we have

a(<3>0 [1,h]) = [^"'(-b)-)

w(<a>(8) [1,b']) = [(-d, -ID]],

2 2
where (-d, -b-] is the quaternion algebra A © Az © Ae © Aze with z = z-b, e =-d

ze + ez = e.
Let I be the maximal ideal of W(A) of bilinear spaces of even dimension. If

2 € A^we may identify 1^ with ¥^A)^, but if 2 f. A" we have W^A)^ = W ^ ( A ) .

Then it is easy to show that

I^(A)^Ker(a |̂ )

li\(A)^Ker(w^(^)

A long standing question of Pfister is wether the equality 1-^ ^(A)^ =

Ker (w< / ^ ) is true (if A is a field of characteristic 2 the answer is
^A^q ' o

yes(see [5]). In the next section we shall prove a weak version of the equality

above for semi local rings.
Now we introduce another type of invariants, namely the signatures of quadratic

forms. A signatur of the ring A is a ring homomorphism o : W(A) -> Z (= ring of

integers). Let Sig (A) be the set of all signatures of A. The canonical homomor-

phism P : W (A) -.¥(A), which assigns to every quadratic form q its associated

bilinear for^ b , induces a ring homomorphism a = a o P : W^(A) ^ '2 for every

a € Sig(A), such^hat Ker (5) is a W(A)-submodul^f W^(A). Let us denote the

set of such ring homomorphisms 5 : W^(A) -. Z__^y Sig (A). The correspondence

a <-. a = o o P defines a bijection Sig(A) -. Sig (A). Then if can be shown that

W ( A ) , = n Ker (o)
" creSig(A)

W (A) , = Q_ Ker (o)
^ t 5eSig(A)

(see [2]). Now we define the total signature map

s : W (A) -> n ^_
^ o-ciIi(A)

( ^ - = Z ) by s(q) = (5 (q ) ) € _ n ^
o . (7€Sig(A)
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2, A classification theorem for quadratic forms

Combining the maps of section 1 we can define

$ : ¥ (A) -> ^/--, X A(A) X Br(A) X II '2
^ I27S ' îIi(A) o-

$ = (d ,a ,w,s )

Then the following theorem.is a generalization of some results of Elman and Lam

(see [5]).

Theorem. Assume JA/mj ^ 5 for all maximal ideals of A. Then $ is infective if
i~)

and only if I. ¥ (A) is torsion free.
o

This result means, that if I. W (A) is torsion free, quadratic forms over A

are classified by its dimension, Arf-ihvariant, Wilt-invariant and total signature.

The main step in the proof of the theorem is the following.

Lemma. Assume |A/m| ^ 5 for all m € max (A). Let S(A) be the set of elements

^_ A of the form b = d+d2 + S c2 with 1+4b ^ A\ Define B = A(^3"1 (b)) for

some b € S(A). Then if I2 ¥ (A) is torsion free, it follows that I2 W (a) j_s.

torsion free, too.

Let us now use this lemma to prove the theorem.

Let q be an anisotropic quadratic form over A with ^(q) = 0. We want to show

q = 0. Thus let us assume q •/=• 0. Since s(q) = 0, it follows that q € ¥ ( A ) , ,

and since a(q) = 0, we have q € (l ¥ (A) ) . Using (7 .15) , V in [1 1 or (8 .10) ,
A q o u

V in [2"l, we obtain r

q ^ J- <a.> 0 [1 , -b.]
i=l 1 1

with b. € S(A). If r < 2, then comparing invariants on both sides, we conclude
1 4

q ~ 0, which is a contradiction. Assume now r > 2. Taking B = A(p (b)) with

b = b. , it follows that

q 0 B ~ .-̂  <a.><8) [1 , -b. ]

On the other hand 1^ ¥ (B) is still torsion free (see the lemma) and $(q 0 B)=0,B q o
thus we obtain q 0 B ~ 0 by induction on r. Now q was assumed to be anisotro-

pic, thus we get from this last relation

q ^ cp <8> [1 , -b]

for a suitable cp = <c , ..., c >, c. € A (see (4.9), V in [1 ] or (4 .10) , V in [B']).-

Hence
q ^ <c > 0 <1 ,c c > 0 <1 ,c c > 0 [1 ,-b] + cp 0 [1 , -b]

with cp = <d.,...,d > for some d. C A . But
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<1 ,c^ c > 0 <1 ,c^ c > ® [1 , -b] € (l2 ¥ ( A ) ) = 0, thus

q -cp^ 0 [ 1 , -b].

Now we apply again induction to the right side and obtain q ̂  0. This is a contra-
diction. Hence q = 0, proving the theorem.
Corollary. ̂  A is a semi local ring with I ¥ ( A ) = 0, then

w : I , ¥ ( A ) -̂  B ( A )A q o r
is a monomorphism.
This follows from the fact, that I ¥ ( A ) implies Sig(A) = 0, and from the
theorem above. This corollary was proved by Mandelberg in [43.
Remark. Let u(A) be the u-invariant of A, i . e . the maximal dimension of aniso-
tropic quadratic forms over A, which are torsion elements in ¥ ( A ) . Then if
u(A ) < 8, it follows that I. ¥ ( A ) is torsion free. This fact can be seen asa A q o
follows. Take [q ] € ( l . ¥ ( A ) ) and assume that q is anisotropic. SinceA q o "
u ( A ) < 8 implies u( A ) < 6 (see Appendix B in [ 2 ] ) , we have dim q ̂  6 . But
[q] 6 I ¥ ( A ) implies dim q ̂  0 ( 2 ) , a ( q ) = 1 , w ( q ) = 1 , so that we can apply
( 4 . 1 5 ) , V in [ 1 ] or ( 4 . 1 4 ) , V î  [ 2 ] , to conclude that q ̂  0.
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