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FROBENIUS* THEOREM FOR DIFFERENTIAL FORMS

ON ANALYTIC SPACES

Hans - J6'rg REIFFEN

Let be A = CJZ} , / , B = (C}x) / , C = c(Y) / , where (K ) . ) is the ring of all
K.//CX^ m/,0- iV/C

convergent power series. The images of Z »X ,Y in A • B , C will be denoted by
1 , , X 1^ v

z ,x ,y .Q (A) is the finite differential module of A over . (T . The module

A Q (A) of all differential forms of degree r is denoted by Q^A).

d : Q (A) -*• Q (A) is the natural derivation,

The rings B , C are called a decomposition of A if A is the analytic

tensor product of B and C :

A = B<8 C = (E{X,Y)/(EJX,Y}.(-8- , ̂  ).

Let M , N be germs of complex analytic varieties and let B = &^(M ) ,
0 0 0

C = 6'(N ) be the (reduced) structure rings of the germs, then we have
A

B 0 C = y(M xN ) .
o o

If B , C are a decomposition of A , the module Q (A) is a direct sum :

^^(A) = Zl̂ ^C),
P4-q=r

where Q (B,c) is the module generated by

{dx A. . .Adx Ady A.. .Acly : 1<|̂  < • . ,<p,<:m,1<^<. . .<v <nj .
H ^p 1 q p q

We have d = d + d , where d , d are the derivations relatively to B resp,
B C B C

C , and we have a differential sequence
d.

0^ Q^B) ̂  ^(B.C) .^^(B^) -^ ... ,

where e is the natural injection. If C is contractible, then this sequence is

exact. II A is reduced, the sequence

0 -.B -A -Q^CB.C)

is exact, and we have

B = d^Q^CB.c))^ ^d-V'^B.c)).

In this case the sum ^ Q \ A ) = Q1 ^(B^) + Q^^ByC) determines the rings B , C .
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¥e now will study the following problem : Given a direct sum Q (A) == Q1+Q" ,

can it be obtained from a decomposition of A ?

THEOREM 1. Let A be a domain and let the summands Q* , Q" of the direct sum

Q (A) = Q'+Q" be generated by elements df , f C A . Then there are rings B , C

such that A = B (g> C , Q' = Q^ '° (B,c) ,Q" = Q^CB.C).-

Eroof. We have

A = (DiX,Y}^,Q' == A.(dx ,...,dx ),i m
Q" = A.(dy^, . . . ,dy^) .

If A is regular, then there is an isomorphism <p : A -> R , where R is a

ring of power series. By y we have an isomorphism <p : Q (A) -> Q (R) . We may

suppose, that

R = CiU.VJ.q)1^1 ) = R<(dU^,...,dU ),

(p1^") = R.(dV^,. . . ,dV ).

If y is given by the substitution of <£ = (^',^") > ^' == (^ l , . . . ,^ ' ) ,

<^" = (^>",...,$") , we have d$* == d<p(x ) € R . ( d U , . . . , d U ), ^ C ( E ( u ( and

<^" C ( C J V J . Then $' , $" are biholomorphic mappings of the germs (S^,®- onto

germs M -c= (E111, N c (£ . W e have A = ^-(M xN )- o o o o o o

In the general case A is the structure ring of an irreducible germ K

Let K represent K in an open neighbourhood W = W* x W" , W' c: (K , W" c C ,

of 0 . W e use the following notations.

^ , g are the structure sheaves of W res p. K , y is the ideal sheaf of
M^

K , Q is the sheaf of differential forms of degree 1 on K. We set

S* : = <y.(dx^, . . . ,dx^) , Q" : = <?.(dy^, . . . ,dy^) .

We may suppose, that the sum Q = 5' + 5" • is direct and that H is generated

by holomorphic functions h ,...,h on U .
l T

If w € K is a regular point, we have

^=^.(h,,...,^)=^.(f^...,f^....^) ,fMix}.g^(Y} .
w w w

Setting

M : = {W € W : \(^<^...><^) - 0 . ^ = 1,. . . , ti ,

N : = {w" € W" : h (w° ,...,w° ,w") = 0 , T = 1, . . . , t fT i m

we get K = (M x N) . Then K must be an irreducible component of (MxN) .-o o o ow w
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STORCH has given an algebraic proof for theorem 1 ( [ 5 ] ) . By STORCH's proof
theorem 1 is valid in the complete case too.

If A is regular, the theorem of FROBENIUS gives a condition for fi* being
generated by elements df , f £ A :

Let A be regular and let a ( A ) = Q' + Q" be a direct sum. Then we have :
Q* is generated by elements df , f € A iff dQ* c: Q /\ Q*.-

In the singular case we have :

THEOREM 2. Let A and the direct sum Q ( A ) == Q' + Q" satisfy the following condi-
tions : A is a domain, Q ( A ) is torsionless, there is a contraction vector field
v ^n, A such that v(Q' ) = 0 , emdim A/v(Q ( A ) ) = dim Q'AQ' . Then we have :

Q' is generated by elements df , f 6 A iff dQ* c: Q A Q* .-

An A-module M is called torsionless if the natural mapping M ->• M** (M**
bidual module) is injective. For a reduced complete intersection the following are
equivalent :

( i ) Q ( A ) is torsionless.
(ii) The codimension of the singular locus of A is > 2
(iii) A is normal.

A contraction vector field v on A is a vector field on A , which in an
appropriate coordinate system Z , . . . , Z can be represented by a vector field

1Z m Z 6/6Z , m ^ 0 integer. For the embedding dimension of A : = A/v(Q ( A ) )H H / H H ' v '
we have the formula emdim A = emdim A - rank dv , where dv is the linear map-
ping in the tangent space given by the matrix

LO ... 0 m^J .

For the proof of theorem 2, see [2].

We give an application ( [ l ] » [2]).

The analytic ring A = C)u}/Ct is called real if we have ?: = £a U" £ ̂. a
for all f = Za U € ̂  . The morphisms in the category of real analytic rings are

given by substitutions of real power series.
i_

If K c: R. is the germ of a real analytic variety, the ring A =fc (K ) of
o o o

all germs of complex—valued real analytic functions on K is a real analytico
ring. We have A = Or (K ) , where K is the complexification of Ko o o
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A direct sum Q (A) = Q* + Q" is called an almost holomorphic structure on

the real analytic ring A if we have 57 = Q" . The quasi-local ring

H(A) : = d (a') is called the ring of almost holomorphic functions. In general

H(A) is no analytic ring.

The germ K c K (K == R or (C) of a K-analytic variety is called a cone

if there is a coordinate system such that the ideal of K in this coordinate sys-

tem is homogeneous of a type (m ,...,m ) , m > 0 .
I w A,

We have ([2]) :
^

Let K c: (E be an irreducible germ of a complex analytic variety with an

isolated singularity. Then K is a complex cone iff K is a real cone.-
o o ———————————

Hereby and by theorem 2 we have ( [ 2 ] ) :

^
THEOREM 5, Let K c R be an irreducible real cone with an isolated singularity—— o o "•""———————————————————————————————————"————M-
and let Q (A) , A : == ̂  (K ) , be torsiojiless. Then for an almost holomorphico ——————t-——— ———————————————————j-——
structure Q (A) = Q* + Q" the following are equivalent :

(i) K is complex analytic with holomorphic structure ring H(A)

(ii) We have dQ* c Q A Q' , and there is a contraction vector fiel
o

(ii) We have dQ* c Q A Q* , and there is a contraction vector field v on
A such that v(Q' ) = 0 , rank dv = 1/2 emdim A.-
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