Mémoires de la S. M. F.

HANS-JÖRG REIFFEN Frobenius' theorem for differential forms on analytic spaces

Mémoires de la S. M. F., tome 38 (1974), p. 69-72 http://www.numdam.org/item?id=MSMF1974 38 69 0>

© Mémoires de la S. M. F., 1974, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journées Géom. analyt. [1972. Poitiers] Bull. Soc. math. France, Mémoire 38, 1974, p. 69-72.

FROBENIUS' THEOREM FOR DIFFERENTIAL FORMS ON ANALYTIC SPACES

Hans - Jörg REIFFEN

Let be $A = \mathbb{C}\{Z\}_{k/\alpha}$, $B = \mathbb{C}\{X\}_{m/\alpha}$, $C = \mathbb{C}\{Y\}_{n/\alpha}$, where $\mathbb{C}\{.\}$ is the ring of all convergent power series. The images of $Z_{\chi}, X_{\mu}, Y_{\nu}$ in A, B, C will be denoted by $Z_{\chi}, \chi_{\mu}, y_{\nu}, \Omega^{1}(A)$ is the finite differential module of A over \mathbb{C} . The module $\prod_{\Lambda}^{r} \Omega^{1}(A)$ of all differential forms of degree r is denoted by $\Omega^{r}(A)$. d : $\Omega^{r}(A) \rightarrow \Omega^{r+1}(A)$ is the natural derivation.

The rings B , C are called a decomposition of A if A is the analytic tensor product of B and C :

$$A = B \otimes C = c \{X,Y\}/c \{X,Y\}.(\mathcal{B},\mathcal{K}).$$

Let M_o , N_o be germs of complex analytic varieties and let $B = \Theta(M_o)$, $C = \Theta(N_o)$ be the (reduced) structure rings of the germs, then we have

$$B \otimes C = \mathcal{O}(M_{O} \times N_{O}).$$

If B , C are a decomposition of A , the module $\Omega^{\mathbf{r}}(A)$ is a direct sum :

$$\Omega^{\mathbf{r}}(\mathbf{A}) = \sum_{\mathbf{p}+\mathbf{q}=\mathbf{r}} \Omega^{\mathbf{p},\mathbf{q}}(\mathbf{B},\mathbf{C}),$$

where $\Omega^{p,q}(B,C)$ is the module generated by

$$\{ dx_{\mu_1} \wedge \dots \wedge dx_{\mu_p} \wedge dy_{\nu_1} \wedge \dots \wedge dy_{\nu_q} : 1 \leq \mu_1 \leq \dots < \mu_p \leq m, 1 \leq \nu_1 < \dots < \nu_q \leq n \}$$

We have $d = d_B + d_C$, where d_B , d_C are the derivations relatively to B resp. C , and we have a differential sequence

$$\circ \to \Omega^{p}(B) \xrightarrow{\varepsilon} \Omega^{p,o}(B,C) \xrightarrow{d_{C}} \Omega^{p,1}(B,C) \to \dots$$

where ϵ is the natural injection. If C is contractible, then this sequence is exact. Il A is reduced, the sequence

$$0 \to B \to A \to \Omega^{0,1}(B,C)$$

is exact, and we have

$$B = d^{-1}(\Omega^{1,0}(B,C)), C = d^{-1}(\Omega^{0,1}(B,C)).$$

In this case the sum $\Omega^{1}(A) = \Omega^{1,0}(B,C) + \Omega^{0,1}(B,C)$ determines the rings B , C .

We now will study the following problem : Given a direct sum $\Omega^1(A) = \Omega' + \Omega''$, can it be obtained from a decomposition of A ?

THEOREM 1. Let A be a domain and let the summands Ω' , Ω'' of the direct sum $\Omega^1(A) = \Omega' + \Omega''$ be generated by elements df, f $\in A$. Then there are rings B, C such that $A = B \otimes C$, $\Omega' = \Omega^{1,0}(B,C), \Omega'' = \Omega^{0,1}(B,C)$.

Proof. We have

$$A = \mathbb{C} \{X, Y\} / \alpha, \Omega' = A \cdot (dx_1, \dots, dx_m),$$
$$\Omega'' = A \cdot (dy_1, \dots, dy_m).$$

If A is regular, then there is an isomorphism $\phi:A\to R$, where R is a ring of power series. By ϕ we have an isomorphism $\phi^1:\Omega^1(A)\to\Omega^1(R)$. We may suppose, that

$$R = \mathbb{C}\{U, V\}, \varphi^{\dagger}(\Omega^{\dagger}) = R.(dU_{1}, \dots, dU_{p}),$$
$$\varphi^{\dagger}(\Omega^{"}) = R.(dV_{1}, \dots, dV_{p}).$$

If φ is given by the substitution of $\Phi = (\Phi', \Phi'')$, $\Phi' = (\Phi'_1, \dots, \Phi'_m)$, $\Phi'' = (\Phi'_1, \dots, \Phi''_n)$, we have $d\Phi' = d\varphi(\mathbf{x}_{\mu}) \in \mathbb{R} \cdot (dU_1, \dots, dU_p)$, $\Phi' \in \mathbb{C} \{U\}$ and $\Phi''_{\nu} \in \mathbb{C} \{V\}$. Then Φ' , Φ'' are biholomorphic mappings of the germs $\mathbb{C}^p_{o}, \mathbb{C}^q_{o}$ onto germs $M_{o} \subset \mathbb{C}^m_{o}$, $N_{o} \subset \mathbb{C}^n_{o}$. We have $\mathbb{A} = \mathcal{O}(\mathbb{M}_{o} \times \mathbb{N}_{o})$.

In the general case A is the structure ring of an irreducible germ K . Let K represent K in an open neighbourhood $W = W' \times W''$, $W' \subset \mathfrak{C}^m$, $W'' \subset \mathfrak{C}^n$, of 0. We use the following notations.

 φ , $\widetilde{\varphi}$ are the structure sheaves of W resp. K , \mathfrak{I} is the ideal sheaf of K , $\widetilde{\Omega}^1$ is the sheaf of differential forms of degree 1 on K. We set $\widetilde{\Omega}'$: = $\widetilde{\sigma}.(\mathrm{dx}_1,\ldots,\mathrm{dx}_m)$, Ω'' : = $\widetilde{\sigma}.(\mathrm{dy}_1,\ldots,\mathrm{dy}_n)$.

We may suppose, that the sum $\tilde{\Omega}^1 = \tilde{\Omega}' + \tilde{\Omega}''$ is direct and that \mathcal{I} is generated by holomorphic functions h_1, \ldots, h_+ on U.

If $w^{\circ} \in K$ is a regular point, we have

$$\mathbb{J}_{w^{\circ}} = \mathscr{O}_{w^{\circ}} \cdot (h_{1}, \dots, h_{t}) = \mathscr{O}_{w^{\circ}} \cdot (f_{1}, \dots, f_{r}, g_{1}, \dots, g_{s}) , f_{g} \in \mathbb{C}[X], g_{\sigma} \in \mathbb{C}[Y] .$$

Setting

$$\begin{split} \mathbf{M} &:= \{ \mathbf{w}^{*} \in \mathbf{W}^{*} : \mathbf{h}_{\tau}^{} (\mathbf{w}^{*}, \mathbf{w}_{m+1}^{\circ}, \dots, \mathbf{w}_{m+n}^{\circ}) = 0 \quad , \quad \tau = 1, \dots, t \}, \\ \mathbf{N} &:= \{ \mathbf{w}^{*} \in \mathbf{W}^{*} : \mathbf{h}_{\tau}^{} (\mathbf{w}_{1}^{\circ}, \dots, \mathbf{w}_{m}^{\circ}, \mathbf{w}^{*}) = 0 \quad , \quad \tau = 1, \dots, t \} \end{split}$$

we get $K_{w^{\circ}} = (M \times N)_{w^{\circ}}$. Then K_{o} must be an irreducible component of $(M \times N)_{o}$.

STORCH has given an algebraic proof for theorem 1 ([3]). By STORCH's proof theorem 1 is valid in the complete case too.

If A is regular, the theorem of FROBENIUS gives a condition for $\,\Omega'\,$ being generated by elements df , f (A :

Let A be regular and let $\Omega^1(A) = \Omega' + \Omega''$ be a direct sum. Then we have : Ω' is generated by elements df, $f \in A$ iff $d\Omega' \subset \Omega^1 \land \Omega'$.-

In the singular case we have :

THEOREM 2. Let A and the direct sum $\Omega^{1}(A) = \Omega' + \Omega''$ satisfy the following conditions: A is a domain, $\Omega^{1}(A)$ is torsionless, there is a contraction vector field v on A such that $v(\Omega') = 0$, emdim $A/v(\Omega^{1}(A)) = \dim \Omega'/\Omega \Omega'$. Then we have: Ω' is generated by elements df, $f \in A$ iff $d\Omega' \subset \Omega^{1} \wedge \Omega'$.-

An A-module M is called torsionless if the natural mapping $M \rightarrow M^{**}$ (M** bidual module) is injective. For a reduced complete intersection the following are equivalent :

- (i) $\Omega^{1}(A)$ is torsionless.
- (ii) The codimension of the singular locus of A is > 2 .
- (iii) A is normal.

A contraction vector field v on A is a vector field on A , which in an appropriate coordinate system Z_1, \ldots, Z_k can be represented by a vector field $\Sigma \underset{\kappa}{m_{\chi}} Z_{\chi} \partial/\partial Z_{\chi}$, $\underset{\kappa}{m_{\chi}} \geqslant 0$ integer. For the embedding dimension of $A_{\chi} := A/v(\Omega^1(A))$ we have the formula emdim $A_{\chi} =$ emdim A - rank dv , where dv is the linear mapping in the tangent space given by the matrix

$$\begin{bmatrix} \mathbf{m}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ & \ddots & \\ & \ddots & & \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{m}_k \end{bmatrix}$$

For the proof of theorem 2, see [2].

We give an application ([1], [2]).

The analytic ring $A = C\{U\}/\alpha$ is called real if we have $\overline{f} := \Sigma \overline{a}_{\alpha} U^{\alpha} \in \mathcal{O}$ for all $f = \Sigma a_{\alpha} U^{\alpha} \in \mathcal{O}$. The morphisms in the category of real analytic rings are given by substitutions of real power series.

If $K_{o} \subset \mathbb{R}_{o}^{K}$ is the germ of a real analytic variety, the ring $A = \mathcal{K}(K_{o})$ of all germs of complex-valued real analytic functions on K_{o} is a real analytic ring. We have $A = \mathcal{O}(\tilde{K}_{o})$, where \tilde{K}_{o} is the complexification of K_{o} .

A direct sum $\Omega^{1}(A) = \Omega' + \Omega''$ is called an almost holomorphic structure on the real analytic ring A if we have $\overline{\Omega'} = \Omega''$. The quasi-local ring $H(A) := d^{-1}(\Omega')$ is called the ring of almost holomorphic functions. In general H(A) is no analytic ring.

The germ $K \subset K^k$ (K = R or C) of a K-analytic variety is called a cone if there is a coordinate system such that the ideal of K in this coordinate system is homogeneous of a type (m_1, \ldots, m_k) , $m_{\lambda} > 0$.

We have ([2]):

 $\underbrace{\text{Let }}_{o} \overset{K}{\subset} \overset{k}{\circ} \underbrace{\text{ be an irreducible germ of a complex analytic variety with an}}_{o} \underbrace{\text{isolated singularity. Then }}_{o} \overset{K}{\underset{o}{\text{ is a complex cone iff }}} \overset{K}{K} \underbrace{\text{ is a real cone.}}_{o}$

Hereby and by theorem 2 we have ([2]):

THEOREM 3. Let $K_{o} \subset \mathbb{R}_{o}^{k}$ be an irreducible real cone with an isolated singularity and let $\Omega^{1}(A)$, $A := \Re$ (K_{o}) , be torsionless. Then for an almost holomorphic structure $\Omega^{1}(A) = \Omega' + \Omega''$ the following are equivalent :

(i) K_o is complex analytic with holomorphic structure ring H(A). (ii) We have $d\Omega' \subset \Omega^1 \land \Omega'$, and there is a contraction vector field v on A such that $v(\Omega') = 0$, rank dv = 1/2 emdim A.-

BIBLIOGRA PHY

- [1] REIFFEN (H.J.) . Fastholomorphe Algebren. Manuscripta Math. 3, 271-287 (1970).
- [2] REIFFEN (H.J.) . Zum Frobenius' Theorem auf Komplexen Raumen. Erscheint demnachst.
- [3] STORCH (U.) . Über das Verhalten der Divisorenklassengruppen normaler Algebren bei nichtausgearteten Erweiterungen und über endliche Derivationen analytischer Algebren. Habilitationsschrift Bochum (1972).

(Texte reçu le 18/VII/1972)

Mathematisches Institut der Ruhruniversität

463 Bochum

Buscheystraße

Bundesrepublik Deutschland