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Abstract. — Generalizing a result of Bombieri, Masser, and Zannier we show that
on a curve in the algebraic torus which is not contained in any proper coset only finitely
many points are close to an algebraic subgroup of codimension at least 2. The notion
of close is defined using the Weil height. We also deduce some cardinality bounds and
further finiteness statements.
Résumé (Une propriété de Bogomolov pour des courbes modulo des sous-groupes al-
gébriques)

En généralisant un résultat de Bombieri, Masser, et Zannier on montre qu’une
courbe plongée dans le tore algébrique qui n’est pas contenue dans un translaté d’un
sous-groupe algébrique strict n’a qu’un nombre fini de points proches d’un sous-groupe
algébrique de codimension au moins 2. La notion de proximité est définie en utilisant
la hauteur de Weil. On déduit également des bornes pour la cardinalité et d’autres
énoncés de finitude.

1. Introduction

Let X be an irreducible algebraic curve embedded in the algebraic torus Gn
m

and defined over Q, an algebraic closure of Q. Bombieri, Masser, and Zannier
[5] showed that if X is not contained in the translate of a proper algebraic
subgroup, then only finitely many points in X are contained in an algebraic
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94 P. HABEGGER

subgroup of Gn
m of dimension n − 2. The subgroup dimension n − 2 is best-

possible. Their result is related to several general conjectures stated in the
mean time by those three authors [7], Pink [19], and Zilber [27].

In this paper we show that only finitely many points in X are close to an
algebraic subgroup of dimension n−2, where the notion of close is defined with
respect to the Weil height. We also give some finiteness results and cardinality
bounds for higher dimensional varieties.

All varieties in this paper are defined over Q and will be identified with
their set of algebraic points. By irreducible we will always mean geometrically
irreducible. For brevity we call the translate of an algebraic subgroup of Gn

m

a coset and the translate of an algebraic subgroup of Gn
m by a torsion point a

torsion coset. For an integer m with 0 ≤ m ≤ n we define Hm to be the set of
points in Gn

m that are contained in an algebraic subgroup of dimension at most
m; if m < 0 we set Hm = ∅. With this notation and with X as in the first
paragraph, Bombieri, Masser, and Zannier’s Theorem states that X ∩Hn−2 is
finite.

Let h(·) denote the absolute logarithmic Weil height on Gn
m; the precise

definition is given in section 2. This height has the important property, usually
called Kronecker’s Theorem, that it vanishes precisely on the torsion points of
Gn

m. For any subset H ⊂ Gn
m and any � ∈ R we define the “truncated cone”

around H as

C(H, �) = {ab; a ∈ H, b ∈ Gn
m, h(b) ≤ �(1 + h(a))}.

Kronecker’s Theorem implies C(Hm, 0) = Hm.
This definition showed up in the work of Evertse [12]. A special case of his

Theorem 5(i) implies that if X ⊂ Gn
m is an irreducible curve not equal to a

coset and if Γ is the division closure of a finitely generated subgroup of Gn
m,

then X ∩ C(Γ, �) is finite for � > 0 small enough. Actually Evertse proved a
result for X of any dimension. Earlier, Poonen [20] proved a related result in
the context of semi-abelian varieties which was then generalized by Rémond
[21]. We will study the intersection of subvarieties of Gn

m with C(Hm, �) for
small � > 0.

Theorem 1.1. — Let X ⊂ Gn
m be an irreducible closed algebraic curve defined

over Q. If X is not contained in a proper coset there exists � > 0 effective and

depending only on h(X), deg(X), and n such that X∩C(Hn−2, �) is finite with

cardinality bounded effectively in terms of h(X), deg(X), and n.

A quite explicit bound for the cardinality is given by (61).
The height h(X) of any irreducible subvariety X of Gn

m used in this article is
the height hι|X defined by Philippon on page 346 [18] where ι is the embedding
of Gn

m into projective space Pn defined in section 2. This height was also used
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by the author in [15]. The definition of deg(X), the degree of X, is recalled in
section 2.

Theorem 1.1 generalizes Bombieri, Masser, and Zannier’s Theorem and also
generalizes the Bogomolov property for our curve X. The Bogomolov property
(for curves in Gn

m) actually holds more generally and states that if an irreducible
curve in Gn

m is not a torsion coset, then all but finitely many points on this
curve have height bounded below by a positive constant. In Theorem 6.2, Zhang
[26] proved this and also a higher dimensional analogue. If n = 2, Theorem
1.1 actually follows from the Bogomolov property since C(H0, �) is precisely
the set of points in Gn

m with height ≤ �. Theorem 1.1 can be viewed as a sort
of Bogomolov property for curves modulo subgroups of dimension n − 2. We
remark that no new proof of the Bogomolov property is given in this article
since Theorem 1.1 itself depends on a quantitative version of this property by
Amoroso and David [3].

Theorem 1.1 is proved in two steps. First, we apply a Theorem proved by
the author [15], see Theorem 7.1 further down, which uniformly bounds the
height of points in the intersection X ∩ C(Hn−1, �) if � > 0 is small enough.
The second step, done below in Theorem 1.2, consists in showing that a subset
of X∩C(Hn−2, �) of bounded height is finite if � > 0 is small enough. Theorem
1.1 follows since we already know that X ∩ C(Hn−2, �) ⊂ X ∩ C(Hn−1, �) has
bounded height for small �.

In Theorem 1.2 below we prove a finiteness statement which holds not only
for curves but for any irreducible closed subvariety X ⊂ Gn

m. This is the main
technical result of the article, but before we state it we need some definitions.

The set X
oa is obtained by removing from X all anomalous subvarieties and

X
ta is obtained by removing from X all torsion-anomalous subvarieties; see

section 2 for the definition of anomalous and torsion-anomalous subvarieties.
The sets X

oa and X
ta were defined by Bombieri, Masser, and Zannier [7] who

showed that X
oa is Zariski open in X.

For r and n real numbers with 1 ≤ r ≤ n, we define

(1) m(r, n) = n− 2r + 2−d(r(d + 2)− n) with d =

ï
n− 1

r

ò
,

here [x] denotes the greatest integer less or equal to x.

Theorem 1.2. — Let X ⊂ Gn
m be an irreducible closed subvariety of dimen-

sion r ≥ 1 defined over Q. Let B ≥ 1 and let m be an integer with m < m(r, n).

(i) If X is not contained in a proper coset there exists � > 0 effective and

depending only on B, deg(X), and n such that

{p ∈ X ∩ C(Hm, �); h(p) ≤ B}

is not Zariski dense in X.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



96 P. HABEGGER

(ii) For unrestricted X let ∆ = (Brdeg(X))(n+6)4r2nr
. There exists c(n) > 0

effective and depending only on n such that if � ≤ (c(n)∆)−1
then

{p ∈ X
oa
∩ C(Hm, �);h(p) ≤ B}

is finite of cardinality at most c(n)∆.

A possible choice for � in part (i) is the right-hand side of (48) with s replaced
by n. We by no means claim that the hypothesis on � or the cardinality bound
in part (ii) are best-possible with respect to any of the involved quantities like
B or deg(X). We do remark that ∆ and c(n) are independent of a field of
definition or height of X. This uniformity can be used to obtain the following
uniform cardinality bound for a simple family of curves:

Corollary 1.3. — Let τ ∈ Q and let Xτ ⊂ G3
m be the curve defined by

(x+1, x+τ, x−τ) where x �= −1,±τ . There exist � > 0 and an integer N such

that Xτ∩C(H1, �) is finite with cardinality bounded by N for all τ ∈ Q\{0,±1}.

Although the corollary could possibly be generalized to more complicated
families of curves, our method cannot handle other simple examples such as
(x, x− 1, x− τ).

Corollary 1.3 motivates the following two questions. In Theorem 1.1, can
� be chosen depending only on deg(X) and n? In the same theorem, can the
cardinality be bounded in function only of deg(X) and n?

By definition we have m(1, n) = n− 2 + 2−(n−1)
> n− 2 and thus Theorem

1.2 is optimal with respect to the subgroup dimension if X is a curve. But it is
likely that the somewhat unnatural function m(r, n) does not lead to optimal
results if 2 ≤ r ≤ n− 2. In fact we conjecture that Theorem 1.2(i) holds with
m(r, n) replaced by n− r. If 1 ≤ r ≤ n and if d is as in (1), then d >

n−1
r − 1,

hence r(d + 2) > n− 1 + r. We conclude m(r, n) > n− 2r. Therefore one may
always take m = n−2r in Theorem 1.2. Of course this choice is only interesting
if r ≤ n/2. Further down, in Lemma 6.2 we will see that m(r, n) ≥ (n − r)/2
holds for all 1 ≤ r ≤ n− 1.

Statements related to the ones in Theorem 1.2 were known earlier with � = 0.
Work was done in the multiplicative case by Bombieri, Masser, and Zannier
(Lemma 8.1 [8]) and in the abelian case by Rémond (Theorem 2.1 [22]). For
example by Lemma 8.1 [8] the set of p ∈ X

ta ∩ Hn−r−1 with h(p) ≤ B is
finite. In this result the subgroup dimension n − r − 1 is best-possible for
any r and finiteness is obtained for X

ta instead of the possibly smaller X
oa.

These earlier finiteness results involved Lehmer-type height lower bounds. In
the multiplicative case such a bound gives a positive lower bound for h(p) if
p ∈ Gn

m is not contained in any proper algebraic subgroup of Gn
m. Typical
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lower bounds depend essentially on the degree of p over a fixed field such as Q
or its maximal abelian extension.

Unfortunately, the methods from [8] and [22] using Lehmer-type lower
bounds do not generalize well to the situation of Theorem 1.2 where a posi-
tive � is involved. Rather than using a Lehmer-type height bound we use a
Bogomolov-type height lower bound. Given an irreducible closed subvariety
X of Gn

m not equal to a torsion coset, such a bound supplies a Zariski closed
proper Z � X and a positive height lower bound on X\Z. To prove Theorem
1.2 we will apply a bound by Amoroso and David [3] (cf. Theorem 5.1). If
X �= Gn

m is not contained in a proper coset then their lower bound depends
only on deg(X) and n. Furthermore, the dependency in deg(X) is essentially
best-possible, a point which is crucial for our application.

The hypothesis of Amoroso and David’s theorem is reflected in the hypoth-
esis of Theorem 1.2(i). Under the weaker hypothesis that X �= Gn

m is not
contained in a proper torsion coset, Amoroso and David used their Lehmer-
type height lower bound [1] to obtain a positive lower bound for the height
on X\Z for some Zariski closed proper Z � X (cf. Theorem 5.2). This lower
bound has a similar form as the one from Theorem 5.1 but with deg(X) re-
placed by [K : Q]deg(X) for K a field of definition of X. It is not difficult to
adapt the proof of Theorem 1.2 to use this lower bound and obtain:

Theorem 1.4. — Let X ⊂ Gn
m be an irreducible closed subvariety of dimen-

sion r ≥ 1 defined over Q. Let B ≥ 1 and let m be an integer with m < m(r, n).

(i) If X is not contained in a proper torsion coset there exists � > 0 effective

such that

{p ∈ X ∩ C(Hm, �); h(p) ≤ B}

is not Zariski dense in X.

(ii) For unrestricted X there exists � > 0 effective such that

{p ∈ X
ta
∩ C(Hm, �);h(p) ≤ B}

is finite.

We note that the hypothesis on X in part (i) is weaker than in Theorem
1.2(i). On the other hand, � may now depend on a field of definition of X.
Moreover, in part (ii) we prove finiteness for X

ta instead of the possibly smaller
X

oa but at the same time we can no longer expect to find an � or a bound for
the cardinality which is independent of a field of definition of X.

The proof of Theorem 1.1 on curves relies on Theorems 1.2 and 7.1. But
these two latter theorems also give results for subvarieties of Gn

m of arbitrary
dimension. Although the dimension of the subgroups involved may not be
optimal in either one, we state the consequences.
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Theorem 1.5. — Let X ⊂ Gn
m be an irreducible closed subvariety of dimen-

sion r ≥ 1 defined over Q. If m is an integer with m < min{n/r,m(r, n)} there

exists � > 0 effective and depending only on h(X), deg(X), and n such that

X
oa ∩ C(Hm, �) is finite with cardinality bounded effectively in terms of h(X),

deg(X), and n.

In [15] the author conjectured that one can replace m < min{n/r,m(r, n)}
by m < n− r in Theorem 1.5 and still obtain finiteness.

Using the cardinality bound in Theorem 1.2(ii) and the explicit height bound
from Theorem 7.1 one can bound the cardinality in Theorem 1.5 polynomially
in h(X) and deg(X), cf. (60). A similar remark also holds for the following
corollary of Theorem 1.5 which implies finiteness if the algebraic subgroups
have dimension 1.

Corollary 1.6. — Let X ⊂ Gn
m be an irreducible closed subvariety defined

over Q. If dim X ≤ n − 3 there exists � > 0 effective and depending only on

h(X), deg(X), and n such that X
oa∩C(H1, �) is finite with cardinality bounded

effectively in terms of h(X), deg(X), and n.

We show some not completely immediate consequences of Theorems 1.1 and
1.5 as well as Corollary 1.6.

Corollary 1.7. — Let X ⊂ Gn
m be an irreducible closed subvariety defined

over Q.

(i) If X is a curve there exists � > 0 such that X
oa∩C(Hn−2, �) is finite and

equal to X
oa ∩Hn−2.

(ii) If r = dim X ≥ 1 and if m is an integer with m < min{n/r,m(r, n)} there

exists � > 0 such that X
oa ∩ C(Hm, �) is finite and equal to X

oa ∩Hm.

(iii) If dim X ≤ n− 3 there exists � > 0 such that X
oa ∩C(H1, �) is finite and

equal to X
oa ∩H1.

So, a curve which is not contained in a proper coset contains no points close
to an algebraic subgroup of dimension n − 2 which do not already lie on such
a subgroup.

For any subset H ⊂ Gn
m and any � ∈ R we define the “tube” around H as

T (H, �) = {ab; a ∈ H, b ∈ Gn
m, h(b) ≤ �}.

Theorem 1.1 motivates the following definition: let n ≥ 2 and let X ⊂ Gn
m be

an irreducible algebraic curve, we define

µ̂
ess
C (X) = sup{� ≥ 0;X ∩ C(Hn−2, �) finite}

where by convention sup ∅ = −∞. We also define

µ̂
ess
T (X) = sup{� ≥ 0;X ∩ T (Hn−2, �) finite}.
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Then clearly µ̂
ess
C (X) ≤ µ̂

ess
T (X) ≤ µ̂

ess(X) where µ̂
ess(X) is the essential min-

imum of X, see (10) for a definition. We are interested in bounding µ̂
ess
C (X)

and µ̂
ess
T (X) from below.

Let us study µ̂
ess
C (X) if the curve X is not contained in a proper coset. Then

Theorem 1.1 implies µ̂
ess
C (X) > 0. Moreover, it even states that µ̂

ess
C (X) can be

bounded below in terms of h(X), deg(X), and n only. If we consider again the
case n = 2, Amoroso and David’s Theorem 5.1 implies that µ̂

ess
C (X) = µ̂

ess(X)
is bounded below in terms of deg(X). Also, if τ ∈ Q\{0,±1} and if Xτ is the
family of curves in Corollary 1.3, then µ̂

ess
C (Xτ ) can be bounded from below by a

positive number independent of τ . The first question posed below Corollary 1.3
amounts to asking if µ̂

ess
C (X) can be bounded below solely in terms of deg(X)

and n.
What can be said about µ̂

ess
C (X) and µ̂

ess
T (X) if we only demand that X is not

contained in a proper algebraic subgroup of Gn
m? Conjecture A of Bombieri,

Masser, and Zannier [6] expects that X ∩ Hn−2 is finite, or in other words
µ̂

ess
C (X) ≥ 0. This conjecture was proved recently by Maurin [17]. But strict

inequality µ̂
ess
C (X) > 0 cannot hold in general as is demonstrated by the fol-

lowing example:
Assume the curve X ⊂ Gn

m is contained in a coset of codimension 2 (but
not in a proper algebraic subgroup). After an automorphism of Gn

m we may
suppose X = {(γ1, γ2)}×X

� where X
� ⊂ Gn−2

m is a curve. Let � be a positive
real number, then any p ∈ X can be written as p = ab with a = (1, 1, p

�) ∈ Hn−2

and b = (γ1, γ2, 1, . . . , 1). Hence if h(p) is large with respect to � and h(b) then
h(p�) = h(a) will be large with respect to � and h(b). Therefore p ∈ C(Hn−2, �)
if h(p) is large. So X∩C(Hn−2, �) is infinite for all positive �, hence µ̂

ess
C (X) ≤ 0.

This argument does not imply µ̂
ess
T (X) ≤ 0. Indeed since we are assuming that

X is not contained in a proper algebraic subgroup neither γ1 nor γ2 can be a
root of unity. So h(b) = h(γ1, γ2) > 0 by Kronecker’s Theorem.

We state the following conjecture for varieties of arbitrary dimension:

Conjecture 1.8. — Let X be an irreducible closed subvariety of Gn
m of di-

mension r defined over Q. There exists an � > 0 such that X
ta ∩T (Hn−r−1, �)

is finite.

If X is a curve, then X
ta = X if and only if X is not contained in a proper

algebraic subgroup. Hence the conjecture expects µ̂
ess
T (X) > 0 if X is not

contained in a proper algebraic subgroup.
We discuss the abelian situation. More specifically we replace Gn

m by E
n

where E is an elliptic curve. The set Hm also makes sense in this setting,
as do T (·, ·) and C(·, ·) when using for example the Néron-Tate height associ-
ated to an ample and symmetric line bundle. Let X ⊂ E

n be an irreducible
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curve. Intersections of X with Hm were studied by Viada [24] and Rémond
and Viada [23].

Say X is not contained in the translate of a proper algebraic subgroup of
E

n. If E does not have complex multiplication Viada proved that X ∩Hm is
finite if m ≤ n/2−2. If E has complex multiplication, she showed that one has
finiteness for the optimal m = n− 2. Her proof used a height upper bound for
curves analog to Theorem 7.1 and, among other things, a lower bound for the
Néron-Tate height on powers of elliptic curves. The reason for the seemingly
non-optimal n/2 − 2 in the non-complex multiplication case comes from the
fact that sufficiently strong Lehmer-type height lower bounds are not available
at the moment here. Also, an analogue to Amoroso and David’s Theorem 5.2
for E

n seems to be out of reach if E does not have complex multiplication.
But there is hope that a Bogomolov-type height lower bound of the same

quality as the one in Amoroso and David’s Theorem 5.1 will soon be available
in the case where the algebraic torus is replaced by a power of an elliptic curve
or possibly more general abelian varieties. Galateau in this recent Ph.D. thesis
[14] has proved such a result for subvarieties of products of elliptic curves with
codimension at most 2.

Let X ⊂ E
n be a curve which is not contained in the translate of a proper

algebraic subgroup. An appropriate version of Amoroso and David’s Theorem
for E

n together with the methods presented in this article and [15] should
provide a proof for the finiteness of X ∩ C(Hn−2, �) for some � > 0 regardless
if E has complex multiplication or not.

Let X ⊂ E
n be a curve which is not contained in the translate of a proper

algebraic subgroup by a torsion point. In an unpublished manuscript from 2007
Viada proved the finiteness of X ∩ T (Hn−3, �) for small � assuming Galateau’s
result holds without restriction on the codimension. Under the same hypothesis
and just prior to the submission this article, she [25] announced a proof that
X ∩ T (Hn−2, �) is finite for some � > 0. Hence she obtains finiteness with the
optimal subgroup dimension. Moreover, there is hope that her approach also
gives non-density results for higher dimensional subvarieties with the correct
subgroup size.

The paper is organized as follows. In section 2 we define the height function
and fix some notation. In sections 3 and 4 we prove some auxiliary lemmas. In
section 5 we prove Proposition 5.5, a lower bound for the product of heights
inspired by Theorem 1.6 of Amoroso and David’s paper [1]. In section 6 we
prove Theorems 1.2 and 1.4. In section 7 we then prove Theorems 1.1 and 1.5
and the three corollaries.

I thank my Ph.D. advisor David Masser for his constant support, for his
suggestions on many aspects, and for carefully reading an earlier version of
this manuscript. I also thank Sinnou David for the fruitful conversations we
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had. While working on this paper I received funding from the Institut de
Mathémathiques de Jussieu, the Swiss National Science Foundation, and the
University of Basel. Finally, I thank the referee whose suggestions led to many
improvements of the manuscript.

2. Heights and further notation

We use notation which was also used in [15], it eases calculations in Gn
m.

Let p = (p1, . . . , pn) ∈ Gn
m with pi non-zero elements of some field K and

u = (α1, . . . ,αn)t ∈ Zn where t means transpose, we set p
u = p

α1
1 · · · pαn

n . If U

is an n×m matrix with columns u1, . . . , um ∈ Zn we set p
U = (pu1 , . . . , p

um).
If q is also a vector with n non-zero entries in K we have (pq)U = p

U
q

U . If
V is a matrix with m rows and integer coefficients, then (pU )V = p

UV . If
K = R and all pi are positive we will also allow exponent vectors or matrices
with rational numbers as entries. We define the morphism of algebraic groups
ϕ(u1,...,um) : Gn

m → Gm
m by sending p to (pu1 , . . . , p

um).
For u ∈ Rn let |u| be the euclidean norm of u. Furthermore, if L ∈

R[X1, . . . ,Xn] is a linear form, then |L| will denote the euclidean norm of
the coefficient vector of L.

Let K be a number field. A place of K is an absolute value whose restriction
to Q is a p-adic absolute value or the standard complex absolute value. If v

is a place of K, then Kv denotes the completion of K with respect to v. By
abuse of notation we also use the symbol v to denote the restriction of v to any
subfield of K.

We now define the absolute logarithmic Weil height, or short the height, of
p ∈ Gn

m as follows: let K be a number field which contains the coordinates pi

of p, we define

h(p) =
1

[K : Q]

�

v

[Kv : Qv] log max{1, |p1|v, . . . , |pn|v}

where the sum runs over all places of K. It is well-known that this sum is
well-defined and that h(p) does not depend on the field K containing the pi.
This height function equals the one used in [15].

The height function satisfies several nice properties in connection with the
group structure of Gn

m. For example if q ∈ Gn
m one has h(pq) ≤ h(p) + h(q),

h(pk) = kh(p) if k ≥ 1 is an integer, h(p−1) ≤ nh(p), and h(p) ≤ h(p1) + · · ·+
h(pn).

Let ι : Gn
m → Pn denote the morphism which sends (p1, . . . , pn) ∈ Gn

m

to [1 : p1 : · · · : pn]. Given a Zariski closed subset X ⊂ Gn
m we define its

degree deg(X) as the degree of the Zariski closure Z of ι(X) in Pn, i.e. the
number of points in the intersection of Z with a linear subvariety of Pn of
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dimension n−dim X lying in general position. The degree of X only measures
the irreducible components of X of maximal dimension. It will be useful to
take the sum over the degrees of all irreducible components of X and call this
number deg0(X). If Y is another Zariski closed subset of Gn

m, then Bézout’s
Theorem (example 8.4.6 [13]) says deg0(X ∩ Y ) ≤ deg0(X)deg0(Y ).

Let X ⊂ Gn
m be an irreducible closed subvariety and let L be a subfield of

Q. We say that X is defined over L if it is stable under the action of Gal(Q/L).
Furthermore, for a field R ⊂ Q we define

degR(X) = min{[L : R]deg(X); L ⊂ Q is a finite extension of R and
X is defined over L}.

For the rest of the article we assume R = Q or R = Q. In the former case
degR(X) = deg(X).

As promised in the introduction we define anomalous and torsion-anomalous
subvarieties of an irreducible closed subvariety X ⊂ Gn

m. An irreducible closed
subvariety Y ⊂ X is called anomalous if dim Y ≥ 1 and if there exists a coset
H ⊂ Gn

m containing Y such that dim Y ≥ dim X + dim H − n + 1. Moreover,
we call Y torsion-anomalous if H is a torsion coset.

Throughout the paper and unless stated otherwise the symbols c1, c2, . . .

denote positive constants which depend only on n.

3. Geometry of numbers

We recall two lemmas proved in [15] which will also be used in this article.

Lemma 3.1. — Let 1 ≤ m ≤ n and let a ∈ Hm. There exist linear forms

L1, . . . , Lm ∈ R[X1, . . . ,Xn] such that |Lj | ≤ 1 and

h(au) ≤ c1 max
1≤j≤m

{|Lj(u)|}h(a)

for all u ∈ Zn
.

Proof. — This is Lemma 1 from [15].

The second lemma wraps up all the geometry of numbers we will use.

Lemma 3.2. — Let 1 ≤ m ≤ n and let L1, . . . , Lm ∈ R[X1, . . . ,Xn] be linear

forms with |Lj | ≤ 1. If ρ ≥ 1, there exist λ1, . . . ,λn with 0 < λ1 ≤ λ2 ≤ · · · ≤

λn and linearly independent u1, . . . , un ∈ Zn
such that

|uk| ≤ λk, |Lj(uk)| ≤ ρ
−1

λk, and λ1 · · ·λn ≤ c2ρ
m

.

Proof. — This is Lemma 2 from [15].
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We recall Dobrowolski’s Theorem: if α ∈ Q\{0} is not a root of unity and
D = [Q(α) : Q], then

(2) h(α) ≥ c3
1

D

Å
log log 3D

log 2D

ã3

where c3 > 0 is an absolute constant. For a proof see Theorem 1 [11].
The geometry of numbers machinery and Dobrowolski’s Theorem give the

following lemma which is the main ingredient in the proof of Corollary 1.7. It
can be regarded as a Dobrowolski type result modulo algebraic subgroups.

Lemma 3.3. — Let 1 ≤ m ≤ n be an integer, let δ > 0, and let B ≥ 1. If

p ∈ C(Hm, �) with h(p) ≤ B, [Q(p) : Q] ≤ D, and

(3) �
−1
≥ c7B

m+1
D

m+1+δ
.

then p ∈ Hm. Here c7 > 0 depends only on n and δ.

Proof. — The symbols c4, c5, c6 denote positive constants which depend only
on n and δ. We may assume c7 ≥ 2n; we will see how to choose c7 appropriately
further down. We define ρ ≥ 1 to be the right-hand side of (3).

Say p = ab with a ∈ Hm and h(b) ≤ �(1 + h(a)). By height properties
described in section 2 we have h(a) = h(pb

−1) ≤ h(p) + h(b−1) ≤ h(p) + nh(b).
So h(a) ≤ h(p) + n�(1 + h(a)) ≤ h(p) + 1

2 (1 + h(a)). We conclude that

(4) h(a) ≤ 1 + 2h(p) and h(b) ≤ 2�(1 + h(p)).

By (4) we have h(a) ≤ 3B and h(b) ≤ 4�B. Let L1, . . . , Lm be the linear
forms from Lemma 3.1 and let λk and uk be from Lemma 3.2 applied to the
Lj . We deduce

(5) h(auk) ≤ c1λkρ
−1

h(a) ≤ 3c1λkρ
−1

B.

Furthermore, by elementary height inequalities we have

h(buk) ≤
√

n|uk|h(b) ≤ 4
√

nλk�B.

We combine this inequality with (5) and use � ≤ ρ
−1 to get

(6) h(puk) ≤ h(auk) + h(buk) ≤ c4λk(ρ−1 + �)B ≤ 2c4λkρ
−1

B.

Say 1 ≤ k ≤ n−m. By Lemma 3.2 we have 1 ≤ |uk| ≤ λk and

λk ≤ (λn−m · · ·λn)
1

m+1 ≤ (λ1 · · ·λn)
1

m+1 ≤ c5ρ
m

m+1 .

We apply this inequality to (6) and use the definition of ρ to get

h(puk) ≤ c6ρ
− 1

m+1 B = c6c
− 1

m+1

7 D
−1− δ

m+1 ,

this inequality holds for all 1 ≤ k ≤ n−m.
Now [Q(puk) : Q] ≤ D, so if c7 is large enough with respect to c6 and δ,

Dobrowolski’s Theorem implies that p
u1 , . . . , p

un−m are roots of unity. Since
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u1, . . . , un−m are linearly independent we conclude p ∈ Hm by Proposition
3.2.7 [4].

Let D be an integer, by Northcott’s Theorem there exists µD > 0 such that
if α is algebraic of degree at most D over Q then h(x) = 0 or h(x) ≥ µD. A
variant of the previous lemma can be proved using only this statement instead
of Dobrowolski’s Theorem after replacing the right-hand side of (3) by a positive
constant depending on B,µD, and n.

4. Push-forwards and pull-backs

In this section we prove two lemmas on bounds for degrees of push-forwards
and pull-backs of varieties by a homomorphism of algebraic groups.

Unless stated otherwise, let X ⊂ Gn
m be an irreducible closed subvariety

throughout this section.

Lemma 4.1. — Let t ≥ 1 be an integer.

(i) Let u1, . . . , ut ∈ Zn\{0} and let 0 < λ1 ≤ · · · ≤ λt with |uk| ≤ λk. If

ϕ = ϕ(u1,...,ut) : Gn
m → Gt

m and q = dim ϕ(X), then

(7) degR(ϕ(X)) ≤ c8λt−q+1 · · ·λtdegR(X).

(ii) If ϕ : Gn
m → Gt

m is the projection onto any set of t coordinates, then

degR(ϕ(X)) ≤ degR(X).
(iii) If X ⊂ Gn

m is Zariski closed and R = Q, then (7) holds with degR(·)
replaced by deg0(·) on both sides.

Proof. — After permuting coordinates on Gt
m we may assume |u1| ≤ · · · ≤ |ut|.

For brevity we set Y = ϕ(X). There exists U ⊂ Y Zariski open and dense with
U ⊂ ϕ(X) (theorem on page 219 [9]). For the moment we identify with Q

q(t+1)

the set of q-tuples of polynomials in X1, . . . ,Xt, of degree at most 1, and with
coefficients in Q. By a Bertini type argument there is a Zariski open and dense
subset of Q

q(t+1) such that the set of common zeros on Y of each tuple in
this set is contained in U and has cardinality deg(Y ). The determinant of the
q× q matrix whose rows correspond to the coefficients of Xt−q+1, . . . ,Xt of an
element of Q

q(t+1) does not vanish identically on this set. It follows that we
can even find (l1, . . . , lq) ∈ Q

q(t+1) with li − Xt−q+i ∈ Q[X1, . . . ,Xt−q] such
that

T = {y ∈ Y ; l1(y) = · · · = lq(y) = 0}

is contained in U and has cardinality deg(Y ). We define N = ϕ|
−1
X (T ). Then

N ⊂ X is Zariski closed and has at least deg(Y ) irreducible components. On
the other hand we have N = {x ∈ X; l1(ϕ(x)) = · · · = lq(ϕ(x)) = 0}. The

tome 137 – 2009 – no 1



A BOGOMOLOV PROPERTY FOR CURVES MODULO ALGEBRAIC SUBGROUPS 105

exponent vectors in li ◦ ϕ have norm bounded by |ut−q+i|. Hence Bézout’s
Theorem implies that the number of irreducible components of N is bounded
above by c8|ut−q+1| · · · |ut|deg(X). Thus deg(Y ) ≤ c8|ut−q+1| · · · |ut|deg(X).

Let L ⊂ Q be a field over which X is defined, which contains R, and such
that degR(X) = [L : R]deg(X). Then Y is defined over L since the morphism
ϕ is defined by monomials in integer coefficients. The proof of (i) follows.

A simple modification of this proof also leads to a proof of (ii). Part (iii)
follows from (7) and on taking the sum over all irreducible components of
X.

then inequality (7)

Lemma 4.2. — Let u1, . . . , ut ∈ Zn
be linearly independent and ϕ =

ϕ(u1,...,ut) : Gn
m → Gt

m.

(i) If Y ⊂ Gt
m is an irreducible closed subvariety, then

(8) deg0(ϕ−1(Y )) ≤ c9|u1| · · · |ut|deg(Y ).

(ii) If t = n, then ϕ is a proper morphism. Moreover, if W is an irreducible

component of ϕ
−1(Y ) with Y as in (i), then dim W = dim Y , W maps

surjectively onto Y , and degR(W ) ≤ c9|u1| · · · |un|degR(Y ).
(iii) If Y ⊂ Gn

m is Zariski closed then (8) holds if deg(·) is replaced by deg0(·)
on the right-hand side.

Proof. — We begin by proving the upper bound for deg0(ϕ−1(Y )). By Bé-
zout’s Theorem the sum over the degrees of the irreducible components of

(9) {(q, p) ∈ Gn
m ×Gt

m;ϕ(q) = p} ∩ (Gn
m × Y )

is bounded by c9|u1| · · · |ut|deg(Y ). Now ϕ
−1(Y ) is just the projection of the

set above onto the first factor of Gn
m×Gt

m. Part (i) follows from Lemma 4.1(ii)
with R = Q applied to the irreducible components of (9)

We prove part (ii), so let us assume t = n. We note that kerϕ, the kernel of
ϕ, is finite and ϕ is surjective. The properness of ϕ follows from the Valuative
Criterion of Properness (Theorem 4.7, page 101 [16]). In particular, ϕ is a
closed map. Since ϕ is surjective and closed ϕ(W0) = Y for some irreducible
component W0 of ϕ

−1(Y ). By the Theorem on the Dimension of the Fibres
(first theorem on page 228 [9]) and since ϕ|W0 has finite fibres we have dim W0 =
dim Y . Let W be a further irreducible component of ϕ

−1(Y ). If w ∈ W , then
ϕ(w) = ϕ(w0) for some w0 ∈ W0, hence w ∈ w0 kerϕ. We just showed that W

equals the finite union �

ζ∈ker ϕ

W ∩W0ζ.

Since W is irreducible W = W0ζ for some ζ ∈ kerϕ. In particular dim W =
dim W0 = dim Y and ϕ(W ) = ϕ(W0) = Y .
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To show (ii) it remains to prove the bound for degR(W ). Let L ⊂ Q be a
field over which Y is defined, which contains R, and such that degR(Y ) = [L :
R]deg(Y ). If σ ∈ Gal(Q/L), then W

σ is contained in ϕ
−1(Y ) since ϕ is defined

by monomials with integer coefficients. Hence W
σ is an irreducible component

of ϕ
−1(Y ) and in particular the orbit of W is finite. So the subgroup G of all σ ∈

Gal(Q/L) which stabilize W is open and has index bounded by l, the number
of irreducible components of ϕ

−1(Y ). Let F be the fixed field of G. Then W

is defined over F and [F : L] ≤ l. Therefore degR(W ) ≤ [F : L]deg(W ) = [F :
L][L : R]deg(W ) ≤ l[L : R]deg(W ). Now ldeg(W ) = deg0(ϕ−1(Y )) since each
irreducible component of ϕ

−1(Y ) is the translate of W by a torsion point. This
implies degR(W ) ≤ [L : R]deg0(ϕ−1(Y )). The proof of (ii) follows from (8).

Part (iii) follows from (8) and on taking the sum over all irreducible compo-
nents of Y .

5. A lower bound for the product of heights

In this section let X be an irreducible closed subvariety of Gn
m with r =

dim X.

The essential minimum of X is

(10) µ̂
ess(X) = sup

Z�X
inf{h(p); p ∈ X\Z},

where Z runs over all Zariski closed and proper subsets of X.

By Zhang’s Theorem 6.2 [26] the essential minimum of X vanishes if and only
if X is the translate of an algebraic subgroup of Gn

m by a torsion point. More
recently, several authors have obtained lower bounds for the essential minimum
if this value is positive. In general such lower bounds depend on deg(X), n,
and a field of definition of X. But if we assume that X is not contained in a
proper coset, then a Theorem of Amoroso and David implies that the essential
minimum can be bounded below in terms of deg(X) and n only. Furthermore,
the dependency of their lower bound in deg(X) is essentially optimal:

Theorem 5.1 (Amoroso, David). — Let X � Gn
m be a proper irreducible

closed subvariety of codimension k defined over Q. If X is not contained in a

proper coset, then

(11) µ̂
ess(X) ≥

c10

(deg(X))1/k
(log(3deg(X)))−λ(k)

with λ(k) = (9(3k)k+1)k
and where c10 > 0 depends only on n.
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Proof. — Amoroso and David’s Theorem 1.4 [3] is formulated in a more pre-
cise way using the obstruction index instead of the degree. We will no define
this quantity here. Inequality (11) is a direct consequence of Amoroso and
David’s Theorem together with Chardin’s inequality (2) [3] which bounds the
obstruction index from above in terms of deg(X).

The “arithmetic” analogue to Theorem 5.1 is the following Theorem also by
Amoroso and David:

Theorem 5.2 (Amoroso, David). — Let X � Gn
m be a proper irreducible

closed subvariety of codimension k defined over Q. If X is not contained in a

proper torsion coset, then

µ̂
ess(X) ≥

c11

(degQ(X))1/k
(log(3degQ(X)))−κ(n)

where κ(n) and c11 > 0 depend only on n.

Proof. — This is Corollary 1.3 [2].

In order to bound the cardinality as in Theorem 1.2(ii) we need to obtain
quantitative statements on a Zariski closed subset of X containing points of
small height. The following proposition follows from a Theorem of David and
Philippon and a Theorem of Zhang.

Proposition 5.3. — Let X ⊂ Gn
m be an irreducible closed subvariety defined

over Q. If R = Q we assume that X is not a coset. There exist a constant

0 < c12 < 1 which depends as usual only on n and a Zariski closed proper subset

Z � X which contains all points of X with height strictly less than c12µ̂
ess(X).

Furthermore, if R = Q then we can choose Z such that

(12) deg0(Z) ≤ c13deg(X)5.

Proof. — If R = Q the proposition follows immediately from the definition of
µ̂

ess(X) with c12 = 1/2.
Let us assume R = Q. The proof is an application of Proposition 5.4(i) [10].

For p = (p1, . . . , pn) ∈ Gn
m we note that the height function used in Proposition

5.4 is h(p1) + · · · + h(pn) instead of h(p). But this deviation is harmless since
h(p) ≤ h(p1)+ · · ·+h(pn) ≤ nh(p). Let µ̂

ess(X) be the essential minimum of X

taken with respect to the height function used in [10]. The normalized height
of X occurring in David and Philippon’s proposition is bounded from below by
deg(X)µ̂ess(X) by a normalized version of Zhang’s Theorem 5.2 [26].

The following proposition was inspired by Theorem 1.6 [1].
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Proposition 5.4. — If R = Q we assume that X is not contained in a coset

and if R = Q we assume that X is not contained in a torsion coset. There

exists Z � X Zariski closed and proper such that for each (p1, . . . , pn) ∈ X\Z

there is a subset Σ ⊂ {1, . . . , n} with |Σ| ≥ n− r and

(13)
�

k∈Σ

h(pk) ≥
c30

degR(X)(log(3degR(X)))c29

where c30 > 0. Furthermore, if R = Q then we may choose Z such that

deg0(Z) ≤ c26deg(X)(n−r+2)(n−r+6)
.

Proof. — We may assume X �= Gn
m, otherwise the statement of the proposition

is empty. We define

V
� = {(p1, . . . , pn) ∈ X; max

|Σ|≥n−r

�

k∈Σ

h(pk) ≤ 1},

where Σ runs over the subsets of {1, . . . , n} of cardinality at least n− r.
The first statement in the proposition clearly holds for all points p ∈ X\V �

since we may assume c30 ≤ 1 and c29 ≥ 0. Our proof of the statement around
(13) follows the following strategy: for each p ∈ V

� we show that either inequal-
ity (13) is satisfied for some Σ as specified or that p is contained in the union
of two Zariski closed and proper subsets Z1 and Z2 of X. In fact by permuting
coordinates, it suffices to prove this statement with V

� replaced by

V = {(p1, . . . , pn) ∈ V
�;h(p1) ≤ · · · ≤ h(pn)}.

We start by constructing Z1. Let π : Gn
m → Gr+1

m denote the projec-
tion onto the first r + 1 coordinates and let W = π(X) ⊂ Gr+1

m . Then
degR(W ) ≤ degR(X) by Lemma 4.1(ii). Also W �= Gr+1

m by a dimension
counting argument. Moreover if R = Q, then W is not contained in a proper
coset since X is not and if R = Q then W is not contained in a proper torsion
for a similar reason. In particular, we can apply Proposition 5.3 to W . By
abuse of notation let c12 be the constant from this proposition. There exists a
Zariski closed and proper Y � W as in Proposition 5.3 such that on W\Y the
height is bounded below by c12µ̂

ess(W ). We define

Z1 = π
−1(Y ) ∩X,

so Z1 is Zariski closed and Z1 � X.
Assume for the moment R = Q, we will bound deg0(Z1). By Lemma 4.2(iii)

and inequality (12) we see deg0(π−1(Y )) ≤ c14deg(W )5 ≤ c14deg(X)5. Bé-
zout’s Theorem now implies

(14) deg0(Z1) ≤ c14deg(X)6.
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We begin the construction of Z2. Let p ∈ V \Z1, then
(15)

(r + 1)h(pr+1) = (r + 1) max{h(p1), . . . , h(pr+1)} ≥ h(π(p)) ≥ c12µ̂
ess(W ),

the first inequality follows from elementary properties of the height. Now
codim W ≥ 1, thus in (15) we can bound µ̂

ess(W ) from below using Theo-
rem 5.1 if R = Q and Theorem 5.2 if R = Q. In both cases we obtain

h(pr+1) ≥
c15

degR(W )(log(3degR(W )))c16
≥

c15

degR(X)(log(3degR(X)))c16
.

(16)

In particular, h(pr+1) > 0 and we may define

(17) k1 = · · · = kr = 1 and kj =

ï
h(pj)

h(pr+1)

ò
≥ 1 for r + 1 ≤ j ≤ n.

With (16) and since p ∈ V we can bound

k1 · · · kn = kr+1 · · · kn ≤
h(pr+1) · · ·h(pn)

h(pr+1)n−r
≤ c17degR(X)n−r(log(3degR(X)))c18 .

So, although the product k1 · · · kn depends on the point p, it can be bounded
above independently of p. We define the finite set

K = {ϕ : Gn
m → Gn

m; ϕ(q1, . . . , qn) = (qk1
1 , . . . , q

kn
n ),

(18)

k1 = · · · = kr = 1 ≤ kr+1 ≤ · · · ≤ kn integers with

k1 · · · kn ≤ c17degR(X)n−r(log(3degR(X)))c18}.

Say ϕ ∈ K and let k1, . . . , kn be the associated exponents. We apply Lemma
4.2(ii) and choose an irreducible component W

ϕ of ϕ
−1(X), then dim W

ϕ = r,
ϕ(Wϕ) = X, and

(19) degR(Wϕ) ≤ c19k1 · · · kndegR(X) = c19kr+1 · · · kndegR(X).

If R = Q then W
ϕ is not contained in a proper coset since X itself is not and if

R = Q then W
ϕ is not contained in a proper torsion coset for a similar reason.

Furthermore we have W
ϕ �= Gn

m because X �= Gn
m. We choose Z

ϕ ⊂ W
ϕ as

in Proposition 5.3, so Z
ϕ is Zariski closed and proper such that the height is

bounded below by c12µ̂
ess(Wϕ) on W

ϕ\Zϕ. If R = Q we apply Theorem 5.1 to
bound µ̂

ess(Wϕ) from below, similarly if R = Q we apply Theorem 5.2 instead.
In both cases (19) implies that

if q ∈ W
ϕ
\Z

ϕ then h(q) ≥ c12µ̂
ess(Wϕ)

(20)

≥
c20

(kr+1 · · · kndegR(X))
1

n−r (log(3kr+1 · · · kndegR(X)))c21

.
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We define

(21) Z2 =
�

ϕ∈K
ϕ(Zϕ).

Then Z2 is Zariski closed in X since ϕ is proper by Lemma 4.2(ii) and since K
is finite. Furthermore, Z2 �= X by construction.

Assume for the moment R = Q, then bounding deg0(Z2) is not difficult.
Indeed if ϕ ∈ K then by Proposition 5.3 we have deg0(Zϕ) ≤ c13deg(Wϕ)5.
The bound (19) and the definition (18) give deg0(Zϕ) ≤ c22deg(X)5(n−r+2).
Lemma 4.1(iii) and again (18) imply deg0(ϕ(Zϕ)) ≤ c23deg(X)6(n−r+2). Hence
deg0(Z2) ≤ c23|K|deg(X)6(n−r+2), so it remains to bound the cardinality of K.
From (18) we deduce the rather crude bound c24deg(X)(n−r)(n−r+1) for |K|,
hence

(22) deg0(Z2) ≤ c25deg(X)(n−r+6)(n−r+2)
.

Now let Z = Z1 ∪ Z2 and p ∈ V \Z. We will show that (13) holds with
Σ = {r + 1, . . . , n}. This completes the proof, indeed if R = Q the degree
bound for Z holds with c26 = c14 + c25 because of (14) and (22). Since p ∈

V \Z1 there exists ϕ ∈ K with associated k1, . . . , kn as in (17). Let us pick
q = (q1, . . . , qn) ∈ W

ϕ with ϕ(q) = p. Then h(pj) = kjh(qj), so

h(pr+1) · · ·h(pn) = kr+1 · · · knh(qr+1) · · ·h(qn).

If r + 1 ≤ j ≤ n, then by (17) all h(qj) are essentially of the same size. More
precisely,

(23)
1

2

h(pj)

h(pr+1)
≤ kj ≤

h(pj)

h(pr+1)
, so h(pr+1) ≤ h(qj) ≤ 2h(pr+1).

Hence

(24) h(pr+1) · · ·h(pn) ≥ kr+1 · · · knh(pr+1)
n−r

.

Let qj� be a coordinate of q with maximal height, then the height func-
tion properties discussed in section 2 imply h(q) ≤ nh(qj�). Now h(qr+1) =
h(pr+1) ≥ h(pj) = h(qj) for 1 ≤ j ≤ r, hence we may assume j

� ≥ r + 1.
We insert the upper bound for h(qj) from (23) with j = j

� into (24) and use
h(qj�) ≥

1
nh(q) to derive

(25) h(pr+1) · · ·h(pn) ≥ 2−(n−r)
kr+1 · · · knh(qj�)

n−r
≥ c27kr+1 · · · knh(q)n−r

.
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Finally, we use the fact that q /∈ Z
ϕ which follows from p /∈ Z2 and (21). So

we may apply (20) to (25) and conclude

h(pr+1) · · ·h(pn) ≥
c28kr+1 · · · kn

kr+1 · · · kndegR(X)(log(3kr+1 · · · kndegR(X)))c29

≥
c28

degR(X)(log(3kr+1 · · · kndegR(X)))c29
.

Up to the the product kr+1 · · · kn in the logarithm, this is already (13) with
Σ = {r + 1, . . . , n}. But this remaining product is harmless since it equals
k1 · · · kn and therefore is bounded polynomially in degR(X) by (18).

We define

so(X) = min{dim H;H ⊂ Gn
m a coset with X ⊂ H} and

s∗(X) = min{dim H;H ⊂ Gn
m a torsion coset with X ⊂ H}.

Proposition 5.4 only holds if so(X) = n, s∗(X) = n for R = Q, R = Q
respectively. A simple projection argument shows that in general we have:

Proposition 5.5. — If R = Q then let s = so(X) and if R = Q then let

s = s∗(X). There exists Z � X Zariski closed and proper such that for each

(p1, . . . , pn) ∈ X\Z there is a subset Σ ⊂ {1, . . . , n} with |Σ| ≥ s− r and

(26)
�

k∈Σ

h(pk) ≥
c34

degR(X)(log(3degR(X)))c35

where c34 > 0. Furthermore, if R = Q then

(27) deg0(Z) ≤ c33deg(X)(s+3)(s+6)
.

Proof. — We prove the proposition if R = Q, the case R = Q is similar.
Let H be a coset with X ⊂ H and s = dim H = n − h. By Proposition

3.2.7 and Corollary 3.2.15 [4] there are linearly independent u1, . . . , uh ∈ Zn

such that x
ui is constant on H. After possibly permuting coordinates we may

assume that the h × h matrix whose ith column consists of the first h entries
of ui is non-singular. In this case the projection π : Gn

m → Gn−h
m onto the

last n − h coordinates has finite fibres when restricted to H. Therefore π|X

has finite fibres too. By the Theorem on the Dimension of the Fibres we
have dim W = r with W = π(X) ⊂ Gs

m. Lemma 4.1(ii) implies deg(W ) ≤
deg(X). Furthermore, W is not contained in a proper coset, indeed otherwise
X would be contained in a coset of dimension strictly less than n − h. We
apply Proposition 5.4 to W and obtain Z

� � W Zariski closed and proper with
deg0(Z �) ≤ c31deg(W )(s+2)(s+6) ≤ c31deg(X)(s+2)(s+6).

Say p ∈ X, inequality (26) now holds if p /∈ Z = π
−1(Z �) ∩ X for some

Σ ⊂ {h + 1, . . . , n} with |Σ| ≥ s− dim W ≥ s− r. By Lemma 4.2(iii) we have
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deg0(π−1(Z �)) ≤ c32deg0(Z �) ≤ c33deg(X)(s+2)(s+6); by Bézout’s Theorem we
obtain

deg0(Z) ≤ c33deg(X)(s+2)(s+6)+1
≤ c33deg(X)(s+3)(s+6)

.

If for example R = Q and X is itself a coset, then so(X) = r; in this case
Proposition 5.5 is an empty statement.

6. Proof of Theorems 1.2 and 1.4

In this section, if not stated otherwise, X ⊂ Gn
m is an irreducible closed

subvariety of dimension r with 1 ≤ r ≤ n− 1.
We start off with an auxiliary lemma related to linear programming. We

recall that m(r, s) was defined in (1).

Lemma 6.1. — Let s be an integer and 1 ≤ r < s ≤ n, let M = (mij) be the

n× (s− r) matrix defined by

mij =






1 if i + j ≤ n− r + 1,

2 if n− r + 2 ≤ i + j ≤ n + 1,

0 else,

and let w = (w1, . . . , ws−r)
t
∈ Rs−r

be the column vector with

wj =

�
2−( j−1

r +1)
if r|(j − 1),

0 else.

Then w1 + · · · + ws−r < 1. Moreover, v = (v1, . . . , vn)t = Mw satisfies vi ≤ 1
and

(28)
s−r�

j=1

(s− r − j + 1)wj = m(r, s).

Proof. — The vector w looks like

(29) w = (
1

2
, 0, . . . , 0,

1

4
, 0, . . . , 0,

1

8
, 0, . . . )

t

with r−1 zeros between consecutive negative powers of 2 (there are no zeros if
r = 1). The inequality w1 + · · ·+ ws−r < 1 is immediate. When 1 ≤ i ≤ n, the
ith row of M starts off with a certain number (possibly zero) of consecutive
ones followed by say N consecutive twos and finally consecutive zeros. By
definition we have N ≤ r, hence by (29) there is at most one j with mij = 2
and wj �= 0. Let N

� be the number of j with mij = 1 and wj �= 0, then

vi =
�

j,mij=1

wj + 2
�

j,mij=2

wj ≤ (
1

2
+ · · · +

1

2N � ) + 2
1

2N �+1
= 1.
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So vi ≤ 1, as desired. The final assertion, equality (28), follows from an
elementary calculation.

We need two simple lemmas on m(r, n).

Lemma 6.2. — Let n, n
�
, r, r

�
be integers with 1 ≤ r ≤ n− 1, 1 ≤ r

� ≤ n
� − 1,

r
� ≤ r, and n − r ≤ n

� − r
�
, then m(r, n) ≤ m(r�, n�). Moreover, m(r, n) ≥

(n− r)/2.

Proof. — From (28) and taking j = kr + 1 we get

(30) m(r, n) =
∞�

k=0

max{0,
n− (k + 1)r

2k+1
}.

By omitting all terms with k > 0 we obtain m(r, n) ≥ (n − r)/2, the second
assertion of the lemma. Moreover, as

n− (k + 1)r = (n− r)− kr ≤ (n� − r
�)− kr

� = n
�
− (k + 1)r�

for non-negative k, the first assertion follows at once.

For example, Lemma 6.2 applied with r
� = 1 and n

� = n gives

(31) m(r, n) ≤ m(1, n) = n− 2 + 2−(n−1)
≤ n− 1.

Lemma 6.3. — Let m be an integer with m(r, n) > m, then m(r, n) − m ≥

2−(n−1)
.

Proof. — By the definition (1) of m(r, n), the difference m(r, n)−m is a rational
with denominator bounded by 2(n−1)/r ≤ 2n−1. The proof follows since this
difference is positive by hypothesis.

Recall that R = Q or R = Q. The following proposition will imply part (i)
of Theorems 1.2 and 1.4.

Proposition 6.4. — If R = Q we set s = so(X) and if R = Q we set s =
s∗(X). Assume s ≥ r + 1, let m be an integer with 0 ≤ m < m(r, s), and let

B ≥ 1. There exist c51 > 0, c42, and a Zariski closed and proper subset Z � X

such that if

(32) 0 ≤ � ≤ c51(B
m+1degR(X)2)−

1
m(r,s)−m

then {p ∈ X ∩ T (Hm, �);h(p) ≤ B} ⊂ Z. Furthermore, if R = Q, then

(33) deg0(Z) ≤ c42(Bdeg(X))(n+6)42n

.
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We will prove Proposition 6.4 further down and start introducing some nota-
tion. Until the end of the proof of this proposition we assume X, R, s, m, and
B are as in the hypothesis. We consider Q = c

−1
51 ≥ n as fixed and depending

only on n; we will see how to choose it later on. We also define ρ ∈ R such
that Bρ

−1 is equal to the right-hand side of (32), i.e.

(34) ρ = Q(Bm(r,s)+1degR(X)2)
1

m(r,s)−m ≥ 1.

The following upper bound for ρ will be useful later on:

Lemma 6.5. — We have ρ ≤ QB
n2n−1

degR(X)2
n
.

Proof. — By Lemma 6.3 we may bound (m(r, s) −m)−1 ≤ 2s−1, furthermore
inequality (31) gives m(r, s) ≤ s − 1. Hence, ρ ≤ Q(Bsdeg(X)2)2

s−1
and the

proof follows since s ≤ n.

Recall that c2 is the constant from Lemma 3.2. We set

t0 = n− s + r + 1 ≥ r + 1

and define the finite set

Φ = {ϕ(u1,...,ut) : Gn
m → Gt

m; t0 ≤ t ≤ n,(35)
u1, . . . , ut ∈ Zn linearly independent,
|u1| · · · |ut| ≤ c2ρ

m
}.

All elements of Φ are surjective homomorphisms of algebraic groups.
The next lemma controls the push-forward of X by an element of Φ.

Lemma 6.6. — Let t0 ≤ t ≤ n, ϕ = ϕ(u1,...,ut) ∈ Φ, and Xϕ = ϕ(X) ⊂ Gt
m.

Then dim Xϕ ≤ r ≤ t − 1. If R = Q then so(Xϕ) ≥ s + t − n ≥ r + 1 and if

R = Q then s∗(Xϕ) ≥ s + t− n ≥ r + 1.

Proof. — We restrict ourselves to the case R = Q, the case R = Q is similar.
Certainly, dim Xϕ ≤ dim X = r ≤ t0 − 1 ≤ t − 1 since ϕ|X : X → Xϕ is

dominant.
We continue by bounding so(Xϕ) from below. To do this let H ⊂ Gt

m be
a coset of dimension so(Xϕ) that contains Xϕ. Then dim ϕ

−1(H) = dim H +
(n− t) and ϕ

−1(H) is a coset containing X. Hence

so(Xϕ) = dim ϕ
−1(H)− (n− t) ≥ s + t− n ≥ s + t0 − n = r + 1.
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Let ϕ ∈ Φ and Xϕ = ϕ(X) ⊂ Gt
m for some t0 ≤ t ≤ n. In view of the

previous lemma we apply Proposition 5.5 to Xϕ and obtain a Zariski closed
and proper Zϕ � Xϕ satisfying the stated properties. We define

(36) Z =
�

ϕ∈Φ

ϕ
−1(Zϕ) ∩X.

This will be the set in the assertion of Proposition 6.4. It is Zariski closed
since Φ is a finite set and it is also proper since each ϕ

−1(Zϕ) does not contain
X. Indeed, ϕ|X : X → Xϕ is a dominant map. In the next lemma we bound
deg0(Z):

Lemma 6.7. — If R = Q we have deg0(Z) ≤ c41Q
2m(n+6)4(Bdeg(X))(n+6)42n

.

Proof. — Let ϕ = ϕ(u1,...,ut) ∈ Φ. Proposition 5.5 implies deg0(Zϕ) ≤

c35deg(Xϕ)(t+3)(t+6). After possibly permuting coordinates Lemma 4.1(i) and
(35) let us bound

deg(Xϕ) ≤ c8|u1| · · · |ut|deg(X) ≤ c36ρ
mdeg(X),

hence
deg0(Zϕ) ≤ c37ρ

m(t+3)(t+6)deg(X)(t+3)(t+6)
.

Lemma 4.2(iii) and again (35) imply

deg0(ϕ−1(Zϕ)) ≤ c38|u1| · · · |ut|deg0(Zϕ) ≤ c39ρ
m(t+3)(t+6)+mdeg(X)(t+3)(t+6)

,

while Bézout’s Theorem gives

deg0(ϕ−1(Zϕ) ∩X) ≤ c39ρ
m(t+3)(t+6)+mdeg(X)(t+3)(t+6)+1

≤ c39ρ
m(n+6)2deg(X)(n+6)2

,

the last inequality uses t ≤ n. So, in order to bound deg0(Z) it remains to
control the cardinality of Φ. A crude estimate which follows from the definition
(35) is |Φ| ≤ c40ρ

mn2
. We obtain

deg0(Z) ≤ c41ρ
2m(n+6)2deg(X)(n+6)2

.

We now apply Lemma 6.5 to show that this last bound for deg0(Z) implies
(33) with c42 = c41Q

2m(n+6)2 . Indeed, we have

deg0(Z) ≤ c41Q
2m(n+6)2

B
mn(n+6)22n

deg(X)m(n+6)22n+1+(n+6)2
.

Recall that by (31) (with s instead of n) we have m < m(r, s) ≤ s− 1 ≤ n− 1,
so

deg0(Z) ≤ c41Q
2m(n+6)2

B
n2(n+6)22n

deg(X)n(n+6)22n+1

≤ c41Q
2m(n+6)2(Bdeg(X))(n+6)42n

.
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We now prove Proposition 6.4. Say p ∈ X ∩T (Hm, �) and h(p) ≤ B, we will
show that p ∈ Z.

By definition we may write p = ab with a ∈ Hm and h(b) ≤ �. Elementary
height properties and � ≤ Q

−1 ≤ 1/n imply h(a) ≤ h(p) + h(b−1) ≤ h(p) +
nh(b) ≤ h(p) + n� ≤ 2B. Let us assume for the moment that m ≥ 1. By
Lemmas 3.1 and 3.2 there exist λ1, . . . ,λn with 0 < λ1 ≤ · · · ≤ λn and linearly
independent u1, . . . , un ∈ Zn such that for 1 ≤ k ≤ n

(37)
|uk| ≤ λk, h(auk) ≤ c1h(a)ρ−1

λk ≤ 2c1Bρ
−1

λk, and λ1 · · ·λn ≤ c2ρ
m

.

Here c1 is the constant from Lemma 3.1 and we may assume c2 ≥ 1. In the case
m = 0 the statements in (37) also hold if we take λk = 1 and uk the standard
basis elements of Rn. Indeed if m = 0, then a is a torsion point and thus has
height 0.

Elementary height inequalities give h(buk) ≤
√

nh(b)|uk| ≤
√

n�λk, hence

(38) h(puk) ≤ h(auk) + h(buk) ≤ c43(Bρ
−1 + �)λk ≤ 2c43Bρ

−1
λk,

here we used the bound � ≤ Bρ
−1 in the last inequality.

For t0 ≤ t ≤ n we set ϕt = ϕ(u1,...,ut) : Gn
m → Gt

m and for brevity let Xt

denote Xϕt = ϕt(X). It is important to note that ϕt and so also Xt depend
on p. On the other hand, by (37) ϕt is contained in the finite set Φ which is
independent of p.

Let c34 > 0 and c35 be the constants from Proposition 5.5 applied to Xt ⊂

Gt
m; they actually depend on t but since t0 ≤ t ≤ n we may assume that they

only depend on n. Let us assume for the moment that there exists an integer
t with t0 ≤ t ≤ n such that for all Σ ⊂ {1, . . . , t} with |Σ| ≥ so(Xt) − dim Xt

(respectively |Σ| ≥ s∗(Xt)− dim Xt if R = Q) we have the inequality

(39) c
−1
34

�
�

k∈Σ

h(puk)

�
degR(Xt)(log(3degR(Xt)))

c35 < 1.

The product in (39) is actually a product over heights of certain coordinates of
the point ϕt(p) ∈ Xt. From (39) and Proposition 5.5 we conclude that ϕt(p)
is contained in Zϕt , a set chosen above (36). In particular, if (39) holds, then
p ∈ Z. The proposition follows in this case since Z is a Zariski closed and
proper subset of X. In the case R = Q the degree bound for Z follows from
Lemma 6.7.

What if the statement around (39) does not hold? Then we will deduce a
contradiction and this will complete the proof of the proposition.

Let t0 ≤ t ≤ n and let Σ ⊂ {1, . . . , t}, we define fn−t+1(Σ) ∈ R to be
the expression on the left-hand side of (39). We are assuming that for all
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t0 ≤ t ≤ n there exists a subset Σ(t) ⊂ {1, . . . , t} with |Σ(t)| ≥ so(Xt)−dim Xt

(respectively |Σ(t)| ≥ s∗(Xt)− dim Xt if R = Q) and

(40) fn−t+1(Σ(t)) ≥ 1.

For brevity we set fn−t+1 = fn−t+1(Σ(t)).
We proceed by bounding fn−t+1 from above. To do this we apply (38) to

the definition of fn−t+1 and get

fn−t+1 ≤ c
−1
34

Ñ
�

k∈Σ(t)

(c44Bρ
−1

λk)

é
degR(Xt)(log(3degR(Xt)))

c35 .

Next we bound degR(Xt) from above using Lemma 4.1(i) and λt−r+1 · · ·λt ≤ λ
r
t

to see that

fn−t+1 ≤ c45

Ñ
�

k∈Σ(t)

λk

é
λt−r+1 · · ·λt(Bρ

−1)|Σ(t)|degR(X)(log(3λtdegR(X)))c35 .

By Lemma 6.6 we have |Σ(t)| ≥ so(Xt)− dim Xt ≥ s + t− n− r ≥ 1 if R = Q
and |Σ(t)| ≥ s∗(Xt) − dim Xt ≥ s + t − n − r ≥ 1 if R = Q; here we used
dim Xt ≤ r. This bound for |Σ(t)| and ρ ≥ B lead to

fn−t+1 ≤ c45

Ñ
�

k∈Σ(t)

λk

é
λt−r+1 · · ·λt(Bρ

−1)s+t−n−rdegR(X)(log(3λtdegR(X)))c35 .

Because λk ≥ 1 we may replace the product over Σ(t) by the product over
{1, . . . , t}:

fn−t+1 ≤

(41)

c45λ1 · · ·λt−r(λt−r+1 · · ·λt)
2(Bρ

−1)s+t−n−rdegR(X)(log(3λtdegR(X)))c35 .

This inequality holds for all t0 ≤ t ≤ n.
Let M , v, w be the matrix respectively vectors from Lemma 6.1. Using

notation introduced in section 2 we define

Λ = (λ1, . . . ,λn)M

= (λ1 · · ·λn−r(λn−r+1 · · ·λn)2, . . . ,λ1 · · ·λn−s+1(λn−s+2 · · ·λn+r−s+1)
2).

That is, the jth entry of Λ is the main contribution of the λk’s to the bound
for fj in (41). By Lemma 6.1 and λk ≥ 1 we have

(42) Λw = (λ1, . . . ,λn)Mw = λ
v1
1 · · ·λ

vn
n ≤ λ1 · · ·λn.

We define the product

(43) f = (f1, . . . , fs−r)
w = f

w1
1 · · · f

ws−r

s−r .
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By (40) and since wj ≥ 0 we conclude

(44) f ≥ 1.

We bound f from above using the definition (43) together with the help of
(41) and (42)

f ≤ c46Λ
w(Bρ

−1)
�s−r

j=1
(s−r−j+1)wj (degR(X)(log(3λndegR(X)))c35)w1+···+ws−r

≤ c46λ1 · · ·λn(Bρ
−1)

�s−r

j=1
(s−r−j+1)wj degR(X)(log(3λndegR(X)))c35 ,

here we also used w1+ · · ·+ws−r < 1 from Lemma 6.1. By the same lemma the
exponent of Bρ

−1 equals m(r, s). We recall (37) and use λn ≤ λ1 · · ·λn ≤ c2ρ
m

to bound

f ≤ c47ρ
m−m(r,s)

B
m(r,s)degR(X)(log(3ρdegR(X)))c35 .(45)

By the choice of ρ made in (34) we have

ρ
m−m(r,s)

B
m(r,s)+1degR(X)2 = Q

−(m(r,s)−m)

This equality and (45) imply

f ≤ c47Q
−(m(r,s)−m) (log(3ρdegR(X)))c35

BdegR(X)
.

By Lemma 6.5 the ρ in the logarithm is bounded above by QB
n2n−1

degR(X)2
n
.

Together with elementary inequalities we have

f ≤ c48Q
−(m(r,s)−m) (log(3QBdegR(X)))c35

BdegR(X)
(46)

≤ c49Q
−(m(r,s)−m) max{log Q, log(3BdegR(X))}c35

BdegR(X)

≤ c50Q
−(m(r,s)−m) max{(log Q)c35 , BdegR(X)}

BdegR(X)

≤ c50Q
−(m(r,s)−m) max{(log Q)c35 , 1}.

Because m(r, s)−m ≥ 2−(s−1) ≥ 2−(n−1) by Lemma 6.3 we may choose Q ≥ n

depending only on n such that (46) implies f < 1. But this contradicts (44).�
For B ≥ 1 we have the following inclusions

{p ∈ T (Hm, �);h(p) ≤ B} ⊂

{p ∈ C(Hm, �); h(p) ≤ B} ⊂ {p ∈ T (Hm, 4�B);h(p) ≤ B},(47)

if � ≤
1
2n . The first inclusion is trivial and holds for unrestricted �, the second

one follows easily using arguments around (4). Therefore Proposition 6.4 can
be reformulated with T (·, ·) replaced by C(·, ·) and after choosing a possibly
smaller �.
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Proposition 6.8. — Let R, s, m, and B be as in Proposition 6.4 and let us

assume s ≥ r + 1. There exist c52 > 0 and a Zariski closed and proper subset

Z � X such that if

(48) 0 ≤ � ≤ c52(B
m(r,s)+1degR(X)2)−

1
m(r,s)−m

then {p ∈ X ∩ C(Hm, �); h(p) ≤ B} ⊂ Z. Furthermore, if R = Q then (33)

holds.

Proof. — The proof follows immediately from the inclusion (47) and Proposi-
tion 6.4.

In the notation of the previous proposition, we have m(r, s) ≤ s− 1 ≤ n− 1
by (31). Also, by Lemma 6.3 the lower bound m(r, s)−m ≥ 2−(s−1) ≥ 2−(n−1)

holds. Combining these two facts we note that

(49) � ≤ c52(B
ndegR(X)2)−2n−1

= c52B
−n2n−1

degR(X)−2n

implies the hypothesis on � in (48).

Lemma 6.9. — Let m be an integer with 0 ≤ m < m(r, n) and let B ≥ 1.
Say X

� ⊂ X is a irreducible closed subvariety of positive dimension with

X
� ∩ X

oa �= ∅ if R = Q or with X
� ∩ X

ta �= ∅ if R = Q. If 0 ≤ � ≤

c52B
−n2n−1

degR(X �)−2n
, there exists Z � X

�
Zariski closed and proper with

{p ∈ X
�
∩ C(Hm, �); h(p) ≤ B} ⊂ Z.

Furthermore, if R = Q, then

(50) deg0(Z) ≤ c42(Bdeg(X �))(n+6)42n

where c42 is the constant from Proposition 6.8.

Proof. — We only prove the case R = Q, the proof for R = Q is similar.
Say H ⊂ Gn

m is a coset containing X
� with so(X �) = dim H. Now X

�

cannot be an anomalous subvariety of X because X
�∩X

oa �= ∅. Thus we have
dim X

� ≤ r + dim H − n or

(51) so(X �)− dim X
�
≥ n− r

and in particular so(X �) ≥ dim X
� + 1 since X �= Gn

m by the assumption made
at the beginning of this section. Inequalities (51), dim X

� ≤ dim X, and Lemma
6.2 imply m(dim X

�
, so(X �)) ≥ m(r, n) > m. The lemma follows by applying

Proposition 6.8 to X
� and the comment around (49).
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The proof of Theorem 1.2 is by induction over the dimension and by applying
the previous lemma. To control certain quantities in the induction step we
define

(52) ∆�(r�, δ�) = (c42B
r�

δ
�)(n+6)4r�2nr�

for δ
�
≥ 1, r

�
≥ 0

here B ≥ 1 is considered to be fixed. If δ
�� ≥ 1, then

(53) ∆�(r�, δ�) + ∆�(r�, δ��) ≤ ∆�(r�, δ� + δ
��)

since the exponent (n + 6)4r�2nr� in (52) is not less than 1. We assume, as we
may, that the constant c42 from Proposition 6.4 and 6.8 is at least 1.

Lemma 6.10. — Let δ
�
, δ
�� ≥ 1 and 0 ≤ r

�� ≤ r
�−1 with δ

�� ≤ c42(Bδ
�)(n+6)42n

,

then ∆�(r��, δ��) ≤ ∆�(r�, δ�).

Proof. — It suffices to prove the inequality with r
�� = r

�− 1. The bound on δ
��

implies

∆�(r��, δ��) ≤ (c2
42B

r�−1+(n+6)42n

δ
�(n+6)42n

)(n+6)4(r�−1)2n(r�−1)

.

To prove the lemma it is enough to show the inequality in

c
2
42B

r�−1+(n+6)42n

δ
�(n+6)42n

≤ ∆�(r�, δ�)(n+6)−4(r�−1)2−n(r�−1)

= (c42B
r�

δ
�)(n+6)42n

.

The exponent of c42 on the far left is clearly at most the exponent of c42 on the
far right and c42 ≥ 1, furthermore the exponents of δ

� are equal. The lemma is
established if we can show r

�−1+(n+6)42n ≤ r
�(n+6)42n. But this inequality

holds if r
� is substituted by 1 and so it must hold for all r

� ≥ 1 because both
sides are linear in r

�.

Proof of Theorem 1.2: Let X, r,B, and m be as in the hypothesis. We may
assume m ≥ 0, thus X �= Gn

m since m(n, n) = 0. Theorem 1.2(i) follows from
Proposition 6.8 applied with R = Q since so(X) = n.

It remains to prove part (ii) of the theorem. To do this we show the following
statement.

Let X
� ⊂ X be an irreducible closed subvariety of dimension r

�, and

(54) 0 ≤ � ≤ c52∆
�(r�,degR(X �))−1

then

(55) {p ∈ X
oa
∩X

�
∩ C(Hm, �);h(p) ≤ B}

is finite with cardinality N(X �) bounded by ∆�(r�,deg(X �)).
The theorem follows by taking X

� = X in the statement above since
∆�(r, deg(X)) equals ∆ up to a factor depending only on n. We prove the
statement by induction on r

�. The case r
� = 0 being trivial we assume r

� ≥ 1
and also X

oa∩X
� �= ∅. As c42 ≥ 1, reviewing (54) and the definition (52) of ∆�
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shows that � satisfies � ≤ c52B
−n2n−1

deg(X �)−2n
; so � satisfies the hypothesis

of Lemma 6.9. Hence

{p ∈ X
oa
∩X

�
∩ C(Hm, �);h(p) ≤ B} ⊂ Z = Z1 ∪ · · · ∪ Zl

where Zi � X
� are the irreducible components of Z. Let 1 ≤ i ≤ l, we note

(56) deg(Zi) ≤ deg0(Z) ≤ c42(Bdeg(X �))(n+6)42n

and r
�� = dim Zi ≤ r

� − 1 so by Lemma 6.10 with δ
� = deg(X �), δ

�� = deg(Zi)
and (54) we have � ≤ c52∆�(dim Zi,deg(Zi))−1. By induction we conclude that
{p ∈ X

oa ∩ Zi ∩ C(Hm, �);h(p) ≤ B} is finite for each i and thus obtain the
finiteness statement made around (55). To bound the cardinality we apply the
induction hypothesis to bound N(Zi) in

N(X �) ≤
l�

i=1

N(Zi) ≤
l�

i=1

∆�(dim Zi,deg(Zi)) ≤
l�

i=1

∆�(r� − 1,deg(Zi)),

the last inequality holds since ∆� is increasing in the first argument. By (53)
we deduce

N(X �) ≤ ∆�(r� − 1,

l�

i=1

deg(Zi)) = ∆�(r� − 1,deg0(Z)).

Finally, Lemma 6.10 applied this time with r
�� = r

� − 1, δ
�� = deg0(Z) and the

bound (56) imply N(X �) ≤ ∆�(r�,deg(X �)); the proof follows. �
The proof of Theorem 1.4 is simpler since we do not give an explicit cardi-

nality bound.
Let X, r,B, and m be as in the hypothesis. We may assume m ≥ 0, thus

X �= Gn
m since m(n, n) = 0. Part (i) follows from Proposition 6.8 applied with

R = Q since s∗(X) = n.
To prove (ii) we show the following statement:
Let X

� ⊂ X be an irreducible closed subvariety of dimension r
�, there exists

� > 0 such that

(57) {p ∈ X
ta
∩X

�
∩ C(Hm, �);h(p) ≤ B}

is finite.
The theorem follows by taking X

� = X in the statement. We prove the
statement by induction on r

�. The case r
� = 0 being trivial we assume r

� ≥ 1
and also X

ta ∩X
� �= ∅. By Lemma 6.9 with R = Q there exists an � > 0 such

that

(58) {p ∈ X
ta
∩X

�
∩ C(Hm, �); h(p) ≤ B} ⊂ Z = Z1 ∪ · · · ∪ Zl.

where Zi � X
� are the irreducible components of Z. As dim Zi ≤ dim X

� − 1
we reduce � if necessary and apply the induction hypothesis to conclude that
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{p ∈ X
ta ∩Zi ∩C(Hm, �); h(p) ≤ B} is finite for each i. The finiteness of (57)

now follows from (58). �

7. Proof of Theorems 1.1 and 1.5 and the corollaries

Before we can prove the announced results we state in somewhat simplified
terms a theorem on boundedness of height proved by the author, see Theo-
rem 1 [15].

Theorem 7.1. — Let X ⊂ Gn
m be an irreducible closed subvariety defined

over Q of dimension r and let m be an integer with m · r < n. There exists an

effective constant c
�(n) > 0 which depends only on n such that if

� ≤ (c�(n)deg(X)
n

n−mr )−1

and p ∈ X
oa ∩ C(Hm, �) then

(59) h(p) ≤ c
�(n)deg(X)

mr
n−mr (deg(X) + h(X)).

Proof of Theorem 1.5: Let X and m be as in the hypothesis, by Theo-
rem 7.1 we may choose an � > 0 depending only on deg(X) and n such that
X

oa ∩ C(Hm, �) has height bounded by the right-hand side of (59). We con-
clude the finiteness of X

oa ∩ C(Hm, �) from Theorem 1.2(ii) after choosing a
possibly smaller � > 0 which only depends on h(X), deg(X), and n. Using the
cardinality bound given in Theorem 1.2(ii) it is not hard to see that
(60)
|X

oa
∩ C(Hm, �)| ≤ c

��(n)deg(X)
nr+n−mr

n−mr (n+6)4r2nr

max{1, h(X)}r(n+6)4r2nr

where c
��(n) depends only on n. �

Theorem 1.1 follows from Theorem 1.5 because X
oa = X if X is a curve

which is not contained in a proper coset and because m(1, n) = n−2+2−(n−1)
>

n− 2. Using (60) with r = 1 and m = n− 2 we get

(61) |X ∩ C(Hn−2, �)| ≤ c
��(n)deg(X)

n+2
2 (n+6)42n

max{1, h(X)}(n+6)42n

for � > 0 small enough.
Proof of Corollary 1.3: If x1, x2, x3 are the coordinates on G3

m we set P to
be the plane defined by 2x1 − x2 − x3 − 2 = 0; clearly Xτ ⊂ P for all τ . All
coefficients in this defining equation for P are non-zero and so P

oa �= ∅ by
Theorem 1.3 [8]. Because P

oa is Zariski open [7] we may write P
oa = P\Z

with Z � P Zariski closed and of dimension at most 1.
We claim Xτ �⊂ Z for all τ ∈ Q, even for τ ∈ {0,±1}. Indeed, let us

assume Xτ ⊂ Z, we will derive a contradiction. By dimension reasons Xτ is
an irreducible component of Z and so we may fix p ∈ Xτ not contained in any
other irreducible component. Since p �∈ P

oa it is contained in an anomalous

tome 137 – 2009 – no 1



A BOGOMOLOV PROPERTY FOR CURVES MODULO ALGEBRAIC SUBGROUPS 123

subvariety Y ⊂ Z. Now P has dimension 2 and we deduce immediately that Y

is a coset. Reasoning again with dimension we see that Y is also an irreducible
component of Z and since p ∈ Y we conclude Y = Xτ . Hence Xτ is a 1-
dimensional coset and this is a contradiction to its definition.

Theorem 7.1 tells us that the height is bounded from above by some B ≥ 1
on (P\Z) ∩ C(H1, �) for a positive �. Throughout the proof � > 0 is to be
understood as independent of τ .

Let τ ∈ Q\{0,±1}. We note

Xτ ∩ C(H1, �) ⊂ (Xτ ∩ Z) ∪ ((Xτ\Z) ∩ C(H1, �)) ,

and complete the proof by bounding the cardinality of Xτ ∩ Z and (Xτ\Z) ∩
C(H1, �) separately.

As we have seen above Xτ �⊂ Z. So Xτ ∩ Z is a finite set. By Bézout’s
Theorem its cardinality is at most deg(Xτ )deg0(Z) = deg0(Z) since deg(Xτ ) =
1; this bound is clearly independent of τ .

We have Xτ
oa = Xτ because τ �= 0,±1. Using again deg(Xτ ) = 1, the

quantity ∆ defined in Theorem 1.2(ii) depends only on B and is thus inde-
pendent of τ ; hence we may assume � ≤ (c(n)∆)−1. This theorem implies
that {p ∈ Xτ ∩ C(H1, �);h(p) ≤ B} has cardinality bounded by c(n)∆, so
in particular independently of τ . But we know that B bounds the height on
(Xτ\Z) ∩ C(H1, �) since Xτ ⊂ P . This completes the proof. �

Proof of Corollary 1.6: We may assume r = dimX ≥ 1. Lemma 6.2 gives
m(r, n) ≥ (n − r)/2 > 1, so m(r, n) > 1 since r ≤ n − 3 by hypothesis. The
proof follows from Theorem 1.5 with m = 1. �

Proof of Corollary 1.7: We start by proving part (i). By Theorem 1.1 there
exists � > 0 such that X

oa ∩ C(Hn−2, �) is finite. Hence the points of this set
have height bounded by some fixed B and degree bounded by some fixed D.
The corollary now follows easily from Lemma 3.3 after adjusting � if necessary.

The proofs of parts (ii) and (iii) are similar. �
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