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Abstract. — Let X and Y be compact Kähler manifolds, and let f : X → Y be a
dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony
for DSH currents, we define a pullback operator f� for currents of bidegrees (p, p) of
finite order on Y (and thus for any current, since Y is compact). This operator has
good properties as may be expected.

Our definition and results are compatible to those of various previous works of Meo,
Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can be
readily extended to the case of meromorphic correspondences.

We give an example of a meromorphic map f and two nonzero positive closed
currents T1, T2 for which f�(T1) = −T2. We use Siu’s decomposition to help further
study on pulling back positive closed currents. Many applications on finding invariant
currents are given.

Résumé (Pull-back de courants par des applications méromorphes)
Soient X et Y des variétés kählériennes compactes, et f : X → Y une application

méromorphe dominante. En nous basant sur un théorème de régularisation de Dinh
et Sibony pour des courants DSH, nous définissons un opérateur pullback f� pour les
courants de bidegré (p, p) d’ordre fini sur Y (et donc pour tout courant, puisque Y est
compact. Cet opérateur a des bonnes propriétés, comme attendu.

Notre définition et nos résultats sont compatibles avec ceux des travaux précédents
de Meo, Russakovskii et Shiffman, Alessandrini et Bassanelli, Dinh et Sibony, et peut
être facilement étendu au cas des correspondances méromorphes.
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518 T. T. TRUONG

Nous donnons un exemple d’application méromorphe f et deux courants fermés
positifs non-nuls T1, T2 pour lesquels f�(T1) = −T2. Nous utilisons la décomposition
de Siu pour faciliter l’étude des courants fermés positifs pullback. Nous donnons une
multitude d’applications autour de la recherche de courants invariants.

1. Introduction

Let X and Y be two compact Kähler manifolds, and let f : X → Y be a
dominant meromorphic map. For a (p, p)-current T on Y , we seek to define a
pullback f

�(T ) which has good properties. Such a pullback operator will be
helpful in complex dynamics, in particular in the problem of finding invariant
closed currents for a selfmap.

We let πX , πY : X × Y → X, Y be the two projections (When X = Y we
denote these maps by π1 and π2). Let Γf ⊂ X × Y be the graph of f , and
let Cf ⊂ Γf be the critical set of πY , i.e., the smallest analytic subvariety of Γf

so that the restriction of πY to Γf − Cf has fibers of dimension dim(X) −
dim(Y ). For a set B ⊂ Y , we define f

−1(B) = πX(π−1
Y

(B)∩Γf ), and for a set
A ⊂ X we define f(A) = πY (π−1

X
(A) ∩ Γf ).

If T is a smooth form on Y , then it is standard to define f
∗(T ) as a current

on X by the formula f
∗(T ) = (πX)∗(π∗Y (T )∧ [Γf ]). This definition descends to

cohomology classes: If T1 and T2 are two closed smooth forms on Y having the
same cohomology classes, then f

∗(T1) and f
∗(T2) have the same cohomology

class in X. This allows us to define a pullback operator on cohomology classes.
These considerations apply equally to continuous forms. When T is an arbitrary
current on Y , we can still define π

∗
Y

(T ) as a current on X × Y . However, in
general it is not known how to define the wedge product of the two currents
π
∗
Y

(T ) and [Γf ]. This is the source of difficulty for defining pullback for a general
current.

For some important classes of currents (positive closed and positive
dd

c-closed currents, DSH currents, for definitions see the next subsection),
there have been works on this topic by Meo [15], Russakovskii and Shiffman
[16], Alessandrini and Bassanelli [1], Dinh and Sibony [10],[11]. We will give
more details on these works later, but here will discuss only some general
ideas used in these papers. Roughly speaking, in the works cited above, to
define pullback of a (p, p) current T , the authors use approximations of T by
sequences of smooth (p, p) forms Tn satisfying certain properties, and then
define f

�(T ) = limn→∞ f
∗(Tn) if the limit exists and is the same for all such

sequences. In order to have such approximations then T must have some
positive property. In these definitions, the resulting pullback of a positive
current is again positive.
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PULL-BACK OF CURRENTS BY MEROMORPHIC MAPS 519

Our idea for pulling back a general (p, p) current T is as follows. Assume that
we have a well-define pullback f

�(T ). Then for any smooth form of complement
bidegree α we should have

�

X

f
�(T ) ∧ α =

�

Y

T ∧ f∗(α).

The wedge product in the integral of the RHS is not well-defined in general.
To define it we adapt the above idea, that is to use smooth approximations of
either T or f∗(α). Fortunately, since Y is compact, any current T is of a finite
order s. Moreover since f∗(α) is a DSH current, we can use the regularization
theorem in [11] to produce approximation by C

s forms Kn(f∗(α)) with desired
properties. Then we define

�

X

f
�(T ) ∧ α = lim

n→∞

�

Y

T ∧Kn(f∗(α)),

if the limit exists and is the same for such good approximations. The details of
this definition will be given in the next subsection. We conclude this subsection
commenting on the main results of this paper:

-Our pullback operator is compatible with the standard definition for con-
tinuous form and with the definitions in the works cited above.

-There are examples of losing positivity for currents of higher bidegrees when
pulled back by meromorphic maps.

-We obtain a natural criterion on pulling back analytic varieties which, com-
bined with Siu’s decomposition, can be used to help further study pullback of
general positive closed currents.

-We can apply the definition to examples having invariant positive closed
currents of higher bidegrees whose supports are contained in pluripolar sets.

1.1. Definitions. — For convenience, let us first recall some facts about cur-
rents. The notations of positive and strongly positive currents in this paper
follow the book [6]. For a current T on Y , let supp(T ) denote the support
of T . Given s ≥ 0, a current T is of order s if it acts continuously on the
space of C

s forms on Y equipped with the usual C
s norm. A positive (p, p)

current T is of order 0. If T is a positive (p, p) current then its mass is defined
as ||T || =< T, ω

dim(Y )−p

Y
>, where ωY is a given Kähler (1, 1) form of Y . If

T is a closed current on Y , we denote by {T} its cohomology class. If V is a
subvariety in Y , we denote by [V ] the current of integration on V , which is a
strongly positive closed current. We use � for weak convergence of currents.

For any p, we define DSH
p(Y ) (see Dinh and Sibony [8]) to be the space

of (p, p) currents T = T1−T2, where Ti are positive currents, such that dd
c
Ti =

Ω+
i
− Ω−

i
with Ω±

i
positive closed. Observe that ||Ω+

i
|| = ||Ω−

i
|| since they are
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520 T. T. TRUONG

cohomologous to each other because dd
c(Ti) is an exact current. Define the

DSH-norm of T as

||T ||DSH := min{||T1|| + ||T2|| + ||Ω+
1 || + ||Ω+

2 ||, Ti, Ωi, as above}.

Using compactness of positive currents, it can be seen that we can find Ti, Ω±
i

which realize ||T ||DSH , hence the minimum on the RHS of the definition
of DSH norm. We say that Tn � T in DSH

p(Z) if Tn weakly converges to T

and ||Tn||DSH is bounded.
Our definition is modelled on the smooth approximations given by Dinh and

Sibony [8]. However, some restrictions should be imposed on the approxima-
tions when we deal with the case of general maps:

1) Since any definition using local approximations will give a positive current
as the resulting pullback of positive currents, in general we need to use global
approximations in order to deal with the cases like the map JX in Section 4.

2) For a general compact Kähler manifold, it is not always possible to ap-
proximate a positive closed current by positive closed smooth forms (see Propo-
sition 2 for an example where even the negative parts of the approximation are
not bounded).

3) The more flexible we allow in approximating currents, the more restric-
tive the maps and currents we can define pullback. For example, we have the
following observation

Lemma 1. — Assume that for any positive closed smooth (p, p) form T and
for every sequence of positive closed smooth forms T

±
n

whose masses ||T±
n
|| are

uniformly bounded and T
+
n
− T

−
n

� T , then f
∗(T+

n
− T

−
n

) � f
∗(T ). Then the

same property holds for any positive closed (p, p) current T .

Proof. — In fact, let T
+
n
−T

−
n

and S
+
n
−S

−
n

be two sequences weakly converging
to a positive closed (p, p) current T , where T

±
n

and S
±
n

are positive closed
smooth (p, p) forms having uniformly bounded masses. Then (T+

n
+ S

−
n

) −
(T−

n
+ S

+
n

) is a sequence weakly converges to 0 with the same property, and
because 0 is a smooth form, we must have f

∗(T+
n

+S
−
n

)− f
∗(T−

n
+S

+
n

) weakly
converges to 0 by assumption. Hence f

∗(T+
n
−T

−
n

) and f
∗(S+

n
−S

−
n

) converges
to the same limit.

Roughly speaking, under the conditions of Lemma 1 then all positive closed
currents can be pulled back. However, this is not true in general (see Example
2). We will restrict to use only good approximation schemes, defined as follows

Definition 1. — Let Y be a compact Kähler manifold. Let s ≥ 0 be an inte-
ger. We define a good approximation scheme by C

s forms for DSH currents
on Y to be an assignment that for a DSH current T gives two sequences K

±
n

(T )
(here n = 1, 2, . . . ) where K

±
n

(T ) are C
s forms of the same bidegrees as T , so
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that Kn(T ) = K
+
n

(T ) −K
−
n

(T ) weakly converges to T , and moreover the fol-
lowing properties are satisfied:

1) Boundedness: The DSH norms of K
±
n

(T ) are uniformly bounded.
2) Positivity: If T is positive then K

±
n

(T ) are positive, and ||K±
n

(T )|| is
uniformly bounded with respect to n.

3) Closedness: If T is positive closed then K
±
n

(T ) are positive closed.
4) Continuity: If U ⊂ Y is an open set so that T |U is a continuous form

then K
±
n

(T ) converges locally uniformly on U .
5) Additivity: If T1 and T2 are two DSH

p currents, then K
±
n

(T1 + T2) =
K

±
n

(T1) + K
±
n

(T2).
6) Commutativity: If T and S are DSH currents with complements bidegrees

then

lim
n→∞

[

�

Y

Kn(T ) ∧ S −
�

Y

T ∧Kn(S)] = 0.

7) Compatibility with the differentials: dd
c
K

±
n

(T ) = K
±
n

(dd
c
T ).

8) Condition on support: The support of Kn(T ) converges to the support
of T . By this we mean that if U is an open neighborhood of supp(T ), then there
is n0 so that when n ≥ n0 then supp(Kn(T )) is contained in U . Moreover, the
number n0 can be chosen so that it depends only on supp(T ) and U but not on
the current T .

Now we give the definition of pullback operator on DSH
p(Y ) currents

Definition 2. — Let T be a DSH
p(Y ) current on Y . We say that f

�(T ) is
well-defined if there is a number s ≥ 0 and a current S on X so that

lim
n→∞

f
∗(Kn(T )) = S,

for any good approximation scheme by C
s+2 forms K

±
n

. Then we write f
�(T ) =

S.

By the commutativity property of good approximation schemes by C
s forms,

if T is DSH so that f
�(T ) = S is well-defined then for any smooth form α we

have
�

X

f
�(T ) ∧ α = lim

n→∞

�

Y

T ∧Kn(f∗(α)).

This equality helps to extend Definition 2 to any (p, p) current T . Recall that
since Y is a compact manifold, any current on Y is of finite order.
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Definition 3. — Let T be a (p, p) current of order s0. We say that f
�(T ) is

well-defined if there is a number s ≥ s0 and a current S on X so that

lim
n→

�

Y

T ∧Kn(f∗(α) =

�

X

S ∧ α,

for any smooth form α on X and any good approximation scheme by C
s+2

forms. Then we write f
�(T ) = S.

1.2. Results. — The operator f
� in Definitions 2 and 3 has the following prop-

erties:

Lemma 2. — i) If T is a continuous (p, p) form (not necessarily DSH) then
f

�(T ) is well-defined and coincides with the standard definition f
∗(T ) :=

(π1)∗(π∗2(T ) ∧ [Γf ]).
ii) f

� is closed under linear combinations: If f
�(T1) and f

�(T2) are well-
defined, then so is f

�(a1T1 + a2T2) for any complex numbers a1 and a2. More-
over f

�(a1T1 + a2T2) = a1f
�(T1) + a2f

�(T2).
iii) If T is DSH and f

�(T ) is well-defined, then the support of f
�(T ) is

contained in f
−1(supp(T )).

iv) If T is closed then f
�(T ) is also closed, and in cohomology {f �(T )} =

f
∗{T}.

For a smooth form, we can also define its pullback by using any desingular-
ization of the graph of the map. We have an analog result

Theorem 4. — Let �Γf be a desingularization of Γf , and let π : �Γf → X and
g : �Γf → Y be the induced maps of πX |Γf and πY |Γf . Thus �Γf is a compact
Kähler manifold, π is a modification, and g is a surjective holomorphic map so
that f = g ◦ π

−1. Let T be a (p, p) current on Y . If g
�(T ) is well-defined, then

f
�(T ) is also well-defined. Moreover f

�(T ) = π∗(g�(T )).

The following result is a restatement of a result of Dinh and Sibony (Section 5
in [10]):

Theorem 5. — Let θ be a smooth function on X × Y so that supp(θ) ∩ Γf ⊂
Γf − Cf . Then for any DSH

p current T on Y , (πX)∗(θ[Γf ] ∧ π
∗
Y

(T )) is well-
defined (see also [15]).

The following result is a generalization of a result proved by Dinh and Sibony
in the case of projective spaces (see Proposition 5.2.4 in [11])
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Theorem 6. — Let X and Y be two compact Kähler manifolds. Let f : X →
Y be a dominant meromorphic map. Assume that πX( Cf ) is of codimension
≥ p. Then f

�(T ) is well-defined for any positive closed (p, p) current T on Y .
Moreover the following continuity holds: if Tj are positive closed (p, p) currents
weakly converging to T then f

�(Tj) weakly converges to f
�(T ).

Example 1: In [3], Bedford and Kim studied the linear quasi-automorphisms.
These are birational selfmaps f of rational 3-manifolds X so that both f and
f
−1 have no exceptional hypersurfaces. Hence we can apply Theorem 6 to

pullback and pushforward any positive closed (2, 2) current on X. The map JX

in Section 4 is also a quasi-automorphism.
Below is a more general result, dealing with the case when the current T is

good (say continuous) outside a closed set A whose preimage is not big.

Theorem 7. — Let X and Y be two compact Kähler manifolds. Let f : X →
Y be a dominant meromorphic map. Let A ⊂ Y be a closed subset so that
f
−1(A) ∩ πX( Cf ) ⊂ V where V is an analytic subvariety of X having codim
≥ p. If T is a positive closed (p, p)-current on Y which is continuous on Y −A,
then f

�(T ) is well-defined. Moreover, the following continuity holds: If T
±
n

are
positive closed continuous (p, p) forms so that ||T±

n
|| are uniformly bounded,

T
+
n
− T

−
n

� T , and T
±
n

locally uniformly converges on Y − A, then f
∗(T+

n
−

T
−
n

) � f
�(T ).

When πX( Cf ) has codimension ≥ p, then we can choose A = Y in Theo-
rem 7, and thus recover Theorem 6.

As a consequence, we have the following result on pulling back of varieties:

Corollary 1. — Let f, X, Y be as in Theorem 7. Let V be an analytic variety
of Y of codim p. Assume that f

−1(V ) has codim ≥ p. Then f
�[V ] is well-defined.

The assumptions in Corollary 1 are optimal, as can be seen from
Example 2: Let Y = a compact Kähler 3-fold, and let L0 be an irreducible

smooth curve in Y . Let π : X → Y be the blowup of Y along L0. If L is
an irreducible curve in Y which does not coincide with L0 then π

−1(L) has
dimension 1, hence π

�[L] is well-defined. In contrast, it is expected that π
�[L0]

is not well-defined. One explanation (which is communicated to us by Professor
Tien Cuong Dinh, see also the introduction in [1]) is that if π

�[L0] was to be
defined, then it should be a special (2, 2) current on the hypersurface π

−1(L0).
However, we have too many (2, 2) currents on that hypersurface to point out a
special one.

We have the following example of losing positivity
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Corollary 2. — Let X be the blowup of P3 along 4 points e0 = [1 : 0 : 0 :
0], e1 = [0 : 1 : 0 : 0], e2 = [0 : 0 : 1 : 0], e3 = [0 : 0 : 0 : 1]. Let J : P3 → P3 be
the Cremona map J [x0 : x1 : x2 : x3] = [1/x0 : 1/x1 : 1/x2 : 1/x3], and let JX

be the lifting of J to X.
For 0 ≤ i �= j ≤ 3, let Σi,j be the line in P3 consisting of points [x0 : x1 :

x2 : x3] where xi = xj = 0. Let �Σi,j be the strict transform of Σi,j in X.
For any positive closed (2, 2) current T , J

�

X
(T ) is well-defined. Moreover,

J
�

X
([fiΣ0,1]) = −[fiΣ2,3] and J

�

X
([fiΣ2,3]) = −[fiΣ0,1].

Remark 1. — The map JX was given in Example 2.5 page 33 in [14] where
the author showed that the map J

∗
X

: H
2,2(X) → H

2,2(X) does not preserve
the cone of cohomology classes generated by positive closed (2, 2) currents.

In Lemma 10, it will be shown that (J�

X
)2(T ) = T for any positive closed

(2, 2) current T . Thus this example gives positive support to an open question
posed in Section 6.

We conclude this subsection discussing pullback of a positive closed (p, p)
current T in general. For c > 0 define Ec(T ) = {y ∈ Y : ν(T, y) ≥ c}, where
ν(T, y) is the Lelong number of T at y (see [6] for definition). Then by the
semi-continuity theorem of Siu (see [18], and also [6]), Ec(T ) is an analytic
subvariety of Y of codimension ≥ p. Moreover, we have a decomposition

T = R +
∞�

j=1

λj [Vj ],

where λj ≥ 0, Vj is an irreducible analytic variety of codimension p and is
contained in E(T ) = ∪c>0Ec(T ), and R is a positive closed current such that
Ec(R) has codimension > p for all c > 0. Note that E(T ) = the union of Ec(T )’s
for rational numbers c > 0, hence is a (at most) countable union of analytic
varieties.

Theorem 8. — Notations are as above. Assume that for any irreducible va-
riety V of codimension p contained in E(T ), then f

−1(V ) has codimension
≥ p. Then f

�(
�∞

j=1 λj [Vj ]) is well-defined and is equal to
�∞

j=1 λjf
�[Vj ]. Hence

f
�(T ) is well-defined iff f

�(R) is well-defined.

1.3. Compatibility with previous works. — In this subsection we compare our
results with the results in previous papers.

The pullback of positive closed (1, 1) currents was defined by Meo [15] for
finite holomorphic maps between complex manifolds (not necessarily compact
or Kähler). Our definition coincides with his in the case of compact Kähler
manifolds
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Corollary 3. — Let X and Y be two compact Kähler manifolds. Let f : X →
Y be a dominant meromorphic map. Let T be a positive closed (1, 1)-current
on Y . Then f

�(T ) is well-defined, and coincides with the usual definition.

Proof. — Since πX( Cf ) is a proper analytic subvariety of X, it has codimension
≥ 1, thus we can apply Theorem 6.

The pullback of positive dd
c closed (1, 1) currents were defined by Alessan-

drini - Bassanel [1] and Dinh -Sibony [10] under several contexts. Our definition
coincides with theirs in the case of compact Kähler manifolds

Corollary 4. — Let X and Y be two compact Kähler manifolds. Let f : X →
Y be a dominant meromorphic map. Let T be a positive dd

c-closed (1, 1)-current
on Y . Then f

�(T ) is well-defined, and coincides with the usual definition.

Proof. — Consider a desingulariztion �Γf and π : �Γf → X and g : �Γf → Y as
in Theorem 4. Then it suffices to show that g

�(T ) is well-defined. This later
follows from the proof of Theorem 5.5 in [10].

For a map f : Pk → Pk, Russakovskii and Shiffman [16] defined the pullback
of a linear subspace V of codimension p in Pk for which π

−1
2 (V ) ∩ Γf has

codimension ≥ p in Γf . It can be easily seen that this is a special case of
Corollary 1. In the same paper, we also find a definition for pullback of a
measure having no mass on πY ( Cf ). Our definition coincides with theirs

Theorem 9. — Let X and Y be two compact Kähler manifolds. Let f : X →
Y be a dominant meromorphic map. Let T be a positive measure having no mass
on πY ( Cf ). Then f

�(T ) is well-defined, and coincides with the usual definition.
Moreover, if T has no mass on proper analytic subvarieties of Y , then f

�(T )
has no mass on proper analytic subvarieties of X.

1.4. Applications. — We now discuss the problem of finding an invariant cur-
rent of a dominant meromorphic self-map f . Let f : X → X be a dominant
meromorphic selfmap of a compact Kähler manifold X of dimension k. De-
fine by rp(f) the spectral radius of f

∗ : H
p,p(X) → H

p,p(X). Then the p-th
dynamical degree of f is defined as follows:

δp(f) = lim
n→∞

(rp(f
n))1/n

,

where f
n = f ◦ f ◦ · · · ◦ f is the n-th iteration of f . When p = dim(X) then

δp(f) is the topological degree of f .
The map f is called p-algebraic stable (see, for example [11]) if (f∗)n = (fn)∗

as linear maps on H
p,p(X) for all n = 1, 2, . . . . When this condition is satisfied,

it follows that δp(f) = rp(f), thus helps in determining the p-th dynamical
degree of f .
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There is also the related condition of p-analytic stable (see [11]) which re-
quires that

1) (fn)�(T ) is well-defined for any positive closed (p, p) current T and any
n ≥ 1.

2) Moreover, (fn)�(T ) = (f �)n(T ) for any positive closed (p, p) current T

and any n ≥ 2.
Since H

p,p(X) is generated by classes of positive closed smooth (p, p) forms,
p-analytic stability implies p-algebraic stability. In fact, if π1( Cf ) has codimen-
sion ≥ p, then f is p-analytic stable iff it is p-algebraic stable and satisfies
condition 1) above so that (f �)n(α) is positive closed for any positive closed
smooth (p, p) form and for any n ≥ 1. Hence 1-algebraic stability is the same
as 1-analytic stability.

For any map f then f is k-algebraic stable where k =dimension of X. If f

is holomorphic then it is p-algebraic stable for any p. We have the following
result

Lemma 3. — Let X be a compact Kahler manifold with a Kahler form ωX

and f : X → X be a dominant meromorphic map. Assume that π1( Cf ) has
codimension ≥ p and f is p-analytic stable. Let 0 �= θ be an eigenvector with
respect to the eigenvalue λ = rp(f) the spectral radius of the linear map f

∗ :
H

p,p(X) → H
p,p(X). Assume moreover that ||(fn)∗(ωp

X
)|| ∼ λ

n as n → ∞.
Then there is a closed (p, p) current T which is a difference of two positive
closed (p, p) currents satisfying {T} = θ and f

�(T ) = λT .

Since f is p-analytic stable, the condition on ||(fn)∗(ωp

X
)|| can be easily

checked by looking at the Jordan form for f
∗ (see e.g., [14]). Variants of this

condition are also available. Lemma 3 generalizes the results for the standard
case p = 1 and for the case X = Pk in Dinh and Sibony [11]. We suspect that
the pseudo-automorphism in [3] are 2-analytic stable, the latter may probably
be checked using the method of the proof of Lemma 10. If so, Lemma 3 can
be applied to these maps to produce invariant closed (2, 2) currents. However,
these invariant currents may not be unique, since for the maps in [3] the first and
second dynamical degrees are the same. The map JX in Section 4 has invariant
(2, 2) current fiΣ0,1−fiΣ2,3 which is not positive. The relation between p-algebraic
and p-analytic stabilities to the problem of finding invariant currents will be
discussed more in Sections 5 and 6.

Let us continue with an application concerning invariant positive closed cur-
rents whose supports are contained in pluripolar sets.

Corollary 5. — Let f1 : Pk1 → Pk1 and f2 : Pk2 → Pk2 be dominant ratio-
nal maps not 1-algebraic stable, of degrees d1 and d2 respectively. Then there
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is a nonzero positive closed (2, 2) current T on Pk1 × Pk2 with the following
properties:

1) f
�(T ) is well-defined and moreover f

�(T ) = d1d2T , here f = f1 × f2.
2) The support of T is pluripolar.

The existence of Green currents T1 and T2 for f1 and f2 were proved by
Sibony [17] (see also [5]). The current T is in fact the product T1 × T2. Its
support is contained in a countable union of analytic varieties of codimension
2 in Pk1 × Pk2 . The subtlety in proving the Conclusion 1) of Corollary 5 lies in
the fact that for general choices of f1 and f2 it is not clear that we can pullback
every positive closed (2, 2) currents, and even if we can do so, we may not have
the continuity on pullback like in the case of (1, 1) currents.

Corollary 6. — Let X be a compact Kähler manifold of dimension k, and
let f : X → X be a dominant meromorphic map. Assume that f has large topo-
logical degree, i.e., δk(f) > δk−1(f). Then f has an invariant positive measure
µ, i.e., f

∗(µ) = δk(f)µ.

The result of Corollary 6 belongs to Guedj [13]. Our proof here is slightly
different from his proof in that we don’t need to show that the measure µ has
no mass on proper analytic subvarieties.

Corollary 7. — Let X be a compact Kähler manifold, and let f : X → X

be a surjective holomorphic map. Let λ be a real eigenvalue of f
∗ : H

p,p(X)→
H

p,p(X), and let 0 �= θλ ∈ H
p,p(X) be an eigenvector with eigenvalue λ. As-

sume moreover that |λ| > δp−1(f). Then there is a closed current T of order 2
with {T} = θλ so that f

�(T ) is well-defined, and moreover f
�(T ) = λT .

Example 3: Let X = P2
w1
× P2

w2
× P2

w3
, and let f : X → X to be

f(w1, w2, w3) = (P2(w2), P3(w3), P1(w1)) where P1, P2, P3 : P2 → P2 are sur-
jective holomorphic maps of degrees ≥ 2, and not all of them are submersions
(For example, we can choose one of them to be P [z0 : z1 : z2] = [zd

0 : z
d

1 : z
d

2 ]
for some integer d ≥ 2). Theorem 7 can be applied to find invariant currents
for f .
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The rest of this paper is organized as follows: In Section 2 we collect some
simple but helpful properties of positive currents. Then we consider the pull-
back operator in Section 3. In Section 4 we explore the properties of the map
JX . We will also give results concerning the operator f

o on positive closed
currents defined by Dinh-Nguyen [7] (see Proposition 1), and concerning the
regularization results of Dinh-Sibony [8] (see Proposition 2). In Section 5 we
consider invariant currents. We give examples of good approximation schemes
and discuss some open questions in the last section.

2. Some preliminary results

In this section, we collect some simple but useful facts about positive cur-
rents. All the results presented are well known, but we include the proofs for the
convenience of the readers. Through out this section, let Z be a compact Kähler
manifold of dimension k, with a Kähler (1, 1) form ωZ . Let π1, π2 : Z ×Z → Z

be the projections, and let ∆Z ⊂ Z × Z be the diagonal.

Lemma 4. — Let T be a continuous real (p, p) form on Z. Then there exists a
constant A > 0 independent of T so that

A||T ||L∞ω
p

Z
± T

are both strongly positive forms.

Proof. — Since Z is a compact Kähler manifold, there is a finite covering of Z

by open sets U ’s each of them is biholomorphic to a ball in Ck. Using a partition
of unity for this covering, we reduce the problem to the case where T is a
continuous real (p, p) form compactly supported in a ball in Ck. Since T is a
real form, we can write

T =
�

|I|=|J|=p

(fI,JdzI ∧ dzJ + fI,JdzI ∧ dzJ),
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where fI,J are bounded continuous complex-valued functions. By Lemma 1.4
page 130 in [6], dzI ∧dzJ can be represented as a linear combination of strongly
positive forms with complex coefficients. Let us write

dzI ∧ dzJ =
�

i∈ A

αI,J,iϕi,

where A is a finite set independent of I and J , ϕi are fixed strongly positive
(p, p) forms, and αI,J,i are complex numbers. Then

dzI ∧ dzJ =
�

i∈ A

αI,J,iϕi.

Hence T can be represented in the form

T =
�

|I|=|J|=p

�

i∈ A

fI,J,iϕi,

where fI,J,i = αI,J,ifI,J + αI,J,ifI,J are bounded continuous real-valued func-
tions satisfying ||fI,J,i||L∞ ≤ A||T ||L∞ for some constant A > 0 independent
of T . Each of the forms ϕi can be bound by a multiplicity of ω

p

Z
, hence we can

find a constant A > 0 independent of T so that A||T ||L∞ω
p

Z
± T are strongly

positive forms.

Lemma 5. — Let S be a strongly positive current on Z, and let T be a contin-
uous positive (p, p) form. Then S ∧ T is well-defined and is a positive current.

Similarly, if S is a positive current on Z, and T is a continuous strongly
positive (p, p) form then S ∧ T is well-defined and is a positive current.

Proof. — Since S is a strongly positive current on Z, it is of order zero, hence
can be wedged with a continuous form. Thus S ∧ T is well-defined. Now we
show that S ∧ T is a positive current.

We can approximate T uniformly by smooth (p, p) forms Tn. Then use
Lemma 4, there is a constant A > 0 independent of n so that A||T−Tn||L∞ω

p

Z
±

(T − Tn) are strongly positive. Since T is a positive form, this implies that
Tn + A||T − Tn||L∞ω

p

Z
are positive for all n. Since the current S acts contin-

uously on C
0 forms, and we chose Tn to converge uniformly to T , we have

that

S ∧ T = lim
n→∞

S ∧ Tn = lim
n→∞

S ∧ (Tn + A||T − Tn||L∞ω
p

Z
).

Since S is strongly positive and Tn + A||T − Tn||L∞ω
p

Z
are positive smooth

forms, S ∧ (Tn + A||T − Tn||L∞ω
p

Z
) are positive currents. Thus S ∧ T is the

weak limit of a sequence of positive currents, hence itself a positive current.
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Lemma 6. — Let T be a positive closed (p, p) current on Z. Then there is
a closed smooth (p, p) form θ on Z so that {θ} = {T} in cohomology, and
moreover

−A||T ||ωp

Z
≤ θ ≤ A||T ||ωp

Z
.

Here A > 0 is independent of T .

Proof. — Let π1, π2 : Z × Z → Z be the two projections, and let ∆Z be
the diagonal of Z. Let ∆ be a closed smooth form on Z × Z representing the
cohomology class of [∆Z ]. If we define

θ = (π1)∗(π
∗
2(T ) ∧∆),

it is a smooth (p, p) current on Z having the same cohomology class as T . Since
Z is compact, so is Z × Z, and by Lemma 4 there is a constant A > 0 so that
A(π∗1ωZ + π

∗
2ωZ)dim(Z) ± ∆ are strongly positive forms. Since T is a positive

current, by Lemma 5 it follows that

θ = (π1)∗(π
∗
2(T ) ∧∆) ≤ A(π1)∗((π

∗
1ωZ + π

∗
2ωZ)dim(Z) ∧ π

∗
2(T )) = A||T ||ωp

Z
.

Similarly, we have also θ ≥ −A||T ||ωp

Z
.

Lemma 7. — Let Tj be a sequence of DSH
p(Z) currents converging in DSH

to a current T . Then for any continuous (k − p, k − p) form S we have

lim
j→∞

�

Z

Tj ∧ S =

�

Z

T ∧ S.

Proof. — By assumption, Tj weakly converges to T in the sense of currents,
and moreover we can write Tj = T

+
j
− T

−
j

and T = T
+ − T

− where T
±
j

and T
± are positive currents, whose norms are uniformly bounded. Since S

is a continuous form, we can find a sequence of smooth forms Sn uniformly
converging to S, i.e., we can choose Sn smooth forms so that

− 1

n
ω

k−p

Z
≤ S − Sn ≤

1

n
ω

k−p

Z
.

Hence by Lemma 5, for any j and n

− 1

n
(||T+

j
|| + ||T−

j
||) +

�

Z

Tj ∧ Sn ≤
�

Z

Tj ∧ S ≤ 1

n
(||T+

j
|| + ||T−

j
||) +

�

Z

Tj ∧ Sn.

Hence given a number n, letting j → ∞, using the fact that Tj � T , Sn is
smooth, and ||Tj ||DSH is uniformly bounded

−A

n
+

�

Z

T ∧ Sn ≤ lim inf
j→∞

�

Z

Tj ∧ S ≤ lim sup
j→∞

�

Z

Tj ∧ S ≤ A

n
+

�

Z

T ∧ Sn,
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where A > 0 is independent of n. Since T is a difference of two positive currents,
it is a current of order zero, hence acting continuously on the space of continuous
forms equipped with the sup norm. Since Sn converges uniformly to S, we have

lim
n→∞

�

Z

T ∧ Sn =

�

Z

T ∧ S.

Combining this and the previous inequalities, letting n→∞, we obtain

lim
j→∞

�

Z

Tj ∧ S =

�

Z

T ∧ S,

as wanted.

3. Pull-back of DSH currents

First, we show the good properties of the operator f
�

Proof. — (Of Lemma 2) Let Kn = K
+
n
−K

−
n

be a good approximation scheme
by C

2 forms.
i) If T is a continuous form, then K

±
n

(T ) uniformly converges on Y . Hence
there are continuous forms T

+
, T

− and constants �n decreasing to 0, so that
T = T

+ − T
− and −�nω

p

Y
≤ K

±
n

(T )− T
± ≤ �nω

p

Y
. Then

−�nf
∗(ωp

Y
) ≤ f

∗(K±
n

(T ))− f
∗(T±) ≤ �nf

∗(ωp

Y
),

and thus f
∗(K±

n
(T )) weakly converges to f

∗(T±). Therefore, f
∗(K+

n
(T ) −

K
−
n

(T )) weakly converges to f
∗(T+)−f

∗(T−) = f
∗(T ). This shows that f

�(T )
is well-defined and coincides with the usual definition.

ii) Follows easily from the definition.
iii) If T is DSH, the result follows from the definition and the fact that

support of Kn(T ) converges to support of T .
iv) First we show that if T = T1+dd

c
T2 is closed, where T1 is a (p, p) current

and T2 is a (p − 1, p − 1) current both of order 0, and f
�(T ) is well-defined,

then f
�(T ) is closed.

From the assumption, it follows that T1 is closed. To show that f
�(T ) is

closed, it suffices to show that if α is a d-exact (dim(X) − p, dim(X) − p)
smooth form, then

�

X

f
�(T ) ∧ α = 0.

In fact, by definition
�

X

f
�(T ) ∧ α = lim

n→∞

�

Y

T1 ∧Kn(f∗(α)) + T2 ∧ dd
c
Kn(f∗(α)).

By the dd
c lemma, there is a smooth form β so that α = dd

c(β). Then by
the compatibility with differentials of good approximation schemes, we have
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Kn(f∗(α)) = Kn(f∗(dd
c
β)) = dd

c
Kn(f∗(β)) is d-exact. Thus each of the two

integrals in the RHS of the above equality is 0, independent of n. Hence the
limit is 0 as well.

Now we show that {f �(T )} = f
∗{T}. Let θ be a smooth closed form so that

{T} = {θ}. Then there is a current R so that T − θ = dd
c(R). If α is a closed

smooth form then�

X

(f �(T )− f
∗(θ)) ∧ α = lim

n→∞

�

Y

(T − θ) ∧Kn(f∗(α))

= lim
n→∞

�

Y

dd
c(R) ∧Kn(f∗(α))

= lim
n→∞

�

Y

R ∧Kn(f∗(dd
c
α)) = 0,

since dd
c(α) = 0. This shows that {f �(T )} = {f∗(θ)}, and the latter is f

∗{T}
by definition.

Proof of Theorem 4. — Assume that g
�(T ) is well-defined with respect to num-

ber s in Definition 3. Let α be a smooth form on X and Kn a good approx-
imation scheme by C

s+2 forms on Y . Then f∗(α) = g∗(π∗α). Since π
∗(α) is

smooth on �Γf and g
�(T ) is well-defined, we have

lim
n→∞

�

Y

T ∧Kn(f∗α) = lim
n→∞

�

Y

T ∧Kn(g∗π
∗
α)

=

�

‹Γf

g
�(T ) ∧ π

∗
α =

�

X

π∗g
�(T ) ∧ α,

as wanted.

Now we give the proofs of Theorems 5, 6, 7, 8 and 9.

Proof of Theorem 5. — In this proof we use the value s = 0 in Definitions 2
and 3. The proof is the same as the proof of Lemma 3.3 in [10] using the
following observations:

i) Lemma 3.1 in [10] applies for C
2 forms Tn. Hence Lemma 3.3 in [10]

applies to C
2 forms Tn.

ii) Let us choose two difference good approximation schemes by C
2 forms

Kn = K
+
n
−K

−
n

and Hn = H
+
n
− H

−
n

. Then the sequences K
+
n

(T ) + H
−
n

(T )
and K

−
n

(T ) + H
+
n

(T ) converges in DSH to a same positive current.
iii) Apply Lemma 3.3 in [10] to the sequences K

+
n

(T )+H
−
n

(T ) and K
−
n

(T )+
H

+
n

(T ), we conclude that in Γf − Cf , the sequences f
∗(K+

n
(T )) + f

∗(H−
n

(T ))
and f

∗(K−
n

(T )) + f
∗(H+

n
(T )) converges to a same current. Thus we have that

the sequences f
∗(K+

n
(T )−K

−
n

(T )) and f
∗(H+

n
(T )−H

−
n

(T )) converges in Γf −
Cf to a same current.
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Proof of Theorem 6. — We follow the proof of Proposition 5.2.4 in [11] with
some appropriate modifications. Let Kn = K

+
n
−K

−
n

be a good approximation
scheme by C

2 forms.
a) First we show that f

�(T ) is well-defined for any positive closed (p, p)
current T .

Let θ be a smooth closed (p, p) form so that {θ} = {T} in cohomology
classes. Since T = (T − θ)+ θ, by Lemma 2, to show that f

�(T ) is well-defined,
it is enough to show that f

�(T − θ) is well-defined. By dd
c lemma (see also

[9]), there is a DSH current R so that T − θ = dd
c(R). Hence to show that

f
�(T − θ) is well-defined, it is enough to show that f

�(R) is well-defined.
We can write Kn(R) = R1,n − R2,n, where Ri,n are positive (p − 1, p − 1)

forms of class C
2, and dd

c(Ri,n) = Ω+
i,n
− Ω−

i,n
, where Ω±

i,n
are positive closed

C
2 (p, p) forms. Moreover, ||Ri,n|| and ||Ω±

i,n
|| are uniformly bounded.

i) First we show that ||f∗(Ri,n)|| are uniformly bounded. Theorem 5 implies
that f

∗(Ri,n) converges in X − πX( Cf ) to a current. Since the codimension
of πX( Cf ) is ≥ p, it is weakly p-pseudoconvex (see Lemma 5.2.2 in [11]).
Hence there exists a smooth (dim(X)−p, dim(X)−p) form Θ defined on X so
that dd

cΘ ≥ 2ω
dim(X)−p+1
X

on πX( Cf ). We can choose a small neighborhood
V of πX( Cf ) so that dd

cΘ ≥ ω
dim(X)−p+1
X

on V . Since Ri,n is a positive C
2

form, f
∗(Ri,n) is well defined and is a positive current. Since f

∗(Ri,n) converges
in X−πX( Cf ) to a current, it follows that ||f∗(Ri,n)||X−V is bounded. Because

||f∗(Ri,n)||X = ||f∗(Ri,n)||X−V + ||f∗(Ri,n)||V ,

to show that ||f∗(Ri,n)||X is bounded, it is enough to estimate ||f∗(Ri,n)||V .
We have

||f∗(Ri,n)||V =

�

V

f
∗(Ri,n) ∧ ω

dim(X)−p+1
X

≤
�

V

f
∗(Ri,n) ∧ dd

c(Θ)

=

�

X

f
∗(Ri,n) ∧ dd

c(Θ)−
�

X−V

f
∗(Ri,n) ∧ dd

c(Θ).

The term

|
�

X−V

f
∗(Ri,n) ∧ dd

c(Θ)|

can be bound by ||f∗(Ri,n)||X−V , and thus is bounded. We estimate the other
term: Since X is compact

|
�

X

f
∗(Ri,n) ∧ dd

c(Θ)| = |
�

X

dd
c
f
∗(Ri,n) ∧Θ| = |

�

X

f
∗(dd

c
Ri,n) ∧Θ|

= |
�

X

f
∗(Ω+

i,n
− Ω−

i,n
) ∧Θ|.
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Since Ω±
i,n

are positive closed C
2 forms, f

∗(Ω±
i,n

) are well-defined and are pos-
itive closed currents. Choose a constant A > 0 so that Aω

dim(X)−p

X
± Θ are

strictly positive forms, we have

|
�

X

f
∗(Ω+

i,n
− Ω−

i,n
) ∧Θ|

≤ |
�

X

f
∗(Ω+

i,n
) ∧Θ| + |

�

X

f
∗(Ω−

i,n
) ∧Θ|

≤ A

�

X

f
∗(Ω+

i,n
) ∧ ω

dim(X)−p

X
+ A

�

X

f
∗(Ω−

i,n
) ∧ ω

dim(X)−p

X
.

Since Ω±
i,n

are positive closed currents with uniformly bounded norms, the last
integrals are uniformly bounded as well.

ii) From i) we see that for any good approximation scheme by C
2 forms Kn,

the sequence f
∗(R1,n)−f

∗(R2,n) has a convergent sequence. We now show that
the limit is unique, hence complete the proof of Theorem 6. So let τ be the
limit of the sequence f

∗(R1,n)−f
∗(R2,n). Such a τ is a DSH

p−1 current by the
consideration in i). Let Hn = H

+
n
−H

−
n

be another good approximation scheme
by C

2 forms, and let τ
� be the corresponding limit, which is in DSH

p−1. We
want to show that τ = τ

�. or equivalently, to show that τ − τ
� = 0.

By Theorem 5, τ − τ
� = 0 in X − πX( Cf ). Hence support of τ − τ

� is
contained in πX( Cf ). Since τ − τ

� is in DSH
p−1, it is a C-flat (p − 1, p − 1)

current (see Bassanelli [2]). Because the codimension of πX( Cf ) is ≥ p, it
follows by Federer-type support theorem for C-flat currents (see Theorem 1.13
in [2]) that τ − τ

� = 0 identically.
b) Finally, we show that if Tj are positive closed (p, p) currents converging

in DSH to T then f
�(Tj) weakly converges to f

�(T ).
We let π1, π2 : Y ×Y → Y be the projections, and let ∆Y be the diagonal. As

in the proof of Lemma 6, we choose ∆ to be a smooth closed (dim(Y ), dim(Y ))
on Y having the same cohomology class with [∆Y ]. We write ∆ = ∆+ −∆−,
where ∆± are strongly positive smooth closed (dim(Y ), dim(Y )) forms. If we
define φ

±
j

= (π1)∗(π∗2(Tj) ∧ ∆±) and φ
± = (π1)∗(π∗2(T ) ∧ ∆±), then {Tj} =

{φ+
j
− φ

−
j
} and {T} = {φ+ − φ

−}. Moreover, φ
±
j

are positive closed smooth
forms converging uniformly to φ

±. Hence f
∗(φ±

j
) weakly converges to f

∗(φ±).
Thus to show that f

�(Tj) weakly converges to f
�(T ), it is enough to show that

f
�(Tj − φj) weakly converges to f

�(T − φ), where we define φj = φ
+
j
− φ

−
j

and
φ = φ

+ − φ
−.

By Proposition 2.1 in [9], there are positive (p − 1, p − 1) currents R
±
j

and
R
± so that Tj − φj = dd

c(R+
j
− R

−
j

), T − φ = dd
c(R+ − R

−). Moreover, we
can choose these in such a way that R

±
j

converges in DSH to R
±. From the
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proof of a), f
� is well-defined on the set of DSH

p−1 currents. Thus to prove b)
we need to show only that f

�(R±
j

) weakly converges to f
�(R±).

By Theorem 5, on X − πX( Cf ) the currents f
�(R±

j
) and f

�(R±) are the
same as the currents f

o(R±
j

) and f
o(R±) defined in [10]. Hence by the results

in [10], it follows that f
�(R±

j
) weakly converges in X − πX( Cf ) to f

�(R±).
Thus as in the proof of a), to show that f

�(R±
j

) weakly converges to f
�(R±),

it suffices to show that ||f �(Rj)||DSH is uniformly bounded.
The current f

�(Rj) is the limit of f
∗(Kn(Rj)). As in a), we write Kn(Rj) =

R
+
j,n
− R

−
j,n

where R
±
j,n

are positive DSH
p−1(Y ) forms of class C

2. Moreover,
by Theorem 13, there is a constant A > 0 independent of j and n so that
||R±

j,n
||DSH ≤ A||R±

j
||DSH . It can be seen from the proof of a) that f

�(Rj) is a
DSH

p−1 current. Moreover ||f �(dd
c
Rj)||DSH , which can be bound using inter-

sections of cohomology classes, is ≤ A||Rj ||DSH , where A > 0 is independent
of j.

We choose an open neighborhood V of πX( Cf ) and a form Φ as in the proof
of a). Then we can see from a) that

||f �(Rj)||DSH ≤ A||f �(Rj)||X−V,DSH + A||f �(dd
c
Rj)||DSH ,

where A > 0 is a constant independent of j, and ||f �(Rj)||X−V,DSH means
the DSH norm of f

�(Rj) computed on the set X − V . From the results in
[10], ||f �(Rj)||X−V,DSH is uniformly bounded. The term ||f �(dd

c
Rj)||DSH was

shown above to be uniformly bounded as well. Thus ||f �(Rj)||DSH is uniformly
bounded as desired.

Proof of Theorem 7. — Let θ be a closed smooth form on Y having the same
cohomology class as T . Since T is continuous on U = X−A, there are DSH

p−1

currents R
± so that T − θ = dd

c(R+)− dd
c(R−), where R

±|U are continuous
(see Proposition 2.1 in [9]). As in the proof of the Theorem 6, we will show
that f

�(R±) are well-defined. Since f
−1(A) ∩ πX( Cf ) ⊂ V , where V is of

codimension≥ p, it is enough as before to show that f
∗(K±

n
(R±)) have bounded

masses outside a small neighborhood of f
−1(A)∩πX( Cf ). First, by the proof of

Theorem 6, f
∗(K±

n
(R±)) have bounded masses outside a small neighborhood

of πX( Cf ). Hence it remains to show that f
∗(K±

n
(R±)) have bounded masses

outside a small neighborhood of f
−1(A).

Let B be a small neighborhood of f
−1(A). Then there is a cutoff function χ

for A, so that f
−1(supp(χ)) ⊂ B. We write

f
∗(K±

n
(R±)) = f

∗(χK
±
n

(R±)) + f
∗((1− χ)K±

n
(R±)).

The first current has support in B, and hence has no contribution for the
mass of f

∗(K±
n

(R±)) outside B. By properties of good approximation schemes
by C

2 forms, (1− χ)K±
n

(R±) uniformly converges to a continuous form on Y ,
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and hence f
∗((1− χ)K±

n
(R±)) has uniformly bounded masses on X, which is

what wanted to prove.
To complete the proof, we need to show the continuity stated in the theorem.

This continuity can be proved using the arguments from the first part of the
proof, and from part b) of the proof of Theorem 6 and the proof of Proposition 3.

Proof of Theorem 8. — By assumption and Corollary 1, if V is an analytic
variety of codimension p contained in E(T ), then f

�[V ] is well-defined with the
number s = 0 in Definition 3. Hence the currents

WN =
n�

j=1

λj [Vj ]

can be pulled back with the same number s = 0 in Definition 3, here N is a
positive integer. Since 0 ≤

�
j
λj [Vj ] −WN = SN where SN � 0 as N → ∞,

by Theorem 12 it follows that f
�(

�
j
λj [Vj ]) =

�
j
λjf

�[Vj ] is well-defined.

Proof of Theorem 9. — Let T be a positive measure on Y having no mass
on πY ( Cf ). Let Kn be a good approximation scheme by C

2 forms. Then we
will show that as n converges to ∞, any limit point of [Γf ]∧π

∗
Y

(Kn(T )) has no
mass on Cf . Thus limn→∞[Γf ] ∧ π

∗
Y

(Kn(T )) = (πY |Γf )∗(T ) where the RHS is
defined in [10]. Then f

�(T ) is well-defined, and moreover equals to the current
f

o(T ) defined in [10], thus satisfies all the conclusions of Theorem 9.
Now we proceed to prove that any limit point τ of [Γf ]∧ π

∗
Y

(Kn(T )) has no
mass on Cf . This is equivalent to showing that for a smooth (dim(X), dim(X))
form α on X × Y , and for a sequence θj of smooth functions on X × Y having
the properties: 0 ≤ θj ≤ 1, θj = 1 on a neighborhood of Cf , and support of θj

converges to Cf then:

lim
j→∞

lim
n→∞

�

X×Y

θjα ∧ [Γf ] ∧ π
∗
Y

(Kn(T )) = 0.

By properties of good approximation schemes by C
2 forms, we can write the

above equality as

(3.1) lim
j→∞

lim
n→∞

�

X×Y

T ∧Kn((πY )∗(θjα ∧ [Γf ])) = 0.

Writing α as the difference of two positive smooth forms, we may assume that
α is positive. Now α is a positive smooth form, since 0 ≤ θj ≤ 1 for all j, we
can bound the function (πY )∗(θjα∧ [Γf ]) by a multiplicity of (πY )∗(ω

dim(X)
X×Y

∧
[Γf ]) independently of j. The later is a constant, thus (πY )∗(θjα ∧ [Γf ]) is
a positive bounded function. Then Kn((πY )∗(θjα ∧ [Γf ])) are C

2 functions
uniformly bounded w.r.t. j and n. Moreover, the support of Kn((πY )∗(θjα ∧
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[Γf ])) converges to πY ( Cf ) as j →∞, independent of n. Because T has no mass
on πY ( Cf ), we can then apply Lebesgue’s dominated convergence theorem to
obtain (3.1).

4. The map JX

Through out this section, let X be the blowup of P3 along 4 points e0 = [1 :
0 : 0 : 0], e1 = [0 : 1 : 0 : 0], e2 = [0 : 0 : 1 : 0], e3 = [0 : 0 : 0 : 1]; J : P3 → P3 is
the Cremona map J [x0 : x1 : x2 : x3] = [1/x0 : 1/x1 : 1/x2 : 1/x3], and let JX

be the lifting of J to X. For 0 ≤ i �= j ≤ 3, Σi,j is the line in P3 consisting of
points [x0 : x1 : x2 : x3] where xi = xj = 0, and �Σi,j is the strict transform
of Σi,j in X.

Let E0, E1, E2, E3 be the corresponding exceptional divisors of the blowup
X → P3, and let L0, L1, L2, L3 be any lines in E0, E1, E2, E3 correspondingly.
Let H be a generic hyperplane in P3, and let H

2 be a generic line in P3. Then
H,E0, E1, E2, E3 are a basis for H

1,1(X), and H
2
, L0, L1, L2, L3 are a basis

for H
2,2(X). Intersection products in complementary dimensions are (see for

Example Chapter 4 in [12]):

H.H
2 = 1, H.L0 = 0, H.L1 = 0, H.L2 = 0, H.L3 = 0,

E0.H
2 = 0, E0.L0 = −1, E0.L1 = 0, E0.L2 = 0, E0.L3 = 0,

E1.H
2 = 0, E1.L0 = 0, E1.L1 = −1, E1.L2 = 0, E1.L3 = 0,

E2.H
2 = 0, E2.L0 = 0, E2.L1 = 0, E2.L2 = −1, E1.L3 = 0,

E3.H
2 = 0, E3.L0 = 0, E3.L1 = 0, E3.L2 = 0, E3.L3 = −1.

The map J
∗
X

: H
1,1(X) → H

1,1(X) is not hard to compute (see for example
the computations in Example 2.5 in [14]):

J
∗
X

(H) = 3H − 2E0 − 2E1 − 2E2 − 2E3,

J
∗
X

(E0) = H − E1 − E2 − E3,

J
∗
X

(E1) = H − E0 − E2 − E3,

J
∗
X

(E2) = H − E0 − E1 − E3,

J
∗
X

(E3) = H − E0 − E1 − E2.

If x ∈ H
1,1(X) and y ∈ H

2,2(X), since J
2
X

=the identity map on X, we have
the duality (J∗

X
y).x = y.(J∗

X
x). Thus from the above data, we can write down
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the map J
∗
X

: H
2,2(X)→ H

2,2(X):

J
∗
X

(H2) = 3H
2 − L0 − L1 − L2 − L3,

J
∗
X

(L0) = 2H
2 − L1 − L2 − L3,

J
∗
X

(L1) = 2H
2 − L0 − L2 − L3,

J
∗
X

(L2) = 2H
2 − L0 − L1 − L3,

J
∗
X

(L3) = 2H
2 − L0 − L1 − L2.

Now we are ready to prove Corollary 2.

Proof of Corollary 2. — The restriction JX : X −
� �Σi,j → X −

� �Σi,j is a
biholomorphic map, as can be seen by using local coordinate projections for
the blowup π near the exceptional divisors Ei’s. Moreover it can be shown
that JX(�Σi,j) = ‚Σ3−i,3−j , and every point on �Σi,j blows up to ‚Σ3−i,3−j . Hence
π1( CJX ) =

� �Σi,j . Therefore the map JX satisfies Theorem 6 for p = 2. Thus
if T is a positive closed (2, 2) current on X then J

�

X
(T ) is well-defined. For an

alternative proof of this fact, see Lemma 8 below.
It remains to show that J

�

X
[fiΣ0,1] = −[fiΣ2,3]. Since J

−1
X

(fiΣ0,1) = fiΣ2,3, by
Theorem 7 there is a number λ so that J

�

X
[fiΣ0,1] = λ[fiΣ2,3]. To determine λ, we

need to know J
∗
X
{fiΣ0,1}. We have {fiΣ0,1} = {H2 − L2 − L3}, hence from the

above data we have

J
∗
X
{fiΣ0,1} = J

∗
X
{H2} − J

∗
X
{L2} − J

∗
X
{L3} = {−H

2 + L0 + L1} = −{fiΣ2,3},

thus λ = −1, and J
�

X
[fiΣ0,1] = −[fiΣ2,3].

The following result gives an alternative proof to the conclusions of Corol-
lary 2. In its proof we will make use of the space Y defined in the statement
of Proposition 1 below. Here π : Y → X is the blowup of X along all subman-
ifolds �Σi,j (1 ≤ i < j ≤ 3). Then the lifting map JY of J to Y is an involutive
automorphism. Moreover, if we let Si,j denote the exceptional divisor of Y over
�Σi,j , then JY (S0,1) = S2,3, JY (S0,2) = S1,3, and JY (S0,3) = S1,2.

Lemma 8. — Let T
+
n

and T
−
n

be positive closed smooth (2, 2) forms on X, so
that

i) ||T+
n
||, ||T−

n
|| are uniformly bounded,

and
ii) T

+
n
− T

−
n

� [fiΣ0,1].
Then J

∗
X

(T+
n
− T

−
n

) � −[fiΣ2,3].
As a consequence, if we replace [fiΣ0,1] in i) and ii) above by any positive

closed (2, 2) current T then J
∗
X

(T+
n
− T

−
n

) converges to J
�

X
(T ).
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Proof. — Let τ
+
n

= π
∗(T+

n
) and τ

−
n

= π
∗(T−

n
), which are positive closed cur-

rents on Y . By assumption i), ||τ+
n
|| and ||τ−

n
|| are uniformly bounded. Thus

we may assume that τ
+
n

� τ
+ and τ

−
n

� τ
−, where τ

+ and τ
− are positive

closed currents on Y .
Since JY is a biholomorphic map, we can pull-back any current on Y by JY .

It is not hard to see that

J
∗
X

(T+
n

) = π∗(J
∗
Y

τ
+
n

),

J
∗
X

(T−
n

) = π∗(J
∗
Y

τ
−
n

).

Hence

J
∗
X

(T+
n
− T

−
n

) � π∗(J
∗
Y

(τ+ − τ
−)).

We need to show that the latter current is −[fiΣ2,3]. To this end, it suffices
to show that support of π∗(J∗Y (τ+ − τ

−)) is in fiΣ2,3. In fact, then we will have
π∗(J∗Y (τ+ − τ

−)) = λ[fiΣ2,3], and the computation on cohomology shows that
λ = −1.

It is not hard to see that support of τ
+ − τ

− is contained in the union
of Si,j ’s (1 ≤ i < j ≤ 3). Let τi,j = τ

+|Si,j − τ
−|Si,j with support in Si,j so

that τ =
�

1≤i<j≤3 τi,j . In H
2,2(Y ) we have:

π
∗{fiΣ0,1} = {τ+ − τ

−} =
�

i,j

{τi,j},

here π
∗{fiΣ0,1} can be represented by currents with support in S0,1. Moreover,

by considering the push-forwards π∗(τ+
n
−τ

−
n

), it follows that π∗(τi,j) = 0 where
(i, j) �= (0, 1). It can be checked that each fiber Si,j is a product Si,j � P1×P1,
hence by Kuneth’s theorem H

2,2(Si,j) is generated by a "horizontal curve" αi,j

and a "vertical curve" (or fiber) βi,j . Here the properties of "horizontal curve"
and "vertical curve" that we use are that π∗(αi,j) = �Σi,j and π∗(βi,j) = 0.
Hence there are numbers ai,j and bi,j so that the cohomology class of τi,j −
ai,jαi,j − bi,jβi,j is zero. For (i, j) �= (0, 1), since π∗(τi,j) = 0, it follows that

ai,j{�Σi,j} = π∗{ai,jαi,j + bi,jβi,j} = π∗{τi,j} = {π∗(τi,j)} = 0.

Hence ai,j = 0 for (i, j) �= (0, 1).
Note that a non-zero (2, 2)-cohomology class in H

2,2(Y ) represented by cur-
rents with supports in S0,1 can not be represented by a linear combinations of
"vertical curves" with support in

�
(i,j) �=(0,1) Si,j : Assume that

{a0,1α0,1 + b0,1β0,1 +
�

(i,j) �=(0,1)

bi,jβi,j} = 0

in H
2,2(Y ). Push-forward by the map π implies that a0,1{�Σ0,1} = 0 in H

2,2(X),
and hence a0,1 = 0. Thus {

�
bi,jβi,j} = 0 in H

2,2(Y ). Use the fact that
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{Si,j}.{βk,l} = −1 if (k, l) = (i, j), and = 0 otherwise (see for Example Chapter
4 in [12]), we imply that bi,j = 0 for all (i, j) as claimed.

Hence it follows that {τi,j} = 0 in H
2,2(Y ) for (i, j) �= (0, 1).

We have

π∗(J
∗
Y

(τ+ − τ
−)) =

�

i,j

π∗(J
∗
Y

τi,j),

where support of π∗(J∗Y τi,j) is contained in ‚Σ3−i,3−j . Here we use the convention
that fiΣk,l := fiΣl,k if k > l. Since π∗(J∗Y τi,j) is a normal (2, 2) current, it follows
from the structure theorem for normal currents that there is λi,j ∈ R so that
π∗(J∗Y τi,j) = λi,j [‚Σ3−i,3−j ]. If (i, j) �= (0, 1) then {τi,j} = 0 in H

2,2(Y ), thus
{π∗(J∗Y τi,j)} = 0 in H

2,2(X), which implies λi,j = 0 for such (i, j)’s. Hence

π∗(J
∗
Y

(τ+ − τ
−)) = π∗(J

∗
Y

τ0,1)

has support in fiΣ2,3 as wanted.

Proposition 1. — Let X be the space constructed in Corollary 2. Let π :
Y → X be the blowup of X along all submanifolds �Σi,j (1 ≤ i < j ≤ 3). Then
there is a positive closed (2, 2)-current T on X with L

1 coefficients so that:
in H

2,2(Y ),

{πo(T )} �= π
∗{T}.

Here the operator π
o is defined in Dinh and Nguyen [7]. In this case, in fact

π
o(T ) is also the operator defined in Dinh and Sibony [10].

Proof. — We assume in order to reach a contradiction that for any posi-
tive closed (2, 2) current T on X with L

1-coefficients then {πo(T )} = π
∗{T}

in H
2,2(Y ).

By regularization theorem of Dinh and Sibony, there is a sequence T
+
n

and T
− of positive closed (2, 2) currents with L

1-coefficients such that ||T+
n
||

are uniformly bounded and T
+
n

� T
− + [fiΣ0,1]. By the assumption we have

{πo(T+
n

)} = π
∗{T+

n
} for any n, and {πo(T−)} = π

∗{T−}. Now for the maps
JX and JY considered above, it is not hard to see that J

o

X
= π∗J

∗
Y

π
o. Thus,

we also have {Jo

X
(T+

n
)} = J

∗
X
{T+

n
} and {Jo

X
(T−)} = J

∗
X
{T−}.

Let τ
+ be a cluster point of J

o

X
(T+

n
). Then it is easy to see that

τ
+ ≥ J

o

X
(T− + [fiΣ0,1]) = J

o

X
(T−) + J

o

X
([fiΣ0,1]) = J

o

X
(T−).

But then this contradicts the fact that in H
2,2(X):

{τ+} = lim
n→∞

{Jo

X
(T+

n
)} = lim

n→∞
J
∗
X
{(T+

n
)}

= J
∗
X
{T−} + J

∗
X
{fiΣ0,1} = {Jo

X
(T−)} − {[fiΣ2,3]},

tome 141 – 2013 – no 4



PULL-BACK OF CURRENTS BY MEROMORPHIC MAPS 541

here we used the assumption that J
∗
X
{(T+

n
)} = {Jo

X
(T+

n
)} and J

∗
X
{(T−)} =

{Jo

X
(T−)}.

Proposition 2. — Let X be the space constructed in Corollary 2. There is
no sequence T

+
n

and T
− of positive closed smooth (2, 2) forms on X such that

i) ||T+
n
|| are uniformly bounded

ii) T
+
n
− T

−
� [fiΣ0,1].

Remark 2. — In Example 6.3 of the paper [4] of Bost, Gillet, and Soule, a
related result was given.

Proof. — Use the same argument as that in the proof of Proposition 1, but
now use that if T

±
n

are positive closed smooth forms then J
∗
X

(T±
n

) = J
o

X
(T±

n
),

and hence {Jo

X
(T±

n
)} = J

∗
X
{T±

n
}.

5. Invariant currents

Throughout this section, we let X be a compact Kähler manifold of dimen-
sion k, and let f : X → X be a dominant meromorphic map.

We introduce in the below a condition, called dd
c-p stability. This condition

seems to be natural for the problem of finding invariant (p, p) currents for a
self-map f (see the discussions and the results after the definition).

Definition 10. — We say that f satisfies the dd
c-p stability condition if

the following holds: For any smooth (p − 1, p − 1) form α and for any n,
f

�((fn)∗dd
c
α) is well-defined, and moreover f

�((fn)∗dd
c
α) = (fn+1)∗(dd

c
α).

In general, condition of dd
c-p stability has no relation with condition of p-al-

gebraic stability. On the one hand, the dd
c-p stability condition requires no con-

straints on the action of f
∗ on H

p,p(X), because the cohomology class of dd
c(α)

is zero. On the other hand, it asks for the possibility of iterated pull-back dd
c(α)

by f . Any map f is dd
c-1 stable, whether being or not 1-algebraic stable. If

f is p-analytic stable then f is dd
c-p stable. Using the method in Step 1 of

the proof of Lemma 10, it can be shown that the linear pseudo-automorphisms
in [3] are dd

c-2 stable. We suspect that these pseudo-automorphisms are also
2-analytic stable even though it seems not be easily checked.

We first introduce an abstract result on invariant (p, p) currents.
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Theorem 11. — Assume that f : X → X satisfies the dd
c-p condition. Let λ

be a real eigenvalue of f
∗ : H

p,p(X) → H
p,p(X), and let 0 �= θλ ∈ H

p,p(X)
be an eigenvector with eigenvalue λ. Assume moreover that |λ| > δp−1(f) and
let s ≥ 2 be an integer. Then any of the following statements is equivalent to
each other:

1) There is a closed (p, p) current T of order s with {T} = θλ so that f
�(T )

is well-defined, and moreover f
�(T ) = λT .

2) There are a smooth (p − 1, p − 1) form α and a closed (p, p) current T

of order s with {T} = θλ so that f
�(T ) is well-defined, and moreover f

�(T ) =
λT + λdd

c(α).
3) For any smooth (p − 1, p − 1) form α, there is a closed (p, p) current T

of order s with {T} = θλ so that f
�(T ) is well-defined, and moreover f

�(T ) =
λT + λdd

c(α).
4) There is a closed (p, p) current T of order s with {T} = θλ so that f

�(T )
is well-defined, and moreover f

�(T )− λT is a smooth form.

Note that for the current T in Theorem 11, we do not know whether (fn)�(T )
(for n ≥ 2) is well-defined or not. The proof of Theorem 11 makes use of the
following result, which is interesting in itself.

Theorem 12. — Let Tj and T be (p, p) currents of order s0. Assume that
−Sj ≤ T − Tj ≤ Sj for any j, where Sj are positive closed (p, p) currents with
||Sj || → 0 as j →∞.

1) If f
�(Tj) is well-defined for any j with the same number s in Definition 3,

then f
�(T ) is well-defined. Moreover f

�(Tj) weakly converges to f
�(T ).

2) If f
�(dd

c
Tj) is well-defined for any j with the same number s in Defi-

nition 3, then f
�(dd

c
T ) is well-defined. Moreover f

�(dd
c
Tj) weakly converges

to f
�(dd

c
T ).

Note that when p = 0, a closed (0, 0) current on X is a constant, hence the
Sj in Theorem 12 are positive constants converging to zero.

Proof of Theorem 12. — i) Let Kn = K
+
n
− K

−
n

be a good approximation
scheme by C

s+2 forms. Let α be a strongly positive smooth (k− p, k− p) form
on X. then f∗(α) is a strongly positive form. Therefore K

±
n

f∗(α) are strongly
positive forms of class C

2. Since −Sj ≤ Tj − T ≤ Sj , by Lemma 5 we obtain

−
�

X

Sj ∧K
±
n

f∗(α) ≤
�

X

(Tj − T ) ∧K
±
n

f∗(α) ≤
�

X

Sj ∧K
±
n

f∗(α).
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From Lemma 4, there is a constant A > 0 independent of α so that
A||α||L∞ω

k−p

X
±α are strongly positive forms. Then A||α||L∞f∗(ω

k−p

X
)± f∗(α)

are strongly positive forms on X. Hence we have
�

X

Sj ∧K
±
n

f∗(α) ≤ A||α||L∞
�

X

Sj ∧K
±
n

f∗(ω
k−p

X
).

The latter integral can be computed cohomologously, hence can be bound as

A||α||L∞
�

X

Sj ∧K
±
n

f∗(ω
k−p

X
) ≤ A||α||L∞ ||Sj || × ||K±

n
f∗(ω

k−p

X
)||

≤ A||α||L∞ ||Sj || × ||f∗(ωk−p

X
)||.

The latter inequality comes from Theorem 13. Hence,

(5.1) −A||α||L∞ ||Sj || ≤
�

X

(Tj − T ) ∧K
±
n

f∗(α) ≤ A||α||L∞ ||Sj ||.

Since f
�(Tj) are well-defined for all j, if we take limit as n → ∞ in (5.1), we

get

−A||α||L∞ ||Sj || ≤
�

X

f
�(Tj) ∧ α− lim sup

n→∞

�

X

T ∧Knf∗(α)

≤
�

X

f
�(Tj) ∧ α− lim inf

n→∞

�

X

T ∧Knf∗(α)

≤ A||α||L∞ ||Sj ||.

Since ||Sj || → 0, taking limit as j →∞ shows that

L(α) := lim
n→∞

�

X

T ∧Knf∗(α)

exists, and moreover it satisfies

(5.2) −A||α||L∞ ||Sj || ≤
�

X

f
�(Tj) ∧ α− L(α) ≤ A||α||L∞ ||Sj ||,

for all j, and all strongly positive smooth (dim(X) − p, dim(X) − p) form α.
Since any smooth (dim(X) − p, dim(X) − p) form α is the difference of two
strongly positive smooth (dim(X) − p, dim(X) − p) forms α1 and α2 whose
L
∞ norms are uniformly bounded (up to a multiplicative constant) by ||α||L∞

by Lemma 4, it follows that (5.2) holds for any smooth form α. From this,
it follows easily that the assignment α �→ L(α) is a well-defined functional
on smooth forms α. Now we show that it is a current on X. For this end, it
suffices to show that if αn are smooth forms so that ||αn||Cs → 0 for any fixed
s ≥ 0 then L(αn)→ 0. This follows easily from (5.2) by first taking limit when
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n→∞ and then taking limit when j →∞, using the assumptions that f
�(Tj)

are currents, hence

lim
n→∞

�

X

f
�(Tj) ∧ αn = 0,

for any j.
ii) The proof is similar to the proof of i), with a small change: The estimate

(5.1) is modified to

−A||dd
c
α||L∞ ||Sj || ≤

�

X

(Tj − T ) ∧K
±
n

f∗(dd
c
α) ≤ A||dd

c
α||L∞ ||Sj ||.

The proof of Theorem 11 also uses the following result:

Lemma 9. — Assume that f satisfies the dd
c-p stability condition. Let λ be

a positive real number. If |λ| > δp−1(f), then for any smooth (p − 1, p − 1)
form α, there is a current Rα of order 0, so that f

�(dd
c
Rα) is well-defined, and

moreover

f
�(dd

c
Rα)− λdd

c
Rα = λdd

c
α.

Proof. — Define β = −α, and consider

Rn =
n�

j=0

(f j)∗(β)

λj
.

Since β is a smooth (p − 1, p − 1) form, there is a constant A > 0 so that
−Aω

p−1
X

≤ β ≤ Aω
p−1
X

. It follows that

Rα =
∞�

j=0

(f j)∗(β)

λj

is a well-defined current which is a difference of two positive currents, hence of
order 0. Moreover −Sn ≤ Rn −R ≤ Sn, where

Sn = A

∞�

j=n+1

(f j)∗(ωp−1
X

)

|λ|j .

The Sn are well-defined positive closed (p − 1, p − 1) currents, because it is
well-known (see for Example Chapter 2 in [14]) that

lim
n→∞

||(fn)∗(ωp−1
X

)||1/n = δp−1(f),

and the latter is < |λ| by assumption. The above inequality also shows that
||Sn|| → 0 as n → ∞. The dd

c-p stability condition shows that f
�(dd

c
Rn)
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is well-defined for any n, and moreover f
�(dd

c
Rn) − λdd

c
Rn+1 = −λdd

c
β =

λdd
c
α. Applying Theorem 12, using that Rn weakly converges to Rα, we have

f
�(dd

c
Rα)− λdd

c
Rα = λdd

c
α.

Proof of Theorem 11. — All of the equivalences follow easily from Lemma 9.
1) ⇒ 3): Let T0 be a closed (p, p) current of order s with {T0} = θλ so that

f
�(T0) is well-defined, and f

�(T0)−λT0 = 0. For any smooth (p−1, p−1) form
α on X, let Rα be the current constructed in Lemma 9. Then T = T0+dd

c(Rα)
is a closed (p, p) current of order s with {T} = θλ so that f

�(T ) is well-defined,
and f

�(T )− λT = dd
c(Rα).

3)⇒ 2: Obviously.
2) ⇒ 1): Let α0 be a smooth (p − 1, p − 1) form, and let T0 be a closed

(p, p) current of order s with {T0} = θλ so that f
�(T0) is well-defined, and

f
�(T0)− λT0 = dd

c(α0). Let Rα be the current constructed in Lemma 9. Then
T = T0 − dd

c(Rα) is a closed (p, p) current of order s with {T} = θλ so that
f

�(T ) is well-defined, and f
�(T )− λT = 0.

Finally, that 2) and 4) are equivalent follows from the dd
c lemma, since the

current f
�(T )− λT is a smooth form cohomologous to 0.

Now we give the proofs of Lemma 3 and Corollaries 5, 6 and 7.

Proof of Lemma 3. — Since π1( Cf ) has codimension ≥ p, it follows from The-
orem 6 any positive closed (p, p) current can be pulled back, and the pullback
operator is continuous with respect to the weak topology on positive closed
(p, p) currents. We can represent θ by a difference α = α

+ − α
− of two pos-

itive closed smooth (p, p) forms α
±. Since f is p-analytic stable, it follows

that (fn)∗(α±) = (f �)n(α±) are positive closed (p, p) currents for any n ≥ 1.
Moreover there is a constant C1 > 0 so that ||(f �)n(α±)|| = ||(fn)∗(α±)|| ≤
C1rp(f)n = C1λ

n (see e.g [14]). We follow the standard construction of an
invariant current under these assumptions (see [17] and [5]). Consider the cur-
rents TN = T

+
N
− T

−
N

, where

T
±
N

=
1

N

N−1�

j=0

(f �)j(α±)

λj
.

Then T
±
N

are positive closed (p, p) currents with uniformly bounded masses,
thus after passing to a subsequence, we may assume that they converge to T

±.
We define T = T

+−T
−. Since {TN} = {α} for any N , we also have {T} = {α}.

Since f
�(T±

N
)− λT

±
N

converges to 0, it follows that f
�(T ) = λT .
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Proof of Corollary 5. — Let T1 and T2 be the Green (1, 1) currents for the
maps f1 and f2 as constructed in Sibony [17], respectively. Then we can write

Ti =
�

j

λj,i[Vj,i]

for i = 1, 2, where λj,i > 0 and Vj,i are irreducible hypersurfaces in Pki . More-
over f

∗(T1) = d1T1 and f
∗(T2) = d2T2. We choose T = T1 × T2. Consider the

finite summands

SN,i =
N�

j=0

λj,i[Vj,i].

Then f
−1(SN,1×SN,2) = f

−1
1 (SN,1)×f

−1
2 (SN,2) has codimension 2 in Pk1×Pk2 ,

thus f
�(SN,1×SN,2) are well-defined by Corollary 1. Since T1×T2−SN,1×SN,2

are positive closed currents decreasing to 0, it follows by Theorem 12 that
f

�(T1 × T2) is well-defined and moreover

f
�(T1 × T2) = lim

N→∞
f

�(SN,1 × SN,2).

It remains to show that f
�(T1 × T2) = d1d2T1 × T2. To this end, first we

show that f
�(SN,1 × SN,2) = f

∗
1 (SN,1)× f

∗
2 (SN,2) for any N . By the results in

[11] (see also the last section), there are positive closed (1, 1) currents Wj,N,1

on Pk1 and Wj,N,2 on Pk2 with uniformly bounded norms so that SN,1 =
limj→∞Wj,N,1 and SN,2 = limj→∞Wj,N,2. Moreover, we can choose these
approximations in such a way that support of Wj,N,1 converges to SN,1 and
support of Wj,N,2 converges to SN,2. Then limj→∞Wj,N,1 ×Wj,N,2 = SN,1 ×
SN,2, and Wj,N,1 ×Wj,N,2 has uniformly bounded mass and locally uniformly
converges to 0 on Pk1 × Pk2 − SN,1 × SN,2. Hence we can apply Theorem 7 to
obtain that

f
�(SN,1 × SN,2) = lim

j→∞
f
∗(Wj,N,1 ×Wj,N,2) = lim

j→∞
f
∗
1 (Wj,N,1)× f

∗
2 (Wj,N,2)

= f
∗
1 (SN,1)× f

∗
2 (SN,2).

Having this, it follows from the continuity of pullback on positive closed (1, 1)
currents and the definitions of T1 and T2 that

f
�(T1 × T2) = lim

N→∞
f

�(SN,1 × SN,2) = lim
N→∞

f
∗
1 (SN,1)× f

∗
2 (SN,2)

= f
∗(T1)× f

∗(T2) = d1d2T1 × T2.

Proof of Corollary 6. — It is well-known that for any smooth (k, k) form θ

then (fn)�(θ) = (f �)n(θ) (see for example [13]). Hence f satisfies dd
c-k stability

condition. As in [13], we can find a smooth probability measure θ so that f
∗(θ)

is again a smooth probability measure. Hence f
∗(θ)− δk(f)θ = dd

c(ϕ), where
ϕ is a smooth (p− 1, p− 1) form. Hence we can apply Theorem 11.
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Proof of Corollary 7. — Let θ be a smooth form then f
∗(θ) is again a smooth

form since f is holomorphic. Then we can use the same arguments as that in
the proof of Corollary 6.

6. Examples of good approximation schemes, and open questions

We give some examples of good approximation schemes in Definition 1 in
the first two subsections, and then discuss some open problems in the last
subsection.

6.1. The case of general Kähler manifolds. — Let Z be a compact Kähler man-
ifold of dimension k. Let π1, π2 : Z × Z → Z be the two projections, and
let ∆Z ⊂ Z × Z be the diagonal. Our construction of examples use the follow-
ing regularization theorem of DSH currents in [8].

Theorem 13. — There is a sequence of strongly positive closed (k, k) forms
K

±
n

on Z × Z of L
1 coefficients with the following properties:

i) K
+
n
−K

−
n

� [∆Z ], and ||K±
n
|| are uniformly bounded. The singularities

of K
±
n

are the same as that of the Bochner-Martinelli kernel.
ii) Support of K

+
n
− K

−
n

converges to ∆Z . By this we mean, for any open
neighborhood U of ∆Z , there exists n0 so that if n ≥ n0 then support of K

+
n
−K

−
n

is contained in U .
iii) If T is a DSH

p current then (K+
n
− K

−
n

) ∧ π
∗
2(T ) � [∆Z ] ∧ π

∗
2(T ).

Moreover, if Tj converges to T in DSH
p(Z), then for a given number n:

(π1)∗(K±
n
∧ π

∗
2(Tj)) � (π1)∗(K±

n
∧ π

∗
2(T )) when j →∞.

Define K
±
n

(T ) = (π1)∗(K±
n
∧ π

∗
2(T )), and Kn(T ) = K

+
n

(T )−K
−
n

(T ). Then
Kn(T ) � T in DSH

p(Z) as n → ∞. Moreover, ||K±
n

(T )||DSH ≤ A||T ||DSH ,
where A > 0 is independent of T and n.

iv) For any s > 0, there exists a number l0 = l0(s) so that Knl ◦ Knl−1 ◦
· · · ◦Kn1(T ) is a C

s form for any l ≥ l0, any integers n1, n2, . . . , nl, and any
DSH

p current T .
v) If T is a continuous form then Kn(T ) converges uniformly to T .

Proof. — The definition of K
±
n

is given in Section 3 in [8], and we will recall
the construction later in this subsection. All of the references below are from
the same paper

i) is given in Lemma 3.1.
ii) is given in Remark 4.5.
iii) is given in Theorems 1.1 and 4.4.
iv) is given in Lemma 2.1.
v) is given in Proposition 4.6.
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Let us mention some notations used later on.

Remark 3. — We use the following notations:
For integers n1, . . . , nl and a DSH

p current or continuous (p, p) form T

on Y , we define Knl,nl−1,...,n1(T ) = Knl ◦Knl−1 ◦ · · · ◦Kn1(T ). For simplicity,
we write (l) instead of (n1, . . . , nl), and K (l)(T ) instead of Knl,...,n1(T ).

We write

lim
(n1,n2,...,nl)→∞

Tn1,...,nl = T

if for any sequence (n1)k, . . . , (nl)k →∞ we have

lim
k→∞

T(n1)k,...,(nl)k
= T.

For simplicity we use

lim
(l)

T(l) = T

for such a limit.

Example 4: By Theorem 14 below, if T is a DSH current then

lim
(l)

K (l)(T ) = T,

for any l ≥ 0.
The following consequence of Theorem 13 will be used to approximate

DSH
p(Y ) currents by C

s forms in a linear way

Theorem 14. — i) If T1 is a DSH
p(Z) current and T2 is a continuous

(dim(Z)− p, dim(Z)− p) form on Z then
�

Z

K
±
n

(T1) ∧ T2 =

�

Z

T1 ∧K
±
n

(T2).

ii) For any integer l and any DSH
p(Y Z current T , K (l)(T ) converges

in DSH
p(Z) to T . Here the convergence is understood in the sense of Re-

mark 3.

Proof of Theorem 14. — i) By Theorem 13, the LHS of the equality we want to
prove is continuous for the DSH convergence w.r.t. T1. By Lemma 7, the RHS of
the equality is also continuous for the DSH convergence w.r.t. T1. Hence using
the approximation theorem for DSH currents of Dinh and Sibony, it suffices to
prove the equality when T1 is a smooth form, in which case it is easy to be
verified.

ii) Note that since ||K (l)(T )||DSH ≤ A
l||T ||DSH by Theorem 13, to prove ii)

it suffices to show that K (l)(T ) converges weakly to T in the sense of currents.
We prove by induction on l. If l = 1, ii) is the content of Theorem 13. To

illustrate the idea of the proof, we show for example how to prove ii) for the
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case l = 2 when knowing ii) for l = 1. Hence we need to show that: For a
smooth (dim(Z)− p, dim(Z)− p) form α

lim
(2)

�

Z

Kn2 ◦Kn1(T ) ∧ α =

�

Z

T ∧ α.

Since α is smooth, by i) we have

lim
(2)

�

Z

Kn2 ◦Kn1(T ) ∧ α = lim
(2)

�

Z

Kn1(T ) ∧Kn2(α).

By the case l = 1 we know that Kn1(T ) converges to T in DSH
p. By

Theorem 13, Kn2(α) converges uniformly to α. Hence α − Kn2(α) is bound
by �n2ω

dim(Z)−p

Z
, where �n2 → 0 as n2 → ∞. A similar argument to that of

the proof of Lemma 7 shows that

|
�

Z

Kn1(T ) ∧Kn2(α)−
�

Z

Kn1(T ) ∧ α| ≤ A�n2 ,

where A > 0 is independent of n1 and n2. Letting limit when n1, n2 converges
to ∞ and using the induction assumption for l = 1, we obtain the claim for l =
2.

Now we define a good approximation scheme by C
2 forms as follows: Choose

l = l0(2) in Theorem 13, and choose the approximation K (2l). Most of the
requirements for good approximation scheme can be checked directly on K (2l).
The rest of this subsection shows the remaining requirements. The next remark
concerns the dd

c of K (2l).

Remark 4. — If T is a DSH
p(Y ) current T = T1 − T2 with T1, T2 positive

(p, p) currents, and dd
c(Ti) = Ω+

i
−Ω−

i
where Ω±

i
positive closed currents, then

we can write:
i) Kn(T ) = T1,n−T2,n where T1,n = K

+
n

(T1)+K
−
n

(T2) and T2,n = K
−
n

(T1)+
K

+
n

(T2) are positive currents with L
1 coefficients.

ii) dd
c(T1,n) = Ω+

1,n
− Ω−1,n

, where Ω+
1,n

= K
+
n

(Ω+) + K
−
n

(Ω+
2 ) and Ω−1,n

=

K
+
n

(Ω−)+K
−
n

(Ω−2 ) are positive closed (p+1, p+1) currents with L
1 coefficients.

Similarly, we can write dd
c(T2,n) = Ω+

2,n
− Ω−2,n

, where Ω+
2,n

and Ω−2,n
are

positive closed (p + 1, p + 1) currents with L
1 coefficients.

iii) ||Ti,n||, ||Ω±
i,n

|| ≤ A||T ||DSH , where A > 0 is independent of T .
If we repeat this argument and use Theorem 13, we see that for l = 2l0(2)

as above, we can write K (2l0)(T ) = T1,(2l0) − T2,(2l0) where
i) Ti,(2l0) are positive C

2 forms.
ii) dd

c(Ti,(2l0)) = Ω+
i,(2l0)

− Ω−
i,(2l0)

, where Ω±
i,(2l0)

are positive closed C
2

forms.
iii) ||Ti,(2l0)||, ||Ω

±
i,(2l0)

|| ≤ A||T ||DSH , where A > 0 is independent of T .
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More explicitly, we can write K (2l0) = K+
(2l0)

− K−(2l0)
, where K±

(2l0)

are convex combinations of compositions of K
±
m

(here m belongs to the set
n1, n2, . . . , n2l0), so that if T is a positive DSH current, then K±

(2l0)
(T ) are

positive currents. For example, if l0 = 1, then K+
(2) = K

+
n2
◦K

+
n1

+ K
−
n2
◦K

−
n1

and K−(2) = K
−
n2
◦K

+
n1

+ K
+
n2
◦K

−
n1

. Then we define

T1,(2l0) = K+
(2l0)

(T1) + K−(2l0)
(T2),

T2,(2l0) = K+
(2l0)

(T2) + K−(2l0)
(T1),

Ω+
1,(2l0)

= K+
(2l0)

(Ω+
1 ) + K−(2l0)

(Ω+
2 ),

Ω−1,(2l0)
= K+

(2l0)
(Ω−1 ) + K−(2l0)

(Ω−2 ),

and similarly for Ω±
2,(2l0)

.

The following refinements of Proposition 4.6 in [8] concern the continuity
property of K (2l). Its proof uses explicitly the properties of the kernels Kn

in Theorem 13 from Section 3 in [8], which we recall briefly here. Let π :
‡Z × Z → Z×Z be the blowup along the diagonal ∆Z , and let �∆Z = π

−1(∆Z).
Choose a strictly positive closed (k− 1, k− 1) form γ on ‡Z × Z so that π∗(γ ∧
[�∆Z ]) = [∆Z ]. We let Θ� be a smooth closed (1, 1) form on ‡Z × Z having the
same cohomology class with [�∆Z ], and let ϕ be a quasi PSH function so that
dd

c
ϕ = [�∆Z ]−Θ�. Observe that ϕ is smooth out of [�∆Z ], and ϕ

−1(−∞) = �∆Z .
Let χ : R ∪ {−∞} → R be a smooth increasing convex function such that
χ(x) = 0 on [−∞,−1], χ(x) = x on [1,+∞], and 0 ≤ χ

� ≤ 1. Define χn(x) =
χ(x + n)− n, and ϕn = χn ◦ ϕ. The functions ϕn are smooth decreasing to ϕ,
and dd

c
ϕn ≥ −Θ for every n, where Θ is a strictly positive closed smooth

(1, 1) form so that Θ − Θ� is positive. Then we define Θ+
n

= dd
c
ϕn + Θ and

Θ−
n

= Θ− = Θ−Θ�, and finally K
±
n

= π∗(γ ∧Θ±
n

), and Kn = K
+
n
−K

−
n

.

Proposition 3. — i) Let Tn be a sequence of DSH
p(Z) currents converging

in DSH to T . Assume that there is an open set U ⊂ Z so that Tn|U are con-
tinuous forms, and Tn converges locally uniformly on U to T . Then K

±
n

(Tn)|U
are continuous and converges locally uniformly on U .

ii) Let T be a DSH
p(Z) current. Assume that there is an open set U ⊂ Z

so that T |U is a continuous form. Then for any positive integer l, K±
(l)(T )|U

are continuous forms, and converges locally uniformly on U .

Proof. — i) Let U1 ⊂⊂ U2 ⊂⊂ U3 ⊂⊂ U be a relative compact open sets in U .
We will show that K

±
n

(Tn) converges uniformly on U1. Let χ2 : Z → [0, 1] be a
cutoff function for U2 so that χ2 is smooth, χ2 = 1 on U2 and χ2 = 0 outside
of U3. We write K

±
n

(Tn) = K
±
n

(χ2Tn)+K
±
n

((1−χ2)Tn). By assumptions, χ2Tn
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converges uniformly on Z to χ2T , so there are �n decreasing to 0 as n → 0 so
that −�nω

p

Z
≤ χ2Tn − χ2T ≤ �nω

p

Z
. Then

−�nK
±
n

(ωp

Z
) ≤ K

±
n

(χ2Tn)−K
±
n

(χ2T ) ≤ �nK
±
n

(ωp

Z
).

Now K
−
n

(ωp

Z
) = K

−(ωp

Z
) is a smooth form, and hence K

+
n

(ωp

Z
) = Kn(ωp)−

K
−(ωp

Z
) is a sequence of smooth forms converging uniformly on Z, by applying

Proposition 4.6 in [8] to ω
p

Z
. Hence to prove i), it remains to show that K

±
n

((1−
χ2)Tn) converges uniformly on U1.

We let χ1 : Z → [0, 1] be a cutoff function for U1 so that χ1 is smooth, χ1 = 1
on U1 and χ1 = 0 outside of U2. Then it suffices to show that χ1K

±
n

((1−χ2)Tn)
uniformly converges on Z. By definition, we have

χ1K
±
n

((1− χ2)Tn)(x) =

�

Z

χ1(x)K±
n

(x, y) ∧ (1− χ2(y))Tn(y)dy

=

�

Z

χ1(x)(1− χ2(y))K±
n

(x, y) ∧ Tn(y)dy.

By definition of χ1 and χ2, the support of χ1(x)(1−χ2(y))K±
n

(x, y) is contained
in a fixed compact set of Z × Z −∆Z . Hence by definition of K

±
n

, there is an
n0 and smooth forms k

±(x, y) on Z × Z so that χ1(x)(1 − χ2(y))K±
n

(x, y) =
k
±(x, y) for all n ≥ n0. Then for n ≥ n0 we have

χ1K
±
n

((1− χ2)Tn)(x) =

�

Z

k
±(x, y) ∧ Tn(y)dy,

and the RHS converges uniformly to
�

Z
k
±(x, y) ∧ T (y)dy since Tn � T .

ii) We prove the claim for example for the case l = 1 and l = 2.
First, consider the case l = 1. Then ii) follows by applying i) to the constant

sequence Tn = T .
Now we consider the case l = 2. Then K+

(2)(T ) = K
+
n2
◦ K

+
n1

(T ) + K
−
n2
◦

K
−
n1

(T ), and K−(2)(T ) = K
+
n2
◦K

−
n1

(T ) + K
−
n2
◦K

+
n1

(T ). We show for example
that K

+
n2
◦K+

n1
(T ) converges uniformly locally on U as both n1 and n2 go to∞.

We apply i) to the sequence Tn = K
+
n

(T ). The two conditions of i) are not hard
to check: First, by the case l = 1 the sequence Tn converges locally uniformly
on U . Second, by Theorem 14, Tn = Kn(T ) + K

−(T ) � T + K
−(T ).

6.2. The case of projective spaces. — In this case, Dinh and Sibony [11] used
super-potential to define pullback of a positive closed current. We recall their
definition in this subsection. The reader is referred to [11] for more detail.

a) Quasi-potentials:
Let ω be the Fubini-Study form on Pk, normalized so that ||ω|| = 1. Let Cp

be the convex set of positive closed (p, p) currents T on Pk, normalized so that
||T || = 1. If T ∈ Cp, then there is a (p − 1, p − 1) current UT bounded from
above so that T − ω

p = dd
c(UT ), and we call m =

�
X

UT ∧ ω
k−p+1 the mean
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of UT . We call UT a quasi-potential of T of mean m. For simplicity we choose
m = 0.

b) Deformation of currents:
The group Aut(Pk) of automorphisms of Pk is the complex Lie group

PGL(k+1, C) of dimension k
2 +2k. We choose a local holomorphic coordinate

chart y (y ∈ Ck
2+2k, with |y| < 2) of Aut(Pk) near the identity id ∈ Aut(Pk),

in such a way that y = 0 at id. The element in Aut(Pk) with coordinate y

is denoted by τy. Assume that the norm |y| is invariant under the involution
τ ↔ τ

−1. Choose a smooth probability ρ with support in |y| < 1 so that ρ is
radially and decreasing in |y|.

Let R be a positive or negative current on Pk. For θ ∈ C with |θ| ≤ 1, define

(6.1) Rθ :=

�

Aut(Pk)
(τθy)∗(R)dρ(y) =

�

Aut(Pk)
(τθy)∗(R)dρ(y).

This has the same positiveness or negativeness as R. Lemma 2.1.5 in [11]
shows that as θ → 0 then Rθ weakly converges to R and supp(Rθ) converges
to supp(R). Moreover, if U ⊂ Pk is open and R|U is continuous, then Rθ con-
verges locally uniformly on U to R.

c) Super-potential:
Let S be a smooth form in Cp, and let R be in Ck−p+1. If UR is a quasi-

potential of R (of mean 0), then the number
�

X
S ∧ UR is independent of the

choice of UR, and is denoted by

US(R) =

�

X

S ∧ UR,

and US is called the superpotential (of mean 0) of S.
For arbitrary S ∈ Cp and R ∈ Ck−p+1, define

US(R) := lim
θ→0

USθ (R) = lim
θ→0

US(Rθ).

Note that this definition is symmetric US(R) = UR(S).
d) Pullback of currents:
Let f : Pk → Pk be a dominant rational map. A positive closed (p, p) current

T is called f
∗-admissible if

UT (f∗(ω
k−p+1)) > −∞.

In this case, we define f
∗(T ) as follows:

f
∗(T ) = lim

θ→0
f
∗(Tθ).
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6.3. Some open questions. — Let X be a compact Kähler manifold, and let f :
X → X be a dominant meromorphic map.

A) Let T be a positive closed (p, p) current on X with Siu’s decomposition
T = R +

�
j
λj [Vj ]. Let E(T ) be as in Theorem 8. Assume that for any ir-

reducible analytic V contained in E(T ) then f
−1(V ) has codimension ≥ p. Is

f
�(T ) well-defined? If so, is f

�(R) positive? Note that by Corollary 2, f
�(T )

may not be positive though.
B) Assume that π1( Cf ) has codimension ≥ p.
a) When X = Pk, [11] showed that π1( Cfn) has codimension ≥ p for all n.

Is the same true for a general X?
b) Does f satisfy dd

c-p stability condition? This holds for p = 1.
c) Using a) and the fact that when X = Pk then f

� preserves the convex
cone of positive (p, p) currents, [11] showed that if moreover f is p-algebraic
stable then (fn)� = (f �)n for all n. Does the same conclusion hold when X

is arbitrary Kähler manifold? We check that the answer to this question is
positive when f = JX :

Lemma 10. — Let JX be the same map in Section 4. Then JX is 2-algebraic
stable and (J�

X
)2 = Id = (J2

X
)� on positive closed (2, 2) currents.

Proof. — Since JX has no exceptional hypersurface, JX is 1-algebraic stable.
Because JX = J

−1
X

, it follows by duality that JX is also 2-algebraic stable.
Since J

2
X

= Id, it remains to check that (J�

X
)2 = Id. Define A =

�
i �=j

�Σi,j .
1) First we show that for a DSH

1 current R then:

(6.2) (J�

X
)2(R) = R.

For this end, first we show that (J�

X
)2(R) = R on X−A. Since J

�

X
is continuous

in the DSH
1 topology by Theorem 6, using Theorem 13 it suffices to show

(6.2) for a smooth (1, 1) form R. In that case it is easy to see, since (J�

X
)2(R)

is determined by its restriction on X − A, and on X − A it is not other than
the usual pullback of smooth forms (JX |∗

X−A
)2(R).

Having (J�

X
)2(R) = R on X − A, then (6.2) follows by the Federer type of

support in [2].
2) It follows from 1) that if T is a positive closed (2, 2) current on X, then

(J�

X
)2(T ) − T depends only on the cohomology class of T . In fact, if T

� is
a positive closed (2, 2) current having the same cohomology class as T , then
T − T

� = dd
c(R) for a DSH

1 current R. Then from 1)

(J�

X
)2(T )− (J�

X
)2(T �) = dd

c(J�

X
)2(R) = dd

c(R) = T − T
�
.

3) From 2), to prove Lemma 10 it suffices to show it for a set of positive
closed currents whose cohomology classes generate H

2,2(X). For such a set, we
can consider the currents of integrations on a generic line in P3, a generic line
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in the exceptional divisors E0, E1, E2, E3, and the line �Σi,j . In these cases, the
wanted equality is easy to be checked.

C) Can the constructions of invariant currents in the Subsection 1.4 be
extended to other cases, for example for a map in Question B?

Lemma 3 gives a positive support to this question. More generally, for any
meromorphic map f , there are natural candidates µ for an invariant measure
of f . These measures can be standardly constructed as in the proof of Lemma 3:
Let α be a smooth probability measure. Then µ is a cluster point of the sequence

µN =
1

N

N−1�

j=0

(f∗)j(α)

δk(f)j
.

There are two problems remain to be solved. First, we don’t know whether the
measure µ constructed this way can be pulled back or not. Second, we don’t
know whether we have a continuity property to help showing that f

�(µ) =
δk(f)µ. If we can extend Theorem 12 to be applicable to the sequence µN then
we can solve these two problems altogether.
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